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HIS ARTICLE PRESENTS tools for the construction of tiling rhythmic 
canons, implemented in the OpenMusic visual programming lan-

guage. After a brief presentation of OpenMusic, we will focus on the 
description of the MathTools environment and its most relevant 
objects, which enable a composer to produce several classes of tiling 
rhythmic canons by means of constraint programming, group factori-
zations, and polynomial representations. Examples of tiling rhythmic 
canons include canons by translation (from the simplest cases to the 
cyclotomic canons and Vuza canons) and by augmentation (i.e., can-
ons obtained by affine transformations).
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1.THE OPENMUSIC VISUAL PROGRAMMING LANGUAGE
AND THE MATHTOOLS ENVIRONMENT

OpenMusic (OM) is a visual programming environment dedicated to 
music composition, designed and developed at Ircam. It allows for the 
creation of and experimentation with compositional models through 
programming by means of a graphical interface that represents musical 
structures and processes. In order to facilitate the understanding of the 
illustrations in this paper, the basic concept of ����� will be explained 
in this section.1 A patch is a graphical representation of a program. In a 
patch, boxes represent functions, each one having a set of inputs (at 
the top of the box) and a set of outputs (at the bottom of the box). 
These boxes can be connected together in order to create the 
functional layout of the program–i.e., what it will do. OM possesses a 
number of functions of varying complexity and specialization and new 
ones may be created by the user.
Example 1 shows a simple patch using the functions for the addition 
and multiplication of integers. It is the graphical equivalent of the 
expression �3�6��100. If the number 3 in the expression �3�6��100 
is made into a variable, the result is a single-parameter function defined 
as follows: � �� �����6��100. Example 2 shows the patch corre-
sponding to the previous function, where the initial value 3 is replaced 
by a variable �. From a graphical point of view, this variable is 

EXAMPLE 1: A PATCH THAT CORRESPONDS TO THE EXPRESSION �3�6��100
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represented by an arrow-shaped box (at the top of Example 2) whereas 
the output arrow (at the bottom) specifies the value that results when 
the patch is calculated.
The patch in Example 2 can, in turn, be considered as a function 
call, and may be used in the form of a graphical box in other patches. 
This makes it possible to create functional abstractions that can then be 
used in various contexts. Example 3 shows the patch from the previous 
example in the form of a box, with the number 5 as its argument. The 
result of the calculation in this patch will therefore be � �5�10� 
��5�6��100��10�110. This demonstrates the embedding character of 
the patch object–i.e., the possibility of nesting a patch within a sec-
ond patch (and so on).
Data structures (classes) can be used in the patches in order to create 
and manipulate objects (particularly musical ones). These structures are 
also shown as graphical boxes with inputs and outputs that provide the 
program access to their content. Example 4 shows a patch for generat-
ing a musical sequence algorithmically. It contains a BPF-type object 
(break-point function), a chord sequence (represented in absolute time 
values), and a voice (chord sequence in musical rhythmic notation). 
Among the OpenMusic objects which are most frequently used by 
composers are the following musical classes: CHORD, CHORD-SEQ, POLY 
(polyphony made up of several voices), MIDIFILE, SOUND (audio file), etc.
Each object class possesses a graphical editor, enabling the display 
and manual editing of musical data. Example 5 shows the graphical 
editor of the voice type object that was constructed in Example 4.

EXAMPLE 2: A PATCH THAT CORRESPONDS TO
THE FUNCTION � �� �����6��100
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EXAMPLE 3: THE RECURSIVE CHARACTER OF THE PATCH OBJECT

EXAMPLE 4: CREATING A MUSICAL SEQUENCE IN A PATCH WHERE THE PITCHES ARE 
GENERATED FROM THE DATA IN A BREAK-POINT FUNCTION AND THE RHYTHM IS 

CREATED OUT OF PROPORTIONAL DURATION RELATIONSHIPS
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In addition to standard objects in OpenMusic, we developed a col-
lection of mathematical tools based on algebraic structures, allowing 
music theorists and composers to manipulate new musical material, 
based on the most recent “mathemusical” research.2 These tools are 
organized in a specialized package called “MathTools,” which associ-
ates the previous musical representations with the circular representa-
tion, by means of the N-CERCLE object. 
As first observed by a large number of twentieth-century music the-
orists and composers from the American tradition (Milton Babbitt, 
David Lewin, John Rahn, . . . ) as well as the European tradition 
(Pierre Barbaud, Iannis Xenakis, Anatol Vieru, Michel Philippot, 
Guerino Mazzola, . . . ),3 the combinatorial character of the equal-
tempered system is formally described by the algebraic model of the 
cyclic group ���� of order �, where �	denotes the number of equal 
divisions of the octave. It is also common usage, at least in European-
oriented computational musicology (Riotte and Mesnage 2006), to 
make use of the circular representation in order to geometrically cap-
ture the algebraic properties of this group within a computer-aided 
environment. A given chord of 
 distinct notes (modulo the octave) 
can therefore be represented from a geometric point of view as an 
-
polygon inscribed in a circle. To each chord one can associate a se-
quence of 
 integers counting the successive intervals in the chord 
(interval structure). Such a structure is an algebraic invariant, enabling 
one to identify in a unique way a given chord up to transpositions, as 

EXAMPLE 5: A VOICE EDITOR
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thoroughly studied by Anatol Vieru, whose catalogue of chords is 
provided by these means (Vieru 1980).
Periodic rhythmic patterns can also be represented via the N-CERCLE 
object. Example 6 shows two rhythmic patterns that are particularly 
interesting from a tiling perspective. They are called “3-asymmetric” in 
Hall and Klingsberger’s terminology (Hall and Klingsberger 2006). 
From a group-theoretical point of view they are what mathematical 
music theorists usually call “self-inverse partitioning” musical struc-
tures. In fact they are “inversionally” related, meaning that they are 
basically the same orbit under the action of the dihedral group on the 
twelve-tone system. Moreover, the twelve-tone system can be parti-
tioned into a disjoint union of transposition classes of the two struc-
tures. We show their circular representation (by means of the N-CERCLE 
object), their intervallic structure (provided by the �-STRUCTURE func-
tion), their interpretation as chords, and one possible rhythmic 
interpretation via the function C2RHYTHM, which maps the circular 
representation onto a corresponding rhythmic pattern (with the choice 
of a minimal rhythmic value corresponding to the eight note).

EXAMPLE 6: TWO MUSICAL STRUCTURES REPRESENTED AS 4-POLYGONS INSCRIBED 
IN A CIRCLE AND INTERPRETED AS INVERSIONALLY-RELATED CHORDS

AND 3-ASYMMETRIC RHYTHMIC PATTERNS
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2.A FIRST COMPUTATIONAL APPROACH TO THE CONSTRUCTION OF TILING 
RHYTHMIC CANONS: CONSTRAINT PROGRAMMING

A rhythmic canon is a polyphony of the same rhythm translated in 
time. It is defined by two rhythmic patterns: the inner one (�) that is 
the ground voice (a periodic rhythm) and the outer one () made by 
the entries of each voice. A tiling rhythmic canon is a rhythmic canon 
where at each pulsation one and only one voice attacks a note. Because 
of the simplicity of the definition of a tiling rhythmic canon, one might 
imagine that modeling this structure as a CSP (constraint satisfaction 
problem) is a very natural approach. A CSP is given by a triplet (�, �, 
�) where ����1�	��

�

 is a finite set of variables, � a set of finite 

domains, one for each variable (we denote ���
�
� the domain of the 

variable ��), and � a set of constraints of the form (�,�) with � being a 
subset of � and � a subset of the Cartesian product of their domains:

���1�������
�
����1�	��

�
�.

Values �
�1
����1��	��

� �

����
�
� satisfy a constraint ���1�	��

�
� if

��
�1
�	��

� �

�����1�	��
�
�.

An instantiation � is a set of values ��
�1
�	��

��

� assigned to a subset 
���. If the inclusion of � in � 	is strict, we say that � is a ������� 	
�������������. The instantiation � is consistent if, for all constraints �i 
containing variables in �� the values in � satisfy ��. A solution is an 
instantiation consistent with ���. As an example, suppose that we are 
trying to find a tiling rhythmic canon of four voices with period 
sixteen. The CSP that models this problem is given by:

a.Variables: ����1�	��6
����1��2��3��4


b.Domains: ���
�
���0	15���� �

�
�

c.Constraints:

��1�	��6��� �������� �� �� a permutation of �0,	�15�

In order to remove duplicates by translation we add two new 
constraints: �1�0 and �1�0.
Once the CSP is defined, it is given as an input to a constraint 
solver.4 We obtain a solution ���0,1,4,5
 and ��0,2,8,10
 that 
corresponds to the tiling canon in Example 7. Examples in this paper 
take the eighth-note as the basic pulse.
It is easy to generalize this example as a function taking two 
parameters � and � specifying respectively the period and the number 
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of voices. An advantage of constraint programming is that it allows 
searching exhaustively all the solutions for a given period. For instance, 
for ��9 and ��3 there are eighteen canons, as shown in Example 8.
The main problem with constraint programming is the time of com-
putation, which can hinder applications in the factorization of cyclic 
groups with larger periods (as, for example, 72). It is also difficult to 
add new constraints to the CSP without changing the performance 
time (as in the families of Vuza and augmented canons). For these 
reasons we need to know more about the problem in order to find 
more interesting solutions.

3.TILING RHYTHMIC CANONS AND MILTON BABBITT’S COMBINATORIALITY 

As mentioned, the circular representation provides one of the most 
practical visualization tools for describing the inner symmetries of dif-
ferent kinds of musical structures. In our attempt to implement some 
computational properties of set theory and transformational analysis, 
we initially focused on several families of chord structures having spe-
cific symmetries up to transposition, inversion, and complementation 

EXAMPLE 8: THE COMPLETE CATALOGUE OF SOLUTIONS OF THE FACTORIZATION 
PROBLEM OF THE CYCLIC GROUP OF ORDER NINE IN TWO SUBSETS WITH 

CARDINALITY THREE
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(or a combination of the previous properties). These not only 
correspond to well-known cases in mathematical music theory (Halsey 
and Hewitt 1978; Vieru 1980) but also have a natural interpretation in 
terms of tiling rhythmic canons once the pitch content is mapped into 
the rhythmic domain. As an elementary example let us consider the 
case of Milton Babbitt’s all-combinatorial hexachords. By definition 
these structures have the property of being at the same time self-
complementary (i.e., invariant under complementation) and self-
inverse (i.e., invariant under inversion). The OpenMusic patch in 
Example 9 shows how the six all-combinatorial hexachords are ob-
tained via graphical programming, starting from the two collections of, 
respectively, twenty self-inverse and eight self-complementary chords.
Since each of the six all-combinatorial hexachords tiles the chromatic 
space by transposition of a given interval (minor second, major second, 
minor third, or tritone), it is easy to construct tiling rhythmic canons 
in two voices having as inner rhythm one of the six all-combinatorial 
hexachords (mapped in the time domain) and as the outer voice one of 
the subsets obtained by the previous transposition values. Notice that 
among the six previous solutions, three, in fact, correspond to 
rhythmic patterns having a period that is strictly less than twelve. In 
other words, they have transpositional symmetry, allowing the 
reduction of the rhythmic space to be tiled. From the theory of Hajós 
groups we know that the three non-periodic inner rhythms will 
generate the tiling in accordance with an outer rhythm corresponding 
to a periodic subset of ��12� of cardinality two. Since the only 
possibility for such a subset to be periodic is as a subgroup of order 
two, we deduce that the corresponding tiling canons will have two 
voices entering regularly with a distance equal to six units. The patch 
in Example 10 calculates and visualizes the three tiling rhythmic 
canons corresponding to the non-periodic all-combinatorial 
hexachords. The function TRANSP-COMB corresponds to the set-
theoretical operation of “transpositional combination” (Cohn 1986), 
visualizing the tiling process by means of the circular representation.
The previous example is paradigmatic of a series of examples of tiling 
rhythmic canons that can be easily calculated since the voices of the 
canons enter in a regular way, according to the property of one of the 
factors of the decomposition of ���� being a subgroup of the cyclic 
group. As we already mentioned, this corresponds to the case of 
!"asymmetry, a property generalizing Simha Arom and Marc 
Chemillier’s odditivity (Chemillier 2002). It is easy to show that the 
traditional definition of a !-asymmetric rhythmic pattern # is 
equivalent to the condition that �����#�$, where $ is the subgroup 
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EXAMPLE 9: ENUMERATION AND VISUALISATION OF MILTON BABBITT’S
ALL-COMBINATORIAL HEXACHORDS STARTING FROM THE COLLECTION OF 

THE TWENTY SELF-INVERSE AND THE EIGHT SELF-COMPLEMENTARY HEXACHORDS
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of ���� of cardinality equal to !. Example 11 shows how to generate 
two tiling rhythmic canons starting from the two inversionally-related 
3-asymmetric patterns of Example 6.
Tiling rhythmic canons of this type are easy to construct. In fact, 
one can show that the inner rhythmic pattern of a !-asymmetric 
rhythm always reduces to the entire cyclic group ��
� when it is 
reduced mod 
, where 
�12�!% 	This means that a !"asymmetric 
rhythm is generated by a permutation of �0,1,	�
�1
. The patch in 
Example 12 shows how to construct all tiling rhythmic canons starting 
from a !-asymmetric pattern of cardinality equal to six. In this example 
!�3, which means that the pattern tiles cardinality six within the cyclic 
group ��18�.
Note that by fixing the cardinality 
	of the inner rhythm (which is 
equal to six in the previous case), the order � of the underlying cyclic 
group being tiled is always a multiple of 
, which immediately 
provides the information on the number � �
	of voices of the canon 
(hence the order of the asymmetry of the initial pattern). In this way, it 
is easy to construct canons with big periods, eventually corresponding 

EXAMPLE 10: AN OPENMUSIC PATCH SHOWING HOW TO OBTAIN THE THREE 
RHYTHMIC TILING CANONS CORRESPONDING TO NON-PERIODIC,

ALL-COMBINATORIAL HEXACHORDS
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EXAMPLE 11: TWO TILING RHYTHMIC CANONS BASED ON
INVERSIONALLY-RELATED, 3-ASYMMETRIC PATTERNS

EXAMPLE 12: GENERATION OF A TILING RHYTHMIC CANON OF PERIOD EIGHTEEN 
STARTING FROM THE 6-ELEMENT PERMUTATION (0,5,1,3,4,2) INTERPRETED AS 

AN INNER RHYTHMIC PATTERN IN ��18�
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to one of the values provided by the theory of non-Hajós groups. For 
example, we can show how to construct a tiling rhythmic canon in six 
voices starting from a 6-asymmetric inner rhythmic pattern that 
eventually provides a tiling of the non-Hajós group ��72� (see 
Example 13). Obviously, this is not a Vuza Canon, since one of the 
factors corresponds to a subgroup of ��72�.

4.DERIVING TILING RHYTHMIC CANONS FROM THE THEORY OF
CYCLOTOMIC POLYNOMIALS 

The use of polynomials to represent the factorization of a cyclic group 
into subsets goes back to the Minkowski-Hajós problem.5 As originally 
observed by Rédei (1947), a decomposition of a cyclic group ���� 
into a direct sum #�$ of two subsets #	and $, can be equivalently 

EXAMPLE 13: A TILING RHYTHMIC CANON OF PERIOD 72 CONSTRUCTED FROM 
THE 12-ELEMENT PERMUTATION (0,10,1,8,4,2,7,9,5,11,3,6) INTERPRETED AS 

AN INNER RHYTHMIC PATTERN IN ��72�
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expressed in polynomial terms. By putting #�� ��� � �, where ��#, 
the above equation becomes a relation between polynomials with 
coefficients being either 0 or 1, which will be referred to as “0-1 
polynomials.” The factorization condition is expressed by the fact that 
#�� ��$�� ��1����2�����&1 �mod���1�. Factors of the polynomial 
���� ��1����2�����&1, especially those with 0-1 coefficients, are 
thus of paramount importance, which is the main reason to use the 
theory of cyclotomic polynomials (Amiot, '�	��%	2005). More precisely, 
if #�� ��$�� ��1����2�����&1 �mod���1�, then for all (�� (with 
(�1), �

(
 is a divisor of either #(�) or $(�), where �

(
 is the (th cyclo-

tomic polynomial.
In the MathTools environment we have collected a number of tools 
enabling one to obtain tiling rhythmic canons by using cyclotomic 
polynomials. With exception of some special cases that can be found in 
the “tiling of the line” literature (and which we discussed in Andreatta, 
'�	��% 2002), it is not known whether a given rhythmic motif enables 
making a canon unless one is able to exhibit such a canon. Since the 
establishment of the two Coven and Meyerowitz conditions (Coven 
and Meyerowitz 1998), there is a useful, sufficient criterion dealing 
with the cyclotomic factors. Let #(�) be the 0-1 polynomial associated 
with an inner rhythm #. We define the two following sets:6

�
#
��(�� �(�0,�

(
�#�� �
, and


#
��(��

#
:(�� � where� isprimeand��� 
.

The two Coven-Meyerowitz conditions, called (T1) and (T2), may be 
expressed in the following way:

(T1) #�1��� ��	where the product runs over all ���#
, and

(T2) If � ��) �	�#�� ���) �	���#
.

Tiling rhythmic canons constructed from a 0-1 polynomial #(�) that 
has the properties (T1) and (T2) are called “Cyclotomic Canons.” As 
an example, we show how to construct the same canon as in Exam-
ple 7 with this approach. By choosing as input the value 16, the 
function CM-CONDITIONS gives all the possible 0-1 polynomials #(�) 
associated to subsets of ��16� having both (T1) and (T2) properties. 
The sixth solution corresponds to the 0-1 polynomial #�� ��1���

�4��5	obtained by the product of the two cyclotomic polynomials �2 
and	�8. The OUT-RYTHM function constructs the polynomial $(�) which 
assures the factorization of 1������18 as #�� ��$�� �, which provides 
the tiling visualized in the circular representation or as a rhythmic 
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canon, which, in turn, is the same canon obtained through CSP, as we 
intended (Example 14).

5.A STEP-BY-STEP DESCRIPTION OF VUZA CANON CONSTRUCTIONS IN THE 
OPENMUSIC VISUAL PROGRAMMING LANGUAGE

Our implementation of the algorithm proposed by Vuza in his series of 
articles published in *'���'����'�	��	�'+	,-���	(Vuza 1991–1993) was 
the first attempt at studying some computational aspects explicitly 
raised by him. Before describing the first exhaustive catalogue of 
solutions that we have obtained in .�'�,-���, let us briefly provide a 
general overview of the main tools that we implemented in order to 
obtain Vuza canons. These are shown in Example 15.

EXAMPLE 14: A CYCLOTOMIC CANON OF PERIOD 16 OBTAINED FROM A 0-1 
POLYNOMIAL SATISFYING THE TWO COVEN-MEYEROWITZ CONDITIONS
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First of all, as we know from the theory of non-Hajós groups, Vuza 
Canons only exist for some given period � that does not have the 
property of being:

� a power � �	of a prime number,
� a product �2)2	of the square of two distinct prime numbers,
� a product � �)	of the power of a prime number by a different 
prime number,

� a product �2)� 	of the power of a prime number by two other 
distinct prime numbers, and

� a product �)��	of four distinct prime numbers.

The function CANON-N calculates all periods corresponding to non-
Hajós cyclic groups within a given interval (in the previous example, 
the periods � are constrained between 0 and 300). Every such a period 
� is decomposable as a product of five numbers �1�2�1�2�3	where:

i. �1	and	�2 are two distinct primes,
ii.<	�1�1,	�2�2 > = 1 (i.e., �1�1 is relatively prime with �1�2), and
iii.�1	is an integer greater than 1.

EXAMPLE 15: OVERVIEW OF THE MAIN TOOLS IMPLEMENTED IN OPENMUSIC IN 
ORDER TO OBTAIN VUZA CANONS OF A GIVEN PERIOD
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The decomposition is obtained by the function DECOMPO, which 
takes as input an integer � corresponding to the period of a non-Hajós 
cyclic group. Note, that the decomposition is not necessarily unique, as 
the example of 72 shows. Nevertheless, the resulting canons may have 
the same structural properties in terms of number of voices and 
number of attacks within each voice (these two values being 
respectively equal to �1�2 and �1�2�3). These structural data are 
provided by the function INFOCANON. By choosing a valid number of 
voices, the factorization of the group into two non-periodic factors is 
obtained through the function PATTERNS, and these sets will finally be 
provided as input for the function CANONS in order to construct the 
rhythmic grid of the required Vuza canon. The representation of the 
canon in the previous example makes use of the POLY editor in rhythmic 
mode. The following example (Example 16) shows two different 
representations of the same canon by including some information on 
the pitch content. The first one makes use of the MULTI-SEQ editor, in 
which the notes are represented by using proportional durations, 
whereas the second one uses the same POLY editor but in a pitch-
content mode. In order to show that we are not limited to twelve-
tempered equal systems, we map the information of the inner rhythmic 
pattern into the microtonal space ��72� corresponding to the 
twelfth-tone division of the octave.7

6.CANONS BY AUGMENTATION

In this section we will present a generalization leading to canons with 
augmented voices.8 We will, therefore, explore a new symmetry of 
���� under the group of affine transforms. In this new context each 
symmetry� �� �� ��� �:����� consists of an augmentation with factor �	
and a translation with summand �. Example 17 shows a rhythmic 
pattern of period 8 that has been augmented by a factor of 3.
Let us provide an overview of the main tools that we implemented, 
shown in Example 18. Three steps can be identified. In step one the 
user starts by specifying a period � (10, in our example) and the num-
ber of attacks compounding the rhythmic pattern (5). The function 
AG-CANONINFO provides the list of rhythmic patterns of length 5, 
together with the multiplicative factors, which need to be applied on 
them in order to build tiling canons in which each voice is an 
augmentation of the original pattern according to these multiplicative 
factors. In Example 18 the solution ((0 1 3 5 6) ((1 3) (1 7))) means 
that the 5-element rhythmic pattern (0 1 3 5 6) can generate a tiling 
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EXAMPLE 16: A MICROTONAL CANON OBTAINED FROM A VUZA CANON
OF ORDER 72

EXAMPLE 17: AUGMENTATION OF A RHYTHM
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canon both via multiplications by 1 (the original pattern) and by 5 or 
multiplications by 1 and 7.
At this moment the user must choose the rhythm and the multipli-
cative factors. Once the choice is made, these two parameters are given 
to the function ALLCANONS-AFF (step two). In our example we provide to 
this function the pattern (0 1 3 5 6) and the factors (1 3). The func-
tion ALLCANONS-AFF provides, for the original pattern, the list of couples 
/��	0�1, where �� are the multiplicative factors and 0� are the translation 
factors. For example, the solution ((0 1 3 5 6) ((1 0) (3 9))) means 
that the 5-element rhythmic pattern (0 1 3 5 6) can generate a tiling 
canon via multiplications by 1 and translation by 0 (i.e., the original 
pattern) and multiplication by 3 and translations by 9 units.
Finally, the function AUGMENTED-CANON uses this information in order 
to concretely build a tiling rhythmic canon in which all voices are 
augmentations of the original rhythmic pattern. The period of the 
augmented canon is given by the period of the original pattern times 
the least common multiple of the factors (10�3�30 in Example 18). 
The voices augmented by 3 are repeated 3 times and translated by 9, 
19, and 29
Note that for the pattern (0 1 3 5 6) we have another solution with 
multiplicative factors (1 7) (see Example 19). In this case, the result of 
the function ALLCANONS-AFF is ((0 1 3 5 6) ((1 0) (7 7))) which means 
that the pattern is completed by 7 voices augmented by a factor 7 and 
translated by 7, 17, 27, 37, 47, 57, and 67. The period of this canon is 
10�7�70.

7.CONCLUSIONS

The problem of constructing tiling rhythmic canons shows the useful-
ness of a mathematical approach to the formalization of these musical 
structures. This paper shows, in a practical way, how to construct 
several families of canons in OpenMusic. The reader may consider our 
references for a more mathematical description of these algorithms.
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NOTES

1.For more information on OpenMusic, the reader may consult 
Agon (1998) and Assayag, '�	��%	(1999). For compositional uses of 
OpenMusic see the two volumes published in the series 
Musique/Sciences (Agon, '�	��%	2006; Bresson, '�	��%	2008).

2.For a short presentation of the “mathemusical” perspective in 
mathematical music theory, see Andreatta’s contribution in the 
present issue of *'���'����'�	��	�'+	,-���. A more general discus-
sion is contained in Andreatta (2010).

3.For a description of emergence of group-theoretical structures in 
both European and American traditions, see Andreatta (2003). A 
historical presentation of classification models for chords within the 
equal-tempered system from the European perspective is given by 
Luigi Verdi (2008).

4.See Truchet and Assayag (2011) for a review of different solvers 
and their musical applications.

5.See Andreatta’s contribution to the present issue of *'���'����'�	for 
an historical presentation of Minkowski’s original conjecture on the 
tiling of the Euclidean space by unit cubes and Hajós’s solution in 
terms of group factorizations.

6.In the presentation of Coven and Meyerowitz conditions, we fol-
low the simplified notation proposed by Giulia Fidanza (2007). For 
a more detailed discussion of these conditions and the role they are 
playing with respect to Fuglede’s spectral conjecture, see the con-
tribution by Emmanuel Amiot in the present issue of *'���'����'�%

7.For the modeling and implementation of microtonal structures in 
OpenMusic, see Bancquart (2008).

8.These canons are sometimes referred to as “Noll Canons,” stress-
ing the crucial contribution by Thomas Noll to the development of 
the theory. See also Noll, '�	��%	(2001).



�� ���������	��
��
��
�����

REFERENCES

Agon, Carlos. 1998. “OpenMusic: Un Langage Visuel pour la Com-
position Assistée par Ordinateur.” Ph.D. thesis, Université de Paris 
VI.

–––, Gérard Assayag, and Jean Bresson. 2006. 2�'	.,	��
���'�3� 	
$��!	�%	Musique/Sciences.	Sampzon: Ircam/Delatour France.

Amiot, Emmanuel, Moreno Andreatta, and Carlos Agon. 2005. 
“Tiling the (Musical) Line with Polynomials: Some Theoretical and 
Implementational Aspects.” In ���'���������	��
�-�'�	,-���	���"
�'�'��'	*���''(��4�5	���%	�667. Ann Arbor, MI: Scholarly Publishing 
Office, University of Michigan Library.

Andreatta, Moreno. 1999. “La Théorie Mathématique de la musique 
de Guerino Mazzola et les canons rythmiques.” Master’s thesis, Uni-
versité de Paris IV/EHESS/IRCAM.

–––. 2003. “Méthodes algébriques en musique et musicologie du 
XXe siècle: aspects théoriques, analytiques et compositionnels.” PhD 
diss., IRCAM/ EHESS.

–––. 2004. “On Group-Theoretical Methods Applied to Music: 
Some Compositional and Implementational Aspects.” In *'���'����'� 	
�� 	,���'
������ 	 ��( 	��
�-�������� 	,-��� 	 2�'���, edited by G. 
Mazzola, T. Noll, and E. Puebla, 122–162. Electronic Publishing 
Osnabrück.

––– 2010. ,���'
�����	'��	'�'�����-
	
-����'5	��	�'��'���' 	‘
���"
8
-�����'’ '� 	 �'� 	 ���'�������� 	��'� 	 �'� 	�-��'� 	(��������'�. Habilitation 
Thesis, Institut de Recherche Mathématique Avancée, University of 
Strasbourg. Available at http://recherche.ircam.fr/equipes/
remus/moreno/TexteHDR.pdf.

Andreatta, Moreno, Agon, Carlos & Amiot, Emmanuel. 2002. “Tiling 
Problems in Music Composition: Theory and Implementation,” In 
���'��������� 	 ��
�-�'� 	,-��� 	 ����'�'��' 	 *���''(��4�5 	 ���% 	 �66�, 
156–163. Ann Arbor, MI: Scholarly Publishing Office, University of 
Michigan Library.

Andreatta, Moreno, Carlos Agon, Thomas Noll, and Emmanuel 
Amiot. 2006. “Towards Pedagogability of Mathematical Music The-
ory: Algebraic Models and Tiling Problems in Computer-Aided 
Composition.” In $���9:	�66;	����'�'��'	*���''(��4�, edited by 



�������	
���
���������	
�����	
�������
������ ��

R. Sarhangi and J. Sharp, 277–284. London: Print Solutions Part-
nership.

Andreatta, Moreno, and Carlos Agon. 2009. “Guest Editors’ Fore-
ward.” <�-����	��	,���'
�����	��(	,-��� 3/2: 63–70.

Assayag, Gérard, Camilo Rueda, Mickael Laurson, Carlos Agon, and 
Olivier Delerue. 1999. “Computer Assisted Composition at 
IRCAM: From PatchWork to OpenMusic.” ��
�-�'�	,-���	<�-����	
23/3: 59–72.

Bancquart Alain, Moreno Andreatta, and Carlos Agon. 2008. “Micro-
tonal Composition,” in 2�'	.,	��
���'�3�	$��!	�, ed. Jean Bresson, 
Carlos Agon, and Gérard Assayag, 279–302. Musique/Sciences. 
Sampzon: IRCAM/Delatour France.

Bloch, Georges. 2006. “Vuza Canons into the Museum.” In 2�'	.,	
��
���'�3�	$��! 	1,	edited by C. Agon, G. Assayag, and J. Bresson. 
Collection Musique/Sciences. Sampzon: Ircam-Delatour France.

Bresson Jean, Carlos Agon, Gérard Assayag. 2008. 2�'	.,	��
���'�3� 	
$��!	�%	Musique/Sciences.	Sampzon: Ircam/Delatour France.

Chemillier, Marc. 2002. “Ethnomusicology, Ethnomathematics. The 
Logic Underlying Orally Transmitted Artistic Practices.” in ,���"
'
����� 	��( 	,-���5 	# 	��('��� 	,���'
������ 	=��-
, edited by G. 
Assayag, H. G. Feichtinger, and J .F. Rodrigues, 161–183. Berlin: 
Springer Verlag.

–––. 2007. >'�	
���8
���)-'�	���-�'��'�% Paris: Odile Jacob.

Cohn, Richard. 1986. “Transpositional Combination in Twenti-
eth-Century Music.” PhD thesis, University of Rochester, Eastmann 
School of Music.

Coven, Ethan, and Aaron Meyerowitz. 1999. “Tiling the Integers with 
Translates of One Finite Set.” <�-����	��	#�4'0�� 212/1: 161–174.

Fidanza, Giulia. 2007. “Canoni ritmici a mosaico.” PhD thesis, Uni-
versità degli Studi di Pisa.

Fripertinger, Harald. 2001. “Enumeration of non-isomorphic canons.” 
2����	,�-������	,���'
������	*-0���������	23: 47–57

Hall, Rachel, and Paul Klinsberg. 2006. “Asymmetric Rhythms and 
Tiling Canons.” #
'����� 	,���'
������ 	,������ 113/10: 887–
896.



˘

˘

�� ���������	��
��
��
�����

Halsey, David, and Edwin Hewitt. 1978. “Eine gruppentheoretische 
Methode in der Musik-theorie,” <���'�0'�����%	('�	�'-����'�	,���"
'
���!'�"?'�'���4-�4 80: 151-207.

Moreno, Andreatta, Thomas Noll, Carlos Agon, and Gérard Assayag. 
2001. “The Geometrical Groove: Rhythmic Canons Between The-
ory, Implementation and Musical Experiments”, In #��'� 	 ('� 	
<�-��8'�	(3�����
���)-'	,-�����'�	$�-�4'�: 93–98.

Rédei, Laszlo. 1947. “Zwei Lückensätze Über Polynome in Endlichen 
Primkörpern mit Anwendung auf die endlichen Abelschen Gruppen 
und die Gaussischen Summen.” #���	,���'
����� 79/1: 273–290.

Riotte, André, and Marcel Mesnage. 2006. =��
����
'� 	 '� 	
�(@�'� 	

-����-�5 	 -� 	 �'�-'�� 	 (' 	 �'���� 	 �A;�B�AAC. Musique/Sciences. 
Sampzon: IRCAM/Delatour France.

Truchet, Charlotte, and Gérard Assayag, eds. 2011. Constraint Pro-
gramming in Music. London: ISTE/Wiley.

Verdi, Luigi. 2008. “The History of Set Theory from a European 
Point of View.” In *���''(��4�	��	��'	�
����-
	#��-�(	'�	2�'���5 	
#	=�'���D#
'�����	,-������4����	,''���4�	���#,�	.���0'�	�7B�;� 	
�66�� 	ed. Moreno Andreatta, Jean-Michel Bardez, and John Rahn. 
Musique/Sciences. Sampzon: IRCAM/Delatour France.

in M. Andreatta, J.-M. Bardez & J. Rahn (eds), #��-�(	'�	2�'���%	# 	
=�'���D#
'����� 	 ,-������4���� 	 ,''���4, “Musique/Sciences 
Series”. Sampzon: Ircam/Delatour France. 

Vieru, Anatol. 1980. ����'� 	
�(-����� 	 �% 	Bucarest: Ed. Muzicala. 
(English translation and enlarged version published as 2�'	$��!	�� 	
,�('�, Bucarest: Editura Muzicala, 1993).

Vuza, Dan Tudor. 1985. “Sur le rythme périodique.” �'�-' 	��-"

���'	('	>��4-����)-'"����'��	('	���4-����)-'	2�8���)-'	'�	#����)-8'	
23/1: 73–103.

–––. 1988. “Some Mathematical Aspects of David Lewin’s Book 
9'�'�����'(	,-�����	���'�����	��(	2�������
������%” *'���'����'�	�� 	
�'+	,-��� 26/1: 258–287.

–––. 1991–1993. “Supplementary Sets and Regular Complement-
ary Unending Canons.” *'���'����'�	��	�'+	,-��� 29/2: 22–49 (Part 
I); 30/1: 184–207 (Part II); 30/2: 102–125 (Part III); 31/1: 270–
305 (Part IV).


