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Abstract
In this paper we present the main ideas of the

algebraic approach in the field of the representation

of musical structures. In this perspective, well-known

theories, as American Pitch-Class Set Theory, can be

considered as a special case of the mathematical
concept of group action. We show how the change of

the group acting on a basic set enables to have

different catalogues of musical structures, as well in

the pitch as in the rhythmic domain. The OpenMusic

implementation of these concepts offers to

computational musicology the possibility to approach
music analysis with a more firmly established

theoretical background and at the same time it leads

to new interesting compositional applications.

1 Introduction
Since the Sixties, algebraic methods have been

progressively integrated into music-theoretical

research. Many composers, like Milton Babbitt,

Iannis Xenakis and Anatol Vieru explicitly employed
group structures as an important feature of

compositional processes. This is due, basically, to the

abstract power of these concepts, which are suitable

for application in the pitch- as well as in the rhythmic

domain. It is not surprising, therefore, that all the

composers mentioned before have been conscious of
this double perspective offered by group theory.

Some of the most advanced formalisation of the so-

called Pitch-Class Set theory (PCS-Theory) take

group-theory as a common paradigm (Lewin, 1987;

Morris, 1987). We firmly believe that an algebraic
approach to music theory, analysis and composition

could be able to present some well-known concepts,

like Allen Forte's PCS-Theory (Forte, 1973), in a

very elegant form by showing, at the same time, new

possible strategies for generalisation. This is the aim

of the algebraic-oriented implementation that we

realised in the visual programming language

OpenMusic developed by the musical representations
team at Ircam (Assayag et al., 1999). Our approach,

which takes into account several families of groups,

aims at giving the possibility to the music-theorist

and composer to choose between different libraries,

according the different meaning of the notion of

'musical equivalence'. In the case of the library Zn we
used the algebraic properties of the cyclic group Z/nZ
of order n and the action of this group on itself. This

provides an algebraic formalisation of the musical

concept of transposition. By considering

transpositions and inversions, we obtain a new group,
the dihedral group, whose action on Z/nZ leads to

Allen Forte's 224 pitch-class sets. The possibility of

applying such structures in analysis, as well in

composition, is profoundly related to the group-

theoretical paradigm that has been considered. This is

crucial in a domain like computational musicology in
which the computer-aided manipulation of musical

structures, particularly in analysis, is always

subjected to methodological procedures and

epistemological discussions. The concept of group,

and that of group action in particular, is far from
being simply a technical tool. By quoting the French

mathematician Henri Poincaré, "the general concept

of group pre-exists in our minds. [It] is imposed on us

not as a form of our sensibility, but as a form of our

understanding" (Poincaré, 1905).

In the following section we summarise some basic
group-theoretical concepts. Section 3 describes

transposition classes of chords in terms of group

action. Section 4 shows how the same concept

enables to formalise PCS-Theory simply by changing

the group acting on a given set. The analogy between
equivalent classes of chords and rhythmic orbits

under some group action is discussed in section 5 by

means of a special family of rhythmic canons, called

"tiling canons". Some open problems arising from the
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rhythmic interpretation are discussed in the final

section.

2 Some basic definitions
This section introduces some basic group-

theoretical concepts. We will discuss the musical
interpretation in the following section.

2.1 Definition of a group

By definition a group is a set G of elements

together with a binary operation "•" such that the four
following properties are satisfied:

• Closure: a•b belongs to G for all a and b in G.

• Associativity: (a•b)•c = a•(b•c) for all a, b, c
belonging to G.

• Identity: There exists a unique element e in G

such that a•e = e•a = a for all a in G.
• Inverses: For each element a in G there exists a

unique element a' in G such that a•a' = a'•a = a

In particular we will concentrate on two groups

that are interesting for music: the cyclic and the

dihedral groups.

2.2 Cyclic groups
A cyclic group of n elements (i.e. of order n) is a

group (G,•) in which there exists an element g
(usually more than one) such that each element of G

is equal to g•g•… •g, where the group law "•" is
applied a finite number of times. In other words, G is
generated by g. In general a cyclic group of order n is

generated by all integers d which are relatively

primes with n (i.e. 1 is the only common divisor of n

and d). Usually a cyclic group of order n is

represented the set {0,1,…,n-1} of integers (modulo
n) and it will be indicated as Z/nZ. Geometrically, a

cyclic group can be represented by a circle. Integers

0, …, 11 are distributed uniformly, as in a clock. One

may go from an integer to another simply by rotating

the circle around his centre by an angle equal to a

multiple of 30° - for the 12 notes group. Musically
speaking, rotations are equivalent to transpositions, as

we will see in the next session.

2.3 Dihedral groups

A dihedral group (Dn, •) of order 2n is a group
generated by two elements a, b such that:

1. a•a•…•a = an = e where the group operation "•"
is applied n times and e is the identity.

2. b•b = e
In other words, the dihedral group Dn consists of

all 2n products ai•bj for i from 1 to n and j=1 or 2.
The name dihedral (two-faced) stems from the fact

that geometrically the dihedral group corresponds to

the group of symmetries in the plane of a regular

polygon of n sides. These symmetries are basically of

two types: rotations and reflections (with respect to
an axis). Musically speaking, reflections are

inversions with respect to a given note that is taken as

a fixed pole.

2.4 The action of a group on a set

By definition a group (G, •) acts on a set X if it

exists a map ACTION from G×X to X such that two
conditions are satisfied:

1. ACTION (a•b, x) = ACTION (a, ACTION (b•x))
for every a, b in G and s in X.

2. ACTION (e, x) = x for every x in X, where e is

the identity of G.

The first property is a kind of compatibility

condition between the action concept and the group
law; the second property guarantees that the identity

element of G will operate as an "identity action", by

leaving invariant each element of the set.

Two elements x, y in a set X are conjugated if they

are the image one of the other under the action of G
on X, in other words if there is an element a in G such

that y = ACTION (a, x). Conjugation is an

equivalence relation (it is reflexive, symmetric and

transitive). Equivalence classes under an equivalence

relation are also called orbits. Musically speaking, the

actions of the cyclic group (on the set of pitches)
defines transposition classes of chords. Orbits under

the action of the dihedral group correspond to the so-

called pitch-class sets.

Before discussing the musical relevance of these

two actions, we would like to introduce a new
interesting operation on Z/nZ: the affine

transformations. By definition an affine

transformation from Z/nZ into itself is a function f

which transforms a pitch-integer x into ax+b (modulo

n) where a is an integer relatively prime with n and b

belongs to Z/nZ. In the special case of n=12, the
multiplicative factor a belongs to the set

U={1,5,7,11}. Note that an affine transformation

reduce to a simple transposition by taking a=1. On



the other side, inversions are affine transformations

with a=11.
Therefore, the choice of a specific group acting on

a set is not only a technical problem but has some

interesting musicological consequences. Z/nZ, Dn
and the group Affn of affine transformations enable

different definitions of the concept of musical

equivalence. Note that two structures that are
equivalent under Z/nZ are naturally equivalent in Dn.

The same holds for two equivalent structures in Dn.

They will be equivalent in Affn. The following two

sections describe the case of Z/nZ and Dn. The case

of affine orbits is an open field of research (Mazzola,
2002). A comparative example of musical orbits

under the three previous groups is given at the end of

section 4.

3. Transposition classes of chords or
the action of Zn on Zn

As pointed out somewhat emphatically by Iannis

Xenakis, it is a fact that "after the Twenty-five

centuries of musical evolution, we have reached the

universal formulation for what concerns pitch

perception: the set of melodic intervals has a group

structure with respect to the law of addition"
(Xenakis, 1965). In other words, any division of the

octave in a given number n of equal parts can be

represented as a group, the cyclic group of integers

modulo n, with respect to the addition modulo n.

Figure 1 shows the usual 'clock' representation of
the 12-tempered system as generated by the well-

known circle of fourths.

Figure 1. Circle of fourths in the 12-tempered system.

In the case of the 12-tempered system we can
have three more circles in addition to the circle of

fourths that we mentioned before. They are the circles

of minor seconds, of fifths and of major sevenths,

corresponding to the integers 1, 7 and 11

respectively, all numbers which are relatively primes

with 12. As mentioned in the previous section, the
cyclic group Z/nZ could also be considered as

generated by operations, instead of by elements. Let

Tk be the transposition of k minimal divisions of the

octave (i.e. semitons in the case n=12). For any

integer k relatively prime with n we have that Tk

generates the whole cyclic group. By definition,
given two transpositions Tk and Th we simply define

the product of transpositions as follows: Tk • Th = Tk+h

where the addition k+h is computed modulo n.

The axioms that guarantee the group-structure

(closure, associativity, identity and inverses) are

easily verified. Moreover, this map has two main

properties with respect to Z/nZ considered as a set:

1. (Tk • Th ) (x) = Tk (Th (x)) for every transposition
Tk ,Th and for every x in Z/nZ. In other words,

transposing a pitch-integer by h semitons and

successively by k semitons will be the same as
transposing the pitch-integer by h+k semitones

(modulo n).

2. T0 (x) = Tn (x) = x for every x in Z/nZ, where T0

(or Tn ) is the identity transposition. This means

that the identity transposition simply "acts" as
identity operation for a given pitch-integer.

By remembering the definitions introduced in

section 2.4 we may conclude that musical

transpositions define mathematical actions.

Classifying transposition classes of chords is also

equivalent to study orbits under the action of the
group Z/nZ on itself. A first problem concerns the

computation of all these orbits.

A basic function of Zn library, card, enables to

calculate the number of transposition classes of k-

chords (i.e. chords with k elements) in a given n-
tempered division of the octave. The patch shown in

Figure 2 shows the situation for n=12 and n=24.

There are, for example, 80 hexachords (k = 6) in the

12-tone temperament. They are much more (5620) in

the division of the octave in 24 equal parts.



Figure 2 : Number of transposition chords for the

twelve-tone and quarter-tone temperament.

This gives an idea of the combinatorial
complexity generated by large values of n. The

problem is crucial when we apply the same concept

of group action in order to formalise rhythm, because

we do not have to impose perceptual-motivated

limitation to the length of a rhythmic structure. We
will show in the section 5 how the analogy between

pitch- and rhythmic domain leads at looking for

specific algebraic strategies helping to reduce

structurally the combinatorial explosion.

4. Pitch-class sets or the action of
Dn on Zn

After Allen Forte main theoretical book (Forte,

1973), many implementation of Pitch-Class Set

Theory have been proposed (See, for example,

Castine, 1994). In the case of the Dn library we

adapted for OpenMusic a lisp-implementation of
PCS-Theory done by Janusz Podrazik by adding

some more general algebraic tools. In analogy to the

transposition case, we are interested in a general

catalogue of Pitch-Class Sets for any given n-

tempered division of the octave. For this reason we
use the concept of action of the dihedral group on

Z/nZ considered as a set. This action determines

equivalence classes of chords with respect to

transposition and inversion. In the case of n=12, this

reduces the previous catalogue of transposition

classes in the 224 orbits traditionally known as pitch-
class sets. Figure 3 shows how the C-major chord is

transformed in the c-minor chord by applying an

inversion (with respect to C) and followed by a

transposition (of a fifth).

Figure 3: a chord under the action of Dn.

Note that the group is not commutative, i.e. the

change of order of the operations gives a different

result (in fact a•b = b•a' where a' is the inverse of a).
With the function Dn-card we can calculate for

given n and k the number of 'generalised' pitch-class

sets of cardinality k. The following patch (Figure 4)

shows the new situation for the twelve-tone and for
the quarter-tone system.

Figure 4: Number of orbits under the action of Dn for
the twelve-tone and quarter-tone temperament.

Note the invariance property of the Dn-card

function between orbits with k and n-k elements

which suggest to restrict the classification to orbits

having cardinality k less or equal to n/2 without loss

of generality.



To come back to the classical PCS-Theory, we

now shortly describe some basic functions of the Dn
library. We will discuss in more details a concept that

has been independently formalised by some

American theorists and some European composers. It

will be particularly useful to follow the

metamorphosis of all these pitch-constructions in the

rhythmic domain.
One of the most important concepts in PCS-

Theory is the concept of prime form that provides a

particular order in the family of possible orbits. This

order is obtained by choosing between all possible

cyclic permutations of the pc-set (in integral mode)
that one which minimalise the distance between the

first and the last pitch classes (normal order)

eventually followed by inversions. A final

transposition would transform, if necessary, the first

pc number to 0. This is Forte's prime form1. The

following OpenMusic patch shows a random
generated hexachord will reduce progressively to its

prime form (Figure 5).

Figure 5: Normal order and prime form of a
randomly-generated hexachord.

The generic-function pc-set (figure 6) takes a

pitch-class set coded in Forte's catalogue as two

numerals separated by a dash (the number of

elements of the set and its position in the list of

                                                
1  Note that several different algorithms for normal
form and prime form have been proposed. For

example see Rahn (1980) or Morris (1987) for two

slightly different strategies.

prime- forms respectively) and transforms it into one

of the three possible presentation (of types):
• The integer mode (the ordered collection of

integers from 0 to 11)

• The vector mode (an ordered array counting the

number of occurrences of intervals from 1=minor

second until 6=triton)

• The pitch mode (where, as usually, 0=C,
1=C#=Db, …, 11=B)

The pc-set in integral mode can be eventually

represented in its so intervallic structure, which is an

original concept introduced by Anatol Vieru in the

Fifties (See the catalogue of modes in Vieru, 1980).
In this representation, not to be confused with the

interval vector, a pc-set is represented by a series of

intervals that always add up to 12. This number can

be easily generalised thanks to the Zn-function

n—structure which takes a generic integer n as an

argument  (Figure 6).

Figure 6: The functions pc-set and n-structure.

It is well known that the interval vector does not

determine uniquely a pc-set. In fact, there exist pc-
sets that have the same interval vector without being

related by transposition and/or inversions. They are

the so-called Z-related sets. An example of a pc-set

which is Z-related with the pc-set 6-z10 considered in

figure 6 is shown in the Figure 7:



Figure 7: a Z-related pc-set

A set-theoretic operation in which we would like

to concentrate now is the complementary relation. By
definition, two sets are complementary when they

form a disjoint union of the chromatic total. Because

of the prime form concept, complementary relation

may give rise to logical contradictions. Consider the

following example (figure 8) taken by Forte's analysis
of The Rite of Spring of I. Stravinsky (Forte, 1978).2 .

The pc-set A is included in the pc-set B, for each

element of A belongs to B. The complement of A is

given by C which can be transformed into B by using

only transpositions and inversions. Therefore, A is

contained in its complement, which is at least a
problematic conclusion!

Figure 8: A pc-set included in its complement.

Before interpreting the different orbits catalogues

in the rhythmic domain, we would like to compare

                                                
2  This example is also discussed in Chemillier

(1987).

the two previous paradigms (cyclic and dihedral) by

considering a more general action on the set of pitch-
integers. This action is provided by the so-called

affine transformations that we introduced in section

2.4. In the following examples, we show how the

different actions modify the nature of a given chord.

The first example shows the action of Z/nZ on a C-

major chord. This chord is simply transformed into
another major chord:

In the case of the Dn-action, chords can be transposed

and/or inverted. In this special case, the C major
chord has been transformed into the G# minor chord.

Therefore, major and minor chords are equivalent in

this paradigm:

The last example shows how the chord is transformed

by means of an affine map.

One may ask for musically-motivated reasons for

including affine orbits in a catalogue of musical
structures. This concept, which seems to be

problematic in the pitch domain, appears as extremely

natural in the rhythmic domain. Augmentations,

which are classical tools in the construction of

musical canons, are, mathematically speaking, affine

transformations. We will now discuss some of these
properties in the rhythmic domain.



5. The rhythmic analogy: the case of
"tiling canons"

The algebraic model of rhythm, as it has been

proposed by Dan Tudor Vuza, is strictly related to the

Zn paradigm (Vuza, 1988). In this general

framework, rhythms are translation classes of chords

under the action of the additive group Q of rational
numbers. We already discussed some new results that

were obtained by the implementation of this model in

OpenMusic (Andreatta et al., 1999). This section

aims at generalising some questions concerning

rhythmic tiling canons inside of the Dn paradigm.

By definition, a rhythmic canon is given by a

rhythmic pattern which is translate in the time axis a

given number of times (which is equal of the number

of voices). The rhythmic pattern is represented as an

intervallic structure where 1 is the temporal distance
between two successive possible onset-times. Figure

9 shows a particular rhythmic canon in 4 voices

obtained by the time translation of the pattern R=(2 8

2) according with the interval content of the pattern

S=(5 1 5 1) which corresponds to the onset-time 0, 5,

6, 11.

Figure 9: a tiling rhythmic canon.

 Note that the canon tiles completely the time axis
by producing a regular pulsation (when all voices

play) in which no holes occur and no voices overlap.

A rhythmic canon of this type is called a regular

complementary canon. Algebraically, the problem of

construction of a regular complementary canon is
equivalent to the factorisation of a cyclic group Z/nZ

in a direct sum of two subsets, as it is shown by the

Figure 10.

Figure 10: factorisation of Z/12Z in two subsets.

This problem becomes very difficult once a

particular condition is imposed on the structure of the

two subsets. For example, by avoiding Messiaen's

limited transposition property in both subsets, one
may show that no canon of this type exists for n less

than 72 (Andreatta et al. 1999).

The following example enables to understand why

we payed so much attention to the concept of group

action and to the possibility to switch from the Zn to

the Dn paradigm. We take a hexachord which is
known in the music-theoretical literature as

inversional combinatorial hexachord. This means

that its complement cannot be obtained by simple

transposition, as it is clear from Figure 11. An

inversion is necessary, so that we are naturally inside
of the Dn paradigm.

Figure 11: An inversional combinatorial hexachord.

In the rhythmic interpretation, as shown in Figure

12, it leads to the construction of rhythmic canons in



which different voices could be translation or

inversions of a given rhythmic pattern. The property
of tiling completely the time axis, without

intersection nor holes between the voices enables to

speak of regular complementary canons by inversion.

Figure 12. The rhythmic realisation of an inversional

combinatorial hexachord.

5. Conclusion
Algebraic methods provide an elegant way to

formalise musical structures, as well in the pitch as in
the rhythmic domain. It enables a better structural

understanding of well know musical systems, like

Pitch-Class Set Theory, by describing it as a special

case of a more general classification process. The

rhythmic interpretation of pitch orbits under some

classical actions confirms the usefulness of looking
for general properties in n-tempered systems. The

implementation of all these theoretical concepts, as

we have done in OpenMusic, offers a very user-

friendly approach to theoretical questions that may be

applied in music analysis or may eventually lead to
interesting compositional processes. One example is

given by the construction of what we called "tiling

rhythmic canons". Their implementation represents a

long-time project motivated by the same group-action

paradigm. Canons obtained by transposition or

inversions are but special cases of a more general
transformation process that can be described by

means a new group: the affine group. This leads to

the concept of "generalised augmentation" i.e. the

action of the affine group Affn on Z/nZ and opens the

problem of implementation and classification of what
we call " augmented tiling canons"(Andreatta et al.,

2001).
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