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This paper describes phase retrieval approaches in music by focusing on the
particular case of the beltway problem; for several decades, this problem has
raised interest in computational musicology and especially set-theoretical meth-
ods, and in an independent way and with different vocabulary in crystallog-
raphy and other scientific areas. The link between these two approachs was
only made recently, raising new interesting musical applications and theoret-
ical open problems. We present some old and new results on phase retrieval,
and give perspective on future research assisted by computational methods.
Extended phase retrieval for generalized musical Z-relation is then introduced
with mathematical definitions and motivation from computer-aided composi-
tion. We assume from the reader basic knowledge of groups, topological groups,
group algebras, group actions, Lebesgue integration, convolution products, and
Fourier transform.

1. Introduction

One class of combinatorial problems deals with the problems of reconstruction. Especially,
a problem that arises in very different contexts is the reconstruction of a set from the
collection of its k-subsets up to isomorphism. The same thing may be done with the
reconstruction of graphs from a collection of subgraphs (see [9], [8]). One can come across
this type of problems in computer graphic, in physics, in genetics, in crystallography and
also in musical composition.

Indeed, the phase retrieval in music extends the concept of Z-relation, a concept in-
troduced by Forte in [13] but already present in Hanson’s work [16]. In the classical
framework of musical set theory, the n-tone equal temperament is modeled via the cyclic
group Zn = Z/nZ, and each class of Zn is said to be a pitch-class. Any pitch-class set is
simply called set.1 For any set A ⊆ Zn one can define the interval vector (iv) as for every
k ∈ Zn, iv(A)k = ifunc(A, A)k = #{(s, t) ∈ Z2

n, t − s = k}. One might notice that we

1We denote any set {[a1]n, . . . , [as]n} as {a1, . . . , as}n.
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Figure 1. A well-known exemple of Z-related sets, in Z12.

define the iv function via the ifunc function borrowed from Lewin [22], which is slightly
different from (but completely equivalent to) Forte’s original iv function.

Two sets A and B are said to be Z-related if iv(A) ≡ iv(B), i.e. if the same number
of intervals of each type is showing up in both sets. In other words, A and B share the
same interval content. Clearly, transposing or inverting a set does not change his interval
content, and thus we have a lot of trivially Z-related sets. To get rid of this trivial case,
we may consider the sets up to transposition and inversion, and we notice that there
still exists Z-related sets (thus completely unrelated by transposition and inversion). A
well-known example is sets {0, 1, 4, 6}12 and {0, 1, 3, 7}12 in Z12, which share the same
interval vector [4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1] – see Figure 1. Some composers have (implicitly
or explicitly) dealt with the Z-relation; for example this couple of Z-related sets is exactly
the one used by Elliot Carter in his second quartet.

To improve upon the classical model, one can substitute pitch-class sets with multisets,
i.e. integer-valued distributions, which might be useful to represent a chord where notes
might be repeated (Fig. 2, center); one can even consider rational- or real-valued distri-
butions, which include in the representation the dynamics of each note (Fig. 2, right).1
In this case, the interval vector is no more sufficient, and must be replaced (as we will
see) by the Patterson function, which will extend the concept of interval content, as it
represents (as suggested by Lewin) the probability of hearing a given interval, if the notes
of a given set are played randomly.

The name Patterson function comes from X-ray crystallography. Let G be an abelian
group (with additive notation). Given a distribution E =

�
g∈G

egδg, we call inversion2

of E the distribution I(E) =
�

g∈G
egδ−g, and the k-transposition of E is the distribution

Tk(E) =
�

g∈G
egδg+k (k ∈ G). Then, the Patterson function of any distribution E is the

convolution product E ∗ I(E). Now, for any X ⊆ G, let 1X be the distribution
�

g∈X
δg.

By reading [21], we know that iv(A) = 1A ∗ 1−A, and since 1−A = I(1A), we see that

1Let K be a field and let G be an abelian group (with additive notation). A distribution on G

with coefficients in K has the form E =
�

g∈G agδg, where ag ∈ K and δg is the Dirac mass
related to the element g. If ag �= 0 only finitely often, we say that the distribution is finite. Recall
that the algebra of such distributions under the convolution product is isomorphic with the group
ring K

G, and thus we will sometimes write E ∈ K
G.

2The inversion of E, namely I(E), is sometimes found as E
� or E

∗ and referred to as reflection.
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Figure 2. An example showing the usefulness of improving the classical model. A standard set is
an element of P(Zn), i.e. a 0-1 distribution on Zn. If we allow some notes to be repeated, we have
a multiset, as in the middle example (the same chord given to a string quartet), i.e. a distribution
of NZn . Finally, if we add a dynamic mapping (right example), we can see the chord as a real
distribution, i.e. a distribution of QZn . In this example we have arbitrarily chosen mf = 1, f = 2,
p = 1/2, pp = 1/4.

the Patterson function is nothing more than a generalization of the interval vector to a
generic distribution. In crystallography, the Patterson function is the starting point for
solving the phase retrieval problem, i.e. to determine the arrangement of atoms within a
crystal, given the module of the Fourier transform3 of the atoms distribution. Indeed, if
we know D∗I(D), we know its Fourier transform �D �D(ω) = � �D(ω)�2 for all ω ∈ Zn. Thus,
to reconstruct �D(ω) = � �D(ω)�eiφ(ω) (and D from there by inverse Fourier transform),
since we know its module, we just need to retrieve the phase φ(ω). This is the central
problem that we address in this paper.

In section 2, we introduce topological and measure and integration theory tools that we
use on Lewin’s Generalized Interval Systems (GIS), then we introduce the interval con-
tent, the Patterson function, Z-relation and homometry, and their properties, including
two examples of a Z-relation in a non-commutative GIS. In section 3, we define the phase
retrieval problem, introduce alternative formulations of it, stressing the role of spectral
units in the case of discrete abelian groups, trying to characterize homometric sets in a
constructive way. In section 4 we extend the definitions of section 2, by introducing the

3Recall that, for G = Zn, the Fourier transform of a distribution E =
�

g∈Zn
egδg is the map

ω ∈ Zn �→ �E(ω) =
�

g∈Zn

eg exp(−2iπg ω/n)

.
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k-deck, the k-Deck, the k-vector, and higher-order generalizations of Z-relation and ho-
mometry associated to them. Finally, in section 5, we define the extended phase retrieval
problem and the reconstruction index of a cyclic group. The study of k-decks has been
widely developed lately, while the k-Deck has been pretty much left aside. After providing
some properties of the Zk-relation, we end up with the first example of 4-Homometric
sets.

2. Z-relation and homometry

In this section, we will link vocabulary from musical set theory — Generalized Interval
System, interval vector, Z-relation — with vocabulary from crystallography — implicit
usage of group structure, Patterson function, homometry. These objects and their ele-
mentary properties are presented in a theoretical framework large enough to cover most
of the areas wherein homometry and Z-relation have been previously studied.

2.1. Using Generalized Interval Systems (GIS)

2.1.1. Mathematical definition of a GIS
The notion of Generalized Interval System, introduced in [22], formalizes the notion of

interval between two points in a set of values of an abstract musical parameter.

Definition 2.1 (Lewin) A Generalized Interval System (GIS) is a triple (S, G, int),
where S is a set called space of the GIS, G a group called intervals group of the GIS, and
int : S × S → G a map such that

(A) For every r, s, t in S, int(r, s) int(s, t) = int(r, t).
(B) For every s in S, i in G, there is a unique t in S such that int(s, t) = i.

It is noted in [32] that

• (A) and (B) in the definition above are equivalent to defining a simply transitive
right action of group G on S, such that for every s, t in S, s int(s, t) = t;

• the definition of a GIS is analogous with the definition of an affine space, the differ-
ence being that the underlying algebraic structure of an affine space is not a group,
but a vector space.

In every GIS, the musical parameter space S and the interval group G have the same
cardinality; more precisely, condition (B) implies that for every s in S, the label map1

is bijective:

label : S→ G

t �→ int(s, t)

We explicit now two usages of label bijections, which are also common with the couple
“affine space–vector space”.

1The denomination label comes from [22, beginning of Chapter 3].
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The first possibility is using the interval group G itself as the space S: in this case, the
group action that defines the GIS is right translation, i.e. for every s, t in G, int(s, t) =
s
−1

t. As a consequence, every group defines a canonical GIS associated with it via this
group action. To avoid confusion that may arise from this identification of the group
interval G and the GIS space, elements of the space will be called points, elements of the
interval group will be called intervals, and unless explicitly mentioned otherwise, subsets
of G mean subsets of the GIS space.

The second possibility is using label bijections for transferring some additional struc-
ture of the interval group G — e.g. a topology, a distance or a measure — onto S.
Moreover, if this structure is translation invariant, the resulting structure on S does not
depend on a particular s ∈ S that defines label map. This principle of translation-
invariant structure transfer for GIS is detailed in [19], and we will use it below.

When G is abelian, we will denote the group operation with a plus sign + instead of a
multiplicative notation. Although most of our examples will happen in the commutative
case, the definition and several basic properties of the objects that we will define also hold
in the non-abelian case. A musically significant example of a non-commutative GIS is the
GIS of time spans[22, 4.1.3.1], which is defined as the positive affine group of R, that is
the semi-direct product R �m R∗

+ where the group morphism m : (R∗
+, .) → (Aut(R),+)

maps r to the multiplication by r.

2.1.2. Transferring translation-invariant topologies and measures onto a GIS
We are interested in measuring subsets of the space of a GIS. The most straightforward

measure of a set is its cardinality; however, many definitions and tools we will present
are, under some conditions, still valid with using certain measures — e.g. the Lebesgue
measure — on a GIS. More precisely, we need a measure on both the space of a GIS and
its interval group, and we require that the measure on the interval group be translation-
invariant, so that the measure on the space naturally comes from transferring the measure
of the group; we will implicitly assume from now on that defining a translation-stable
σ-algebra A (the borelian subsets, see notations below) on a group G and a measure on
A also defines, through the transfer principle, the same structures on the space of a GIS
with G as its interval group. We will exclude non-translation-invariant structures, because
giving different weights to a subset and its translations would break the concept of an
isotropic GIS with its transfer principle. This generalization of measuring the cardinal
of sets in GIS has already been proposed by Lewin in [22, section 6.10], but has never
been further elaborated as far as we know. We believe that such a generalization is not
gratuitous, from a mathematical point of view. In fact, there are fortunately many groups
which may be fitted with a right-translation-invariant measure, thanks to the following
result.

Definition 2.2 Let (G, A, µ) be a measured space where G is a group. µ is called right-

translation-invariant if A is right-translation-stable and for every A ∈ A, g ∈ G,
µ(A g) = µ(A). If, in addition, G is a topological group, and A is the Borel σ-algebra on
G, then µ is called a right Haar measure on G.

Theorem 2.3 Any locally-compact Hausdorff topological group G has a right Haar mea-
sure µ; moreover, this measure is uniquely defined, up to a multiplicative constant.

The previous theorem, which is a classical theorem in topology, allows us to define the
notion of interval content in any locally-compact topologic group, including every group
with the discrete topology — the associated right Haar measure is simply the cardinal
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function — R, and all products and quotients of such groups.
Since the topology of a topologic group G is translation-invariant, it can be naturally

transferred onto the space of a GIS that has G as its interval group. We recall the idea
from [19], that using topologies in GIS could help expressing notions of continuity of
musical patterns; this would make sense for instance with R, the continuous circle R/Z,
or any product of these groups fitted with their respective usual topology, as an interval
group of a GIS.

As we want to be able to compare measures of certain sets and to do some computations
on measure values (multiplications, additions, substractions. . . ), we will restrict our study
to measurable sets with finite measure, as suggested in [22].

We end this introduction of topological GIS with a (right) Haar measure with some
notations, which we will assume throughout the rest of the article. Let G be a locally-
compact group, K a field with an involutive automorphism noted : x �→ x; we denote

• S(X) the permutation group of a set X,
• A the σ-algebra of Borel sets of G,
• µ a right Haar measure on G,
• Ã the set of measurable subsets of G with finite measure,
• K

G the K-algebra of maps from G to K, which are also called (K-valued) distribu-
tions on G,

• for every g ∈ G, Tg : K
G → K

G

E �→
�
Tg(E) : x �→ E(g−1

x)
�

the left translation of distributions by g; we may also write Tg(A) = gA for A ⊂ G

when there is no ambiguity;
• T (G) = {x �→ gx, g ∈ G}, or simply T , the group of left translations on G,
• I : K

G → K
G

E �→
�
I(E) : x �→ E(x−1)

� the inversion on distributions; we also overload I

by defining for every A ⊂ G I(A) = A
−1,

• D(G) (or D) the generalized dihedral group of G, which is the subgroup of S(G)
generated by the left translations of G and the inversion x �→ x

−1,
• D(G) or D the subgroup of the linear group of K

G generated by {Tg, g ∈ G}∪ {I},
which is an isomorphic representation of D(G),

• when K ∈ {R, C}, ΣC(G, S) the algebra of almost everywhere bounded functions
with compact support from G to a subset S of K, up to equality almost everywhere;
this is the set of functions of which we will define the Patterson function;

• [x]H = {h(x), h ∈ H} where X is a set, H a subgroup of S(X) and x ∈ X; [x]H is
the orbit of x under the natural group action of H on X, elements of [x]H are said
congruent to x modulo H; the same notation is used with H a subgroup of a group
G and for every g ∈ G [g]H = Hg;

• for every a, b in Z, �a, b� = {x ∈ Z, a � x � b}.

It should be noticed that, in defining int(a, b) as a
−1

b, we favor left translations over
right translations: for any a, b, c ∈ G, one has int(ca, cb) = a

−1
c
−1

cb = a
−1

b = int(ab),
but int(ac, bc) = c

−1
a
−1

bc = c
−1int(a, b)−1 �= int(a, b) in general. Thus this notion of

interval is invariant by left translations only.1 There is, of course, an alternative definition
of the interval from a to b, namely �int(a, b) = ba

−1, which is invariant under right
translation. This explains why we have found not one, but two generalizations of the

1This fact is well commented in [22, section 3.4].
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hexachord theorem (see subsection 2.7 below). Of course, the abelian case is much simpler,
with only one possible notion of interval, and one kind of translation. In the sequel, unless
otherwise indicated, we stick to int(a, b) = a

−1
b.

In general, in a non-abelian locally compact group, the left- and right-invariant Haar
measure do not coincide; for instance, in the affine group of maps x �→ ax + b on the real
line, the left- and right- invariant measures are respectively da db/a

2 and da db/a. This
motivates the following definition.

Definition 2.4 A locally compact group is unimodular if it admits a Haar measure that
is both right- and left-invariant.

The unimodularity is a reasonable hypothesis in many cases; in particular, it is satisfied
whenever G is compact – see [29, Chap.3, 1(iv)] – and even more easily when G is discrete
– since cardinality is both right- and left-translation-invariant.

2.2. Interval vector and Patterson function

Definition 2.5 Let A, B in A. The interval function between A and B is the function

ifunc(A, B) : G→ R+

g �→ µ(B ∩Ag)

Since B ∩ Ag = {a ∈ A,∃b ∈ B, int(a, b) = g}, this definition is a straightforward
generalization of [22, 5.1.3], where ifunc is defined for discrete G.

Definition 2.6 Let A ∈ Ã. The interval content of A is the function

iv(A) : G→ R+

g �→ µ(A ∩Ag)

If G is discrete, the interval content is also called interval vector, hence the notation
iv.

It is clear, from the right translation invariance of µ and the fact that it is real-valued,
that for every A ∈ Ã and g ∈ G, iv(A)(g) = µ(Ag

−1∩A) = µ(Ag−1 ∩A), i.e. I(iv(A)) =
iv(A). In [21], the interval vector is expressed as a convolution product through the
natural bijection between Ã and ΣC(G, {0, 1}), i.e. iv(A) = 1A ∗ 1A−1 . However, to
include the case of a non-commutative group, the interval content shall be expressed as
iv(A)(g) =

�
1A(hg

−1)1A(h)dµ(h) = I(1A) ∗ 1A(g), where ∗ is the convolution product
for the right Haar measure – see [29, Chap.3, 3.5 and 5.1]. Then, this definition can
be extended to every almost everywhere bounded function on G with compact support,
which is customary in crystallography; for example, see the introduction of [31].

In a non abelian group, we can introduce two distinct definitions of the interval content,
because there are two different definitions of the interval from a to b.

Definition 2.7 We note rifunc = ifunc,
riv = iv the right interval function and inter-

val content already defined above. Let lifunc(A, B) be the left interval function:

g ∈ G �→ lifunc(A, B) = µ(B ∩ gA) =
�

1B(h)1A(g−1
h)dµ(h)
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Similarly the left interval content is defined as

liv(A) : g ∈ G �→ µ(A ∩ gA) =
�

1A(h)1A(g−1
h)dµ(h)

Unless otherwise indicated, we will use the rightwise definitions of the interval function
and interval content.

Definition 2.8 For every function E ∈ ΣC(G, K),1 the Patterson function of E is
defined by

d
2(E) := I(E) ∗ E : g ∈ G �→

�
E(hg−1)E(h) dµ(h)

As the interval content of a finitely measured subset of G is the Patterson function of
its characteristic function, that is iv(A) = d

2(1A), all features of interval contents can
and will be expressed in terms of Patterson functions. We introduce below the most basic
properties of d

2, which will motivate the ensuing definitions for finitely measured subsets
of G that share the same interval contents, and more generally functions in ΣC(G, K)
that share the same Patterson function.

Proposition 2.9 [Invariance under transposition and inversion] If G is unimodular,
then for every E ∈ ΣC(G, K), for every g ∈ G, d

2(Tg(E)) = d
2(E); furthermore, if G is

abelian, then d
2(I(E)) = d

2(E).

Proof : The transposition invariance is implied by the left translation invariance of the
Haar measure on G: for every x ∈ G, d

2(Tg(E))(x) =
�

E(g−1yx−1)E(g−1
y) dµ(y) =�

E(zx−1)E(z) dµ(gz) =
�

E(zx−1)E(z) dµ(z), where the variable substitution y = gz

is made in the second equality.
If G is abelian, the inversion invariance is a consequence of the commutativity of the

convolution product and the involutive property of the inversion: d
2(I(E)) = I(I(E)) ∗

I(E) = E ∗ I(E) = I(E) ∗ E = d
2(E). �

The invariance under translation may also hold without the hypothesis that G is uni-
modular, for instance for Tg with g central in G, that is for every h ∈ G, gh = hg.

Example 2.10 As a counterexample of the invariance , consider the GIS of major and
minor triads with the dihedral group of transpositions and inversions as the interval
group, with 24 elements and let for instance A = {{0, 4, 7}, {2, 7, 11}, {2, 5, 9}, {4, 7, 11}}
and B = I4(A) be its “translate” by the inversion I4 : x �→ 4 − x, i.e. B =
{{0, 4, 9}, {2, 5, 9}, {2, 7, 11}, {0, 5, 9}}. We can see in Figure 3 that the inversion I2 :
x �→ 2−x occurs twice in B but never in A, i.e. iv(B)(I2) = 2 while iv(A)(I2) = 0. Since
every transposition Ti is central in G, one can check that iv(Ti(A))(g) = iv(A)(g) for all
g ∈ G.

1It could be defined for a larger set of functions, e.g. the algebra L
1(µ) of µ-integrable maps from

G to C or the algebra L
2(µ) of maps from G to C whose square is µ-integrable, but ΣC(G, S) is

sufficient for musical applications.
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Figure 3. The interval vector changes when A is transformed by I4.

2.3. Definitions of Z-relation and homometry

Definition 2.11 The elements of a family (Aj)j∈J valued in Ã are said to be Z-related

if they have the same interval content almost everywhere. If, in addition, for every distinct
j, k in J, [Aj ]D �= [Ak]D, then the elements of (Aj)j∈J are said to be non-trivially Z-

related.

Example 2.12 In Z8, {1, 2, 3, 6}8 and {0, 1, 3, 4}8 are non-trivially Z-related. It is the
simplest example.

Definition 2.13 Let (Ej)j∈J a family of elements of ΣC(G, K). Elements of (Ej)j∈J are
said to be homometric if they have the same Patterson function almost everywhere. If, in
addition, for every distinct j, k in J , [Ej ]D �= [Ek]D, the Aj are said to be non-trivially

homometric.

It should be noted that the Z-relation as defined by Allen Forte in [13, section 1.9] is
what we call non-trivial Z-relation, and that our definition of homometry follows Rosen-
blatt [31]. We choose these definitions so that Z-relation and homometry are equivalence
relations on Ã and ΣC(G, K), respectively.

Obviously, subsets of A are Z-related if and only if their characteristic functions are
homometric.

2.4. Elementary properties

We will give now properties of the Patterson function related to monotonicity, periodicity
and commutation with quotients.

In order to give a monotonicity property of the Patterson function, we introduce a
pointwise order on ΣC(G, R): we note E � F if, for every x in G, E(x) � F (x). This
order is compatible with the inclusion order on Ã, i.e. the natural bijection between Ã
onto ΣC(G, {0, 1}) is an increasing map.

Lemma 2.14 For all distributions E,F in ΣC(G, R+), if E � F , then d
2(E) � d

2(F ),
i.e. d

2 : ΣC(G, R+) �→ ΣC(G, R+) is an increasing map. In particular, for every A, B in
Ã, if A ⊂ B then iv(A) � iv(B).

Proof : For every x, y in G, 0 � E(y) � F (y) and 0 � E(yx
−1) � F (yx

−1), therefore
taking the product term by term, E(yx

−1)E(y) � F (yx
−1)F (y); moreover the Lebesgue

integral with measure µ is positive, so finally d
2(E) � d

2(F ). �
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Figure 4. The interval vector of a periodic set is periodic.

Proposition 2.15 For every distribution E in ΣC(G), for k ∈ C, d
2(kE) = |k|2d2(E).

Moreover, if G is commutative, then for all distributions E,F in ΣC(G) d
2(E ∗ F ) =

d
2(E) ∗ d

2(F ).

Proof : The first part of the proposition is obvious. To prove the second part, we assume
that G is commutative. Let E,F ∈ ΣC(G). It is straightforward to see that I(E ∗ F ) =
I(E) ∗ I(F ), so we have d

2(E ∗ F ) = I(E ∗ F ) ∗ E ∗ F = I(E) ∗ I(F ) ∗ E ∗ F , then the
result follows by commutativity of the convolution product. �

Proposition 2.16 [Periodicity invariance] Let E ∈ ΣC(G). If for some r ∈ G, for every
g ∈ G, E(gr

−1) = E(g), then for every g ∈ G, d
2(E)(gr

−1) = d
2(E)(g).

There is a partial and fuzzy converse result for {0, 1}-valued distributions: if A ∈ Ã has
a finite measure and there is r ∈ G such that iv(A)(r) = iv(A)(e), then there are N,N

�

µ-negligible subsets of G such that A � N = Ar � N
� = A ∪ Ar, that is, A is “almost

periodic”.

Proof : d
2(E)(gr

−1) =
�

E(h(gr−1)−1)E(h)dµ(h) =
�

E(hrg−1)E(h)dµ(h), so by
right translation invariance of µ, d

2(E)(gr
−1) =

�
E(h�g−1)E(h�r−1)dµ(h�) =�

E(h�g−1)E(h�)dµ(h�) = d
2(E)(g).

As for the second part of the proposition, we have

Ar = (A ∩Ar) � (AC ∩Ar) (1)

A = (Ar ∩A) � (Ar
C ∩A) (2)

A � (Ac ∩Ar) = A ∪Ar = Ar � (Ar
C ∩A) (3)

By right translation invariance of µ, µ(Ar) = µ(A), so by (1), µ(A) = µ(A ∩ Ar) +
µ(AC ∩ Ar); moreover, µ(A) = iv(A)(e) = iv(A)(r−1) = iv(A)(r) = µ(A ∩ Ar) is finite,
so µ(AC ∩Ar) = 0, so N := A

c ∩Ar is negligible. In a similar way, we get from (2) that
N
� := Ar

C ∩A is negligible. We finally get the result by (3). �

Example 2.17 The Proposition 2.16 tells us that any periodic distribution has a pe-
riodic interval content. Hence the interval content of any of Messiaen’s modes of lim-
ited transposition will be periodic. For example – see Figure 4 – the interval vector of
A = {0, 1, 3, 6, 7, 9}12 is iv(A) = [6, 2, 2, 4, 2, 2, 6, 2, 2, 4, 2, 2]. Since T6(A) = A, we have
T6(iv(A)) = iv(A).
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We will use the following simple necessary condition on measure equality for Z-relation.

Lemma 2.18 If (Aj)j∈J is a family of Z-related subsets of G, then all the Aj have the
same measure.

Proof : For every j ∈ J, µ(Aj) = iv(Aj)(e), where e is the neutral element of G. �

In particular, if the topology on G is discrete, then any two Z-related subsets of G have
the same cardinality.

2.5. Interval structure and interval content

We will now build a link between interval content and interval structure, expressing the
former using the latter. We will focus our attention to a restricted class of discrete groups,
namely discrete groups with a total order compatible with left translation.

Definition 2.19 An left-(totally-)ordered group is a couple (G, �) where G is a
discrete group and � is a total order on G which is compatible with left translation, that
is for every f, g, h in G, if f � g then hf � hg.

Examples of left-ordered groups are all abelian ordered groups, e.g. Z, R, and the
tiemspans group R �m R∗

+ fitted with Lewin’s attack order, which is simply the lexi-
cographic order associated with the usual order on R and R∗

+. Every direct product of
left-ordered groups fitted with the lexicographic order associated to the orders of these
groups is a left-ordered group too.

Definition 2.20 Let G be a left-ordered group. For every finite subset A of G, there is
a unique strictly increasing family (ai)i∈�1,n� where n = |A|, such that A = {ai}i∈�1,n�.
The interval structure of A is the family is(A) = (int(ai, ai+1))i∈�1,n−1�.

Example 2.21 Let A = {−3,−1, 1, 5, 6} in Z; is(A) = (2, 2, 4, 1). Let B =
{(2, 1), (3, 1), (5, 2), (7,

1
2), (7 + 1

2 ,
1
2), (9, 3)} in the time spans group R �m R∗

+; is(B) =
((1, 1), (2, 2), (1,

1
4), (1, 1), (3, 6)).

Proposition 2.22 Let G be a left-ordered group. The interval structure of every finite
subset of G is invariant by left translation, that is for every A finite subset of G, for every g

in G, is(gA) = is(A). Conversely, if A, B are finite subsets of G such that is(A) = is(B),
then there is g ∈ G such that B = gA.

Proof : The invariance of interval structure by left translation directly follows from the
preservation of intervals by left translation. As for the second part of the proposition, it
is obvious that by defining g = min(B) min(A)−1 we get by finite induction on the lists
defined by ordering A and B that B = gA. �

We shall now define a partition of a non-negative element of a left-ordered group,
which naturally generalizes the notion of partition of a positive integer, and a consecutive
subfamily of a sequence valued in a left-ordered group.

Definition 2.23 Let G be a left-ordered group, let e be the neutral element of G, let p ∈ G

such that p � e. An ordered partition of p is a family of elements of G (dj)j∈�1,k� such
that k ∈ N, for all j in �1, k� dj > e and

�
k

j=1 dj = p.
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Figure 5. Example of Z-relation between two time spans (non-commutative case).

Definition 2.24 Let G be a left-ordered group, let A = (aj)j∈�1,k� be a family of elements
of G. A consecutively-indexed subfamily of A is any subfamily (aj)j∈J of A such that
J = �l,m� with 1 � l � m � k.

Theorem 2.25 Let A = {ai}i∈�1,k� be a finite subset of a left-ordered group G, such
that (ai)i is strictly increasing. We note (di)i∈�1,k−1� the interval structure of A. For
every p ∈ G, we note Ip(A) = {(j, j�) ∈ �1, k − 1�2, j + 1 � j

�and
�

j
�

i=j
di = |p|}, where

|p| = max(p, p
−1); then iv(A)(p) = #(Ip(A)), that is, iv(A)(p) is equal to the number of

consecutively-indexed subfamilies of is(A) which are partitions of |p|.

Proof : For every p ∈ G \ {e}, iv(A)(p) = iv(A)(|p|), so we can suppose that p � e. The
map

Ip(A)→ A ∩Ap

(j, j�) �→ aj� = ajp

is well-defined and bijective, and #(A ∩Ap) = iv(A)(p). �

This theorem may be used to compute the interval content from an interval structure.
For instance, the time spans group G is non-commutative and has no central element
besides the neutral (0, 1), so interval structure and the interval content have exactly the
same invariance properties on this group, including invariance by left translation. Thus, an
approach for finding Z-related subsets of the time spans is generating interval structures
and sorting them by their interval content. For example, by taking E =

�4
j=1{(1 +

k

2 , 2l)}k=0,...,6,l=−1,0,1, we find with computer search two and only two interval structures
in E that have the same interval content, and by “integrating them”, we obtain that the
time spans sets {(0, 1), (1, 1), (2,

1
2), (5

2 ,
1
2), (7

2 ,
1
4)}, {(0, 1), (1, 1), (5

2 ,
1
2), (3,

1
2), (7

2 ,
1
4)} are

Z-related, as shown in Figure 5.
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2.6. Patterson function transfer through quotients

We keep the same notations as in the previous section. Let H be a closed and normal
subgroup of G; then G/H is a locally compact group. Details and proofs for the measure
theory results below can be found in [29, Chap.3, 3.3(i) and 4.5].

Let µ be a right Haar measure on G, ν a right Haar measure on H with the topology
induced by G, and λ the unique right Haar measure on G/H such that for every E in
ΣC(G)

�

G/H

�

H

E(hx) dν(h) dλ([x]H) =
�

G

E dµ (4)

By defining

�: ΣC(G)→ ΣC(G/H)
E �→ �E : [x]H �→

�
H

E(hx) dν(h)

the equality above is rewritten
� �E dλ =

�
E dµ.

In the particular case of G = Z with the discrete topology, let H be a non-trivial
subgroup of Z: H = nZ for some integer n > 1; for all E ∈ ΣC(Z), k ∈ Z, �E([k]) =�

j∈Z E(j n + k).

Theorem 2.26 With the previous hypotheses and notations, the � operator defined above
and the Patterson function operator “commute”, that is, for every E ∈ ΣC(G), d

2( �E) =
�d2(E):

ΣC(G) ΣC(G)

L
1(G/H) L

1(G/H)

��
d
2

��

e

��

e

��
d
2

Proof : We reuse two results of [29, Chap.3, 5.3], namely that�: ΣC(G) → ΣC(G/H) is a
morphism of algebras with the convolution product, and that I and d

2 commute. Thus,
for every E ∈ ΣC(G), d

2( �E) = I( �E) ∗ �E = �I(E) ∗ �E = �I(E) ∗ E = �d2(E). �

Corollary 2.27 Under the same notations and hypotheses as the previous theorem, if
E1, . . . , Es in ΣC(G) are homometric, then �E1, . . . ,

�Es are homometric in ΣC(G/H).

Example 2.28 A = {0, 1, 2, 6, 8, 11} and B = {0, 1, 6, 7, 9, 11} are Z-related in Z, so their
projections π(A) = {0, 1, 2, 6, 8, 11}12 and π(B) = {0, 1, 6, 7, 9, 11}12 are Z-related in Z12.
Actually, the projections {0, 1, 2, 6, 8, 11}n and {0, 1, 6, 7, 9, 11}n are homometric for every
n ∈ N, n � 2, which we will use in 3.4; and they collapse into multisets for n � 11.

Example 2.29 In general, non-triviality is not preserved through quotients. The sets A =
{0, 1, 2, 3, 4, 6, 7, 8, 11} and B = {0, 1, 4, 5, 6, 7, 8, 9, 11} are Z-related in Z, and so are
their projections on Z12; however, these projections are related by transposition, namely
π(B) = T5(π(A)). It is easy to see that for any Z-relation of subsets of Z one can always
find a n

� such that for every n � n
� the non-triviality of a Z-relation is preserved mod
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n. In this case, n
� = 12 is enough: this follows from the fact that in A there are three

consecutive integers, a feature invariant under transposition and inversion, while there is
no such configuration in B.

A loose but always valid choice for n
� is n

� = 2(max(A) − min(A)) = 2(max(B) −
min(B)).

Note that the converse of Corollary 2.27 is not true: A = {0, 1, 2, 5}8 and B =
{3, 4, 6, 7}8 are Z-related in Z8, but for every A

�
, B

� subsets of Z such that π(A�) = A and
π(B�) = B, it is easy to see that diam(A�) �= diam(B�), where diam denotes the diameter,
hence A

� and B
� are not Z-related.

2.7. The hexachord theorem

2.7.1. Patterson functions of generalized hexachords
The hexachord theorem has been significantly popular in the litterature – see [28,

Chapter V, 5.16], [22, section 6.6], [7]. Since it is actually a feature of Patterson functions,
we propose here a restatement in the framework of locally compact (not necessarily
commutative) GIS, and add a few geometric remarks.

G,A, µ are defined as above. We will additionally assume in this subsection that µ(G)
is finite, which is equivalent to the compactness of G.

The initial form of the hexachord theorem by Milton Babbitt is an invariance property
of the interval vector by complementation. Wherever there is no ambiguity, 1G will be
written1 1, and for every a ∈ C, a1G will be written a. For every measurable subset
A ⊂ G, 1AC = 1−1A, where A

C = G\A, hence we can naturally extend the complement
function to ΣC(G), which we define as C : E �→ 1−E. This extension allows us to express
a generalization of the hexachord theorem, which results immediately from the following
lemma.

Lemma 2.30 For every E in ΣC(G), for every a ∈ R, d
2(a − E) = a

2
µ(G) −

2aRe(
�

Edµ)+d
2(E). In particular, for a = 1, d

2(C(E)) = µ(G)−2Re(
�

Edµ)+d
2(E).

Proof : The inversion I is linear and I(a) = ā = a, so d
2(a− E) = I(a− E) ∗ (a− E) =

a ∗ a− a ∗ E − I(E) ∗ a + I(E) ∗ E = a
2
µ(G)− a

�
Edµ− a

�
Edµ + d

2(E) = a
2
µ(G)−

2aRe(
�

Edµ) + d
2(E). �

Theorem 2.31 [Generalized hexachord theorem] For every E in ΣC(G), d
2(C(E)) =

d
2(E) if and only if Re(

�
Edµ) = µ(G)/2.

In the non-commutative case, this theorem admits two versions, i.e. it holds with either
left or right interval content.

From a geometric point of view, C is the central symmetry relative to constant map
1/2; this means that the hexachord theorem is a condition of invariance of the Patterson
function under this kind of symmetry — see Figure 6 — just like its invariance under I,
but that is valid only under some normalization condition. If E is a {0, 1}-valued map,
i.e. E is the characteristic map of a measurable set A ⊂ G, this normalization condition
requires that µ(A) = µ(G)/2, which in the case where G is discrete means that the
cardinality of A is half the cardinality of G, which is already the original result.

1All the more so since without loss of generality, one can assume µ(G) = 1.
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Figure 6. An illustration of the generalized hexachord theorem in the case of G = R/Z.

A more general formulation of the hexachord theorem – see [28], is computing the
difference between the interval contents of a function and of its complement. It entails
immediately that homometry is preserved by the complement operator C.

Corollary 2.32 For every E in ΣC(G), d
2(E)− d

2(C(E)) is a constant map.

Proof : This results immediately from Lemma 2.30. �
Corollary 2.33 For every E1, . . . , Es in ΣC(G), E1, . . . , Es are homometric if and only
if C(E1), . . . , C(Es) are homometric.

A previous generalization of Babbitt’s hexachord theorem to the unit circle is the
subject of [7], but it cannot be further generalized for lack of reference to an integration
theory and generalized notion of interval. Nevertheless, the paper mentions the problem
of an hexachord theorem on the sphere S

2; unfortunately, since there is no topological
group structure on the sphere S

2 (with its usual topology), the notions of interval and
interval content in a Generalized Interval System are meaningless.12

2.7.2. Some examples of the generalized hexachord theorem
• Musical scales can be modelized as elements of a torus, which is the space of a GIS

under transposition. Say we define the set of ‘in tune’ scales as major scales whose
maximal deviation from a well-tempered major scale does not exceed 10 cents, e.g.
the ‘in tune’ D major scales would be in [190, 210]×[390, 410]×[590, 610]×[690, 710]×
[890, 910] × [1090, 1110] × [90, 110] where each pc is given in cents. So the reunion
ITS of all 12 ‘in tune’ major scales is a subset of the torus T7 = (R/1200 Z)7, with
measure 1/607 of the whole torus. Now the complement OTS (out of tune scales)
has the same interval content, up to a constant.

• We have explained why, for lack of a group structure, we cannot hope to give a
hexachord theorem in the sphere S

2. But in 4 dimensions, the sphere S
3 is a compact

Lie group, for instance one can set G = SU(2) = S
3:

1Only the spheres S
1 (the circle), S

3 (in dimension 4), and in some measure S
7 may be provided

with a group structure and a Haar measure compatible with their natural topology.
2It is conceivable that a more general notion of interval could be defined as geodesics on manifolds.
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Definition 2.34 The group SU(2) is the set of complex matrices
�

z1 −z2

z2 z1

�
with

determinant 1. As a set it coincides with the sphere in C2 : {|z1|2 + |z2|2 = 1}, e.g.
the sphere S

3 in R4.

The group operation is then simply matrix multiplication. It can be shown that,
parametrizing S

3 with z1 = cos θ e
iφ

, z2 = sin θ e
iψ with θ ∈ [0, π/2], 0 ≤ φ, ψ ≤ 2π,

the Haar measure is (up to a constant) µ1 = sin 2θ dθ dφ dψ.
With this measure, the hexachord theorem with either right or left interval content

hold on S
3.

• We can now turn back to discrete, but non abelian, groups. The Haar measure is the
counting measure. For instance, let G be the dihedral group over Z12, which makes a
GIS for instance on the space of major and minor triads. For the sake of simplcicity,
let G act on itself. A very simple ‘hexachord’ is the cyclic subgroup T , isomorphic
with Z12 (transpositions). The interval vector on T is computed immediately with
the following general proposition:

Proposition 2.35 Let H be a subgroup of G. Then

liv(H)(g) = riv(H)(g) =

�
µ(H) when g ∈ H

0 else
.

Our generalized hexachord theorem now states that the complement of T (i.e. the
inversions) share the same interval vector. The transfer principle from the group to
the space of the GIS means that there as many transformations (intervals) between
a given triad and the major triads, as there are between this triad and the minor
triads.

For a less trivial case, try for instance the diedral subgroup with 12 elements (or
equivalently the major triads with root on a whole-tone scales and their inversions),
or a random subset of G, for which riv will be different from liv in general.1

3. The phase retrieval problem

We have seen so far many properties of the Patterson function of a distribution and the
interval contents of a measurable subset of finite measure. In this section, we will focus
on the reconstruction problem.

This problem consists in determining whether a given integrable distribution over a
locally-compact topological group fitted with its Haar measure, can be uniquely recon-
structed – up to translation and inversion, or up to translation – from its Patterson
function, and in case it cannot, what are the distributions non-trivially homometric with
the given one.

1This raises the interesting general concept of those subsets A ⊂ G for which riv = liv. For
instance, in the diedral group above, there are 2,010 4-elements subsets (out of 10,626) such that
riv = liv. For more examples, see [5].
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3.1. Definition of the problem

Let G be a locally compact group with a right-Haar measure µ.
We recall the notation D(G) for the image in Aut(ΣC(G)) of D(G), the generalized

dihedral group on G. Let H be the largest subgroup of D(G) such that the Patterson
function is constant on the orbits of the action of H on ΣC(G), that is for every P

in H, every E in ΣC(G), d
2(P (E)) = d

2(E). According to Proposition 2.9, when G is
unimodular, H is the group of left transposition operators1 {Tg, g ∈ G}, and when G is
abelian, H = D(G).

Definition 3.1 The phase retrieval problem consists of

(1) determining for every E ∈ ΣC(G), whether there is some F ∈ ΣC(G) non-trivially
Z-related to E; if there is no such F , one says that E can be uniquely retrieved

from its Patterson function up to H;
(2) determining, for every E ∈ ΣC(G) that cannot be uniquely retrieved, a family

F = (Fi)i∈I of ΣC(G) such F ∪ (E) is a maximal family of non-trivially Z-related
distributions.

In this definition, H is useful in moving out all trivial Z-relatives.
One defines likewise a “restricted” phase retrieval on �A, wherein H is defined as the

largest subgroup of D(G) such that for all A ∈ �A, P ∈ H, iv(P (A)) = iv(A). This
restricted phase retrieval problem is identical to the approach used by Forte for classifying
pitch class sets in his musical set theory, whereas the definition with distributions comes
from crystallography.

3.2. Alternative formulations

We have defined the most general notion of homometry in terms of Patterson functions.
But in a number of practical situations, the computations – and indeed the comprehension
of the process – are made easier by using the appropriate algebraic tools. A summary of
these formulations is shown in Figure 7 at the end of this section.

3.2.1. Polynomials
In the case of distributions on the group Zn, i.e. maps from Zn to some field K, we

deal with the algebra (KZn ,+, ., ∗), of which the product law ∗ is essential in defining the
Patterson function. It is possible to replace this algebra by the algebra of polynomials.

Definition 3.2 The characteristic polynomial of a subset A ⊂ Zn is A(x) =
�

k∈A
x

k ∈
K[x] = K[X]/(Xn − 1), where we note x = X mod X

n − 1. More generally, for any
distribution E : Zn → K, E =

�
ekδk, we define E(x) =

�
k∈Zn

ekx
k.

Proposition 3.3 The above transformation is an algebra isomorphism between
(KZn ,+, ., ∗) and (K[x],+, .,×), namely (E ∗ F )(x) = E(x)× F (x).

Essentially, the translation operator on subsets turns into multiplication by x:
T (A)(x) = x × A(x). This transformation was introduced by Redei et alii around 1950

1
H does not contain I because I does not preserve intervals, that is I does not preserve the

interval content of pairs
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in the study of tilings by translation. For us, the spotlight is on the Patterson function.
Transposing the definitions already given yields the following.

Definition 3.4 The reciprocal polynomial of E(x) =
�

k∈Zn
akx

k is I(E)(x) =
x

n−1
E(1/x) =

�
k∈Zn

akx
n−k. The Patterson polynomial function associated with the

distribution E is d
2(E)(x) = E(x)I(E)(x) =

�
k∈Zn

ekx
k with ek =

�
p∈Zn

apap−k

where the indices are computed modulo n.

Notice that for any root ξ of E(x), both ξ and 1/ξ are roots of d
2(E)(x). Also, for

ξ ∈ S
1 the unit circle, one gets d

2(E)(ξ) = E(ξ)E(ξ) = |E(ξ)|2 ∈ R+.
This approach can be further extended to any finite abelian group, or even any finitely

generated abelian group, with polynomials in several variables – one for each element
of a generators set of the group. Such constructions are essential in Polya’s theory of
combinatorics.

Any such polynomial, with degree d < n, can be determined uniquely with the values
it takes in n different points. A happy choice is to evaluate E(x) in the n

th roots of unity,
since E(e−2i jπ/n) =

�
n−1
k=0 ake

−2i j kπ/n is exactly the Fourier transform of the map E.

3.2.2. Fourier transform
Historically, the idea of using the Fourier transform in the theory of intervals goes back

to David Lewin’s first paper [21]. It was refurbished in recent years, mainly starting from
Quinn’s PhD [25].

As we have mentioned before, in the case of characteristic functions of subsets of Zn, the
Patterson functions boils down to the much simpler case of discrete Fourier transforms
(DFT for short):

�1A(t) =
�

k∈A

e
−2iπkt/n

This is indeed closer to the crystallographic origin of the Patterson function: as we
mentioned in the introduction, the Fourier transform of the interval content is exactly
the module of the DFT of the subset: since iv(A) = 1A ∗ 1−A, applying the Fourier
transform yields �iv(A) = �1A × �1−A = �1A × �1A = |�1A|2

It is perhaps interesting to mention the slightly more complicated equation used by
Lewin: he aimed to retrieve a pc-set A, knowing pc-set B and the interval function
between the two: ifunc(A, B)(t) = #{(a, b) ∈ A×B, a + t = b} = 1B ∗ 1−A(t).

Since �ifunc(A, B) = �1B × �1A the retrieval of A is always possible provided that �1B

does not vanish. As we will see below, this condition arises in the discussion of k-decks.
It is also instrumental in numerous problems, for instance rhythmic tilings. For practical
retrieval, see the following section.

This approach can of course be extended to distributions on Zn, enlarging the codomain
from {0, 1} to C; but also to any commutative group instead of Zn, with the Fourier
transform defined in terms of characters. This will be useful again below: in the study of
k-decks we will introduce multi-dimensional Fourier transform.

An interesting alternative, introduced by Thomas Noll, is the case Zn → Tn ⊂ Cn,
modelizing ordered sequences of n notes, e.g. musical scales. On these topics, see [2, 4].
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3.2.3. Circulating matrices
Circulating matrices of order n are defined as Cn(K) or Cn for short, the (commutative)

algebra of matrices of the form




a0 an−1 ··· a1
a1 a0 ··· an−1

... . . . . . . ...
an−1 ··· a1 a0



, with coefficients in any field K.

This algebra is actually the algebra of polynomials in the matrix J =




0 ··· 0 1
1 0 ··· 0
0 1 0 ··· 0
... . . . . . . . . . ...
0 ··· 0 1 0



.

J can be seen as the matrix for the elementary translation operator, Zn � k �→ k + 1.
There is a natural mapping from distributions on Zn onto Cn, setting for any map

E ∈ K
Zn ak = E(k). For instance if E = 1A, one gets ak = 1 ⇐⇒ k ∈ A and ak = 0 if

k /∈ A. What makes this bijection interesting is the following:

Proposition 3.5 The above mapping is an isomorphism of algebras between
(KZn ,+, ., ∗) and (Cn,+, .,×).

In other words, this matricial representation turns the cumbersome convolution product
into the (slightly less cumbersome) matricial product.1 This is easily checked by a direct
computation, left to the reader. But the deep reason for this apparent miracle is linked
to simultaneous diagonalization of these matrices:

Theorem 3.6 Let Ω = 1√
n

�
e
−2iπj k/n

�
j,k=0...n−1

be the Fourier matrix.2 Then for any
circulating matrix S associated with E : k �→ ak,

Ω−1
S Ω =




ψ0 0 ··· 0
0 ψ1 ··· 0
... ... ...
0 ··· 0 ψn−1



 .

where the ψk = �E(k) are the Fourier coefficients of map E.

Proof : It is straightforward to check that the colums of Ω are eigenvectors of
the matrix J , with eigenvalue equal to the first element of the column. Hence

Ω−1
J Ω =




1 0 ··· 0
0 e

−2iπ/n ··· 0
... . . . ...
0 ··· 0 e

−2iπ(n−1)/n



 and for S = a0I + a1J + · · · an−1J
n−1, Ω−1

S Ω =




ψ0 0 ··· 0
0 ψ1 ··· 0
... . . . ...
0 ··· 0 ψn−1



 where ψk =
�

n

j=0 aje
−2iπj k/n. �

So the miracle of the algebra morphism is just the fact that convolution ∗ is turned
into ordinary product by the Fourier transform. Here the Fourier transform is read as a
diagonal matrix, whose algebra is clearly isomorph to K

n with term-to-term product.
This matrix representation is still close enough to the musical material (the distribution

can be read verbatim in the first column) and introduces the whole, powerful machinery
of linear algebra. For some fascinating applications, see [3]. We will sample here a few
results or techniques related to our topic:

1Actually one of the authors first introduced this algebra as the natural representation of K
Zn

acting on itself by way of the adjunction operator E �→ (F �→ E ∗ F ).
2Notice that tΩ = Ω−1.
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Figure 7. Isomorphisms between different algebras.

• The Fourier transform is non-vanishing iff the determinant of the matrix is different
from 0. This is a straightforward criteria for all of Lewin’s ‘special cases’, which was
hitherto a messy catalogue of obscure conditions.

• The matrix associated with ifunc(A, B) (resp. iv(A)) is t
SASB (resp. t

SASA ) where
SA, SB are the matrices associated with 1A,1B. For more general distributions (com-
plex valued instead of 0,1) the conjugate must be used, e.g. if S is associated with
map E, then its iv is associated with t

SS.
• Hence “Lewin retrieval” (finding A from ifunc(A, B)) is accomplished by inverting

SB (notice the condition on non-vanishing Fourier coefficients again here).
• SA and SB are homometric iff t

SASA = t
SBSB. Diagonalizing, this in turn is equiv-

alent to the existence of some matrix U such that
(1) U is a circulating matrix [it diagonalizes with the same eigenvectors as all

others] and
(2) U is unitary: its eigenvalues lie on the unit circle (or equivalently: t

UU = In,
the identity matrix).

(3) SB = USA.

We will elaborate below on these so-called spectral units, see 3.3. A straightforward
example is J , the equation SB = JSA expressing that B = T1(A). It is, however, much
less easy to characterize the inversion operator I in terms of spectral units.

In this paragraph, we have restricted ourselves to (distributions on) the cyclic group;
nonetheless we look forward to further research making use of group representation theory,
of which this is but one of the most elementary examples. It might be the best access to
the non-commutative case.
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3.3. Spectral units

As the Patterson function of a bounded distribution with compact support is defined
using a convolution product, it is natural to ask whether there exist distributions U such
that the convolution with U does not change the value of the Patterson function, i.e. such
that for every E ∈ ΣC(G) E ∗ U ∗ I(E ∗ U) = E ∗ I(E), which is equivalent – if d

2(U) is
well defined and G abelian – to d

2(E) ∗d
2(U) = d

2(E), i.e. E and E ∗U are homometric.
When the algebra (L1(µ),+, ., ∗) does not have a unit, which is equivalent to G having

a non-discrete topology [29, Chap.3, 5.6], in order to formulate the Z-relation and phase
retrieval problem, it is necessary to enlarge the algebra to the space of distributions,
which has been done in depth for G = R in [30].

When G is discrete and abelian, which we will assume henceforth, such distributions
U are easily characterized as distributions homometric to the unit of L

1(µ), which is the
Dirac distribution in e, the neutral element of G.

Definition 3.7 A distribution U ∈ ΣC(G) is called a spectral unit of G if I(U)∗U = δe.

Proposition 3.8 The set of spectral units of G is a subgroup of the group of invertible
elements of the algebra L

1(G).

Rosenblatt has proven that any pair of homometric distributions is connected by a
spectral unit.1 Hence, in a way, enumerating all spectral units would solve the phase-
retrieval problem. In practice it is not so, because we do not want E ∗ U to be just any
distribution; for instance for pc-sets, we would want its codomain to be {0, 1}. As we will
see below, even in the simplest case of distributions in Zn, this is far from obvious.

3.4. Phase retrieval in the case of cyclic groups: the beltway problem

3.4.1. Spectral units of Zn

Putting together circular matrices and spectral units, we are looking for unitary cir-
culating matrices: t

U−1 = U ∈ Cn. Then any pair of circulating matrices S, T such that
S = UT provides homometric distributions. For convenience, let us generally denote by
shortcase s ∈ K

n the first column of uppercase S ∈ Cn.
For instance, let the first column of S be s = (1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0) (the

C minor triad) and T defined by the first column t = (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0)
(the C major triad). Then transposition is achieved my multiplication by j =
(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and its powers, e.g. E flat minor triad is obtained with the
matrix product J

3
S, or equivalently j

3 ∗ s = (0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0). It is, however,
much less straightforward to achieve inversion by way of a spectral unit: from C major to
C minor we must have U = S

−1
T , which yields u = 1

15(7, 4,−2, 1, 7, 4,−2, 1,−8, 4,−2, 1).
Contrary to transposition, the spectral unit achieving inversion depends on the inversed
subset (or distribution), and even more strangely, in general, such units are of infinite
order in the group of units, like u in the example above.

Still, we managed to completely characterize rational2 spectral units with finite order:

1There are some conditions about the field where the computations are made.
2For many musical applications, homometric distributions will be Z-related (multi)sets, and be-
cause of the matricial equation between them, a spectral unit connecting them must have rational
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Theorem 3.9 Any spectral unit with finite order is completely determined by the values
of the subset {ξj , j | n} of its eigenvalues. The possibilities are listed infra:

• ξ0 = ±1;
• When n is odd, for all j | n, ξj OR −ξj is any power of e

2ijπ/n.
• When n is even, ξj is any power of e

2ijπ/n if n/j is even, or any power of e
ijπ/n if

n/j is odd.

Then for any k coprime with n, ξkj = ξ
k

j
(or −ξ

k

j
in a specific case, cf. [6]).

For instance, for n = 12 the structure of the group is Z12×(Z6)2×Z4×(Z2)2, with 6,912
elements. In general, the group of rational spectral units with finite order is isomorphic
with

�
d|n Z/(lcm(2, d)Z).

Notice the similarity with 5.1.2 below. Proofs and details can be found in [6].

3.4.2. Existence of non-trivially Z-related subsets of Zn

Theorem 3.10 Let n ∈ N with n � 2. There exist A, B non-trivially Z-related subsets
of Zn if and only if n = 8 or n = 10 or n � 12.

Proof : If n = 8, sets A, B that fit are given in the example 2.12: {0, 1, 3, 4}8, {2, 5, 6, 7}8.
If n = 10, A = {0, 1, 3, 4, 8}10, B = {2, 5, 6, 7, 9}10 fit. It is easily seen that these two
cases are instances of the (Generalized) Hexachord Theorem 2.31; the non-triviality of
the Z-relation comes from the fact that there is a sequence of three consecutive elements
in B, whereas there is no such sequence in A.

Let us suppose now that n � 12; we note πn : Z → Zn the canonical projection.
A = {0, 1, 2, 6, 8, 11} and B = {0, 1, 6, 7, 9, 11} are Z-related in Z, so using Corollary 2.27,
πn(A) and πn(B) are Z-related; moreover, there is a sequence of three (four in the case
n = 12) consecutive integers in πn(A), whereas there is no such sequence in πn(B), so
this Z-relation is not trivial.

Conversely, for n � 7, n = 9 and n = 11, it is easy to check by computer search that
there are no non-trivially Z-related subsets in Zn. �

3.5. Is there a group action representing the Z-relation?

An appealing formulation of the phase retrieval problem is asking whether there is a
non-trivial group action on ΣC(G) wherein the orbits are the equivalence classes of the
homometry, and whether there is a non-trivial group action on the set of elements of A
of finite measure wherein the orbits are the equivalence classes of the Z-relation.

A “trivial group action” can always be achieved with the direct sum of the permutation
groups of the equivalence classes, which is both a huge and uninteresting group. Preclud-
ing this is essential in practice if one is to use properties of group actions of which both

coefficients. Conversely of course, a rational spectral unit will not necessarily yield integer co-
efficients when multiplied with the characteristic function of a (multi)set. Finally, the whole
group of rational (or real) spectral unit matrices can be described implicitely by the equations
(Ek) :

�n−1
j=0 ajaj+k = 0, k = 1 . . . �n−1

2 �, and the condition
�

a
2
j = 1, where indices are taken

modulo n. For instance, for n = 3 the group of real spectral units is the pair of circles made of
the matrices

�
a b c
c a b
b c a

�
with a

2 + b
2 + c

2 = 1 and a + b + c = ±1.
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the group and the set are finite, for instance computing effectively the number of orbits
using the equation of Burnside-Frobenius. We prove below that, in essence, there is no
reasonable group action whose orbits are the homometric classes.

Theorem 3.11 Let n ∈ N with n � 2. If n = 8, n = 10 or n � 12, then for every field K

and for every subgroup H of the linear group GLn(K) such that the natural group action
of H on P(Zn) identified with {0, 1}n is well-defined, the orbits of this group action are
not identical with the equivalence classes of the Z-relation.

Proof : We suppose that n = 8, n = 10 or n � 12. Let K be a field, let H be a subgroup
of GLn(K) such that the natural group action of H on K

n can be restricted to a group
action of H on {0K , 1K}n; note that this restriction is well-defined if and only if {0K , 1K}n

is a union of some orbits of the group action of H on K
n.

We note the natural injective group morphism into permutation matrices

P : S(Zn)→ GLn(K)
σ �→ Pσ = (δi,σ(j))i,j∈Zn

From theorem 3.10, there exist two non-trivially Z-related subsets A, B of Zn. If we
assume that the orbits of H are the classes of Z-related sets, B is in the orbit [A]H of A,
so there exists M ∈ H such that M1A = 1B, and since the homometry between 1A and
1B is not trivial, M is not in P (D(Zn)).

On the other hand, we get from Lemma 2.18 that any distribution with codomain
{0, 1} homometric to 1{0} is a 1{k} for some k ∈ Zn. In particular, as M1{0} and 1{0}
are homometric, there is a k ∈ Zn such that M1{0} = 1{k}. Identifying the distributions
with circulating matrices (cf. 3.2.3), we find MIn = J

k, so M ∈ P (D(Zn)), which leads
to a contradiction. �

4. Homometry and Z-relation of higher order

4.1. k-vector, k-deck and k-Deck

We have seen that the Patterson function does not, in general, provide enough information
for the reconstruction of a distribution. So we need to extend these concepts far enough
to describe exactly the content of our distribution.

Definition 4.1 Let H be a subgroup of S(Zn). Let us define a H-copy of a set S ⊂ Zn

as any set of the form h(S), with h ∈ H.

Two interesting cases are H = T , the cyclic group of transpositions; and H = D, the
dihedral group of transpositions and inversions.

We begin by noticing that the interval vector of a set A is simply counting, in its i-th
place, how many D-copies of the set {0, i} are embedded in A, and this correspond exactly
to #(A∩(A−i)). Analogously, the coefficient of δi (or x

i in polynomial representation) of
the Patterson function of a distribution 1A tells us how many D-copies of the distributions
δ0 + δi are embedded in 1A, which still correspond exactly to #(A ∩ (A − i)). We may
now ask, more generally, how many D-copies of some general k-subsets are contained in
A. This has been done on the musical side in [22] and then [11] and [14].
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Figure 8. Computation of a 3-vector in Z12.

Following these works, we define the concept of k-vector1:

Definition 4.2 Given a set A ⊂ Zn, if S is a k-set, we call k-vector of A, and we
denote by mvk(A)S, the number of D-copies of S embedded in A.

Example 4.3 The set A = {0, 1, 3, 4, 7}12 has essentially only 6 non-zero entries in its
3-vector, as shown in Figure 8.

mv3(A){0,1,3}12
= 2 mv3(A){0,1,4}12

= 3
mv3(A){0,1,6}12

= 1 mv3(A){0,2,6}12
= 1

mv3(A){0,3,6}12
= 1 mv3(A){0,3,7}12

= 2

Indeed, mv3(A){0,1,3} = 2 since there are two D-copies of {0, 1, 3}12 embedded in A

(they are {0, 1, 3}12 and {1, 3, 4}12); mv3(A){0,1,4} = 3 since there are three D-copies of
{0, 1, 4}12 embedded in A (they are {0, 1, 4}12, {0, 3, 4}12 and {3, 4, 7}12); and so on.

Since iv(A)h = mv2(A){0,h}, this definitions extends the concept of interval vector.
Analogously we define the concept of k-deck:

Definition 4.4 Let G be a locally compact group, and let E =
�

g∈G
egδg be a real

distribution on G. We call

1Notice that this definition does not depend on the set S, but on the set-class [S]D. So there are
as many essentially significant entries in the k-vector, as the number of set classes of cardinality
k in Zn.
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Definition 4.5 k-deck of E the function d
k(E) : G

k−1 → Q defined by

d
k(E)(s1, . . . , sk−1) =

�

g∈G

egeg+s1eg+s2 · · · eg+sk−1 . (5)

Notice that, since E ∗ E
� =

�
g∈G

�
h∈G

ege−hδg−h =
�

t∈G

��
s∈G

eset+s

�
δt, when

k = 2, d
k(E)(s) =

�
g∈G

egeg+s is exactly the s-th term of the Patterson function of E,
and thus the k-deck extends the Patterson function.

Now, let G = Zn and E = 1A; then all the eg’s are either 0 (if g ∈ A) or 1 (otherwise),
and thus d

k(1A)(s1, . . . , sk−1) = #(A ∩ (A− s1) ∩ . . . ∩ (A− sk−1)), which is non zero if
and only if there’s a T -copy of {0, s1, . . . , sk−1} in A. In other words, the k-deck of 1A

tells us how many T -copies of {0, s1, . . . , sk−1} are contained in A.
These two definitions extend (respectively) the concept of interval vector and the con-

cept of Patterson function. Indeed iv(A)h = mv2(A){0,h}, and d
2(A)(s) = #(A∩(A−s))

is the coefficient of δs in the Patterson function of A.
We see that the k-vector and the k-deck are quite similar objects, with the difference

that the first one counts the D-copies, while the last one counts the T -copies. We may
solve this discrepancy by introducing the k-Deck (following [26]):

Definition 4.6 Let E =
�

g∈Zn
egδg be a real distribution on Zn. We call k-Deck of E

the function d
k(E) : (Zn)k−1 → Q defined by D

k(E) = d
k(E) + d

k(I(E)).

In this way, we get back the invariance by inversion, and since d
k(1A) is the number of

D-copies of {0, s1, . . . , sk−1} in A, the k-Deck is nothing more than the extension of the
k-vector to a generic distribution.1

4.2. Z
k
-relation, k-homometry, k-Homometry

As we have extended the interval vector and the Patterson function, we are now able to
extend also the Z-relation and the homometry.

Definition 4.7 Sets A1, . . . , As are Z
M

-related if mvM (A1)S = mvM (A2)S = . . . =
mvM (As)S for all S ⊆ Zn, #S = M .

Definition 4.8 Distributions E1, . . . , Es are k-homometric if d
k(E1) = d

k(E2) =
. . . = d

k(Es).

Definition 4.9 Distributions E1, . . . , Es are k-Homometric if D
k(E1) = D

k(E2) =
. . . = D

k(Es).

Clearly, the Z2-relation is the Z-relation and the 2-homometry (which is equivalent to
2-Homometry) is plain homometry. Again, for all these definitions, we will add the “non-
trivially” prefix if the sets (or distributions) belong to different classes under the action of
D (for ZM -relation and k-Homometry) or T (for k-homometry). This vocabulary makes
sense because of the following straightforward result.

1More precisely, if I({0, s1, . . . , sk−1}) = Th({0, s1, . . . , sk−1}) for some h, each D-copy is counted
twice. If we want complete accordance between the two definitions, we must treat separately that
case. But this does not scupper the equivalence between D

k(A) and mvk(A). By the way, the
Definition 4.6 of the k-Deck we in this form will be very useful later.
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Figure 9. A non-trivial Z3-relation in Z18. The two sets share the same 3-vector, whose entries
specify the number of copies of the corresponding elements in the prime forms list (given in the
right part of the figure). For instance, in both sets there are exactly 3 copies of {0, 1, 2}18, 5
copies of {0, 1, 3}18, and so on.

Lemma 4.10

(i) If A ⊂ Zn and B = I(Th(A)) or B = I
s(Th(A)), s ∈ {0, 1}, h ∈ Zn, then

mvM (A)S = mvM (B)S, for all M � 2, S ⊂ Zn, such that#S = M .
(ii) If E ∈ RZn and F = Th(E), h ∈ Zn, then d

k(E) ≡ d
k(F ).

(iii) If E ∈ RZn and F = I
s(Th(E)), s ∈ {0, 1}, h ∈ Zn, then D

k(E) ≡ D
k(F ).

Proof : (i) is straightforward, since there is an obvious 1-to-1 correspondance between
the 3-sets embedded in A and the 3-sets embedded in I

s(Th(A)); (ii) and (iii) come from
an easy direct computation. �

Non-trivial Z3-related sets exist, as first shown by Collins [11].

Example 4.11 Let us consider, in Z18, the two sets A = {0, 1, 2, 3, 5, 6, 7, 9, 13}18 and B =
{0, 1, 4, 5, 6, 7, 8, 10, 12}18. They are not related by translation/inversion, but mv3(A)S =
mv3(B)S for all S, as illustrated by Figure 9.
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4.3. Nesting

Following Jaming1 [18], we notice that, if E =
�

g∈Zn
egδg is a non negative real distri-

bution on Zn (eg � 0), then
�

s1,...,sk−1∈Zn
d

k(E)(s1, . . . , sk−1) =
��

g∈Zn
eg

�k

and so, if
two positive distributions E =

�
g∈Zn

egδg, F =
�

g∈Zn
fgδg have the same k-deck, they

surely satisfy
�

g∈Zn
eg =

�
g∈Zn

fg i.e. they have the same 1-deck. Then we notice also
that

�

sk−1∈Zn

d
k(E)(s1, . . . , sk−1) = d

k−1(E)(s1, . . . , sk−2)
�

g∈Zn

eg (6)

and thus we immediately have the following lemma:

Lemma 4.12 Let E,F ∈ QZn . If d
k(E) ≡ d

k(F ) for some k, then d
h(E) ≡ d

h(F ) for all
h � k.

This lemma is crucial, since it states that, as k increases, the information given by the
k-deck is more and more precise; in particular, the sets which share the same k-deck, as
k increases, are nested. By definition of the k-Deck, this result applies equally to the case
of D. So, the k-homometric sets and the k-Homometric sets, as k increase, are nested.
On the musical side, the k-vector version of the Nesting Lemma has been independently
developed by Collins [11], starting from a reconstruction formula given by Lewin [22].

Lemma 4.13 Let A, B be sets in Zn. If mvk(A) ≡ mvk(B) for some k � min(#A, #B),
then mvh(A) ≡ mvh(B) for all h � k.

5. The Extended Phase Retrieval Problem

The extended phase retrieval problem deals precisely with the question of where
this nesting stops. If we know that in Zn there exist (r − 1)-homometric sets but no
r-homometric sets, it means that r-decks provide enough information for phase retrieval.

Definition 5.1 The T -reconstruction index r(n) is the minimum integer k for which
there exist no k-homometric 0-1 distributions in Zn. The D-reconstruction index R(n)
is the minimum integer k for which there exist no k-Homometric 0-1 distributions in Zn.
We define rQ(n) and RQ(n) analogously, but for general distributions in QZn .

Clearly, r(n) � rQ(n) and R(n) � RQ(n). By the way, it is interesting to notice how
R(n) finds its musical mirror-image in the concept of “uniqueness of pitch class spaces”,
independently developed by Collins in [11].

Direct computer search can give the values of r(n), R(n) for small n, but we need some
algebra to explore the general cases.

1We correct here two small typos in the paper, concerning the exponent of the norm and a sign
of an inequality.
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5.1. The k-deck problem

If E,F are k-homometric distributions, i.e. d
k(E)(s1, . . . , sk−1) = d

k(F )(s1, . . . , sk−1)
for all (s1, . . . , sk−1) ∈ Zk−1

n , then we can take the discrete Fourier transform of these
k-decks, considered as functions in the k − 1 variables s1, . . . , sk−1.

It is then easy to check that the homometry condition is equivalent to

�E(ω1) �E(ω2) · · · �E(ωk−1) �E(−ω1 − . . .− ωk−1) =

= �F (ω1) �F (ω2) · · · �F (ωk−1) �F (−ω1 − . . .− ωk−1) (7)

for every (ω1, . . . ,ωk−1) ∈ Zk−1
n .

We now assume that E,F ∈ RZn
+ , i.e. they are non negative distributions. In this case,

�E(0) =
�

g∈Zg
eg > 0. By choosing ωi = 0 for all i, we get immediately that ( �E(0))k =

( �F (0))k, and then �E(0) = �F (0). By choosing ω1 = ω arbitrary and ω2 = . . . = ωk−1 = 0
we reach the Patterson equality � �E(ω)�2 = � �F (ω)�2 ∀ω. This is not surprising (we know
that the k-deck information is nested as k increase), but it tells us that supp �E = supp �F ,
i.e. either the two Fourier transforms are both nil, or they are both non-zero.1 Moreover,
the Patterson equality allows us to perform the substitution �F (ω) = e

iφ(ω) �E(ω) and to
get equivalentely (after simplifying)

φ(ω1 + ω2 + . . . + ωk−1) = φ(ω1) + φ(ω2) + . . . + φ(ωk−1) mod 2π (8)

which must be valid for all ω1, . . . ,ωk−1 ∈ supp �E such that ω1 + . . . + ωk−1 ∈ supp �E.

5.1.1. The Case supp �E = Zn

We can easily show that if the Fourier transform never vanishes on Zn, then the 3-deck
suffices for the reconstruction. The 3-deck version of the (8) is

φ(ω1 + ω2) = φ(ω1) + φ(ω2) mod 2π (9)

for all the (ω1, ω2) ∈ Z2
n, which tells us that the function ψ : ω �→ e

iφ(ω) is a character
of Zn. Since we know the form of the characters of Zn, necessarily there exist a k0 such
that ψ(ω) = e

2iπk0ω/n. But this means that

�F (ω) = e
iφ(ω) �E(ω) = ψ(ω) �E(ω) = e

2iπk0ω/n �E(ω) = �E ∗ δk0(ω) = �Tk0(E)(ω)

where we have applied the shift theorem for the DFT. Thus F = Tk0(E), which means
that, if the Fourier transforms never vanish, two distributions with the same 3-deck are
necessarily related by transposition, and the (extended) phase retrieval is succesful.

5.1.2. The Case supp �E �= Zn

If �E(ω) vanishes for some ω, the function φ(ω) is not everywhere defined, the (9) is no
more valid for all the (ω1, ω2) ∈ Z2

n, and thus ψ is no more a character, being defined

1We denote as supp �E the support of �E i.e. the set of values on which �E does not vanish.
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only on supp �E. However, if we succeed in showing that we can extend ψ(ω) = e
iφ(ω) to

a character on all Zn, we can apply the shift theorem again, and thus prove that F and
E are related by transposition.

We will follow the lead of Jaming and Kolountzakis in [17], and we start by gathering
some information about the position of the zeros of �E.

Lemma 5.2 If �E(ω) = 0 for some ω �= 0, then �E(η) = 0 for all η such that gcd(ω, n) =
gcd(η, n).

Proof : First recall (see 3.2.1), denoting ζn = e
2πi/n, that �E(ω) = E(ζω

n ), i.e. computing
the Fourier transform is equivalent to the evaluation of the polynomial E(x) in the powers
of an n-th primitive root of unity ζn.

If �E vanishes on ω, then E(ζω
n ) = 0, which means that (x− ζ

ω
n ) divides E(x). But ζ

ω
n is

a primitive n/ gcd(ω, n)-root of the unity, and thus if (x−ζ
ω
n ) divides E(x), necessarily all

the cyclotomic polynomials Φn/ gcd(ω,n)(x), which are irreducible in Q[x], divide E(x) in
Q[x], and in particular it will vanish also for all other roots of unity with the same order,
i.e. E(x) = 0 for all x = ζ

η
n such that gcd(ω, n) = gcd(η, n). For such η, �E(η) = E(ζη

n) = 0.
�

This means that we can partition Zn =
�

i∈Z,i|n Ci where each Ci = {a ∈ Zn :
gcd(a, n) = i} and if a transform vanishes on a certain element of Ci, then it must
vanish on all the class Ci.

Lemma 5.3 The class Ci (i < n) of the partition of Zn is isomorphic to the multiplicative
group Z∗

n/i
.

Proof : Consider the subgroup Zn/i of Zn, in the sense of the injection ι : Zn/i → Zn

defined by ι([a]n/i) := [ia]n, a ∈ Z. The generic element of Ci is of the type [ia]n, with
gcd(a, n) = 1, and thus we can apply ι

−1 to get to [a]n/i. Since a is coprime with n, it
is also coprime with n/i, and thus [a]n/i ∈ Z∗

n/i
. It is immediate to see that ι

−1 is an
isomorphism between Ci and Z∗

n/i
. �

Example 5.4 We can easily decompose Z12 = C1 � C2 � C3 � C4 � C6 � C12 where

C1 = {[1]12, [5]12, [7]12, [11]12} = Z∗
12 C4 = {[4]12, [8]12} ∼= Z∗

3
C2 = {[2]12, [10]12} ∼= Z∗

6 C6 = {[6]12} ∼= Z∗
2

C3 = {[3]12, [9]12} ∼= Z∗
4 C12 = {[0]12}

Proposition 5.5 If p is prime, in RZp the 3-deck suffice for the reconstruction, i.e. if
d

3
E
≡ d

3
F

then F = Tk0E for some k0 ∈ Zp.

Proof : We have just 2 classes Ci: Cp = {[0]p} and C1 = Z∗
p. Since �E(0) > 0 (we’re

assuming that E is a positive real distribution), we have 2 cases:

(1) supp �E = Zn, which has already been seen in section 5.1.1.
(2) supp �E = {[0]n}, which means �E ≡ �F , since �E(0) = �F (0) (the 3-homometry implies

the 1-homometry). �

With this kind of argumentations Pebody in [23] and [24], and Jaming and Kolountzakis
in [17] have shown that the 3-deck suffices also in the cases n = p

a, n = pq, n = p
2
q and

n = pqr (p, q, r odd primes, a > 2). Pebody in [23] reaches a complete determination of
the function rQ(n) (see Theorem 5.9).
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The most general case is addressed by Grünbaum and Moore (see [15] for the details
of the proof), who reach the following theorem.

Theorem 5.6 Let E,F ∈ QZn, d
6
E
≡ d

6
F
. Then F = Tk0(E) for some k0 ∈ Zn.

Grünbaum and Moore in [15] also give an interesting corollary for 0-1 distributions.

Corollary 5.7 Let A, B be two sets in Zn. If d
4
A
≡ d

4
B

and Z∗
n ⊆ supp �1A, then A =

Tk0B for some k0 ∈ Zn.

Unfortunately there is a technical assumption (the transform does not vanish on Z∗
n)

which one would like to dispense with. This seems to have been discarded of late, and
the case of the k-deck seems to be considered as good as solved. But, actually, that
assumption is a strong one.

So, it turns out that, while the behaviour of the functions rQ(n) is completely known
(see [23] for details), the same thing is almost true for r(n): Pebody in [24] gives all
the boundaries for odd n. Notwithstanding the aforementioned unwanted assumption, we
know that r(n) � 4 for n even. Computer calculation shows that r(2) = 1, r(4) = 2,
r(6) = r(8) = r(10) = 3; to complete the boundaries, we just have to prove that:

Lemma 5.8 If n is an even integer, n � 12, then r(n) � 4.

Proof : Let n = 2m and consider A = {0, 1, 2, . . . ,m − 4, m − 1, 2m − 3, 2m − 2}2m and
B = {0, 1, 2, . . . ,m− 4, m− 2, m− 1, 2m− 3}2m

Notice that B is obtained from A by a one-pitch shift of m (which is very similar
to what Althuis and Göbel did in [1] to find some Z-related families). More precisely:
C = {0, 1, 2, . . . ,m − 4, m − 1, 2m − 3}2m, A = C ∪ {2m − 2}2m, B = C ∪ {m − 2}2m.
So we just need to show that there’s a 1-to-1 correspondance between the 3-subsets of A

containing 2m− 2 and the 3-subsets of B containing m− 2. We shall give it explicitely.
Let a ∈ {0, 1, 2, . . . ,m− 4}2m. Then the correspondance is the following one:

{2m−2, a, a+1}2m �→ {m−4−a, m−2, m−1}2m, for a �= [m−4]2m

{2m−2, a, a+k}2m �→ {3m−a−4−k,m−2−k,m−2}2m, for k∈{[2]2m, . . . , [m−4−a]2m}

{a, m−1, 2m−2}2m �→ {a−1, m−2, 2m−3}2m, for a �= [0]2m

{0, m−1, 2m−2}2m �→ {m−2, 2m−3, m−4}2m

{m−1, 2m−3, 2m−2}2m �→ {0, m−2, m−1}2m

{a, 2m−3, 2m−2}2m �→ {m−2, m−5−a, m−4−a}2m, for a �= [m−4]2m

{m−4, 2m−3, 2m−2}2m �→ {2m−3, m−2, m−1}2m

Notice that, as requested, 2m − 2 is always present in the left 3-subsets and m − 2 is
always present in the right ones. So A and B have the same 3-deck.

To complete the proof, we notice that, if n � 12, the homometry is non-trivial - just
look at the intervals between the pitch classes and at the order of the intervals bigger
than 1 (3, m− 2, 2 for A and 2, m− 2, 3 for B), which cannot be related by transposition
if m � 6. Instead, for n = 10 the sets become A = {0, 1, 4, 7, 8} and B = {0, 1, 3, 4, 7}
which are transpositionally related. The same thing happens for n = 8. �

We are ready to summarize all the results in the following theorem.

Theorem 5.9 Let p, q be odd primes and let α,β be integers α >= 1, β > 1. Then
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rQ(n) =






1 if n = 1
2 if n = 2
3 if n = p

α or
if n = pq

4 if n is any other
odd number or

if n = 2β or
if n = 2p

α

5 if n = 2β
p

α

6 if n is any other
even number

r(n) =






1 if n = 1, 2, 3
2 if n = 4, 5
3 if n = p

α
> 5 or

if n has less than 4
not-necessarily distinct
odd prime factors or

if n = 6, 8, 10
4 if n is any other odd number, or

if n if any other even number
(under the hypothesis of non-
vanishing transform on Z∗

n)

5.2. The k-Deck problem

Let us try to do the same thing with the k-Deck problem, which is
the case we are most interested in, since there is an exact correspon-
dence between k-Homometry and ZM -relation. If E,F are k-Homometric dis-
tributions, D

k(E)(s1, . . . , sk−1) = D
k(F )(s1, . . . , sk−1) i.e. d

k(E)(s1, . . . , sk−1) +
d

k(E)(−s1, . . . ,−sk−1) = d
k(F )(s1, . . . , sk−1)+d

k(F )(−s1, . . . ,−sk−1), and taking again
the Fourier transform, we get

Re
�

�E(ω1) �E(ω2) · · · �E(ωk−1) �E(−ω1 − . . .− ωk−1)
�

=

= Re
�

�F (ω1) �F (ω2) · · · �F (ωk−1) �F (−ω1 − . . .− ωk−1)
�

(10)

The difference between (7) and (10), the real parts, is the main obstacle in pursuing
the analysis. Indeed, (10) leads to either one of the following equations:

�E(ω1) · · · �E(ωk−1) �E(ω1 + . . . + ωk−1) = �F (ω1) · · · �F (ωk−1) �F (ω1 + . . . + ωk−1) (11)

�E(ω1) · · · �E(ωk−1) �E(ω1 + . . . + ωk−1) = �F (ω1) · · · �F (ωk−1) �F (ω1 + . . . + ωk−1) (12)

and things are complicated because (11) might be valid for some values of ωi’s while (12)
might be valid for others.

By choosing ωi = 0 for all i, we still get to �E(0) = �F (0), and by arbitrarily choosing
ω1 = ω and ω2 = . . . = ωk−1 = 0 we get again the Patterson equality � �E(ω)�2 =
� �F (ω)�2 ∀ω which is little surprising, since the 2-deck and the 2-Deck coincide.

Considering these obstacles, the best we can do is to provide a list of computer-
calculated values for n � 37:

Proposition 5.10

R(n) =






1 if n = 1, 2, 3
2 if n = 4, 5, 6, 7, 9, 11
3 if n = 8, 10, 12, 13, 14, 15, 16, 17, 19, 22, 23, 25, 29, 31, 37
4 if n = 18, 20, 21, 24, 26, 27, 28, 30, 32, 33, 34, 35
5 if n = 36
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Figure 10. An OpenMusic patch showing two Z
4-related sets A and B in Z36. As an example,

we consider the subset C = {0, 1, 4, 6}36, and we show that the same number of copies, up to
transposition and inversion (3, in this case) are included in the two initial sets. The patch shows
also that this is true for any other 4-subset, by comparing the two mv functions.

5.2.1. An upper bound
As a direct consequence of Theorem 4 in [27], by Radcliffe and Scott, one easily gets

R(n) � 2r(n).

Thus, under the hypothesis of non vanishing Fourier transform on Z∗
n, R(n) � 8.

5.2.2. Existence of Z4-related Sets
Notice, in particular, that R(36) = 5, which means that there are some Z4-related sets.
To stress the interest of the research in the k-Deck problem, and the intimate difference

with the k-deck problem, we finish with an explicit example of Z4-related sets, obtained
by computer search. In Z36 consider the sets

A = {0, 1, 2, 3, 4, 5, 7, 10, 12, 15, 19, 20, 22, 23, 24, 25, 27, 28}36

B = {0, 1, 2, 3, 4, 5, 6, 9, 14, 17, 18, 19, 21, 22, 24, 26, 27, 29}36

They are not related by transposition or inversion, but mv4(A) ≡ mv4(B), or equiva-
lently D

4(A) ≡ D
4(B), see Figure 10.
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6. Conclusions and open problems

We have extended and unified the definition of interval content and Patterson function
to a larger framework using common mathematical tools, namely Haar measures and
Lebesgue integration theory. This approach has allowed us to obtain the following results
on Patterson functions, also valid in the non-commutative case:

• translation and periodicity invariance;
• transfer through quotients;
• a generalization of the hexachord theorem to a large class of GIS;
• first musical examples of Z-relation in a non-commutative GIS.

After providing the general definition of the phase retrieval problem, we have resumed
the recent results on the characterization of the homometry and the k-homometry, then
started the analysis of the k-Homometry, and finally given the first example of Z4-related
sets.

There is still a certain number of outstanding open problems. In particular:

• there is still no constructive characterization of the homometry, i.e. there is no
reasonable way to determine, given a set (a distribution, respectively), whether it is
non-trivially Z-related to other sets (homometric to other distributions, respectively)
and to reconstruct them;

• the phase retrieval problem in the GIS of time spans (see section 2.5) is still to be
solved; because of the non-commutativity of the group, one of the usual approaches
based on Fourier transform cannot be applied, which calls for the search of new
mathematical constructions, as suggested, for example, by Pebody in [24];

• the full determination of r(n) still depends upon the hypothesis of non-vanishing
coefficients of the Fourier transform (Corollary 5.7);

• the behaviour of R(n) as n increase is still unknown. It likely has a finite upper
bound, like r(n); given the example in section 5.2.2, we only know that the upper
bound of R(n) is greater or equal to 5; to study R(n), probably we will need a way
to get around the problem of having two possible relations (11) and (12).

Although we have implemented original algorithms for searching Z and Zk relations,
an extensive review of them will be necessary to a real application in computer-assisted
musical composition and analysis.
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