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Z-relation and homometry in musical distributions

John Mandereau®?*, Daniele Ghisi¢, Emmanuel Amiot, Moreno Andreatta®
and Carlos Agon®

4Dipartimento di Matematica, Universita di Pisa, Pisa, Italy; YUMR 9912, CNRS/IRCAM/UPMC,
1, place Stravinsky, 75004 Paris, France;  Cursus de composition, IRCAM, Paris, France;
dCPGE, Perpignan, 1 rue du Centre, F-66570 St Nazaire, France
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This paper defines homometry in the rather general case of locally-compact topological groups, and
proposes new cases of its musical use. For several decades, homometry has raised interest in compu-
tational musicology and especially set-theoretical methods, and in an independent way and with different
vocabulary in crystallography and other scientific areas. The link between these two approaches was only
made recently, suggesting new interesting musical applications and opening new theoretical problems. We
present some old and new results on homometry, and give perspective on future research assisted by com-
putational methods. We assume from the reader’s basic knowledge of groups, topological groups, group
algebras, group actions, Lebesgue integration, convolution products, and Fourier transform.

Keywords: GIS (generalized interval systems); interval vector; Patterson function; Z-relation; homome-
try; hexachord theorem

MCS/CCS/AMS Classification/CR Category Numbers: AMS MSC 05E15; 20H15; 43A20

1. Introduction

Although already present in Hanson’s [1] work, the concept of Z-relation is presented and
discussed in a systematic way by Forte [2]. In the classical framework of musical set theory, the
n-tone equal temperament is modelled via the cyclic group Z, = Z/nZ, and each class of Z, is
said to be a pitch-class. Any pitch-class set is simply called set.! For any set A C Z, one can define
the interval vector (iv) as forevery k € Z,,iv(A); = ifunc(A,A); = #{(s,1) € A%,t — s = k}.One
might notice that we define the iv function via the ifunc function borrowed from Lewin [3]; Forte’s
original icv only features six values, because of inherent symmetries, e.g. for a diatonic scale the
values of iv are [7,2,5,4,3,6,2,6,3,4,5,2] and Forte only keeps (2,5,4,3,6, 1) (the tritone is
only counted once and the cardinality iv(0) is omitted). Since we generalize the notion to much
more complicated groups than 7" (or T /I), and later to k-sets instead of couples of elements, it is
convenient to keep the whole list instead of a reduced version. A brief history of the interval class
vector is found in [4, Section 1.2].
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Figure 1. A well-known example of Z-related sets, in Zj5.

Two sets A and B are said to be Z-related if iv(A) = iv(B), i.e. if the same number of intervals
of each type is showing up in both sets. In other words, A and B share the same interval content.
Clearly, transposing or inverting a set does not change its interval content, and thus we have a lot
of trivially Z-related sets. In order to avoid this trivial case, we may consider sets classes up to
transposition and inversion, and we notice that there still exists Z-related sets in Forte’s sense.’
A well-known example is sets {0, 1,4, 6}, and {0, 1, 3,7}, in Z;,, which share the same interval
vector [4,1,1,1,1,1,2,1,1,1,1, 1] (Figure 1). Some composers have (implicitly or explicitly)
dealt with the Z-relation; for example this couple of Z-related sets is exactly the one used by
Elliot Carter in his second quartet [5].

To improve upon the classical model, one can substitute pitch-class sets with multisets, i.e.
integer-valued distributions, which might be useful to represent a chord where notes might be
repeated (Figure 2, centre); one can even consider rational- or real-valued distributions,? which
include in the representation the dynamics of each note (Figure 2, right). In this case, the interval
vector is no more sufficient, and must be replaced (as we will see) by the Patterson function,
which will extend the concept of interval content, as it represents (as suggested by Lewin) the
probability of hearing a given interval, if the notes of a given set are played randomly.

The name Patterson function comes from X-ray crystallography. Let G be an abelian group (with
additive notation). Given a distribution £ = ) ¢cG €g0g, We call inversion* of E the distribution
I(E) =}, €8¢, and the k-transposition of E is the distribution Ty (E) = . ; €484+ (k € G).
Then, the Patterson function of any distribution E is the convolution product E x I (E). Now, for
any X C G, let 1x be the distribution dex ;. By reading [6], we know that iv(A) = 14 x 1_4,
and since 1_4 = I(1,4), we see that the Patterson function is nothing more than a generalization
of the interval vector to a generic distribution. In crystallography, the Patterson function is the
starting point for solving the phase retrieval problem, i.e. to determine the arrangement of atoms
within a crystal, given the module of the Fourier transform® of the atoms’ distribution. Indeed,

if we know D * I (D), we know the absolute values of its Fourier transform DD(w) = ||b(w) 1%
for all w € Z,. Thus, to reconstruct D(w) = ||D(w)|| €4 (and D from there by inverse Fourier
transform), since we know its module, we just need to retrieve the phase ¢ (w). This is the central
problem that we address in this paper.

In this article, we will link vocabulary from musical set theory — generalized interval system
(GIS), interval vector, Z-relation — with vocabulary from crystallography — implicit usage of
group structure, Patterson function, homometry. These objects and their elementary properties are
presented in a theoretical framework large enough to cover most of the areas wherein homometry
and Z-relation have been previously studied. In Section 2, we introduce topological and measure
and integration theory tools that we use on Lewin’s GISs; in Section 3, we introduce the interval
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Figure 2. An example showing the usefulness of improving the classical model. A standard set is an element of P(Z,,),
i.e. a 0—1 distribution on Z,. If we allow some notes to be repeated, we have a multi-set, as in the middle example (the
same chord given to a string quartet), i.e. a distribution of N%#_ Finally, if we add a dynamic mapping (right example),
we can see the chord as a real distribution, i.e. a distribution of QZ'R In this example, we have arbitrarily chosen mf = 1,
f=2,p=1/2,pp=1/4.

content and the Patterson function, and in Section 4, Z-relation and homometry. Then, we study
properties of Patterson functions and homometry: in Section 5, we relate interval structure and
interval content, including two examples of a Z-relation in a non-commutative GIS; in Section 6,
we study how Patterson functions transfer through quotients, and in Section 7, we present and
illustrate a generalized hexachord theorem.

2. Using GISs

2.1. Mathematical definition of a GIS

The notion of GIS, introduced in [3], formalizes the notion of interval between two points in a set
of values of an abstract musical parameter.

DEFRINITION 2.1 (Lewin) A GIS is a triple (S, G, int), where S is a set called space of the GIS, G
a group called interval group of the GIS, and int : S x S — G a map such that

(A) Foreveryr,s,tin S, int(r,s)int(s,t) = int(r, 7).
(B) ForeverysinS,iin G, there is a unique t in S such that int(s,t) = i.

It is noted in [7] that

e (A) and (B) in the definition above are equivalent to defining a simply transitive right action of
group G on S, such that for every s, ¢ in S, s int(s, 1) = t;
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e the definition of a GIS is analogous with the definition of an affine space, the difference being
that the underlying algebraic structure of an affine space is not a group, but a vector space.

In every GIS, the musical parameter space S and the interval group G have the same cardinality;
more precisely, condition (B) implies that for every s in S, the label map® is bijective:

label: S — G

t —> int(s, 1)

We develop now two usages of label bijections, which are also common with the couple ‘affine
space vector space’.

The first possibility is using the interval group G itself as the space S: in this case, the group action
that defines the GIS is right translation, i.e. for every s, ¢ in G, int(s, 1) = st . Asa consequence,
every group defines a canonical GIS associated with it via this group action. To avoid confusion
that may arise from this identification of the interval group G and the GIS space, elements of
the space will be called points, elements of the interval group will be called intervals, and unless
explicitly mentioned otherwise, subsets of G mean subsets of the GIS space.

The second possibility is using label bijections for transferring some additional structure of the
interval group G — e.g. a topology, a distance or a measure — onto S. Moreover, if this structure is
translation invariant, the resulting structure on S does not depend on a particular s € S that defines
label map. This principle of translation-invariant structure transfer for GIS is detailed in [8], and
we will use it below.

When G is abelian, we will denote the group operation with a plus sign 4 instead of a multiplica-
tive notation. Although most of our examples will happen in the commutative case, the definition
and several basic properties of the objects that we will define also hold in the non-abelian case.
A musically significant example of a non-commutative GIS is the GIS of time spans [3, 4.1.3.1],
which is defined as the positive affine group of R, that is the semi-direct product R %, R where
the group morphism m : (R%,-) — (Aut(R), +) maps r to multiplication by r.

2.2. Transferring translation-invariant topologies and measures onto a GIS

We are interested in measuring subsets of the space of a GIS. The most straightforward measure
of a set is its cardinality; however, many definitions and tools we will present are, under some
conditions, still valid with using certain measures — e.g. the Lebesgue measure — on a GIS.
More precisely, we need a measure on both the space of a GIS and its interval group, and we
require that the measure on the interval group be translation-invariant, so that the measure on the
space naturally comes from transferring the measure of the group; we will implicitly assume from
now on that defining a translation-stable o -algebra A (the Borelian subsets, see notations below)
on a group G and a measure on A also defines, through the transfer principle, the same structures
on the space of a GIS with G as its interval group. We will exclude structures which are not
translation-invariant, because giving different weights to a subset and its translations would break
the concept of an isotropic GIS with its transfer principle. This generalization of measuring the
cardinality of sets in a GIS has already been proposed by Lewin [3, Section 6.10], but has never
been further elaborated as far as we know. We believe that such a generalization is not gratuitous,
from a mathematical point of view. In fact, there are fortunately many groups which may be fitted
with a right-translation-invariant measure, thanks to the following result.

DEFINITION 2.2 Let (G, A, ) be a measured space where G is a group. | is called right-
translation-invariant if A is right-translation-stable and for everyA € A, g € G, u(Ag) = n(A).
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If, in addition, G is a topological group, and A is the Borel o-algebra on G, then w is called a
right Haar measure on G.

THEOREM 2.3 Any locally compact Hausdorff topological group G has a right Haar measure |;
moreover, this measure is uniquely defined, up to a multiplicative constant.

The previous theorem, which is a classical theorem in topology, allows us to define the notion of
interval content in any locally compact topologic group, including every group with the discrete
topology — the associated right Haar measure is simply the cardinality function — R, and all
products and quotients of such groups.

Since the topology of a topologic group G is translation-invariant, it can be naturally transferred
onto the space of a GIS that has G as its interval group. We recall the idea from [8], that using
topologies in GIS could help express notions of continuity of musical patterns; this would make
sense for instance with R, the continuous circle R/Z, or any product of these groups fitted with
their respective usual topologies, as an interval group of a GIS.

As we want to be able to compare measures of certain sets and to do some computations
on measure values (multiplications, additions, subtractions ... ), we will restrict our study to
measurable sets with finite measure, as suggested in [3].

We end this introduction of topological GIS with a (right) Haar measure with some notations,
which we will assume throughout the rest of the article. Let G be a locally compact group, K a
subfield of C closed under the complex conjugation: x — X; we denote

S(X) the permutation group of a set X,

A the o -algebra of Borel sets of G,

w aright Haar measure on G,

A the set of measurable subsets of G with finite measure,

KOS the K -algebra of maps from G to K, which are also called (K-valued) distributions on G,
foreveryg € G, T, : K¢ — K¢

E +—— (T,(E) : h—> E(g"'h))

the left translation of distributions by g; we may also write T,(A) = gA for A C G when there
is no ambiguity;

o T(G) = {h+> T4(h) = gh,g € G}, or simply T, the group of left translations on G,

o ]: K¢ - K¢

Evr— (I(E): h— E™))

the inversion on distributions; we also overload / by defining, for every A C G, I(A) = AL

e D(G) (or D) the generalized dihedral group over G, which is the subgroup of S(G) generated
by the left translations of G and the inversion g > g~ !,

e D(G) or D the subgroup of the linear group of K¢ generated by {7, g € G} U {I}, which is an
isomorphic representation of D(G),

e when K € {R,C}, X¢(G, k) the algebra of bounded functions’ with compact support from
G to a subset k of K; this is the class of functions on which we will define the Patterson
function;

e [x]y = {h(x),h € H} where X is a set, H a subgroup of S(X) and x € X; [x]y is the orbit of x
under the natural group action of H on X, elements of [x]y are said congruent to x modulo H;
the same notation is used with H a subgroup of a group G and for every g € G [g]ly = Hg;

e forevery a,binZ, [a,b] = {x € Z,a < x < b}.
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It should be noticed that, in defining int(a, b) as a~'b, we favour the left translations over
the right translations: for any a,b,c € G, one has int(ca, cb) = a ‘e leb = a7 'b = int(ab),
but int(ac, bc) = c~'a~'bc = ¢ lint(a, b)c # int(a, b) in general. Thus this notion of inter-
val is invariant by left translations only.® There is, of course, an alternative definition of
the interval from a to b, namely int(a, b) = ba~!, which is invariant under right translation.
This explains why we have found not one, but two generalizations of the hexachord theorem
(Section 7). Obviously, the abelian case is much simpler, with only one possible notion of
interval, and one kind of translation. In the sequel, unless otherwise indicated, we keep with
int(a,b) = a~'b.

In general, in a non-abelian locally compact group, the left- and right-invariant Haar measures
do not coincide; for instance, in the affine group of maps x — ax + b on the real line, the left- and
right- invariant measures are, respectively, da db/a” and da db/a. This motivates the following
definition.

DEFINITION 2.4 A locally compact group is unimodular if it admits a Haar measure that is both
right- and left-invariant.

The unimodularity is a reasonable assumption in many cases; in particular, it is satisfied when-
ever G is compact — see [9, Chapter 3, 1(iv)] — and even more easily when G is discrete — since
cardinality is both right- and left-translation-invariant.

3. Interval vector and Patterson function

DEFINITION 3.1  Let A, B in A. The interval function between A and B is the function

ifunc(A,B): G — R,
g— nw(BNAg

Since BNAg = {a € A,3b € B, int(a, b) = g}, this definition is a straightforward generaliza-
tion of [3, 5.1.3], where ifunc is defined for discrete G.

DEFINITION 3.2 Let A € A. The interval content of A is the function

ivd): G— R,
g n(ANAg)

If G is discrete, the interval content is also called interval vector, hence the notation iv.

It is clear: from the right translation invariance of u and the fact that it is real-valued, that for
every Ae Aand g € G, iv(4)(g) = n(Ag~ ' NA) = n(Ag~1 NA), i.e. I(iv(4)) = iv(A). In [6],
the interval vector is expressed as a convolution product through the natural bijection between
A and ¥c(G,{0,1}),i.e.iv(A) = 1, x 1,-1. However, to include the case of a non-commutative
group, the interval content shall be expressed as iv(A)(g) = f 1a(hg D1 (Wdu(h) = 1(14) *
14(g), where * is the convolution product for the right Haar measure — see [9, Chapter 3, 3.5
and 5.1]. Then, this definition can be extended to every (almost everywhere) bounded func-
tion on G with compact support, which is customary in crystallography; for example, see the
introduction of [10].

In a non-abelian group, we can introduce two distinct definitions of the interval content, because
there are two different definitions of the interval from a to b.
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DEFINITION 3.3 We note "ifunc = ifunc, "iv = iv the right interval function and interval content
already defined above. Let 'ifunc(A, B) be the left interval function:

g € G —> 'ifunc(A,B) = n(BN gA) = le(h)lA(g’lh)du(h)
Similarly the left interval content is defined as

liv(A) : g € G — (AN gA) = / LW Ly(g~ hydu(h)

Unless otherwise indicated, we will use the rightwise definitions of the interval function and
interval content.

DEFINITION 3.4 For every function E € c(G,K),’ the Patterson function of E is defined by
d*(E) :=I(E)*xE:geG+—> /E(hg_l)E(h) du(h)

As the interval content of a finitely measured subset of G is the Patterson function of its
characteristic function, that is iv(A) = d?(1,), all features of interval contents can and will be
expressed in terms of Patterson functions. We introduce below the most basic properties of d?,
which will motivate the ensuing definitions for finitely measured subsets of G that share the
same interval contents, and more generally functions in ¥¢ (G, K) that share the same Patterson
function.

ProPOSITION 3.5 (Invariance under transposition and inversion) If G is unimodular, then for
every E € Xc(G,K), for every g € G, dz(Tg(E)) =d*(E); furthermore, if G is abelian, then
d*(I(E)) = d*(E).

Proof The transposition invariance is implied by the left translation invariance of
the Haar measure on G: for every x € G, d*(T,(E))(x) = [E(g 'lyx DHE(g 'y)du(y) =
JE(zx~YE(z) du(gz) = [ E(zx~")E(z) du(z), where the variable substitution y = gz is made
in the second equality.

If G is abelian, the inversion invariance is a consequence of the commutativity of the convolution
product and the involutive property of the inversion: d*(I(E)) = I(I(E)) * I(E) = E * I(E) =
I(E) % E = d*(E). |

The invariance under translation may also hold without the hypothesis that G is unimodular,
for instance for T, with g central in G, that is for every h € G, gh = hg.

Example 3.6 As a counterexample of the invariance, consider the GIS of major and minor triads
with the dihedral group of transpositions and inversions as the interval group with 24 elements,
and let for instance A = {{0,4,7},{2,7,11},{2,5,9},{4,7,11}} and B = I4,(A) be its ‘translate’
by the inversion I : x — 4 — x, i.e. B ={{0,4,9},{2,5,9},{2,7,11},{0,5,9}}. We can see in
Figure 3 that the inversion I, : x — 2 — x occurs twice in B but never in A, i.e. iv(B)(l;) =2
whileiv(A)(l;) = 0. Since every transposition 7; is central in G, one can check thativ(7;(A))(g) =
iv(A)(g) forall g € G.
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Figure 3. The interval vector changes when A is transformed by .

4. Z-relation and homometry

4.1. Definitions

DEFINITION 4.1 The elements of a family (A;)jc; valued in A are said to be Z-related if they
have the same interval content almost everywhere. If, in addition, for every distinct j, k in J,
[Aj1p # [Aklp, then the elements of (A});e; are said to be non-trivially Z-related.

Example 4.2 1In Zg, {1,2,3,6}g and {0, 1,3,4}g are non-trivially Z-related. It is the simplest
example (with subsets).

DEFINITION 4.3 Let (Ej)jc; a family of elements of £c(G, K). Elements of (E});e; are said to be
homometric if they have the same Patterson function almost everywhere. If, in addition, for every
distinct j,k in J, [Ej]p # [Ex]p, the A; are said to be non-trivially homometric.

It should be noted that the Z-relation as defined by Forte [2, Section 1.9] is what we call
non-trivial Z-relation, and that our definition of homometry follows Rosenblatt [10]. We choose
these definitions so that Z-relation and homometry are equivalence relations on A and X¢ (G, K),
respectively.'?

Obviously, subsets of A are Z-related if and only if their characteristic functions are homometric.

4.2. Elementary properties

We will give now properties of the Patterson function related to monotonicity, periodicity and
commutation with quotients.

In order to give a monotonicity property of the Patterson function, we introduce a pointwise
orderon ¢ (G, R): wenote E < F if, forevery x in G, E(x) < F(x). This order is compatible with
the inclusion order on A, i.e. the natural bijection between A onto ¥c(G, {0, 1}) is an increasing
map.

LEMMA 4.4 For all distributions E,F in Yc(G,R,), if E < F, then d*(E) ffiz(F), ie d?:
Yc(G,Ry) — Xc(G,R,) is an increasing map. In particular, for every A,B in A, if A C B then
iv(A) <iv(B).

Proof For every x,y in G, 0 < E(y) < F(y) and 0 < E(yx‘l) < F(yx‘l), therefore taking
the product term by term, E (yx’l)E ) <F (yx’l)F (v); moreover, the Lebesgue integral with
measure /. is positive, so finally d*(E) < d*(F). |
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PROPOSITION 4.5 For every distribution E in Xc(G), for k € C, d*(kE) = |k|*d*(E). Moreover,
if G is commutative, then for all distributions E, F in $c(G)d*(E % F) = d*(E) % d*(F).

Proof The first part of the proposition is obvious. To prove the second part, we assume that
G is commutative. Let E, F € ¥c(G). It is straightforward to see that I(E * F) = I(E) = [(F),
so we have d2(ExF) =I(ExF)«*ExF =I1(E) *xI(F) * E + F, then the result follows by
commutativity of the convolution product. ]

PROPOSITION 4.6 (Periodicity invariance) Let E € Xc(G). If for some r € G, for every g € G,
E(gr™") = E(g), then for every g € G, d*(E)(gr™") = d*(E)(g). ~

There is a partial and fuzzy converse result for {0, 1}-valued distributions: if A € A has a
finite measure and there is r € G such that iv(A)(r) = iv(A)(e), then there are N,N' j1-negligible
subsets of G such that AUN = Ar UN' = AU Ar, that is, A is ‘almost periodic’.

Proof d*(E)(gr~") = [ E(h(gr—)DE() dju(h) = [ EGurg DE(h) duu(h), so by right
translation invariance of w, d*(E)(gr™") = [EMWg HEM r Y)ydu') = [EWg )EW)
du(h') = d*(E)(Q).

As for the second part of the proposition, we have

Ar=(ANAr)UA° NAr (D
A= (ArnA U @ArCNA) )
AU (A°NAr) = AUAr = Aru (Ar€ N A). (3)

By right translation invariance of u, w(Ar) = w(A), so by Equation (1), u(A) = pu(AN
Ar) + (A€ N Ar); moreover, i(A) = iv(A)(e) = iv(A)(r~!) = iv(4)(r) = u(A N Ar) is finite,
so (A€ NAr) =0, so N := A° N Ar is negligible. In a similar way, we get from Equation (2)
that N’ := Ar® N A is negligible. We finally get the result by Equation (3). |

Example 4.7 The Proposition 4.6 tells us that any periodic distribution has a periodic inter-
val content. Hence the interval content of any of Messiaen’s modes of limited transposition
will be periodic. For example (Figure 4) the interval vector of A = {0, 1,3,6,7,9}, is iv(A) =
[6,2,2,4,2,2,6,2,2,4,2,2]. Since Tg(A) = A, we have Tg(iv(A)) = iv(A).

We will make use of the following simple necessary condition on measure equality for
Z-relation.

(013679)

complete-iv
©

I—I

[ ]
|(622422522422)

(7]

Figure 4. An OpenMusic patch showing that the interval vector of a periodic set is periodic.
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LEMMA 4.8 If (A))jes is a family of Z-related subsets of G, then all the A; have the same measure.
Proof Foreveryj e J, u(A;) =iv(A;)(e), where e is the neutral element of G. |

In particular, if the topology on G is discrete, then any two Z-related subsets of G have the
same cardinality.

5. Interval structure and interval content

We will now build a link between interval content and interval structure, expressing the former
using the latter. We will focus our attention to a restricted class of discrete groups, namely discrete
groups with a total order compatible with left translation.

DEFINITION 5.1 A left-(totally-)ordered group is a couple (G, <) where G is a discrete group and
< is a total order on G which is compatible with left translation, that is for every f, g, h in G, if
f < gthen hf < hg.

Examples of left-ordered groups are all abelian ordered groups, e.g. Z, R, and the time spans
group R %, R fitted with Lewin’s attack order, which is simply the lexicographic order associ-
ated with the usual order on R and R . Every direct product of left-ordered groups fitted with the
lexicographic order associated to the orders of these groups is a left-ordered group too.

DEFINITION 5.2 Let G be a left-ordered group. For every finite subset A of G, there is a unique
strictly increasing family (ai)ie[[l | wheren = |A|, such thatA = {ai}l.e[[1 E The interval structure

of A is the family is(A) = (int(a;, ai+‘))ie[[1 a1]’

Example 5.3 Let A={-3,—1,1,5,6} in Z; is(A) = (2,2,4,1). Let B={(2,1),(3,1),
(5.2).(7. 1), (7 + 1.1),(9.3)} in the time spans group R x,, R* : is(B) = ((1, 1), (2,2), (1, 1),
(1, 1), (3,6)).

PROPOSITION 5.4 Let G be a left-ordered group. The interval structure of every finite subset of G
is invariant by left translation, that is for every finite subset A of G, for every g in G,is(gA) = is(A).
Conversely, if A, B are finite subsets of G such that is(A) = is(B), then there is g € G such that
B = gA.

Proof The invariance of interval structure by left translation directly follows from the preserva-
tion of intervals by left translation. As for the second part of the proposition, it is obvious that by
defining g = min(B) min(A)~! we get by finite induction on the lists defined by ordering A and
B that B = gA. |

We shall now define a partition of a non-negative element of a left-ordered group, which
naturally generalizes the notion of partition of a positive integer, and a consecutive subfamily of
a sequence valued in a left-ordered group.

DEFINITION 5.5 Let G be a left-ordered group, let e be the neutral element of G, let p € G such
that p > e. An ordered partition of p is a family of elements of G (dj)je[[1 { such that k € N, for

alljin [1,k] d; > e and Hf:l dj =p.
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Figure 5. Example of Z-relation between two time spans (non-commutative case).

DEFINITION 5.6  Let G be a left-ordered group, let A = (aj)je[[l { be a family of elements of G.

A consecutively indexed subfamily of A is any subfamily (a;)je; of A such that J = [I, m] with
1<l<m<k

THEOREM 5.7 Let A = {ai}ie[[1 ( be a finite subset of a left-ordered group G, such that (a;);

is strictly increasing. We denote by (d;) I the interval structure of A. For every p € G,

ie[1k-1
let T,(A) = {(.j) € [L.k—1]%j+ 1 <) and [[_;d; = |pl}, where |p| = max(p,p~"); then
iv(A)(p) = #(Z,(A)), that is, iv(A) (p) is equal to the number of consecutively indexed subfamilies
of is(A) which are partitions of |p|.

Proof Forevery p € G\ {e}, iv(A)(p) = iv(A)(|p|), so we can suppose that p > e. The ma
yp P pp p p
Z,(A) — ANAp
(o) > ay = ap

is well-defined and bijective, and #(A N Ap) = iv(A)(p). ||

This theorem may be used to compute the interval content from an interval structure.
For instance, the time spans group G is non-commutative and has no central element
besides the neutral (0, 1), so the interval structure and the interval content have exactly the
same invariance properties on this group, including invariance by left translation. Thus, an
approach for finding Z-related subsets of the time spans is by generating interval struc-

tures and sorting them by their interval content. For example, by taking & = ]_[;.1:1{(1 +

k/2,2"}io.... 61=—10,1, we find with computer search two and only two interval structures in
€ that have the same interval content, and by ‘integrating them’, we obtain that the time spans sets
{0, ), (1,D,(2,3), 3,3, G, DL{O, D, (1,1, (3,3).3.9), (3, 1)} are Z-related, as shown in
Figure 5.

6. Patterson function transfer through quotients

We keep the same notations as in the previous section. Let H be a closed and normal subgroup of
G; then G/H is alocally compact group. Details and proofs for the measure theory results below
can be found in [9, Chapter 3, 3.3(i) and 4.5].
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Let u be a right Haar measure on G, v a right Haar measure on H with the topology induced
by G, and X the unique right Haar measure on G/H such that for every E in X¢c(G)

/ / E(ho) dv(h) di([x]y) = / Edu @
G/HJH G

By defining 7 Xc(G) — Zc(G/H)

E+—— E:[xly —> /E(hx) dv(h)
H

the equality above is rewritten [ Edir = [ Edu.
In the particular case of G = Z with the discrete topology, let H be a non-trivial subgroup of
Z: H = nZ for some integer n > 1; for all E € Xc(Z), k € Z, E([k]) = ZjeZ E(jn+k).

THEOREM 6.1 With the previous hypotheses and notations, the ™ operator defined above and the

Patterson function operator ‘commute’, that is, for every E € %¢c(G), d? (E) =d?(E):
d2
Xc(G) —— Zc(G)
2
LY(G/H) —*— L'(G/H)

Proof We reuse two results of [9, Chapter 3, 5.3], namely that™: Xc(G) — Xc(G/H) is a
morphism of algebras with the convolution product, and that 7 and ~ commute. Thus, for every

—~

E € ¥c(G),d*(E) = I(E)+E = (E)+E = I(E) + E = d*(E). [ ]
COROLLARY 6.2 Under the same notations and hypotheses as the previous theorem, if Ey, . . ., E;
in Xc(G) are homometric, then E1, . .., E; are homometric in Xc(G/H).

Example 6.3 A =1{0,1,2,6,8,11}and B ={0,1,6,7,9, 11} are Z-related in Z, so their projec-
tions m(A) = {0,1,2,6,8,11};, and 7 (B) = {0, 1,6,7,9, 11}, are Z-related in Z,. Actually, the
projections {0, 1,2,6,8,11}, and {0, 1,6,7,9, 11},, are homometric for every n € N,n > 2; and
they collapse into multisets for n < 11.

Example 6.4 In general, non-triviality is not preserved through quotients. The sets A =
{0,1,2,3,4,6,7,8,11}and B = {0, 1,4,5,6,7,8,9, 11} are Z-related in Z, and so are their projec-
tions on Z,; however, these projections are related by transposition, namely 7 (B) = T5(w(A)).
It is easy to see that for any Z-relation of subsets of Z one can always find a n’ such that for
every n > n’ the non-triviality of a Z-relation is preserved mod n. In this case, n’ = 13 is enough:
this follows from the fact that for n > r/, in B mod n there are six consecutive integers, a feature
invariant under transposition and inversion, while there is no such configuration in A mod n.
A loose but always valid choice for n’ is n’ = 2(max(A) — min(A)) = 2(max(B) — min(B)).

Note that the converse of Corollary 6.2 is not true: A = {0, 1,2,5}g and B = {3,4,6,7}g are
Z-related in Zg, but for every A’, B’ subsets of Z such that 7 (A") = A and 7 (B’) = B, it is easy to
see thatdiam(A") # diam(B’), where diam denotes the diameter, hence A’ and B’ are not Z-related.
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7. The hexachord theorem

7.1. Patterson functions of generalized hexachords

The hexachord theorem has been significantly popular in the literature — see [3 Section 6.6; 11
Chapter V, 5.16; 12]. Since it is actually a feature of Patterson functions, we propose here a
restatement in the framework of locally compact (not necessarily commutative) GIS, and add a
few geometric remarks.

G, A, n are defined as above. We will additionally assume in this subsection that w(G) is finite,
which is equivalent to the compactness of G.

The initial form of the hexachord theorem by Milton Babbitt is an invariance property of the
interval vector by complementation. Wherever there is no ambiguity, 1 will be written!! 1, and
for every a € C, alg will be written a. For every measurable subset A C G, 14c = 1 — 14, where
A€ = G\ A, hence we can naturally extend the complement function to ¢ (G), which we define
as C : E — 1 — E.This extension allows us to express a generalization of the hexachord theorem,
which results immediately from the following lemma.

LEMMA 7.1 For every E in Xc(G), for every a € R, d*(a — E) = a*>u(G) — 2aRe(fEdp,) +
d*(E). In particular for a = 1, d*(C(E)) = u(G) — 2Re(fEd/L) + d*(E).

Proof Theinversion/ islinearand(a) = a = a,sod>(a —E)y=Illa—E)x(a—E)=ax*xa—
axE—I(E)xa+I(EyxE =a*uw(G) —a [Edp —a [ Edp+ d*(E) = a®>u(G) —
2aRe([ Edp) + d*(E). [ ]

THEOREM 7.2 (Generalized hexachord theorem) For every E in Yc(G), d*(C(E)) = d*(E)
if and only if Re([ E du) = u(G)/2.

In the non-commutative case, this theorem admits two versions, i.e. it holds with either the left
or the right interval content.

From a geometric point of view, C is the central symmetry relative to constant map 1/2; this
means that the hexachord theorem is a condition of invariance of the Patterson function under
this kind of symmetry (Figure 6) just like its invariance under /, but that is valid only under
some normalization condition. If E is a {0, 1}-valued map, i.e. E is the characteristic map of a
measurable set A C G, this normalization condition requires that u(A) = u(G)/2, which in the
case where G is discrete means that the cardinality of A is half the cardinality of G, which is
already the original result.

-

A map with integral equal to 1/2 Its complement

| N

i
S
— |

—

&

Figure 6. An illustration of the generalized hexachord theorem in the case of G = R/Z.
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A more general formulation of the hexachord theorem —see [11], is by computing the difference
between the interval contents of a function and of its complement. It entails immediately that
homometry is preserved by the complement operator C.

COROLLARY 7.3 For every E in %¢c(G), d*(E) — d*(C(E)) is a constant map.
Proof This results immediately from Lemma 7.1. |

COROLLARY 7.4 For every Ei,...,E; in Xc(G), Ei,...,E; are homometric if and only if
C(E)),...,C(Ey) are homometric.

A previous generalization of Babbitt’s hexachord theorem to the unit circle is the subject of [12],
but it cannot be further generalized for lack of reference to an integration theory and generalized
notion of interval. Nevertheless, the paper mentions the problem of an hexachord theorem on the
sphere S2; unfortunately, since there is no topological group structure on the sphere S? (with its
usual topology), the notions of interval and interval content in a GIS are meaningless.'?

7.2. Some examples of the generalized hexachord theorem

e Musical scales can be modelized as elements of a torus, which is the space of a GIS under
transposition. Say we define the set of ‘in tune’ scales as major scales whose maximal deviation
from a well-tempered major scale does not exceed 10 cents, e.g. the ‘in tune’ D major scales
would be in [190, 210] x [390,410] x [590,610] x [690,710] x [890,910] x [1090, 1110] x
[90, 110], where each pc is given in cents. So the reunion ITS of all 12 ‘in tune’ major scales
is a subset of the torus T’ = (R/1200 Z)’, with measure 1/60” of the whole torus. Now the
complement out of tune scales has the same interval content, up to a constant.

e We have explained why, for lack of a group structure, we cannot hope to give a hexachord
theorem in the sphere S2. But in 4 dimensions, the sphere S* is a compact Lie group, for
instance one can set G = SU(2) = S3:

DEFRINITION 7.5  The group SU(2) is the set of complex matrices (2 i?’ ) with determinant 1.

As a set it coincides with the sphere in C? : {|z1|* + |22|> = 1}, e.g. the sphere S3 in R*.

The group operation is then simply matrix multiplication. It can be shown that, parametrizing
§3 withz; = cos@el?, z, = sin@ eV with6 € [0,7/2],0 < ¢, ¥ < 27, the Haar measure is (up
to a constant) u = sin 20 d6 d¢ dyr.

With this measure, the hexachord theorem with either the right or the left interval content
hold on S3. This may have interesting applications in visualization of musical structures on this
hypersphere, see for instance [13].

e We can now turn back to discrete, but non-abelian, groups. The Haar measure is the counting
measure. For instance, let G be the dihedral group over Z,, which makes a GIS for instance
on the space of major and minor triads. A very simple ‘hexachord’ is the set M of major triads.
It is a copy of the normal subgroup T of transpositions. The interval vector on M (or T, if G
acts on itself) is computed immediately with the following general proposition:

PROPOSITION 7.6 Let H be a subgroup of G. Then

w(H) whenge H

iv(H)(g) = "iv(H)(g) = 0
else
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Our generalized hexachord theorem now states that the complement of M (i.e. the minor
triads) share the same interval vector. More generally, there are as many transformations
(intervals) between a given triad and the major triads, as there are between this triad and
the minor triads.

For a less trivial case, consider for instance the (LPR) group of the (dual) neo-Riemannian
Tonnetz, acting as the interval group on the same set of major and minor triads. If A = white
triads (the 6 triads without black keys, CEG,DFA ... ACE) and B is its complement (triads
with at least one black key), then
(1) InA, there is six times the ‘interval’ R, meaning three pairs of relative major—minor triads.

The theorem yields that there are 6 + 12 cases of R in B, i.e. the nine remaining pairs of
relative triads.

(2) Less obviously, there are no cases of the transformation RP which moves any major triad
to its translate by a major third) in A, hence, without further ado, there are 12 occurences
of RP in B (e.g. E major to G# major).

For more examples, see [14].

Conclusion

We have extended and unified the definition of interval content and Patterson function to a larger
framework, using common mathematical tools, namely Haar measures and Lebesgue integration
theory. This approach has allowed us to obtain the following results on Patterson functions, also
valid in the non-commutative case:

translation and periodicity invariance;

transfer through quotients;

a generalization of the hexachord theorem to a large class of GIS;
first musical examples of Z-relation in a non-commutative GIS.

In our next paper, Discrete Phase Retrieval in Musical Distributions [15], we tackle the more

general question of searching for all possible distributions yielding a given Patterson function, a
general formulation of the search for sets of a musical parameter with a given interval vector, i.e.

of

all Z-related sets.
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Notes

—

We denote any set {[ai], ..., [as].} as {ai1,...,as}n.

That is, unrelated by transposition or inversion. In [16] the full equivalence relation, including the trivial cases, is
called Lewin’s relation.

Let K be a field and let G be an abelian group (with additive notation). A distribution on G with coefficients in K has
the form E = deG agdg, where ag € K and §, is the Dirac mass related to the element g. For practical purposes
a distribution can be viewed as the map g > a,. Non-integral values happen in many practical applications, say,
for instance, the probability of occurrence of a given note, or interval, in a whole piece of music. If a; # 0 only
finitely often, we say that the distribution is finite. Recall that the algebra of such distributions under the convolution
product is isomorphic with the group ring K¢, and thus we will sometimes write E € K©.

The inversion of E, namely I(E), is sometimes found as E’ or E* and referred to as reflection.
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5. Recall that, for G = Z,, the Fourier transform of a distribution £ = o<Zn e48, is the map

2i7Tgw>

w € Ly —> E(w) = Z ey eXp <7
8€Ln

The denomination label comes from [3, beginning of Chapter 3].

In measure theory, this should be read ‘almost everywhere’ as usual; for a definition, see [17, Definition 1.35].
This fact is well commented in [3, Section 3.4].

It could be defined for a larger set of functions, e.g. the algebra L' (1) of u-integrable maps from G to C or the
algebra L2(1) of maps from G to C whose square is u-integrable, but ¢ (G, k) where k C K is sufficient for
musical applications.

10. In [16] the equivalence relation is called Lewin’s relation, leaving to ‘Z-relation’ its traditional meaning.

11.  All the more so since without loss of generality, one can assume ©(G) = 1.

12.  Only the spheres S! (the circle), S? (in dimension 4), and in some measure S7 may be provided with a group structure
and a Haar measure compatible with their natural topology. It is conceivable that a more general notion of interval
could be defined as geodesics on manifolds.

00N
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