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This chapter deals with certain theoretical and programming aspects of microtonal com-
puter-aided composition. After a brief introduction on the problem of microtonality,
Carlos Agon will describe a few computer tools developed in OMicron, an integrated
OpenMusic extension dealing with the musical notation of microtonal systems. The
study of microtonality raises very interesting theoretical issues, particularly those which
concern combinatorial problems. Moreno Andreatta will discuss these issues taking as a
point of departure a description of the algebraic method, also implemented in OpenMusic
(MathTools package). In the third part Alain Bancquart will discuss certain aspects of
microtonal composition used in his piece Amour grand terrible champ critique and some
corresponding models represented with the theoretical and computational tools described
in the previous sections.

Historical introduction

The division of the octave into twelve equal semitones and the hierarchical tonal orga-
nization of intervals are relatively recent phenomena which date from the end of the
seventeenth century. Before that time, according to physical rules, the semitones were
unequal and as a consequence modulations were not feasible in all keys. The great vari-
ability of the constitutive element of the sound space led sixteenth-century musicians and
scholars to propose new divisions of the octave. For instance, the music-theorist Nicola
Vicentino (1511-1576) invented two instruments, the Archicembalo and the Archiorgano
with thirty-one keys for one octave. Vicentino wrote a few four-part and five-part madri-
gals where he used quarter-tone accidentals on certain notes of the chord and most
frequently on the thirds. The result was “neutral” harmonies which sound neither major
nor minor and which lend a surprising expressionist flavour to this modal music. The
idea that the sound universe is not necessarily divided into twelve is therefore not new. It
derives from the proclivity for rational practice that took over in the eighteenth century
at a time when people were eager to establish stable scientific and intellectual laws.

Every system, however perfect, is one day corroded to the point when it becomes
obsolete. That is what happened to the tonal system at the turn of the twentieth cen-
tury. In fact, the “amelioration” of the tonal system brought about by the increasing
generalisation of chromaticism eroded its very foundations. Concurrently, the rhythm
which derived from tonal harmony and which gave the tonal organisation its remarkable
stability evolved around the same lines. Irrational values appeared notably in Scriabin’s
works (1871-1915), combined with an emancipation from the tonal system with the use
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of modes (and particularly of mode 2, dear to Olivier Messiaen) and chords composed of
superimposed fourths that he called synthetic chords.

Thus, twentieth-century musicians were faced with the necessity to rebuild a sound
universe deprived of its organisation and, in a certain way, of its meaning. Two paths
were taken. On the one hand some promoted the equality of the twelve tones in a music
which is no more based on hierarchical principles. This led Schoenberg (1874-1951) to
devise the twelve-tone series that paved the way to what we call the “serial technique”.
On the other hand, three composers developed a more radical approach: Alois Haba
(1893-1973), Juan Carrillo (1875-1965), and Ivan Wyschnegradsky (1893-1979).

Alois Haba is a Czech composer who wrote two theoretical works: The Harmonic
Foundations of the Quarter-Tone System (1922) and Neue harmonielehre (1927), in which
he proposes a new theory for ultra-chromatic composition. Despite the interest that such
novelty may have raised, Haba’s music is in fact close to Dvorak’s style and not really
innovative.

Juan Carrillo is a Mexican composer of Indian descent who first trained as a violinist.
His practical experience certainly motivated his interest and systematic research about
microtonal intervals. As early as 1927 he devised the construction plans for fifteen pianos
using intervals from the third tone to the sixteenth tone. These instruments were built in
1958 and are now on display at the Carrillo Foundation in Mexico City. Although he was
an ingenious inventor, Carrillo was not really a convincing composer. It is noteworthy
that he acknowledged Claude Debussy’s influence, in a way foreshadowing the works by
Maurice Ohana in third tones, works which are also deeply indebted to Debussy.

Wyschnegradsky was a Russian composer born in Saint Petersburg. His early works
were influenced by Wagner and, above all, by Scriabin. He also borrowed from the latter
the idea that music is redemptive and possesses“a theurgical force of an incommensurable
power that will transform mankind and the whole cosmos” (Marina Scriabin). Through-
out his whole life Wyschnegradsky’s thought was driven by this mystical conception.
Micro-intervals were instrumental in his attempts to get closer to sound continuum.1 He
explored all the possible densities, reaching the density of 96 which corresponds to the
sixteenth tone. His exploration ventured beyond the realm of pitches: he understood
that the relation between space and time was crucial. His theoretical work is important,
be it only because it mentions the idea of rhythmic micro-intervals. Wyschnegradsky
proposed to rearrange the sound space into what he called “non-octaviant spaces”, which
correspond to micro-intervallic scales organised as cycles and which exceed or do not
meet the octave.

Wyschnegradsky’s extensive musical works contain very beautiful passages, such as
the pieces for two or more pianos tuned with a quarter-tone difference (see notably
Cosmos for four pianos, Study on rotating motions for two pianos, Integrations for two
pianos), three string quartets and his last opus, a string trio.

In addition to these three pioneers, we must also mention Pierre Boulez’s cantata
on a poem by René Char, Le Visage nuptial. The first version of this work is for small
orchestra and was composed between 1946 and 1947. The second version, for soprano,
contralto, female choir and big orchestra, was composed between 1951 and 1952. Three
out of the five movements in this version are in quarter tones. Due to the fact that this
work is extremely difficult to perform, Boulez composed a third version between 1985 and

1See his major theoretical work, La loi de la pansonorité, published seventeen years after his death [8].
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1989, in which he got rid of the quarter tones. Despite the interpretative difficulties, the
second version represents the most accomplished microtonal composition during what
can be termed the exploratory period of new scales. Boulez’s use of quarter-tone series
may explain the performance problems linked to this piece, but it represents a bridge
between the two practices that came after the end of tonality: the serial technique on
the on hand and the microtonal technique on the other.

Micro-intervals in OpenMusic: OMicron

Carlos Agon

OMicron is the fruit of a collaboration between composers, musicologists and computer-
scientists. It is an OpenMusic extension designed for the representation, the manipula-
tion, the notation and the rendering of microtonal structures.

In OpenMusic pitch representation is closely linked to the MIDI standard. It is useful
to recall that in this system pitches are expressed by whole numbers (e.g. C3 = 60, D3
= 62, etc.) A MIDI pitch unit is equal to a semitone. The midicent (that is, C3=6000,
D3=6200, etc.) is taken as the unit in OpenMusic to accommodate microtonality (a
semitone equals 100 midicents). According to this convention a quarter tone is equal to
50 midicents, an eighth tone to 25 midicents, and more generally a 1/n interval to 200/n
midicents. Several tools were developed in OpenMusic to allow working with midicents.
Conversion tools (see Figure 1) were particularly important.

Figure 1. Conversion tools for midicents in OpenMusic. The function approx-m produces an
approximation in midicents to the closest tempered division of the octave ; with mc->f the
midicents are converted into frequencies (Hz) and with f->mc it is the opposite; with n->mc
a note symbolically described by a letter and a number is converted into midicents, and with
mc->n it is the opposite (quarter tones are expressed by ‘-’, and third tones by ‘+’; the sub-
divisions smaller than a quarter tone are expressed as a difference between the closest quarter
tone, e.g. midicent 8176 corresponds to Bb4-24).

There exist other more general functions for the structuring and modification of midi-
cents (for instance om+ for transposition, and so on).

Notation of the microtonal intervals

Since we are trying here to notate equal divisions of the whole tone, the problem of micro-
intervallic notation can be reduced to finding symbols for the accidentals representing the
various intervals within a tone. This section describes the accidentals used in OpenMusic.
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Of course, this account remains an open proposal that needs to be improved in practice.
The development of such accidentals was motivated by three factors: respect of and
adaptation to existing notational systems (at least for the quarter tones and the eighth
tones), readability (the signs should not take too much space in the score), and a certain
logic by which the signs give information about the notated interval.

Figure 2 shows the accidentals corresponding to quarter tones. Note that flats are
excluded from this notational system: the symbolic logic here is exclusively incremental.

Figure 2. Notation for the subdivision into quarter tones.

The notation for the subdivisions into eighth tones (Figure 4) and sixteenth tones
(Figure 4) is derived from this first subdivision.

Figure 3. Notation for the subdivision into eighth tones.

Figure 4. Notation for the subdivision into sixteenth tones.

The “arrows” used in these two systems express a notational logic (for instance in the
eighth-tone subdivision, a quarter tone with an arrow equals 3/8). In the sixteenth-tone
subdivision system, the three lines constituting the triangular tip of the arrow express
the three successive stages from one quarter tone to the next (see Figure 5).
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Figure 5. Use of arrows to express sixteenth tones.

A new convention must be introduced to extend the notation to subdivisions that are
not to the power of 2. Roman numerals turned over on a vertical line are used to express
certain subdivisions in a given scale. Figure 6 gives an example with third tones.

Figure 6. Notation for the subdivision into third tones.

Arrows are used in these scales to express subdivisions into two or into four. Figures
7 and 8 give an example of the construction of sixth and twelfth tones from the scale in
Figure 6. Note the use, when possible, of symbols derived from the tempered scale or the
scales with subdivisions by 2 described above, in order to avoid multiplying the number
of symbols.

Figure 7. Notation for the subdivision into sixth tones.

Figure 8. Notation for the subdivision into twelfth tones.

Similar methods were used for the scales with intervals of 1/5, 1/10, 1/7 and 1/14 of
a tone.
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The use of micro-intervallic structures and representation with
sound analysis and synthesis

The generalisation of the use of sound analysis and synthesis in contemporary music
practices establishes significant links between these domains and that of microtonality.
Indeed, the emancipation of music from the tonal scales described in the historical intro-
duction to this chapter must also be put in relation with the new technologies of sound
synthesis and reproduction, which allow for efficient implementations of the correspon-
ding principles. These changes in the formal conception of music were difficult to per-
form with traditional instruments: because of the limitations of their instruments or
their instrumental technique, very few instrumentalists are able to interpret musical
pieces with subdivisions that go beyond the quarter tone (Juan Carrillo’s pianos are
unique examples of microtonal instruments). Moreover, if instrumental technique and
design evolve with microtonal practice, reading microtonal scores is a more problematic
obstacle. With sound synthesis, the pitch can be controlled up to one Hertz. From this
point of view, it helps overcome the difficulties and encourages the development of a
microtonal-oriented musical thought. Be the music instrumental or electronic, it allows
the composer to implement his formal procedures, and to hear immediately the results
of his research.

In order to render the sound of micro-intervallic structures in OpenMusic, a Max/MSP
application was created (MicroPlayer, see Figure 9).2 The use microplayer option in the
OpenMusic score editors transforms the musical objects into messages transferred to the
MicroPlayer via the OSC protocol. This application allows for a more accurate sound
rendering of micro-intervals than the traditional MIDI synthesizers (which are limited to
semitone subdivisions).

Figure 9. MicroPlayer : a Max/MSP application for the rendering of micro-intervallic struc-
tures.

Conversely, it is possible to conceive of microtonal music practice as a thriving force
behind the advances of electroacoustic musical composition. Inserting microtonality into
sound synthesis processes leads to questioning the very concept of pitch and to replacing
it among the other descriptions of the sound timbre. If musical sound is traditionally
founded on a conception in which timbre is a parameter of the same kind as pitch, dura-
tion and intensity, the use of sound synthesis establishes more ambiguous relationships
between these different parameters. Within a timbre, the ratios and the organisation
of the frequency components (be they harmonic or not) structure the sound identity.

2The MicroPlayer application was created by Gilbert Nouno.
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In this sense, during the creation and superimposition of microtonal musical objects,
the “written” pitch will interfere with the “spectral” pitch contained within the sound
timbre since they both evolve within the same range of values.3 The connection that
microtonality establishes between pitch and timbre can be seen in other compositional
domains (duration, intensity), and reaffirms the idea of a total composition of sound in
which timbre is not dissociated from other musical parameters but represents a synthesis
of all of them.

In addition, although since the era of the first synthesizers many composers and
music theorists have foreseen the large scope of possibilities opened by synthesis, it
is now obvious that, despite the significant technologies at hand (i.e. the variety of
methods and models, the power and the processing speed of computers, and the quality
of the rendering), those possibilities are far from having been satisfactorily explored. The
difficulty encountered in the development of electronic music is often linked to problems
of representation and control in the technologies employed. In a way, each attempt to
formalize the musical concepts that come into play in sound synthesis, be it specific or
not, is therefore a form of progress. This is the case with microtonality: notational
systems and systems for handling pitch that are not subjected to the diatonic scale
allow the development of a thought structured around the concept of microtonality. This
thought can only enrich (in the domains of pitch and frequency) the theory and practice
of electronic music.

Even though it executes high subdivisions, the notational system of OMicron remains
within the representational context of a traditional score, which is familiar to musicians.
Thus, putting sound synthesis in relation with such a context allows one to envision an

Figure 10. The use of microtonal structures and notation in (a) sound analysis and (b) sound
synthesis processes carried out in OpenMusic.

3Note that this remark also holds when the musical structures are not microtonal. Such interference
makes the complexity of orchestration obvious. However, it is particularly apparent when we talk about
micro-intervals.
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extended space for the formalisation of electroacoustic music. The musical score editors
can represent pitch accurately and symbolically enable one to observe and manipulate
this parameter in accordance with one’s compositional and musical strategy. Figure 10
- a) shows the example of the symbolic visualisation of sound analysis data using the
OMicron notational system described above. In parallel Figure 10 - b) illustrates how
microtonal structures (which may stem from various compositional procedures) can be
used in OpenMusic to parameterize sound synthesis.4

Algebraic modelling of micro-intervallic systems

Moreno Andreatta

This section deals with some theoretical aspects of the combinatorial study of micro-
tonal systems, for now envisioned independently from their possible compositional appli-
cation. The algebraic approach is particularly useful for the systematic study of micro-
tonality. We will concentrate on a few algebraic and computing tools that offer an
adequate description of the combinatorial properties of some microtonal systems.

Microtonality as defined above is a particular case of pitch organisation in a tempered
space in which the minimum unit (the tone) is divided into a whole number of parts m.
This implies a division of the octave into a number n of equal parts, n being a multiple
of 6 (e.g. n=18 for the subdivision into third tones, n=24 for the subdivision into quarter
tones, and so on). Note that certain micro-intervallic systems with interesting musical
properties have been discarded: for instance divisions of the octave into a prime number
of equal parts and in particular the enneadecaphonic system (division of the octave into
19 parts) or the Vicentino system (n=31). Divisions of the octave into a number n of
equal parts, with n being an odd number or not a multiple of 6, have therefore been
put aside. However, these micro-intervallic systems, which do not enter our definition of
microtonality, can also be easily formalized in terms of algebraic structures.

To manipulate our micro-intervallic structures with algebra, two complementary stra-
tegies are possible: one makes use of cyclical group structures and the other of ordered
structures such as the sieves used by Xenakis. The two approaches meet, as Xenakis
rightly noted when he described the relation between sieve theory and modular congru-
ence theory as “annexation”. I will focus in particular on the issue of the classification
and enumeration of microtonal structures with invariance properties regarding transpo-
sition. These structures generalize Messiaen’s notion of “modes of limited transposition”
and raise interesting theoretical problems about their exhaustive calculation.

Circular representation of microtonal structures

Although there are many possible ways to represent microtonal spaces, we will principally
use the circular representation. This representation helps formalize every musical chord
(in a division of the octave into n equal parts) as a subset of a cyclic group Z/nZ of
order n.

4See [2] for a detailed description of the current research on sound analysis/synthesis in computer-
aided composition.
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Each chord with m distinct notes (modulo the octave) can be assigned a series of
integers indicating its successive intervals (intervallic structure), and represented geo-
metrically as an m-polygon inscribed in a circle. This intervallic structure is an invariant
in the algebraic sense of the word for with a single formula it identifies a chord and its
transpositions. The transpositions are rotations of the inscribed polygon according to an
angle with a value that is a multiple of an elementary angle, which in turn corresponds
to the “minimum” step in the division of the octave. The cyclic group Z/12Z of order 12
of the traditional temperament can be generalised and applied to the third-tone system
(Z/18Z) or the quarter-tone system (Z/24Z), and so on until the sixteenth-tone division
of the octave (Z/96Z).

In OpenMusic, the circular representation is available through the class n-cercle. A
n-cercle is instantiated with a number corresponding to the division of the octave (n)
and a list that gives the position of the m successive points of the intervallic structure.
The c2chord function can then convert a circular representation (n-cercle) into a chord
object, given a base pitch (third argument of the function) and a unit (a value in midicents
corresponding to one subdivision of the n-cercle – fourth argument of the function) which
allows to interpret a circular representation in any division of the octave.5 Figure 11
shows the reinterpretation of the chromatic scale in terms of a division of the octave into
96 parts.

Figure 11. Circular representation of the chromatic scale and interpretation in a micro-
intervallic space (division of the octave into 96 parts).

The circle of fifths can also naturally be generalised when one takes into account
the “generative” intervals of microtonal systems. Contrary to the division of the octave
into twelve parts (in which only one interval of fifth generates the chromatic total), in a
division of the octave into n equal parts several intervals can generate circles of fifths.
Each interval d which is prime with n can generate the microtonal space. This makes
the generalisation of certain classical structures, and their application to any division

5In the case of multiple circular representations contained in a same n-cercle object (as will be seen
in further examples), the c2chord-seq function allows to interpret this set of circular representations as a
sequence of chords. The functions chord2c and chord-seq2c perform the reverse operations by converting
respectively a chord or a chord-seq into a n-cercle. Interpretations of the circular representations in the
rhythmic domain are also available with the c2rhythm and rhythm2c functions.
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of the octave, difficult. For instance, it is not obvious to determine the equivalent of
the traditional diatonic scale (shown in Figure 12) in quarter-tone or sixth-tone systems.
Figure 13 shows the circular representation of these two generalised diatonic scales.6

Figure 12. Representation of the traditional diatonic scale.

Figure 13. Representation of generalised diatonic scales (a) in a quarter-tone scale and (b) in
a sixth-tone scale.

However, other traditional scales can be transferred to microtonality without any
theoretical difficulties, for instance as in the case of Messiaen’s modes of limited trans-
position.

6The use of algebraic tools for the application of diatonic theory to the micro-intervallic system
cannot be discussed here. It is a flourishing branch of mathematical music theory which recently under-
went remarkable developments thanks to the weighty use of “strong” (group structures) and “weak”
(Christoffel’s words) algebraic methods. See for instance [5].
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Calculation of microtonal scales of limited transposition

It is important to recall that by definition a mode of limited transposition is a subset
A of Z/12Z for which there exists a transposition Td with d �= 0 verifying the equation:
Td(A) = A. In order to calculate the catalogue of “microtonal” modes of limited trans-
position based on this definition, it is necessary to access the space of the subsets of
Z/nZ, n being the size of the space. Note that the cardinality of the space of the possible
micro-intervallic structures (that is, of the subsets of Z/nZ) increases exponentially with
the number n of divisions of the octave into equal parts. An application of Burnside’s
lemma yields an explicit formula for the calculation of the cardinality of the set of chords
which have a property of transpositional invariance for all the divisions of the octave into
n equal parts.7 For each divisor d of n, the number Md of chords with an invariance
property regarding the transposition Td of d semitones, is given by the following formula:

Md = d−1
�

µ(n/k)2k

in which the summation process is carried out with the integers k dividing 12 and in
which µ is Möbius’ function.8 For instance, in the case of n = 12, we obtain 9 chords
corresponding to Messiaen’s modes of a period equal to 6 because:

6M6 = 2µ(6) + 4µ(3) + 8µ(2) + 64µ(2) + 64µ(1) = (−1)2 + (−1)2 + (−1)2 + 2 = 54

This gives M6 = 9. The nine musical structures with this transpositional invariance
property regarding the tritone interval are given in Figure 14.

Figure 14. Catalogue of Messiaen’s modes of limited transposition with an invariance property
regarding the transposition to the tritone T6.

This calculation, implemented in OpenMusic in Figure 15, gives us the number of
modes of limited transposition for microtonal systems of size n (with 6 � n � 96).

Note that the enumeration formula does not tell us anything about the problem of
the actual construction of these modes. In other words, resolving a problem about the
enumeration of musical structures does not imply resolving the problem of their explicit
calculation. In addition, in the particular case of symmetrical structures, a calculation
strategy based on the simple definition of transpositional invariance is not operational
for it rapidly leads to a combinatorial explosion. Two other strategies that I will now
describe are more efficient.

7See for instance [6] or [3].
8Möbius’ function µ(x) is by definition equal to 0 if x is divisible by a square or to (−1)q if x is the

product of q distinct prime numbers.
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Figure 15. A few enumeration results for the generalised modes of limited transposition.

Calculation of the catalogue of the modes of limited transposition
by chords multiplication

The idea of chords multiplication was introduced by Boulez as a serial process with
which he could make the material proliferate while keeping an intervallic coherence in
the derived series [1]. This operation is formally equivalent to the concept of “transpo-
sitional combination”,9 and is defined algebraically by Anatol Vieru [7] who uses the term
“composition”between intervallic structures. A first definition of the operation of“compo-
sition” involves the relation between an intervallic structure and a note. To “compose” an
intervallic structure with a note means simply to recover the scale which is represented
by such a structure starting from the selected note. Figure 16 shows the composition
of the intervallic structure (1 2 3 1 2 3) and the note C arbitrarily represented by the
integer {0} (the operation of “composition” is represented with the symbol •).

Figure 16. Composition of an intervallic structure with a pitch class.

At a higher level of abstraction, it is possible to “compose” an intervallic structure
with a mode, that is to say, a set of residual classes with more than one element. One
has to compose the intervallic structure with the elements constitutive of the mode and
to take the union of the results. Figure 17 shows the intervallic structure (6 6) which
corresponds to two notes forming a triton “composed” with the mode {0, 1, 3}.

9See for instance [4].
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Formally the result is:

(6 6) • {0, 1, 3} = ((6 6) • 0) ∪ ((6 6) • {1}) ∪ ((66) • {3}) = {0, 6} ∪ {1, 7} ∪ {3, 9}
= {0, 1, 3, 6, 7, 9}

Note that the result of the “composition” is the same mode of limited transposition
as the one in the previous figure.

Figure 17. A Messiaen’s mode resulting from a “composition” of the intervallic structure (6 6)
and the mode {0, 1, 3}.

The third stage in the definition of the operation of “composition” focuses on the
intervallic structures. Contrary to what is described above, the result of the operation is
an intervallic structure. This very clearly exemplifies Vieru’s will to explore more deeply
one of the most fundamental dualities in music: the sound/interval duality.

Composing one intervallic structure with another means composing one of the two
structures with any of the modes represented in the other. For instance, composing the
structure (6 6) with the structure (1 2 9) consists in taking a mode represented in one
of the structures (for example the mode {0, 1, 3} in the second intervallic structure) and
composing the other structure with this mode. The resulting mode is then transformed
into the corresponding intervallic structure. In the given example, this operation simply
corresponds to the calculation of the intervallic structure of the mode {0, 1, 3, 6, 7, 9},
that is (1 2 3 1 2 3). This can be expressed formally as:

(6 6)•(1 2 9) = (1 2 3 1 2 3)

This operation is well-defined for it does not depend upon the selected representative.
In other words if another mode is chosen, for instance {1, 2, 4} with the same intervallic
structure (1 2 9) as the mode {0, 1, 3}, the result of the composition is the same (up to
transposition!) (see Figure 18).

In algebraic terms, the operation of “composition” is a law of internal composition
within the set of intervallic structures and it gives this space the structure of a com-
mutative monoid with a unitary element. The multiplication of chords is an extremely
powerful operational tool for the calculation of the exhaustive catalogue of the modes of
limited transposition. To use it, it is necessary to introduce a family of intervallic struc-
tures that can be expressed with one single interval, or to use a more mathematical term,
that are associated with modes generated by an element of the cyclical group Z/12Z.
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Figure 18. Change of representative for the calculation of the composition of the intervallic
structure (6 6) with the intervallic structure (1 2 9).

The form of these structures is therefore A = (a a a ... a), in which a is repeated
a finite number of times (with a maximum of 12 when the octave is divided into 12
equal parts). Such structures, called “idempotent”, correspond to modes or chords that
are well-known in music (from the triton to the chromatic total). Figure 19 shows the
catalogue of idempotent structures in divisions of the octave into 12, 18 or 24 parts.10

Figure 19. Idempotent structures. The function get-tid returns the collection of all the idem-
potent structures for a division of the octave into n parts.

In the construction of modes of limited transposition idempotent structures play the
role of prime numbers in the construction of integers. Every integer can be decomposed
into the product of powers of prime numbers. Thus, every mode of limited transposition
can be obtained by “composing” a mode of some sort with an idempotent structure.
The catalogue of Messiaen’s modes of limited transposition can therefore be calculated
in maximum 6c operations, where c is the cardinality of the catalogue of chords up to
transposition. The algorithm is not optimal because the integer c grows exponentially
with the size n of the tempered space.

10The chromatic total was left aside for these three divisions.
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In fact, an application of Burnside’s lemma produces:

c = n−1φ(d)2n/d

where the sum is done on the dividers of n and φ(d) is Euler’s totient function.11 Yet, the
algorithm is constructive and enables the composer to obtain modes of limited transpo-
sition with supplementary properties regarding the multiplicity of intervals. For instance,
if one is looking for an eight-tone scale with the temperament Z/18Z and with intervals
of one third, two thirds and three thirds tones, it is possible and even easy to build it
by multiplying chords starting from the idempotent structure (9 9) and the intervallic
structure (1 2 3). The result is shown in Figure 20.

Figure 20. Construction of a mode of limited transposition with third tones. The transp-comb
function performs the “composition” (or “transpositional combination”) of two subsets of Z/nZ.

Calculation of the catalogue of the modes of limited transposition
with the sieve theory

As for the previous case, the operation of chord multiplication can be formalised with
Xenakis’ sieve theory. In effect, if ab is the set {b, b+a, b+2a, ...} modulo n, where n is
as usual the size of the microtonal space, it is possible to express the previous scale as a
set union of the four sets 90, 91, 93 and 96. The corresponding construction implemented
in OpenMusic is illustrated in Figure 21.

11By definition the totient φ(d) of a positive integer d is equal to the number of positive integers
inferior to d and prime with d.
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Figure 21. Representation of a quarter-tone mode of limited transposition with Xenakis’ sieve
theory. In OpenMusic sieves are represented by the class crible and can be manipulated by the
set operations c-union, c-intersection, c-complement. The function revel-crible then allows to
interpret the sieve as a list of residual class values that can be connected to a n-cercle in order
to obtain a circular representation.

Calculation of the catalogue of modes of limited transposition via
the intervallic structure

Resorting to the intervallic structure helps reduce to a minimum the complexity of the
calculation of the modes of limited transposition for every division of the octave into n
equal parts. The property can be expressed as follows:

A subset A of Z/nZ is one of Messiaen’s modes if and only if its intervallic
structure is redundant, i.e. equal to the concatenation of a same pattern.12

As in the case of the multiplication of chords, this property gives birth to a construc-
tive algorithm for a catalogue of modes of limited transposition for every division of the
octave into n equal parts. In addition, as was mentioned above, with this algorithm the
problem of the classification of this type of structure can be solved in polynomial time.
Figure 22 shows the result corresponding to a division of the octave into third tones
(i.e. n = 18).

12As in every theorem which has a necessary and sufficient condition (if and only if), one of the two
implications is easier to demonstrate. In this case, it is easy to show that the redundancy of the intervallic
structure is necessary. In other words, if a set M is a mode of limited transposition, then its intervallic
structure will be of the type (a1 a2 ... ak ... a1 a2 ... ak), the m factor of the transposition Tm makes
the subset equal to a1 + a2 ... + ak invariant. The reader can practice and verify that the condition for
the intervallic structure is sufficient.
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Figure 22. Catalogue of the 69 modes of limited transposition expressed with their intervallic
structures. The first 9 solutions of the catalogue are presented with circular representations.

Non-octaviant scales

To conclude this introduction to the algebraic tools used for the study of microtonality,
I should like to propose an example of musical structures which at first sight resist a
circular representation. In fact, as we shall see, circular representation does not univocally
determine the size of the microtonal space. In other words, scales evolving in spaces of
sizes that are not of a multiple of the octave can easily be obtained from any circular
representation. Take for instance the third-tone mode of limited transposition analysed
above. From the same circular representation, it is possible to interpret this scale in a
microtonal space where the basic unit is an interval of three quarter tones. The result is
a scale with a period that is not a multiple of the octave (see Figure 23).

Figure 23. Non-octaviant scale.
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Following the same principle, it is possible to interpret any scale in any micro-
intervallic space. Therefore, it is possible to determine micro-intervallic interpretations
of traditional chords, such as major or minor chords. Figure 24 shows these chords in-
terpreted in the normal space, then with a minimum unit equal to a quarter tone and a
sixteenth tone.

Figure 24. Micro-intervallic interpretations of major and minor chords from a same circular
representation.

Amour grand terrible champ critique

Alain Bancquart

The use of quarter tones in musical composition has been popular since the end of
the 60s. I have composed many pieces using quarter tones. If my contribution to this
technique may seem relatively interesting, it is for two principal reasons. On the one hand,
contrary to other composers who are marginally interested in micro-intervallic systems,
I radically adopted microtonality. On the other hand, following Wyschnegradsky’s ideas
I have tried to work in the domains of both pitch and time.

Working with time is in a certain way more convenient than working with pitch.
Indeed, the pitch space is limited when it comes to the divisions of the tone, notably by the
perceptive ability of the ear. On the contrary, time can always be, at least theoretically,
divided up or lengthened, provided one ignores the division of time into seconds as the
reference interval. It is during the composition of my works with sixteenth tones that,
thanks to OpenMusic, I became aware of the significance of this method.
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Numerical notation for micro-intervals

While working with sixteenth tones OpenMusic offered me the possibility to construct
and hear the structures I was elaborating. To do so I had to use a special language: files
had to be written in numbers and letters, and time calculated in milliseconds. Thus, I
decided to use a numerical notational convention with the format date/duration/pitch.
The pitches in sixteenth tones are expressed with the help of tempered pitches to which
are added the corresponding number of midicents:

c3 ; c3+12 ; c3+25 ; c3+37 ; c3+50 ; c3+62 ; c3+75 ; c3+87;

c#3 ; c#3+12 ; c#3+25 ; c#3+37 ; c#3+50 ; c#3+62 ; c#3+75 ; c#3+87 ; d3 ; ...

The first sounds of the fourth part of the piece Amour grand terrible champ critique
for percussion and electronics are given as example:

0 2616 f2
2616 5000 f2+75 2616 5000 g2+37 2616 5000 g2+50 2616 5000 a2+25 2616 5000 a2+50
7616 800 f1+25
8416 2384 f2 8416 2384 f3+75 8416 2384 g3+37 8416 2384 g3+50
10770 4200 a1+87 10770 4200 b1+75 10770 4200 c2+87 10770 4200 f2 1077 4200 f3+75 1070 4200 g3+37
14970 1816 a3+12 14970 1816 g3+37
21786 77 g2+12 21786 77 g2+62
21863 273 b2+87 21863 273 c3+37 21863 273 d3+75
22136 1400 b2+12 22136 1400 d3+37 22136 1400 f3+12 22136 1400 g3+75 22136 1400 g3+25
23536 4000 c2+37 23536 4000 d2+50 23536 4000 f2+37 23536 4000 g2+25 23536 4000 c3 23536 4000 d4+25
23536 4000 e4+87
27536 196 f3 27536 196 g3+75
27732 1127 a2+75 27732 1127 c3+75 27732 1127 f3
28859 2610 f3 28859 2610 a3+87 28859 2610 c4+25 28859 2610 d4+12 28859 2610 f4

This type of notation may at first seem unpractical. After getting used to it, it
becomes as easy to manipulate as any other musical notation. It has the important
advantage of an absolute precision. Moreover, and this is the most important aspect, this
notation enables the composer to completely avoid a regular pulse, and to construct time
sets free from any dependence to a reference unit (the second) or to a tempo. The relation
with the quarter note or the whole note, so indispensable in the traditional music theory,
disappears. Time is free from all constraints and its variation is infinite: it truly becomes
micro-intervallic and totally irrational. Thus the research of the computer-scientists and
engineers who designed the software preceded that of the composer.

Some modelling tools to work with sixteenth tones

The algebraic and geometrical representations described by Moreno Andreatta in the
previous section are precious tools for the analysis of microtonal composition. Figure 25
shows the example of the numerical system used to encode a sixteenth-tone scale and its
implementation in OpenMusic with the help of the circular representation.

An excerpt from the piece Amour grand terrible champ critique can therefore be
easily modelled with the circular representation. This representation notably gives a
more precise idea about the pitch distribution in the tempered space (see Figure 26).

The circular representation of another excerpt from the piece, corresponding to the
second voice, is shown in Figure 27. Note that contrary to the first voice, the second one
makes full use of the chromatic total. Finally, Figure 28 shows the fusion of these two
voices in a circular representation, and in the corresponding score.
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Figure 25. System used to divide the octave into 96 parts (sixteenth tones), and the associated
circular representation.

Figure 26. Excerpt from the piece in numerical notation and the circular representation
associated to the first voice.
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Figure 27. Excerpt from the piece in numerical notation and the circular representation
associated to the second voice.

Figure 28. Fusion of the two voices from Figures 26 and 27 with circular representations and
traditional notation.
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A hypothesis for the generalization of micro-intervallic and
microtemporal spaces

A great step forward was indeed taken in the research and formalization of microtonal
structures but it is only the beginning of a much more adventurous study. The knowledge
and practice of all the audible divisions of the tone are effectively equivalent to the use of
irrational rhythmic values. However, the work carried out on rhythm using milliseconds
remains to be done for pitch. One has to take as a minimum unit one thousandth of
a tone which, like the millisecond, is obviously a purely theoretical unit. It would then
be possible to construct scales that are emancipated from the division of the space into
tones, non-iterative scales with degrees that are not tone divisions but freely defined dis-
tances without any reference to the tone (in the time domain, this would mean excluding
references to quarter notes or full notes). It would be possible to conceive space-times
in which the series of numbers used to define the durations could also be used to define
the pitches. The result would be music with homogeneous prime materials (I am speak-
ing here about the constitution of music material and not about compositional processes).

As an experiment, let us imagine the following series of durations: 2079 189 1512 597
945 378 2457 756 2268 1134 171 1323. The duration of the series is 13809 milliseconds.
The operation transferring these numbers to pitch can take for instance a point of
departure C3+3 sixteenth tones. The range of this scale is then of 13809 thousandth
tones, that is 13 tones + 809 thousandth tones. It is easy to expand or narrow down this
range. If these numbers are divided by 2.27, the result is the following series: 915 83 666
262 416 166 1082 333 999 499 75 582, with a range of 6078 “millitones”, that is 6 tones +
78 thousandth tones. If this series is subjected to the treatment I often employ for the
durations, a treatment I call “duration anamorphosis” and which consists in subtracting
the numbers from one another, the result is the following series:

2079 189 1512 597 945 378 2457 756 2268 1134 171 1323 1890 1323 915
348 567 2079 1701 1512 963 1152 408 219 1512 378 189 189 159 1293 207
18 945 159 756 786 30 927 153 537 30 768 774 507 129 609 378 480 603
102 123 21

Note that the size of the intervals gradually decreases to reach a minimum interval
of 18 millitones, equivalent to a fifty-sixth of a tone! It would probably be desirable to
discard those intervals that are not perceptible (since it is a non-iterative series, I got
rid of the repetitions). The range of this new scale is 24595 millitones, that is 24 tones
(6 octaves) + 594 millitones divided up into 52 intervals of all sizes. The combinatorial
possibilities of this type of scale are infinite. The composer would then have to invent
new organisational methods, but such an activity lies outside the scope of this chapter.
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Eventually...

The use of such an environment as OpenMusic in microtonal composition considerably
enhances the composer’s work, be it for the formalization, calculation or the represen-
tation.

Before undertaking research on sixteenth tones, I had worked on the organisation
of a free time. OpenMusic enabled me to go further and to rapidly perform long and
fastidious calculations. These organisational methods can be related to the “time-blocks”
that Karim Haddad is working on,13 and to many other efforts, all of which share a
common desire for the conquest of the dimension of time, a focus that will no doubt
nourish future research.

The OMicron system, as well as the mathematical tools for the geometrical represen-
tation of musical structures available in OpenMusic, allow us to notate, represent and
hear all the micro-intervals from the third tone to the sixteenth tone. It is now possible
to play with odd densities hitherto unheard of. In this context, the notations proposed
in OMicron are clear and logical. Although there is a tendency to minimize the role of
notation as a tool for immediate reading (in many cases microtonal music can solely be
realized by electronic means), the latter in fact remains an important aspect for it offers
a non-negligible formal support for musical thought and composition.

In the light of this new manner of conceiving the organisation of space and time,
it will certainly become necessary to reconsider the notions of timbre, of spatialization,
as well as all the other musical parameters. It will then be possible to integrate sound
synthesis into the composition of the musical material.

Thus great progress has been made towards the perception of a different universe.
Each of the various aspects of this universe remains to be studied, and this will be a long
endeavour for the musicians. What we call “tomorrow” is in fact probably a close future,
a future that will be filled with discoveries – and difficulties.

13See the chapter “Livre Premier de Motets: the Concept of TimeBlocks in OpenMusic” by Karim
Haddad.
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