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Abstract This article develops some aspects of Anatol Vi-
eru’s compositional technique based on finite difference
calculus of periodic sequences taking values in a cyclic
group. After recalling some group-theoretical properties,
we focus on the decomposition algorithm enabling to
represent any periodic sequence taking values in a cyclic
group as a sum of a reducible and a reproducible sequence.
The implementation of this decomposition theorem in a
computer aided music composition language, as OpenMu-
sic [1] , enables to easily verify if a given periodic sequence
is reducible or reproducible. In this special case, one of the
two terms will be identically zero. This means that every
periodic sequence has in itself a certain degree of reduc-
ibility and reproducibility. We also suggest how to use this
result in order to explain some regularities of the distri-
bution of numerical values in the case of the finite addition
process and how to generalize the decomposition theorem
by means of the Fitting Lemma. This opens the problem of
the musical relevance of a generalized module-theoretical
approach in Vieru’s theory of periodic sequences.

Keywords Periodic sequences, Algebraic formalization,
Finite difference calculus on groups, Decomposition

1
Introduction
The theory of periodic sequences has a very important
place in the modal universe of the Romanian composer
Anatol Vieru (1926–1998). This theory, which has been
originally described by Vieru in his Book of Modes [7], is
based – according to him - on one of the most enigmatic
dichotomy existing in music, i.e., the duality between
sounds and intervals. This duality is expressed, although
implicitly, by the group-theoretical formalization of the
well-tempered system by assuming that a given cyclic
group of order n may represent, at the same time, the
collection of pitches (or pitch classes) and intervals (or
interval classes). The finite difference calculus applied to

periodic sequences taking values in a cyclic group enables
the composer to explore this duality iteratively. For
example, by interpreting a given periodic sequence in the
pitch domain, the first layer of the finite difference process
transforms the previous musical structures in the ordered
collection of its intervals. By iterating the finite difference
calculus in the new sequence, the intervallic relationships
between the intervals themselves clearly appear and so on,
with the possibility of interpreting any new periodic se-
quence again as a pitch content sequence or as an inter-
vallic sequence. In the next section of this paper we give
the formal definition of the finite difference process and
we describe two families of periodic sequences, the
reducible and the reproducible sequences. Their relation-
ships are established by a decomposition theorem that we
originally introduced in a previous paper [3] and that we
will describe here in more details by also proposing some
generalization via the Fitting Lemma. The final section
discusses an application of the previous result for a phe-
nomenon of proliferation of some very special values in-
side the derivatives of an initial periodic sequence by the
dual process of the finite difference calculus: the addition
process (see [2] for a more general discussion on the
musical relevance of algebraic methods).

2
Periodic Sequences taking values in a cyclic group

2.1
Basic definitions

Definition 1. A periodic sequence is a map f defined on Z
taking values in the cyclic group Zn such that there exists
an integer m satisfying the equation f ðxþmÞ ¼ f ðxÞ for
any x 2 Z.

Several musical interpretations can be associated with a
periodic sequence. In Fig. 1, the sequence:

f ¼ ð 3 1 2 1 1 0 8 8 1 3 3 6 2 Þ
denotes a periodic rhythm, where each element of f is a
multiple of a eigth-note.

Figure 2 shows the same sequence, but this time inter-
preted as a melody, where each element of f is associated
with a note in a scale of semitones starting from C4.

In Fig. 3, the elements of f are taken as intervals
between two consecutive notes.

Definition 2. The translated sequence Tf of a (periodic)
sequence f is the periodic sequence Tf defined by the fol-
lowing equation:
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Tf ðxÞ ¼ f ðxþ 1Þ

Definition 3. The sequence of differences of a (periodic)
sequence f is the periodic sequence Df defined by the fol-
lowing equation:

Df ðxÞ ¼ f ðxþ 1Þ % f ðxÞ :

The relationship between the translated sequence and the
sequence of differences is expressed by the following
equation :

D ¼ T % 1 :

Affirming that f is m%periodic is equivalent to the relation
Tmf ¼ f :

Example 1. In the theory of unending rhythmic canons, as
originally introduced by one of the authors in [8], a tiling
canon can be considered as the factorization of a cyclic
group Zn into two periodic sequences f and g. In Fig. 4 the
two subsets f and g are respectively f0, 8, 10g and f0, 5, 6,
11g. Factoring a cyclic group into a direct sum of subsets f
and g means that every element of Zn can be expressed in a
unique way as a sum of an element of f and an element of
g. Musically, this means that at every instant there is one
(and only one) voice playing.

Figure 5 shows a canon in 4 voices obtained by the time
translation of the pattern R=(2 8 2) in the onset-times 0, 5,
6, 11.

2.2
Reducible sequences

Definition 4. The sequence f is called reducible if there is
an integer k & 0 such that Dkf ¼ 0: We will designate by
RedðGÞ the family of reducible sequences taking values in a
group G, i.e., the family of reducible G-valued sequences.

Example. 2 Let f ¼ ð 2 5 3 3 2 Þ a sequence of
period 5 in Z5. By iterating the difference operator 4 times,
we end up with the zero sequence:

D1 ¼ ð 3 3 0 4 0 Þ
D2 ¼ ð 0 2 4 1 3 Þ
D3 ¼ ð 2 2 2 2 2 Þ
D4 ¼ ð 0 0 0 0 0 Þ
In Fig. 6 f is interpreted as a sequence of intervals in a
chord. For each Diðf Þ we have a new chord until the trivial
case of the final singleton chord is reached.

Remark 1. More generally, given two integers m and k and
a prime number p, every sequence of period pm in Zpk is a
reducible sequence. [For a proof by induction on m see
[3], p. 5.]

2.3
Reproducible sequences

Definition 5. The sequence f is called reproducible if an
integer k & 0 does exist such that Dkf ¼ f : RepðGÞ will
indicate the family of reproducible sequences taking values
in a given group G.

Example 3. Let f ¼ ð256341Þ be a sequence of period 6 in
Z7. This sequence reproduces itself after 6 iterations of the
difference operator:

D1 ¼ ð 3 1 4 1 4 1 Þ
D2 ¼ ð 5 3 4 3 4 2 Þ
D3 ¼ ð 5 1 6 1 5 3 Þ
D4 ¼ ð 3 5 2 4 5 2 Þ
D5 ¼ ð 2 4 2 1 4 1 Þ
D6 ¼ ð 2 5 6 3 4 1 Þ

Fig. 1. The sequence f interpreted as a periodic rhythmic pattern

Fig. 2. The sequence f interpreted as a periodic melodic pattern

Fig. 3. The sequence f as a periodic intervallic pattern

Fig. 4. Factorization of Z12 in two sequences having periods
equal to 12 and 6 respectively

Fig. 5. A tiling rhythmic canon corresponding to the factoriza-
tion of Z12 into two subsets f and g

Fig. 6. Reduction of an intervallic sequence interpreted as chords
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Figure 7 shows the sequence of chords corresponding to
the previous difference process.

More generally, one can show that every sequence of
p% 1 distinct elements in Zp is a reproducible sequence
[See [3] for some characterization theorems of reproduc-
ible sequences.]

3
Reducible and reproducible sequences as generators

3.1
The foundamental decomposition theorem
The foundamental result of Vieru’s theory of periodic se-
quences states that the two previous families of reducible
and reproducible sequences can be considered as se-
quences generating all periodic sequences. In other words:

Theorem 1. Every periodic sequence f can be decomposed
into a unique way as a sum of a reducible and a repro-
ducible sequence, ie.,:

f ¼ fred þ frep; fred 2 Red(G); frep 2 Rep(G) :

Proof. Let f be m% periodic. The collection of sequences
m%periodic being finite, there exist two integers k; l & 1
such that Dkf ¼ Dkþlf . By induction on r one has
Dkf ¼ Dkþrlf . In the same way it can be shown that there
exist two integers r; s & 1 such that Drlf ¼ DðrþsÞlf . We put

fred ¼ f % Drlf ; frep ¼ Drlf :

It follows that Dkðf % Drlf Þ ¼ 0; DslDrlf ¼ Drlf ; which
means that fred and frep give the needed decomposition.
The unicity comes from the relation

Red(G) \ Rep(G) ¼ f0g:

3.2
Decomposition of Zn into p-groups
There is a one-to-one relation between the subgroups of Zn

and the family of integers d that divide n with 1 ' d ' n;
i.e., for any such d we may take the unique subgroup of Zn

with d elements. The latter can be characterised as the set
of z 2 Zn such that dz ¼ 0 or, equivalently, as the set n

d Zn

of elements having the form n
d z where z belongs to Zn.

Definition 6. The abelian group G is a direct sum of a
family of subgroups G1; . . . ;Gm of G if any x 2 G can be
decomposed in a unique way into a sum x1 þ . . .þ xm with
xi 2 Gi for 1 ' i ' m. We will write G ¼ am

i¼1Gi.

Definition 7. Let p be a prime number. A finite abelian
group is called p%group if its cardinality is a power of p.

Theorem 2. Any group Zn can be decomposed as the direct
sum of its p%maximals subgroups.

If n ¼
Qm

i¼1 p
ki is the decomposition of an integer n into

prime factors, the decomposition of Zn in maximal
p%subgroups can be written as follows

Zn ¼ am
i¼1Gpki ;

where Gpki is the subgroup of Zn with pki elements. The
decomposition of any z 2 Zn defines in a unique way the
elements piðzÞ 2 Gpki such that z ¼

Pm
i¼1 piðzÞ: The arrows

pi : Zn ! Gpki are group homomorphisms.
The pi%component piðzÞ of z is the unique element

y 2 Zn satisfying the relations pkiy ¼ n
pki

ðz% yÞ ¼ 0 in Zn.
Let qi be an integer verifying

qi
n

pki
¼ 1 mod pki :

It follows that pki n
pki

qiz ¼ n
pki

ðz% n
pki

qizÞ ¼ 0 in Zn, which
means that

piðzÞ ¼
n

pki
qiz:

Example 4. All subgroups of Z12 have a natural musical
interpretation. Namely: the unison

G1 ¼ f0g
the interval of tritone

G2 ¼ f 0; 6 g
the augmented triad as the maximal 3-group

G3 ¼ f 0; 4; 8 g
the diminished seventh as the maximal 2-group

G4 ¼ f 0; 3; 6; 9 g
the whole tone scale

G6 ¼ f 0; 2; 4; 6; 8; 10 g
the chromatic scale

G12 ¼ f 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11 g

Example 5. Decomposition of Z12 into p%groups

Z12 ¼ G3aG4:

q3 ¼ 1; 1 ( 12
3
¼ 1 mod 3;

q4 ¼ %1;%1 ( 12
4
¼ 1 mod 4;

p3ðxÞ ¼
12

3
q3x ¼ 4x; p4ðxÞ ¼

12

4
q4x ¼ %3x:

5 ¼ 8þ 9 ¼ 4 ( 5% 3 ( 5 ¼ 4 ( 2% 3 ( 1
7 ¼ 4þ 3 ¼ 4 ( 7% 3 ( 7 ¼ 4 ( 1% 3 ( 3
11 ¼ 8þ 3 ¼ 4 ( 11% 3 ( 11 ¼ 4 ( 2% 3 ( 3

Remark 2. Many theoretical works (see in particular [4]
and [6]) suggest to use the decomposition of the cyclic

Fig. 7. Reproduction of an intervallic sequence after six itera-
tions of the difference operator

0 3 6 9
0 0 3 6 9
4 4 7 10 1
8 8 11 2 5

590



group Z12 into a direct sum of its maximal p%groups, as
the natural representation for the tone space. This leads to
the toroidal representation shown in Fig. 8.

3.3
Periodised sequences and the calculation of reducible
and reproducible components of a periodic sequence

Definition 8. For all m%periodic sequences f and for all
integer d dividing m; the d%periodised of f is the sequence
of period d expressed by the following relation:

Xm=d%1

k¼0

Tkdf

Proposition 1. Let f ¼
P

j fj be the decomposition of the
periodic sequence f corresponding to the decomposition of
Zn in p%groups and let fj ¼ fj;red þ fj;rep be the decompo-
sition of fj in a sum of a reducible and a reproducible
sequence. Then the decomposition of f

f ¼ fred þ frep; fred 2 Red; frep 2 Rep

is given by

fred ¼
X

j

fj;red; frep ¼
X

j

fj;rep :

Theorem 3. Let f be a Zpk-valued m%periodic sequence
and let fper be the pr%periodised of f , where pr is the highest

power of p dividing m: Let m
pr

! "%1
be the inverse of m

pr mod

pk: Then the decomposition of f

f ¼ fred þ frep; fred 2 Red; frep 2 Rep

is given by

fred ¼
m

pr

# $%1

fper; frep ¼ f % m

pr

# $%1

fper :

Proof. Since fred is pr%periodic by construction, it is
reducible from a previous remark on the reproducibility of
any pm%periodic sequence in Zpk . The p

r%periodised of frep
is zero since:

Xm=pr%1

i¼0

Tipr frep

¼
Xm=pr%1

i¼0

Tipr f % m

pr

# $
m

pr

# $%1

fper ¼

¼ fper % fper ¼ 0

The reproducibility of frep comes from a general result for
Zpk-valued m%periodic sequences f stating that f is

reproducible if and only if the pr%periodised of f is zero,
where pr is the highest power of p that divides m. [For a
proof of this result, see [3], p. 7].

Corollary 1. Let m and n be two integers such that
m ^ n ¼ 1 and let f be a Zn-valued m%periodic sequence. f
is reproducible if and only if

Pm%1
i¼0 f ðiÞ ¼ 0 :

3.4
The decomposition algorithm
We now describe step by step how to obtain the decom-
position of a Zn-valued periodic sequence f .

1. Write the decomposition of n in prime factors:

n ¼
YN

j¼1

p
kj
j

2. Find the integers qj such that

qj
n

p
kj
j

¼ 1 mod p
kj
j :

3. For all j construct the sequences fj;red and fj;rep as
follows:

3.1. Set fjðxÞ ¼ ujðf ðxÞÞ; where uj : Zn ! Z
p
kj
j

is the ca-
nonic map.

3.2. Let p
rj
j be the highest power of pj dividing the period

m of f : Determine the inverse m
p
rj
j

# $%1

of m
p
rj
j

mod p
kj
j :

3.3. Write down the m elements of the period of fj as a
table with m

p
rj
j

lines and p
rj
j columns (if rj ¼ 0; the table

will have a unique column). Add a line given by the

elements of any column and by multiplying by
m
p
rj
j

# $%1

module p
kj
j :

3.4. Let fj;red be the p
rj
j % periodic sequence defined by the

line constructed at the previous step and construct
fj;rep ¼ fj % fj;red:

4. By setting

fred ¼
XN

i¼1

qj
n

p
kj
j

fj;red; frep ¼
XN

i¼1

qj
n

p
kj
j

fj;rep:

we have the decomposition of any periodic sequence in a
reducible and reproducible component.

Example 6. Consider the following Zn-valued sequence
f ¼ ð 0 0 7 7 4 4 3 3 4 4 7 7 Þ. By apply-
ing the previous algorithm we have:

1. 12 ¼ 22:31, N=2, pk11 ¼ 4 and pk22 ¼ 3
2. q1 ¼ 1 and q2 ¼ 3
3.1 f1 ¼ ð0 0 3 3 0 0 3 3 0 0 3 0Þ

f2 ¼ ð0 0 1 1 1 1 0 0 1 1 1 1Þ
3.2 pr11 ¼ 22 and pr22 ¼ 31

3:3 0 0 1
1 1 1
0 0 1
1 1 1

)4 mod 3 2 2 1
*% 4 mod 12 2 2 1

8 8 4
Fig. 8. The toroidal representation of the well-tempered tone
space
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0 0 3 3

0 0 3 3

0 0 3 3

0 0 1 1

)3 mod 4 0 0 3 3

*% 3 mod 12 0 0 3 3

3:4 f1 ¼ ð0 0 3 3 0 0 3 3 0 0 3 3Þ
f1;red ¼ ð0 0 0 0 0 0 0 0 0 0 0 0Þ
f1;rep ¼ ð0 0 3 3 0 0 3 3 0 0 3 3Þ

f2 ¼ ð0 0 1 1 1 1 0 0 1 1 1 1Þ
f2;red ¼ ð1 1 0 2 2 0 1 1 0 2 2 0Þ
f2;rep ¼ ð2 2 1 2 2 1 2 2 1 2 2 1Þ

4:2 fred ¼ ð8 8 7 11 8 4 11 11 4 8 11 7Þ
D1 ¼ ð0 11 4 9 8 7 0 5 4 3 8 1Þ
D2 ¼ ð11 5 5 11 11 5 5 11 11 5 5 11Þ
D3 ¼ ð6 0 6 0 6 0 6 0 6 0 6 0Þ
D4 ¼ ð6 6 6 6 6 6 6 6 6 6 6 6Þ
D5 ¼ ð0 0 0 0 0 0 0 0 0 0 0 0Þ
frep ¼ ð4 4 0 8 8 0 4 4 0 8 8 0Þ
D1 ¼ ð0 8 8 0 4 4 0 8 8 0 4 4Þ
D2 ¼ ð8 0 4 4 0 8 8 0 4 4 0 8Þ
D3 ¼ ð4 4 0 8 8 0 4 4 0 8 8 0Þ

3.5
Towards a generalized version of the decomposition
theorem
As originally suggested by mathematician Guerino
Mazzola in a private communication with some of the
authors, the decomposition theorem is a special case of
a more general result known as the Fitting Lemma. In
the case of a group G, the Fitting Lemma can be ex-
pressed in this way. Let M be a family of endomor-
phisms on G such that G satisfies both descending and
ascending chain conditions on normal M-subgroups and
let D be a normal M-endomorphism of G. Then G can
be expressed as the direct product of two normal sub-
groups H and K where DðHÞ ¼ H and K is the kernel of
D (i.e., k 2 K if and only if there is some integer a such
that DaðkÞ ¼ e where e is the identity of the group G).
This result can be generalized since the Fitting Lemma
holds for any module of finite length. Let Gðm;ZÞ be the
set of m-periodic G-valued sequences. This is a sub-
space of the space GðZÞ of sequences taking values in
the group G. GðZÞ is a Z-module so, thanks to the Fit-
ting Lemma, there exist a power k of the D operator and
there exist two sub-modules U and V of Gðm;ZÞ such
that U ¼ KerðDkÞ and the restriction of Dk to the sub-
module V is an automorphism of V . By definition
KerðDÞ coincides with the set RedGðm;ZÞ of reducible
periodic sequences taking values in G. For what con-

cerns the sub-module V , the previous condition is in
general not as strong as the reproducibility condition.
This naturally leads to a new concept: the quasi-repro-
ducible sequence.

Definition 9. A sequence is called quasi-reproducible if
there exist a sub-module of Gðm;ZÞ and an integer k such
that the restriction of Dk to this sub-module is an auto-
morphism.

If the module is finite, there must exist an integer s such
that the restriction of ðDkÞs to the sub-module is the
identity. Without loss of generality, one can take an integer
k in such a way that Gðm;ZÞ is the direct sum of KerðDkÞ
and RepðGðm;ZÞÞ where:
1. KerðDkÞ is by definition the module RedðGðm;ZÞÞ of

reducible periodic sequences
2. RepðGðm;ZÞÞ is the module of reproducible periodic

sequences

In conclusion, the decomposition theorem could be stated
in the following generalized version:

Theorem 4. (Generalized Decomposition Theorem). Every
periodic sequence taking values in a finite group (respec-
tively in a module of finite length) can be decomposed in a
unique way as a sum of a reducible and of a reproducible
(respectively quasi-reproducible) sequence.

Remark 3. This new version of the decomposition the-
orem opens up the problem of the musical relevance of
the generalization process in music theory. In the case
of a module with finite length, the Fitting Lemma does
not offer the way of obtaining the decomposition.
Moreover, the concept of quasi-reproducibility, which
has been introduced for modules with finite length but
non finite if considered as sets, seems too abstract to
have any natural musical application. Take, for example,
the periodic sequences taking values on a subfield K of
the field C of complex numbers, like Q, R or C itself.
Here, K is considered as a module on itself. By using
Fourier transform, as originally introduced by one of the
authors in [8], it is possible to show that the only
reducible sequences are the constant ones. Moreover,
each sequence g that can be written as Df . Then quasi-
reproducibility is equivalent to:

Xp

x¼1

gðxÞ ¼ 0

where p is the period of g. The generalized decompo-
sition theorem states that any K-valued periodic se-
quence can be decomposed into a sum of a constant
sequence and of a sequence verifying the previous
property. The musical relevance of this result is still an
open question.

Remark 4. According to David Lewin, one could use the
Fitting Lemma to obtain the decomposition in the case of
some very particular d-periodic sequences
f ¼ ðx1x2 . . . xdÞ taking values in Zn and such that:
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Xd

i¼1

f ðxiÞ ¼ n

We will discuss this new decomposition strategy with a
simple example. Take the following 3-periodic sequence:

f ¼ ð 5 3 4 Þ
If we iterate the difference operator D we obtain:

D1 ¼ ð10 1 1Þ
D2 ¼ ð3 0 9Þ
D3 ¼ ð9 9 6Þ
D4 ¼ ð0 9 3Þ
D5 ¼ ð9 6 9Þ
D6 ¼ ð9 3 0Þ
D7 ¼ ð6 9 9Þ
D8 ¼ ð3 0 9Þ
We see that the sequence ð3 0 9Þ is its own sixth deriva-
tive. So, every sequence in the loop

ðD2ðf Þ D3ðf Þ . . .D7ðf ÞÞ
is its own sixth derivative. Now, because D6ðf Þ ¼ ð930Þ is
in the loop, D6ðf Þ is also the sixth derivative of itself. Then
D6ð534% 930Þ ¼ D6ð804Þ ¼ 0 which means that ð804Þ is in
KerðDkÞ i.e., the sequence ð804Þ is reducible. Thus
ð534Þ ¼ ð930Þ þ ð804Þ where ð930Þ and ð804Þ are respec-
tively the reducible and reproducible components of the
sequence f . See [5] for more examples on group-theoret-
ical methods in American Transformational Theory.

4
Proliferation of some values in a periodic sequence

Definition 10. Given an element c0 2 Zn, the sequence of
successive additions of a periodic sequence f is the periodic
sequence Af defined by the following equation:

Af ðxÞ ¼ c0 if x ¼ 0,
f ðx% 1Þ þ Af ðx% 1Þ otherwise .

%

where, c0 is the starting value of the sequence.
Anatol Vieru made use of the successive addition pro-

cess in several pieces. In the piece Zone d’oubli (1973), the
sequence f = (6 6 6 6 6) corresponding to the interval of
triton is taken as the starting point of the additive process.
By successive additions and choosing an arbitrary ci at
each addition, Vieru generates ten new sequences that he
calls levels. The first initial value is c0 = 7 and this gives the
following 2-periodic sequence as the first level:

Af ¼ ð 7 1 7 1 7 1 Þ
The second level starts with c1 = 10 and it has period 6,
and so on until the tenth level of period 864 is reached.

0 6 6 6 6 6
I 7 1 7 1 7 1
II 10 5 6 1 2 9 10
. . . . . .
X a sequence of period 864

In the case of Zone d’oubli, each level is mapped with a
different musical parameter. In particular, the level V
corresponds to the pitch-parameter, with the usual C-ref-
erential system (i.e., C = 0, . . ., B = 11). The low middle
and high registers are determined by the level III with
values corresponding to sets f1, 5, 9g, f2, 3, 4g and f6, 7,
8g respectively. The duration are provided by the fourth
level by taking the eight-note as the minimal rhythmic
subdivision and by associating the number 0 with the
‘acciaccatura’. Dynamics are attached to the IX level as
follows: 0 =mf , 3 =mp, 6 = pp, 9 = p. The elements 7, 10, 1
and 4 correspond to rests. Finally, there are 4 ways of
playing and they are related to the fourth level too, but
with a different mapping, i.e., f0, 1g = vibrato, f3, 4g =
normal, f6, 7g = ‘al ponticello’ et f9, 10g = tremolo. Figure
9 shows an extract of the piece with the numerical values
associated with each level.

Figure 10 shows a further passage of the same piece
where the previous parameters have been now associated
with different levels. In particular, pitches are generated by
the 6-periodic sequence of the level II, while the low and
high registers are given by the odd and even values of the
level VI.

Sometimes the generation of sequences by successive
additions statistically increases the distribution of some
particular values inside a given level. This remarkable
phenomenon has been initially described by the composer
in the case of successive additions from an initial sequence
corresponding to Messiaen’s second mode of limited
transpositions. The intervallic structure of this mode
corresponds to the 2%periodic sequence f = (2 1) and by
successive additions, the composer generates several se-
quences, as shown in Appendix A. Levels I and II are
generated by taking c0 ¼ 11 and c1 ¼ 2. For the third level
the initial value c2 ¼ 8 is chosen and this gives a 16-peri-
odic sequence. The next 8 levels, all starting with 8, have a
period 32. There are two major properties that Vieru was
not able to explain. Firstly, all levels are 2k-periodic for a
given positive integer k. The second property has to do
with the proliferation of values 8 and 4 at all levels excepts
those which occur just before a change of period. This
double phenomenon is still mysterious and, although we

Fig. 9. A first extract of the piece Zone d’oubli

Fig. 10. An extract of the piece Zone d’oubli using a different
mapping for musical parameters
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are not able to give a final explanation, we strongly believe
that it has to do with the decomposition theorem. In fact,
according to this theorem, the sequence f = (2 1) can be
decomposed (in a unique way) into the reducible com-
ponent fred = (6 9) and into the reproducible component
frep=(8 4). Note that fred and frep are sequences taking
values in two subgroups isomorphic respectively to Z3 and
Z4. More generally, by induction on k, every sequence f
such that Dkf=(2 1) for a given integer k and for which the
various levels start with initial values ci for which pðciÞ ¼ 8
where p is the projection on the subgroup isomorphic to
Z3, can be decomposed into a sequence taking values in Z4

and the sequence ð8 4Þ. Notice that the values ci having
this property are 8 (=8+0), 11 (=8+3), 2 (=8+6) and 5
(=8+9). In Vieru’s example, the proliferation of 8 and 4
could be explained by the fact that starting from the third
level, the initial values are always ci ¼ 8. The proliferation
of 4 and 8 in the growing process remains true if the initial
values ci are such that pðciÞ ¼ 8 i.e., ci = 11, 2 or 5. Some
statistics are shown in Appendix B.

5
Conclusion
The finite difference calculus on periodic sequences tak-
ing values in a cyclic group gives rise to new interesting
questions once it is approached from a compositional
perspective. Starting from Anatol Vieru’s original intu-
itions on the duality between sounds and intervals, we
have shown some possible musical interpretations of the
finite difference process (and its dual process, i.e., the
finite additive process). We explain how reducible and
reproducible sequences play the structural role of gen-
erators for any periodic sequence taking value in a cyclic
group. The computational character of this fondamental
decomposition result, which has been also integrated in a
computer-aided compositional environment, suggests
new possible musical applications of Vieru’s original
ideas. At the same time, it naturally leads to some gen-
eralizations whose musical relevance is still to be estab-
lished.
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Appendix A.
Proliferation of values 8 and 4
The finite addition process starts from the 2-periodic se-
quence f=(2 1) and with initial values equal to c0 ¼ 11,
c1 ¼ 2 and ci ¼ 8 for i > 1. At each level we indicate the
percentage of values 4 and 8 inside of the given period.
Notice that at level 61 of period 128, more than 90% of the
elements belong to the set f4, 8g. This percentage dra-
matically decreases in the following level which is the last
one having period equal to 128.

2 1 2 1 2 1 2 1

1% 25%of 8 and 4

11 1 2 4 5 7 8 10

2% 50% of 8 and 4

2 1 2 4 8 1 8 4

3% 25% of 8 and 4

8 10 11 1 5 1 2 10

2 4 5 7 11 7 8 4

4% 37:5% of 8 and 4

8 4 2 1 2 7 8 10

8 10 2 7 2 1 8 4

5% 50% of 8 and 4

8 4 8 10 11 1 8 4

2 10 8 10 5 7 8 4

6% 50%of 8 and 4
8 4 8 4 2 1 2 10

2 4 2 10 8 1 8 4

7% 25% of 8 and 4

8 4 8 4 8 10 11 1

11 1 5 7 5 1 2 10

2 10 2 10 2 4 5 7

5 7 11 1 11 7 8 4

8% 37:5% of 8 and 4

8 4 8 4 8 4 2 1

2 1 2 7 2 7 8 10

8 10 8 10 8 10 2 7

2 7 2 1 2 1 8 4

9% 50% of 8 and 4

8 4 8 4 8 4 8 10

11 1 2 4 11 1 8 4

2 10 8 4 2 10 8 10

5 7 2 4 5 7 8 4
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10% 68:75% of 8 and 4

8 4 8 4 8 4 8 4

2 1 2 4 8 7 8 4

8 10 8 4 8 10 8 4

2 7 2 4 8 1 8 4

11% 56:25% of 8 and 4

8 4 8 4 8 4 8 4

8 10 11 1 5 1 8 4

8 4 2 10 2 10 8 4

8 10 5 7 11 7 8 4

12% 68:75% of 8 and 4

8 4 8 4 8 4 8 4

8 4 2 1 2 7 8 4

8 4 8 10 8 10 8 4

8 4 2 7 2 1 8 4

13% 75% of 8 and 4

8 4 8 4 8 4 8 4

8 4 8 10 11 1 8 4

8 4 8 4 2 10 8 4

8 4 8 10 5 7 8 4

14% 50% of 8 and 4

8 4 8 4 8 4 8 4

8 4 8 4 2 1 2 10

2 10 2 10 2 4 2 10

2 10 2 10 8 1 8 4

16% 37:5% of 8 and

8 4 8 4 8 4 8 4

8 4 8 4 8 4 2 1

2 1 2 1 2 1 2 7

2 7 2 7 2 7 8 10

8 10 8 10 8 10 8 10

8 10 8 10 8 10 2 7

2 7 2 7 2 7 2 1

2 1 2 1 2 1 8 4

61% 93:75% of 8 and 4

8 4 8 4 8 4 8 4

8 4 8 4 8 4 8 4

8 4 8 4 8 4 8 4

8 4 8 4 8 4 8 4

8 4 8 4 8 4 8 4

8 4 8 4 8 4 8 4

8 4 8 4 8 4 8 4

8 4 8 10 11 1 8 4

8 4 8 4 8 4 8 4

8 4 8 4 8 4 8 4

8 4 8 4 8 4 8 4

8 4 8 4 2 10 8 4

8 4 8 4 8 4 8 4

8 4 8 4 8 4 8 4

8 4 8 4 8 4 8 4

8 4 8 10 5 7 8 4

Appendix B.
Percentage of elements 4 and 8 for different ci
The following five figures show the graphics correspond-
ing to the percentage of elements equal to 4 and 8 in the
finite additive process corresponding to initial values ci
equal to 8, 2, 5, 11 and 4. In the first four cases, the
graphics are very similar and they clearly show that the
percentage of values 4 and 8 is globally increasing (al-
though there is a local minimum appearing at each level
preceding a change of period). This is no longer the case if

Fig. 12. Initial values equal to 2

Fig. 11. Initial values equal to 8
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the initial values ci are equal to 4. In this case, as in the
case of initial values ci different from 8, 2, 5 or 11, there is
no proliferation of elements 4 and 8 in the finite addition
process.

Fig. 13. Initial values equal to 5

Fig. 14. Initial values equal to 11

Fig. 15. Initial values equal to 4
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