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PERSPECTIVES

A
musical score is a graph whose vertical

axis represents pitch and whose hori-

zontal axis represents time. Given this

apparent simplicity, and the recognition since the

time of Pythagoras

that mathematical

principles under-

lie many musical

phenomena, it is

perhaps surprising

that our understanding of the mathematical

structure of the spaces in which musical phe-

nomena operate remains fragmentary. But as

Tymoczko shows on page 72 (1), even the pitch

domain is vastly more complex than it may

first appear.

Simply deciding what pitch structures are

appropriate and when two of them should be

considered “the same” can be difficult. Are notes

sharing the same name but separated by octaves,

such as two different C’s, to be regarded as the

same? What about notes that differ only enhar-

monically, such as C-sharp and D-flat? (These

are a single note on the piano but often serve two

very different musical purposes.) Harmonic

structures, moreover, are not single notes but

chords. If two of the voices forming a chord

exchange notes, is the resulting chord the same?

Should a four-note chord with two C’s be

reduced to a three-note chord with one C? Does

the tuning of the instrument matter? 

Musical sensibilities dictate different

answers to these questions depending on the

musical context and analytical objectives.

Music theorists classify chords in categories

such as major triads, grouping chords together

with their translations in some appropriate

space (in musical parlance, transposition), or in

some cases also with their reflections (inver-

sion). Western musicians are accustomed to a

discrete view of pitch space, corresponding to

the chromatic scale playable on the piano, but

the general problem requires consideration of a

larger space in which continuous pitch variation

is possible. The various equivalence relations

give rise to an assortment of quotient spaces

(obtained by “gluing together” the points con-

sidered equivalent) and group structures acting

on them. Tymoczko’s work presented here is

part of an ambitious project (2) that character-

izes these spaces in great generality and relates

the geometry of the spaces to the musical behav-

ior of the chords that inhabit them. 

Mathematical music theory, although terra

incognita to practicing musicians and even to

many professional music theorists, has in recent

years blossomed into a sizable and multifaceted

industry. Pitch-class set theory (3), the study of a

discrete 12-note quotient space, was developed as

a means of confronting the analytical challenges

posed by “post-tonal” music of the 20th century,

whose harmonic materials are more varied and

complex than those in most earlier music.

Diatonic set theory (4, 5) investigates the subtle

and beautiful relationship between the 12-note

chromatic scale and diatonic scales such as the C

major scale, with seven unequally spaced notes

per octave (a scale type of great importance in

many styles of music). Scale theory (6, 7) studies

structural properties of scales and their subscales

more broadly, allowing variation in both chro-

matic and diatonic cardinalities and occasionally

engaging considerations of tuning and acoustics.

In the past two decades, transformation

groups acting on musical spaces have proven to

be enormously fruitful models in a variety of set-

tings. Transformations are mathematical func-

tions that describe relationships between chords

(or other musical entities); they often form alge-

braic groups and bear intimate relation to musi-

cal notions of interval (8).

A particularly active area is neo-Riemannian

theory, which synthesizes modern group-theo-

retic techniques with inspiration drawn from the

work of the prolific German musicologist Hugo

Riemann (1849–1919) and his contemporaries.

In its basic form (9, 10), neo-Riemannian theory

investigates certain transformational relation-

ships among the 12 major and 12 minor triads in

ways that are algebraically elegant, musically

suggestive, and readily visualized in various

forms of a graph known as a Tonnetz (tone net-

work), in which the harmonic path traced by a

musical composition may be

plotted (see the figure). 

In this representation, the

mod-12 numbers in the back-

ground graph (dotted lines)

designate pitch classes (pitch-

es under the assumption of

octave equivalence), from C = 0

through B = 11. They are ar-

ranged by musically important

intervals: by perfect fifths

(interval 7) diagonally (red),

major thirds (interval 4) verti-

cally (blue), and minor thirds

(interval 3) horizontally (green).

This two-dimensional graph is

an unwrapped torus whose

right edge is identified with

the left and the top with the

bottom. The graph in the fore-

ground (solid arrows) depicts

major and minor triads (label-

ed in upper and lower case,

respectively), each positioned

within the triangle formed by

the corresponding pitch classes

in the background; for exam-

ple, the B-flat major triad com-

prises the notes B-flat (pitch

class 10), D (pitch class 2), and

F (pitch class 5). Each triad

shares two of its notes with

three different triads of the

opposite mode, to which it is

related by the transformations

P (parallel, red arrows), R

(relative, blue), and L [Leitton-

New mathematical approaches can elucidate

abstract musical spaces and help our

understanding of harmonic processes at

work in musical compositions.
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wechsel (leading tone exchange), green], which

generate a dihedral group of order 24, isomor-

phic to the group of rotations and reflections of a

12-sided polygon. Each transformation exhibits

efficient voice leading, preserving two pitch

classes and moving the third by a small interval;

arrows always cross dotted lines of the same

color. The Beethoven progression (highlighted

in the graph and expanded at the bottom of the

figure) unfolds a PL-cycle that circumnavigates

the torus, starting and ending in B-flat major, and

illustrates that the composite transformation

PLPLPL is the identity element of the group. 

The Tonnetz is only one of many possible

geometric representations of musical spaces

(11), and recent studies have extended neo-

Riemannian methods to larger and more pow-

erful transformation groups, to other chord

types besides triads, and in various other direc-

tions (12). In addition to group theory and

other algebraic techniques, ideas from graph

theory, combinatorics, geometry, and topology

have found musical application. The work of

Tymoczko et al. embraces all of these strate-

gies in an innovative and wide-ranging investi-

gation of chordal space. One of the great

attractions of this work is its generality: It aims

to describe what is in effect a “space of all

chords” wherein the Tonnetz and many other

familiar depictions of musical relationships

appear as subspaces, projections, and cross

sections. The spaces appearing here are of a

type known as orbifolds, as they possess singu-

larities—points where the geometry is not

locally Euclidean. (The appeal to the recent

topological concept of orbifolds is notable in a

field that relies mainly on mathematics of a

more classical vintage.) Other valuable contri-

butions include a fresh perspective on the elu-

sive notions of consonance and dissonance,

connections between symmetries of the spaces

and various musical practices, and many impli-

cations for the efficient chord-to-chord voice

leading that has long been considered a hall-

mark of successful composition.
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Two appendages of the fly, the haltere and the

wing, grow to very different sizes. Limited 

expression and mobility of a growth morphogen

is partly responsible for this difference.
Morphing into Shape
David L. Stern

DEVELOPMENTAL BIOLOGY

I
n 1917, British polymath D’Arcy Thompson

proposed that the shapes of different organ-

isms—say, a human and a chimpanzee—

could be imagined as simple alterations of the

same underlying pattern (1). Thompson

famously demonstrated this idea by overlaying

transformed Cartesian coordinates on drawings

of related animals. This holistic view of organ-

ism shape inspired the British biologist Julian

Huxley to point out that changes in shape can be

thought of most simply as differences in the rel-

ative sizes of different body parts, thus reducing

shape change to a more manageable problem (2).

On page 63 of this issue, Crickmore and Mann

(3) present a detailed analysis of the mechanisms

controlling one striking difference in the relative

size of two organs and uncover what may be a

general mechanism of shape evolution.

In segmented organisms, such as flies and

humans, similar structures that differ mainly in

size and shape are produced in several locations

along the main body axis. For example, humans

produce arms and legs, largely using many of the

same developmental mechanisms to pattern both

organs. In fruit flies, two flying appendages, the

wings and halteres (see the figure), also are built

largely by shared developmental mechanisms.

Halteres are delicate club-shaped organs that work

like gyroscopes during flight. They evolved about

225 million years ago from more traditional-look-

ing wings—such as the hind wings of butterflies—

and have undergone a drastic reduction in size. 

All of the differences between the wing and

the haltere are determined by expression of a sin-

gle “selector” gene called Ultrabithorax (Ubx),

which is expressed in all cells of the developing

haltere. When Ubx is experimentally removed

from these cells, a fully formed wing grows

instead of a haltere (4), revealing some of the

underlying similarities between the two flight

organs. Ubx somehow instructs other genes to

alter the growth and development of haltere

cells. In 1998, Weatherbee et al. (5) showed that

Ubx regulates a battery of genes in the haltere, but

until now we have not known precisely which

genes are regulated to cause the greatest differ-

ence between the wing and the haltere: their five-

fold difference in cell number in the adult. 

Crickmore and Mann focused their attention

on how Ubx influences the activity of decapen-

taplegic (dpp), a gene that is one of the key regu-

lators of wing growth. Dpp protein is produced

by cells that lie in a line that is several cells wide

along the middle of both the wing and the hal-

tere. The protein is then secreted from these cells

and diffuses to neighboring cells. When the Dpp

protein binds to its receptor, Thickveins (Tkv),

two things happen. First, a signal is triggered

within the cell and this signal is interpreted as

“grow more.” Second, the Dpp protein is cap-

tured by the cell and eventually destroyed. Thus,

Dpp protein diffuses away from the central cells

and forms a gradient whose extent and steepness

is controlled, at least in part, by the receptor Tkv. 

Crickmore and Mann first noted that the

width of the stripe of cells producing Dpp was

narrower in the haltere than in the wing, and the

level of expression per cell was also lower in the
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How is organ size controlled? The Ubx gene is
expressed in haltere cells, restricting the growth
effect of the morphogen Dpp during development.

Published by AAAS


