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Abstract

During the second half of the twentieth century, algebraic methods have been increasingly
recognised as powerful approaches to the formalisation of musical structures. This is evident
in the American music-theoretical tradition as well as in the European formalised approach to
music and musicology. We mention the mathematician and composer Milton Babbitt, the
Greek composer Iannis Xenakis and the Roumanian theoretician and composer Anatol Vieru,
that gave important impulses to the subject of our paper (Babbitt, 1960; Xenakis, 1971; Vieru,
1980). We also mention Gerald Balzano's original contribution (Balzano, 1980) and Dan
Tudor Vuza's model of Vieru's modal theory (Vuza, 1982-), as well the approaches of
Guerino Mazzola (Mazzola, 1990), Harald Fripertinger (Fripertinger, 1991) and Marc
Chemillier (Chemillier, 1990), who opened the path to a generalisation and implementation of
algebraic properties of musical structures.
This paper especially deals with the implementation of Vuza's model of periodic rhythm in
OpenMusic, an open source visual language for composition and music analysis developed by
IRCAM. This has been done as a part of a specific OM package called Zn, entirely based on
the algebraic properties of finite cyclic groups and their applications to music. A complete
catalogue of intervallic structures (up to transposition) is the starting point for a classification
of such structures by means of musically interesting algebraic properties (Olivier Messiaen's
limited transposition property, Milton Babbitt's all-combinatoriality, Anatol Vieru's
partitioning modal structures...), their generalisation for any n-tempered system and
reinterpretation in the rhythmic domain.
In this article we extend the idea of 'Regular Complementary Canons of Maximal Category'
(Andreatta, Agon , Chemillier, 1999) to rhythmic canons of various kinds having the property
of tiling musical space (See below).

Rhythmic Canons Tiling the Space

The present essay focuses on the implementation of a family of rhythmic canons having the
property of tiling musical time space. Before describing them in terms of an abstract model of
cyclic time, we view them as they may appear within a musical composition, in the 'free'
linear time, which has no cyclicity. Like in a melodic canon, one has several voices that may
enter one after the other until all voices are present. As in the case of a melodic canon all
voices are just copies of a ground voice that is suitably translated in the time axis. For
simplicity - but yet with respect to linear time - we suppose here, that all voices are extended
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ad infinitum. We further suppose that the ground voice is a periodic rhythm that we will call
the 'inner rhythm'. Following Vuza's definition, a periodic rhythm is an infinite subset R of the
rationals Q (marking the attack-points, or onsets) with R = R + d for a suitable period d.
Furthermore, R is supposed to be locally finite (i.e. the intersection of R with every time
segment [a, b] is finite). The period of a periodic rhythm R is the smallest positive rational
number dR satisfying R = R + dR. We also mention another important characteristic of a
periodic rhythm - its pulsation pR. It is defined as the greatest common divisor of all distances
between its attack points. Obviously, the pulsation pR of a periodic rhythm always divides its
period dR.

In order to include the idea of tiling time space into the definition of a rhythmic canon, we
need a further preparation: for each voice V of a canon we consider all rational numbers s
such that V = R + s. The collection S of all these translations for all voices is itself a periodic
rhythm (with period dS dividing dR) that works in fact as a 'meter' for the canon. Note that R
and S may have different pulsations pR and pS. The pulsation of a canon is hence to be
defined as the greatest common divisor p of the pulsations pR and pS.

The ratio n = dR/p is central in order to switch from linear time, modelled by rational numbers
to circular time modelled by residue classes of integers. The transition goes as follows: Let r
denote a fixed attack point within the inner rhythm R (If only one canon is being considered
one can always suppose r = 0). Then each attack point in any of the voices has the form r + t p
for a suitable integer t, i.e. the whole canon is contained in the sublattice r + p Z of Q.
Because everything is periodic with period dR, we can work with classes of points in linear
time and identify them with cyclic time points. Mathematically, one works with the factor
space (r + p Z) / dR Z which may be identified with Z/nZ where n = dR/p.

From now on, we consider the whole canon within Z/nZ. We study the projections of R and S
as well as those of the voices V (using the same notation) and formulate additional conditions
in order to characterise rhythmic canons. For practical reasons we also allow cycles n that are
multiples of dR/p.

Consider two subsets R and S of Z/nZ, the inner rhythm and the outer rhythm. Moreover
consider the Voices Vs = R + s, where s runs through S. The pair (R, S) is said to generate a
rhythmic tiling canon with the voices Vs if the following conditions are fulfilled:

1) The voices Vs cover entirely the cyclic group Z/nZ. With respect to the linear time this
means that the canon is completely tiling musical time space at the (regular) pulsation p.
2) The voices Vs are pairwise disjoint. This means that the voices are complementary.

Periods dR and dS and pulsations pR and pS of R and S are also defined in Z/nZ. Among all
canons having the properties 1) and 2) there is the special class of Regular Complementary
Canons of Maximal Category, shortly RCMC-Canons (Vuza, 1995). They have the following
additional property:

3) The periods pR and pS coincide.

Formally speaking, a RCMC-Canon is a factorisation of a cyclic group Z/nZ into two non
periodic subsets (where a subset M of Z/nZ is said to be periodic if there exists an element t in
Z/nZ such that t + M = M).
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This transition from free linear time to cyclic time, that has been implemented together with
all numerical invariants attached to a rhythm (period, number of attacks in a period, pulsation
of a rhythm, ...), reduces the difficulty of many operations on rhythms that are connected with
the construction of canons. For RCMC-canons, the implementation of Vuza's algorithm on
OpenMusic enables to calculate, for any period n, all possible inner and outer structures
associated with. It offers to understand the relationships between a period and the number of
voices for such a canon. For example, the smallest RCMC-canon has a period equal to 72 and
a number of voices equal to 6. This is the consequence of the algebraic property that no cyclic
group smaller than Z/72Z can be 'factorised' in two non-periodic subsets. We now use this
example to explain the idea of canon modulation.

Canon Modulation

In a compositional situation one might intend to work with more than just a single canon. In
that case it is interesting to investigate the inner syntagmatic structures of canons with respect
to the paradigmatic relations between several canons. The suggestive term 'canon modulation'
shall in fact refer to structural analogies in harmony. A typical modulatory effect in harmony
is forced by the re-interpretation of a chord in a new harmonic role.
This works with canons as follows:
Consider a canon consisting of 6 exemplars R + s of the inner rhythm R = (0  1  5  6  12  25
29  36  42  48  49  53) with starting points s in the outer rhythm S = (0 22 38 40 54 56). These
starting points s in S parameterise the rhythmic roles of the 6 copies of R within the canon. To
modulate into another canon within the same translation class means to modulate into a canon
with the same fundamental rhythm R, but S replaced by S + t for some t. Candidates for
rhythmical re-interpretation are hence the elements in the intersection of S and S + t. For t =
16 one has S1 = S + 16 = (16  38  54  56  70  0), i.e. there are 4 points in S that can be re-
interpreted within S1. The next programm in Openmusic calculates a cyclic sequence of
translations of a same outer rhythm S. Note that the number of translation (9 ) is equal to the
lcm of the period and t divided by t.

Fig. 1 Openmusic patch showing some translations of a same outer rhythm S. Each translated
outer rhythm has 4 elements in common with the previous one.
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The example in the figure 2 is constructed as a cyclic sequence of 3 modulations each being a
translation of interval 16 mod 72. The lenght of each rhythmic pattern (72 beats) takes up two
staffs. We can note that for each modulation two new voices appear replacing two of the six
original voices.

Fig. 2. Three modulations of a rhythmic canon with period 72.

Augmented rhythmic canons

While we have been concerned only with translations so far, we will now present a suitable
generalisation, that leads to canons with augmented voices. Consider two sequences, R and S,
of (invertible affine) symmetries [a,t](x) := a x + t modulo m*n, with R having m entries and
S having n. We call R the inner symmetries and S the outer symmetries. Each symmetry
consists of an augmentation with factor a and a translation with summand t. Let A(R) and
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A(S) denote the augmentation factors of the symmetries in R and S, and let T(R) and T(S)
denote the corresponding translations respectively. By R*S we denote the mxn - matrix of all
pairwise concatenations r*s where r runs through R and s runs through S. This matrix is a
candidate of what we call a "canon of symmetries": By |R*S| we denote the set consisting of
all entries in the matrix R*S. Now, the pair (R,S) is said to generate the symmetry canon R*S,
if T(|R*S|) = Z/m*nZ, i.e. if every translation mod n*m occurs exactly once among the
symmetries in |R*S|. The non-augmented case is characterised through A(R) = (1 ... 1) and
A(S) = (1... 1). Moreover, there is a duality of canons in the sense that S*R is the transposed
matrix of R*S. In the augmented situation, however, if we are given a symmetry-canon-
generating pair (R,S), it is generally not the case that the pair (S,R) is also canon-generating.
In case it is, one has T(|R*S|) = T(|S*R|) = Z/m*nZ, but this does not imply |R*S| = |S*R| nor
the even stronger condition, that R*S is the transposed matrix (S*R)^ of S*R. From the
musical point of view, it is very interesting to make use of the non-commutativity of
symmetries, i.e. to benefit from R*S being different from S*R^.
We say, that a symmetry-canon-generating pair (R,S) has a dual one, if |R*S| = |S*R|.

The following is a suggestive example in the case n = 4 and m = 3:
R = ([11, 0] [5, 1] [5, 3] [11 10]) and S = ([11, 0] [5, 1] [5, 5])

In this example one has:

[1, 0]   [7, 11]  [7, 7]
             [7, 1]   [1, 6]    [1, 2]
R*S = [7, 3]   [1, 8]    [1, 4]
              [1, 10] [7, 9]    [7, 5]

[1, 0]    [7, 1]  [7, 5]
             [7, 11]  [1, 6]  [1, 10]
(S*R)^ = [7, 9]    [1, 4]  [1, 8]
              [1, 2]    [7, 3]  [7, 7]]

That is, |R*S| = |S*R|, but R*S and (S*R)^ differ from each other in 10 of 12 entries.

Now we explain, how to obtain augmented canons from a symmetry canon. Apply the entries
of R to some onset x mod n*m, say x = 0, in order to generate a inner voice. In the example,
R*x = R*0 = (0 1 3 10). From R*x one generates the voices of the desired canon by applying
the entries of S to R*x. In the example, we obtain the augmented canon:
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(0  11  9   2)
             (1   6  4   3)
S*R*0 = (5  10  8   7)
              

Analogously, the dual canon turns out to be

( 0  11  7)
             ( 1   6  2)
R*S*0 = ( 3   8  4)
              (10   9  5

The composer Tom Johnson experimented with the idea to augment the voices in the sense of
playing them at different 'tempos'. (Johnson, 2001). In that case, the lowest common multiple
of A(S) defines a long cycle of repetitions of the inner m*n cycle that has to be filled by a
suitable number of copies of each voice.

In our example we start with 3 longer voices modulo 4*3*5*11 = 660:

V1 = (0 11 33 110 132 143 165 242 ... 528 539 561 638)
V2 = (1 6 16 51 61 66 76 111 ... 601 606 616 651)
V3 = (5 10 20 55 65 70 80 115 ... 605 610 620 655)

Take, for example, the pattern (0 11 33 110) that has augmentation 11 with respect to (0 1 3
10). In order to create the long voice V1 it must be repeated 5 times. The beginning of the
first repetition is 0+12*11=132 and so on.

In order to fill the whole cycle mod 660 one needs 11 copies of V1, 5 copies of V2 as well as
5 copies of V3. Hence, the whole augmented canon consists of 21 voices:
(V1, V1 + 12, ..., V1 + 120, V2, V2 + 12, ..., V1 + 48, V3, V3 + 12, ..., V3 + 48) everything
modulo 660. Similarly, its dual canon can be realised with 32 voices.
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Fig 3 Augmented canon with R = (0 1 3 10) and S = ([11, 0] [5, 1] [5, 5]).

Conclusions

The problem of constructing rhythmic canons tiling the space and the effective possibility to
solve it by means of a group-theoretical algorithm shows the usefulness of an algebraic-
oriented approach to the formalisation of musical structures. OpenMusic allows the graphical
manipulation of rhythmic operations leading to the complete description of two main families
of canons that we tried to present in a formal way: the RCMC-canons and the augmented
canons. It also shows how to deal with complex musical transformations, as the modulations
between different canons. There are suitable OM-Patches (visual programs) in order to
produce all examples presented in this paper and to generalise them according with
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compositional applications or music-theoretical investigations. Positive reactions of
composers already working in different compositional projects suggest looking for other
musical transformations (like generalised symmetries), including an extension of the model in
the pitch domain. This is part of a more general OpenMusic package called Zn that is entirely
based on the algebraic properties of (cyclic) groups and their application to music.
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