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David Lewin and maximally even sets

EMMANUEL AMIOT*

1 rue du Centre, F 66570 St Nazaire, France

(Received 4 July 2006; in final form 27 August 2007 )

David Lewin originated an impressive number of new ideas in musical formalized analysis. This
paper formally proves and expands one of the numerous innovative ideas published by Ian
Quinn in his dissertation, to the import that Lewin might have invented the much later notion
of Maximally Even Sets with but a small extension of his very first published idea, where he
made use of Discrete Fourier Transform (DFT) to investigate the intervallic differences between
two pc-sets. Many aspects of Maximally Even Sets (ME sets) and, more generally, of generated
scales, appear obvious from this original starting point, which deserves, in our opinion, to
become standard. In order to vindicate this opinion, we develop a complete classification of
ME sets starting from this new definition. As a pleasant by-product we mention a neat proof of
the hexachord theorem, which might have been the motivation for Lewin’s use of DFT in pc-
sets in the first place. The nice inclusion property between a ME set and its complement (up to
translation) is also developed, as occurs in actual music.

Keywords: Maximally even sets; Discrete Fourier transform; David Lewin

1. Notation

. The cyclic group of order c is Zc. It models a chromatic universe with c pitch classes,

and it is, as usual, pictured as a regular polygon on the unit circle. In most actual

examples, c will be equal to 12.

. x/y indicates the integer x divides y. For the sake of readability we generally use the

same notation for integers and their residue classes, the context usually making

clear whether a computation occurs in Z or in Zc.

. The greatest common divisor of x, y is denoted by gcd (x,y).

. We will use indiscriminately ‘Fourier transform’, ‘discrete Fourier transform’, or

‘DFT’.

. The bracket notation �. . .� is for the floor function.

. The symbol X�Y indicates ‘all possible sums of an element of X and an element of

Y’, each result being obtained in a unique way.
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2. Fourier transform of pc-sets

Part of our claim that Fourier transforms provide the best way to define Maximally

Even Sets relies on the great musical significance of the DFT of pc-sets in general. This
was salient in [1] for the special pc-sets that Quinn collected as ‘prototypes’, among

which are the ME sets; this has since been confirmed by many other cases. We thus feel

it important to spend some time on the general DFT of pc-sets before turning to the

main topic, that is its application to ME sets proper.

2.1. History

In a short paper, Lewin [2] investigated intervallic relationships between two ‘note

collections’ and proved that, except in several listed exceptional cases, the interval

function between the ‘note collections’ enables us to reconstruct one from the other. He

cursorily motivates the five exceptional cases by a final note, wherein he puts forward
that

1. the interval function is a convolution product (of characteristic functions), and
2. the Fourier transform of such a product is the ordinary product of Fourier

transforms.

This shows that (when the Fourier transform of the characteristic function of a pc-set

A is non-vanishing) knowledge of A and of the interval function from A to a pc-set B

yields complete knowledge of the characteristic function of B.

Defining the interval function between A, BƒZc as

IFunc(A;B)(t)�Cardf(a; b) � A�B; b�a�tg;
and the characteristic function of X as

1X (t)�
1; if t � X ;
0; iftQX ;

�

IFunc appears immediately as the convolution product of the characteristic functions

of�A and B:

1�A�1B:t�
X
k �Zc

1�A(k)1B(t�k)�
X
k �Zc

1A(k)1B(t�k)�IFunc(A;B)(t);

as 1A(k)1B(t�k) is nil except when k �A and t�k �B. Hence, from the general formula

for the Fourier transform of a convolution product,

F (IFunc(A;B))�F (1�A)�F (1B);

where F (f ) is the discrete Fourier transform of map f.

We will not quote the formula given by Lewin himself, as it is hardly understandable:

his notation is undefined and the computations extremely cursory. Of course, this is not

for lack of rigour: as the following quotation suggests, Lewin did not really hope to be

understood when making use of mathematics.

The mathematical reasoning by which I arrived at this result is not communicable

to a reader who does not have considerable mathematical training. For those who

have such a training, I append a sketch of the proof: consider the group algebra

[ . . .] [2]

158 E. Amiot
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Reading Lewin’s paper gives one a strong feeling that he wrote as little as possible on

the mathematical tools that underlay his results. Indeed, what little he mentioned did

arouse some readers to righteous ire in the next issue of JMT.

Nowadays, such a ‘considerable mathematical training’ will be considered basic by
many readers of this journal; for instance, Vuza made essential use of the above

equation in the 1980s in the course of his seminal work on rhythmic canons (see [3],

Lemma 1.9 sqq), wherein he stressed the importance of Lewin’s use of the DFT of

characteristic functions.

As we will endeavour to prove, this approach enables us to define ME sets (in equal

temperament) in a way perhaps more suggestive, and even intuitive, than historical/

usual definitions.

2.2. A quick summary of Fourier transforms of subsets of Zc

2.2.1. First moves

DEFINITION 2.1 Following Lewin, we will define the Fourier transform of a pc-set

A �Zc as the Fourier transform of its characteristic function 1A:

FA�F (1A):t�
X
k �A

e�2ipkt=c:

The values FA(t); t �Zc, are the Fourier coefficients.
1A is a map from Zc to C, the DFT of which is well defined for t mod c as

FA(t�c)�FA(t):
The DFT of a single pc a is a single exponential function t�e�2ipat=c; and the DFT of

the whole chromatic scale is FZc
(t)�ac�1

k�0 e�2ipkt=c�0 for all t �Zc except t�0.

But FA�FZc"A�FZc
; hence:

LEMMA 2.2 The Fourier transforms of a pc-set A and of its complement Zc\A have

opposite values, except when t�0:

� t � Zc; t"0; FZc"A(t)��FA(t):

Furthermore, we obtain FZc"A(0)�FA(0) if and only if Card A�c/2, as:

LEMMA 2.3 The Fourier transform of A in 0 is equal to the cardinality of A:

FA(0)�Card A:

For other coefficients, taking into account Lemma 2.2 and the triangular inequality,

one obtains:

LEMMA 2.4 /�t � Zc; t"0[½FA(t)½5min(d; c�d):

The DFT FA characterizes the pc-set A by the following identity (inverse Fourier

transform):

1A(t)�
1

c

X
k �Zc

e�2iktp=cFA(k);

which is easily derived from the definition of FA: Thus, the DFT yields the same

information as the pc-set, but in a form that stresses musically relevant concepts. More

precisely, there is preservation of the absolute value of the DFT under all usual* musical

transformations. For instance,

* Less usual transformations, such as t�7t mod 12; permute the Fourier coefficients

159David Lewin and maximally even sets
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THEOREM 2.5 The length of the Fourier transform, i.e. the map ½FA½:t�½FA(t)½; is

invariant by (musical) transposition or inversion of the pc-set A: More precisely, for any

p; t � Zc:

. /FA�p(t)�e�2ippt=c FA(t) (invariance under transposition),

. /F�A(t)�FA(t) (invariance under inversion),

and also under complementation (except in 0 when Card A"c/2).

Let us state that A, B are Lewin-related when maps jFAj and jFBj are identical. This

is the case whenever A, B are exchanged by the T/I group of musical transformations,

but the reverse is not true (see below). All the same, the map jFAj appears to be a very

good snapshot of the relevant musical information of a given pc-set: by dropping the

information of the phase of the Fourier coefficients and retaining only the absolute

value, we seem to keep the best part, in a way reminiscent of the Helmholtzian approach

of sound, which showed that the phase of a sine wave can (mostly) be neglected, as the

frequency is the part that generates the perception of pitch. This strongly vindicates,

and to some measure extends, Quinn’s [1] notion of ‘chord quality’, which appears in

the last section of his dissertation with a value that is precisely jFA(d)j (d�Card A),

and is measured in ‘lewins’.

As a nice application of these invariance properties, we may characterize periodic

subsets:

PROPOSITION 2.6 /AƒZc is periodic, meaning A�t�A for some t, if and only if

FA(t)�0 except when t belongs to some subgroup of Zc:

The proof is left to the reader (see also Supplementary 2, available via the

Multimedia link on the online article webpage).

Remark 1

. Some may well claim that this proposition is obvious: a subset A � Zc is the set

of residues of a periodic set ÂƒZ; with period c. This periodicity means

precisely that 1A (or 1Â, with the same formula) can be expressed as a

combination of c exponential functions, t�e2ipkt=c: this is the inverse Fourier

transform formula and the very reason Fourier transform works. The existence

of a smaller period m½c means that m exponential functions only are sufficient,

e.g. t�e2ipkt=m:
. In Z12; the octatonic scale (0 1 3 4 6 7 9 10) is an interesting example of such a

periodic subset. Its group of periods is 3 Z12: Periodic subsets of Z12 are well known

as Messiaen’s Modes à Transposition Limitées.

2.2.2. DFT and intervallic content. The following theorem is based on the idea of

interpreting the multiplicities of pc intervals within a pc-set A as complex numbers

(such as we did with the values 0 and 1 of the characteristic functions 1A). The interval

content is treated as a function from Zc to the complex numbers and is defined on the c

(oriented) possible intervals.*

* Usually, textbooks define interval content for T/I classes of intervals.

160 E. Amiot
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THEOREM 2.7 (Lewin’s Lemma) Define the interval content of a subset A � Zc as

ICA(k)�IFunc(A;A)(k)�Cardf(i; j) � A2; i� j�kg:

Then the DFT of the intervallic content is equal to the square of the length of the DFT of

the set:

F (ICA)� ½FA½
2:

Proof: Let A be a pc-set; as Lewin observed (for the more general interval function

between two subsets), the ‘intervallic function’ from pc-set A to itself is* the

convolution product

ICA�1�A�1A:

But as we recalled earlier, the Fourier transform of a convolution product is the

ordinary product of Fourier transforms, i.e. (using the last part of Theorem 2.5)

F (ICA)�FA�F�A�FA�FA� ½FA½
2:

I

Note that the Fourier transform of any IC is a real positive-valued function, an

uncommon occurrence among the DFT of integer-valued functions.$ Now we see that

the Lewin relation is the equivalence closure of the Z-relation.

PROPOSITION 2.8 /A;BƒZc are Lewin-related (/jFAj�jFBj) if and only if they share the

same interval content.

The equivalence stands because jFAj holds all the information concerning ICA by

inverse Fourier transform%*this case follows directly from Theorem 2.5.

From this we also obtain a very short proof of the hexachord theorem, one of the

most striking mathematical results in music theory.

At the time he published his first paper, Lewin had come to work with Milton

Babbitt, who was trying to prove the hexachord theorem (see figure S1 in

Supplementary 2, available online).

THEOREM 2.9 If two hexachords (i.e. six note subsets of Z12) are complementary pc-

sets in Z12, then they share the same intervallic content (same numbers of same intervals).

A simple derivation of this theorem in Zc for any even c ensues from the elementary

properties of the DFT already listed.

* This relation has been quoted in a musical contex, by several authors: for Vuza [3] it might be the most
important single contribution by David Lewin: ‘It is therefore my conviction that in the near future music
theory will integrate convolution and fourier transform as effective investigation tools, music theorists being
able to use them in the same way as presently they make use of groups, homomorphisms, group actions, and
so forth’; it also appears, for instance, in the recent paper by Jedrzejewski [4].

$ The DFT of a real-valued function is non-real in general, it only verifies F (f )(�t)�F (f )(t):
% Note that we endeavour here to define a true equivalence relation, contrarily to the fortean tradition

which excludes the ‘easy case’, when A, B are T/I related. This traditional position is weird; another argument
against it is that some classes of ‘Z-related’. Chords are indeed exchanged through the action of a group larger
than T/I, such as the two famous all-intervals (0 1 4 6) and (0 1 3 6) in Z12; which are affine-related (see [5], pp.
102 sqq)*and this is a general situation, as any affine transform of an all-interval set will be Z-related. Jon
Wild pointed out to me that the reverse is false.

161David Lewin and maximally even sets
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Proof: If A � Zc has c/2 elements, then, as mentioned above, FZc"A��FA: Therefore,

F (ICA)� ½FA½
2� ½FZc"A½

2�F (ICZc"A):

Hence (by inverse DFT), ICA�ICZc"A: I

As far as I know, this short proof was first published in [6] after I mentioned it during
the John Clough Memorial Symposium (Chicago, July 2005). But considering the

coincidence in time of Lewin’s first paper and his meeting with Babbitt, it is almost

certain that he was aware of it. Perhaps the harsh reactions to the mathematics in his

first paper explain why he did not publish it. It is left to the reader, as a good and

entertaining exercise, to prove in the same way the Generalized Hexachord Theorem, as

expounded in [4,5,7], and by many others.

3. Maximally even sets and their Fourier transforms

The attribute ‘maximally even’ applies to pitch class sets, which*in comparison to all

pitch class sets of the same cardinality*are distributed as evenly as possible within Zc.

This is obviously the case for totally regular sets, which exist only for cardinalities d

dividing the number c of pitch classes. The opposite special case*where d and c are

mutually coprime*was well studied in [8]. The point of departure for the extensive study

of the general case in [9] is an explicit construction of generalized diatonic sets in [8]. The

formula for this construction was later termed the J-function. It departs from the

arithmetic series of rational numbers 0, c/d, . . . , (d�1) c/d and ‘digitizes’ them within Zc

in terms of the residue classes of the floor values of these ratios mod c: 0; �c=d � ; . . . ;
/�(d�1)(c=d)� mod c: The J-function includes a translation parameter a:

Ja
c;d : k�

kc � a

d

$ %
; k�0 . . . d�1:

In this section we accomplish the theory of maximally even sets with an alternative

definition via Fourier coefficients and derive the main known results directly from this

definition. Our ‘Lewinesque’ definition matches the semantics of the term ‘maximally

even’ better than the explicit J-function, which lacks the aspect of comparison. See

Supplementary 1, available online, for a compilation of facts and arguments around

maximally even sets, or the recent publication [10].

3.1. An illuminating remark by Ian Quinn

Discussing a general typology of chords (or pc-sets), Ian Quinn noticed [1] (3.2.1) that

what he calls ‘generic prototypes’ are the ME sets, and that they share an extremal

property in terms of Fourier ‘weight’.* This is what we will now adopt as a definition;

Quinn’s impressive survey and classification of the landscape of all chords was not
focused exclusively on ME sets, and as his redaction voluntarily avoided, to quote him,

the ‘stultifying’ quality inherent to dry mathematical generalizations, he left room for a

formal proof that this definition is equivalent to the traditional ones (we will prove the

* ‘We note that generic prototypicality may be interpreted as maximal imbalance on the associated Fourier
balance*at least to the extent that a generic prototype tips its associated Fourier balance more than any other
chord of the same cardinality possibly can’.

162 E. Amiot
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following definition is equivalent to the classical description, up to and including the

formula with J-functions; see [9,10] for equivalence between all previous definitions).

Moreover, and this is in itself sufficient justification for what follows, many

properties of ME sets will now appear obvious from this starting point. Finally, the
only quantity involved is jFAj; the invariant of the Lewin relation, which is, as we have

seen, in many ways the most natural musical invariant for pc-sets.

3.2. A Lewinesque definition of ME sets and derived properties

DEFINITION 3.1 The pc-set AƒZc, with cardinality d, is a ME set, if the number

jFA(d)j is maximal among the values jFX (d)j for all pc-sets X with cardinality d:

�X ƒZc; CardX �d[½FA(d)½] ½FX (d)½:

As the number of pc-sets is finite, a solution must exist. Remember that jFA(d)j �
(F (ICA)(d))1=2 (see section 2). Therefore, maximal evenness is also manifest in the DFT

of the interval vector as a maximality condition for F (ICA)(d):
From the invariance of the ‘Fourier profile’ jFAj under musical operations (see

Theorem 2.5 and Lemma 2.2 concerning complementation) we readily obtain the

following proposition.

PROPOSITION 3.2 The transposition, inversion and complementation of a ME set still

yield a ME set.

3.3. Notation and maps

Throughout the remainder of this section let m�gcd(d,c) denote the greatest common

divisor of d and c and let d?�d/m and c?�c/m denote the associated quotients.

Figure 1. Notations and morphisms.

163David Lewin and maximally even sets
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Let 8 d :Zc 0 m Zc and 8 d? : Zc? 0 Zc? denote the linear multiplication maps 8 d(l)�
d �l and 8 d?(k)�d? �k; respectively. Further, let pc?:Zc 0 Zc? denote the reduction of the

finer residue classes mod c to the coarser residue classes mod c?, i.e. pc?(l)� l mod c?:
Finally, let im : mZc0Zc? denote the isomorphism identifying the submodule mZc of Zc

with Zc?:im(mk):�k mod c?:
Note that the multiplication by d is a concatenation of the multiplications by m and

by d?. Thus, if we concatenate the maps 8d and im into a map pd :� im(8 d ; we see that

the map im ‘undoes’ the previous multiplication by m. Therefore, im(8 d �8 d ?(pc?;
which means that the diagram shown in figure 1 commutes.

3.4. Pitch class sets and related multisets

Our goal is to translate the maximality condition for the absolute value jFA(d)j of

the dth Fourier coefficient for pc-sets A into an equivalent maximality condition for the

absolute value jFA?(1)j for associated pc-multisets A?. To that end we investigate

the image of a pc-set AƒZc under the map pd in a refined way. The refinement of the
image pd (A) is a multiset that controls the multiplicity of each single image l�pd (k) �

Zc? for k � A, i.e. the cardinality of the pre-image p�1
d (l)S A: A suitable definition of the

concept of a multiset is given in terms of a generalized concept of a characteristic

function.

Recall that the ordinary characteristic function 1A:Zc 0 f0; 1gƒC serves as an

alternative representation of the set A. In this way, the set of subsets of Zc appear as the

subspace of complex-valued functions on Zc, with the condition that the values are only

0,1. The Fourier transform is an automorphism of this last algebra.
As an extrapolation of this idea, we consider the function nd

A : Zc? 0 f0; . . . ;mgƒC

with

nd
A(l):�Card(p�1

d (l)SA)�Card(fk � Ajd �k� lg):

The multiset associated with A consists of the elements of pd (A), each being repeated

with multiplicity nd
A(l): For the non-elements of pd (A), i.e. for all l �Zc?\pd (A), the

multiplicity vanishes: nd
A(l)�0: In order to manipulate this multiset like an ordinary

set, we attach the multiplicity of each element as a superscript: A?:�fn
d
A

(l)
ljl � pd(A)g:

For instance, the multiset associated with c�12, d�3 and the regular set (augmented

triad) A�f0; 4; 8gƒZ12 is the multi-singleton set A?�f3
0g (with 0 � Z4): The multiset

associated with c�12, d�8 and the octatonic set A�f0; 1; 3; 4; 6; 7; 9; 10gƒZ12 is

A?�f4
0;4 2g (with 0; 2 � Z3):

The straightforward following lemma relates the dth Fourier coefficient of the set A

to the first Fourier coefficient of the function nd
A: When the meaning of A? is clear, we

may adopt the notation from pc-sets and write FA?:�F (nd
A) and call this the Fourier

transform of the multiset A?.

LEMMA 3.3 With the above notation we have FA(d)�FA?(1):

Proof: We need to re-interpret a Fourier coefficient defined over Zc as a Fourier

coefficient over Zc?:

FA(d)�
X
k �A

e�2pikd=c�
X
k �A

e�2pikd ?=c? �
X
l �Zc?

X
k �ASp�1

d
(l)

e�2pil=c? �
X
l �Zc?

nd
A(l)e�2pil=c?

�FA?(1): I

164 E. Amiot
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In order to faithfully translate the maximality conditions from sets in Zc to multisets

in Zc?; we need to determine the correct collection of multisets involved. The following

definition and lemma clarify this issue.

DEFINITION 3.4 A m½d-multiset in Zc? is a function j : Zc? 0 f0; . . . ;mg satisfying

ak �Zc?
j(k)�d:

LEMMA 3.5 m½d-multisets are exactly the multisets associated with a subset A with

cardinality d.

Proof: We represent Zc as a disjoint union of the pre-images p�1
d (l) of

single residue classes l � Zc? under the surjective map pd, i.e.

/Zc�p�1
d (0)�p�1

d (1)� � � ��p�1
d (c?�1); and we list the m elements of each of these

pre-images in some arbitrary way: p�1
d (l):�fkl;1; . . . ; kl;mg for each l � Zc?: Now for

A�fk0;1; . . . ; k0;j(0)g�fk1;1; . . . ; k1;j(1)g� � � ��fkc?�1;1; . . . ; kc?�1;j(c?)g; we easily see that

nd
A�j:

Conversely, the kernel of 8d is the subgroup c?Zc, with m elements, so the multiplicity

of any element of pd (A) is at most d. And, of course, the sum of multiplicities is Card

A�d. I

COROLLARY 3.6 The absolute value ½/FA(d)½ of the dth Fourier coefficient of a pc-set

AƒZc is maximal among the values ½/FX(d)½ for all d-element subsets X ƒZc iff the

absolute value ½FA?(1)½� ½F (nd
A)(1)½ of the first Fourier coefficient of the associated

multiset A? is maximal among the values ½/F(j)½ for all m½d-multisets j in Zc?:

3.5. Huddling Lemma

This subsection is dedicated to the analysis of the maximality condition for the absolute

values of the first Fourier coefficients for multisets associated with pc-sets A.

LEMMA 3.7 (Huddling Lemma) The absolute value of the first Fourier coefficient

½/F(z)(1)½ of an m½d-multiset A? with characteristic function z is maximal among the values/

½F(j)(1)½ for all m½d-multisets j in Zc? iff j is a contiguous cluster of d? pitch classes of

multiplicity m, i.e. iff there is a l0 �Zc? such that z is of the form

Figure 2. All exponentials superimposed.

165David Lewin and maximally even sets
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z(l)�
m; for l� l0 � f0; . . . ; d?�1g;
0; for l� l0 � fd?; . . . ; c?�1g:

�

For illustration, we point out the two simple subcases.

. When c,d are coprime, pd is bijective and A?�dA is an ordinary subset of Zc: The

definition of ME sets, corollary 3.6 and the Huddling Lemma above mean that A? is

a chromatic cluster, i.e. some translate of {1,2, . . . ,d}. Hence, A�d�1A? is an
arithmetic sequence with ratio d�1, as has been well known since [8]. The seminal

example is the major scale, generated by a cycle of fifths.

. When d is a divisor of c, then A? is a multi-singleton set {da?}, as then the value

½/F(z)(1)½�d is clearly maximal*here the Huddling Lemma is obvious. This means

that A is a saturated pre-image, i.e. A�p�1
d (a?)�a�c?Zc�a�ker pd ; with

pd (a)�a?, i.e. A is a regular polygon: see figure 2.*

Now for the technical proof of the Huddling Lemma. It relies basically on the very old

geometrical fact that the sum of two vectors making an acute angle is greater than both.

Proof: We consider an m½d-multiset A? in Zc?, such that j does not have the contiguous

form given in the lemma, and prove that ½/F(j)(1)½�½/FA?(1)½ is not maximal; the

heuristic idea is that ‘filling in the holes’ increases the length of the sum.

Let us enumerate the elements of A? as r real integers in some increasing order:

k1Bk2B � � � krBk1�c (the span kr�k1 could be chosen minimal, but it is sufficient
that it be Bc). Assume that A? is not a translate of {m0,m1,m2, . . .md�1}, then there

must be some element k �[k1, kr] with multiplicity 05j(k)Bm (and r	d?).

. Say there is such a k with multiplicity Bm, aka a ‘hole’, with k1BkBkr; I claim

that ½/FA?(1)½ strictly increases when (say) k1 is replaced by k, i.e. when j(k) is

incremented while j(k1) is decremented: in so doing, the sum S�FA?(1)�

Figure 3. Maximizing the sum on a multiset.

* This shows that the Lewinesque definition aims at looking for the best approximation to a regular
polygon*obviously, it will be only an approximation when d does not divide c, for instance there is no regular
heptagon inside the 12 note universe. Indeed, the solution (the major scale A�(0 2 4 5 7 9 11) or any translate

thereof) achieves ½FA(7)½�2�
ffiffiffi
3

p
:3:73; still far from the unattainable value 7 (ot rather 5, for the

complement), but still the largest value possible.
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al �Zc
j(l)e�2ipl=c? is replaced by S?�S�e�2ipk=c?�e�2ipk1=c?: If S�0, then clearly

½S?½	½S½. If not, let S�re�iu. We can choose a determination of u mod 2p (or

rather choose the ki’s) such that 2pk1/c?BuB2pkr/c?, and I will assume that u is

closer to 2pk1 (if not, the proof is the same but with kr), i.e. 0Bu�2pk1/c?Bp.
As V � e�2ipk=c? � e� 2 i pk1 = c? � 2sin f [p (k � k1 ) ]=c?g e� i p ( k�k1 )= c?� i p = 2 and

0Bu�p(k�k1)/c?�p/2Bp/2 by our assumption that u is ‘close’ to 2pk1/c?, the

vectors S,V with directions, respectively, �u and �p(k�k1)/c?�p/2 make an acute

angle. Hence, their sum S? is longer than both, qed (see figure 3). This can be done

until no ‘holes’ remain between k1 and kr, i.e. j(k)�m for all k1BkBkr.

. Eventually, we reach the last case: the vector of multiplicities must then be

j(k1)�m; j(k2)�m�j(k3)� � � �j(kd);j(kd�1)�m�m:

Say, for instance, m]m�m. Then the direction u of

FA?(1)�re�iu�m
Xd�1

k�1

e�2ipk=c�(m�m)(e�2ipk1=c�e�2ipkd�1=c)

lies between 2pk1/c and the mean value p(k1�kd�1)/c (convexity). Hence, as above,

moving one point from position kd�1 to position k1, i.e. incrementing j(k1) while

decrementing j(kd), i.e. adding e�2ipk
1
/c?� e�2ipk

d�1
/c? to S, increases its length, as the

two vectors makes an acute angle.

Iteration of this process increases S strictly until it is no longer possible, which occurs

when A? consists of d? consecutive points with multiplicity m. I

Remember that, for m�1, the maximal solution is simply a chromatic cluster: A? is

an ordinary set with d consecutive points.

3.6. Maximally even sets revisited

It remains to be justified that our Lewinesque definition of maximal evenness is indeed

equivalent to the traditional definitions. In the following subsection we recover the

definition via J-functions. In the present subsection we explore the pre-images p�1
d (z) of

contiguous clusters as described in the Huddling Lemma. This leads to the well-know

taxonomy of maximally even sets.

. The regular polygon type. When m�d and hence d?�1, as mentioned above the
associated multiset nd

A is a multi-singleton fm
l0g of multiplicity m which corresponds

to the complete pre-image p�1
d (l0)�k0�f0; c?; . . . ; (m�1)c?g for some k0 � p

�1
d (l0)

and hence is a regular polygon in Zc:
. The Clough/Myerson type. When m�1 and hence c�c? the map pd �8 d �8 d? is an

automorphism of Zc and the associated multiset nd
A is the characteristic function of

an ordinary cluster of cardinality d coprime with c. We find again the result of [8],

e.g. that maximally even sets of cardinality d which are coprime with the chromatic

cardinality c are generated by the inverse d�1 mod c.*

. The general Clough/Douthett type. From our construction,

* The contiguous order of cluster A?�lo�{0, . . . ,d�1} represent the generation order of ME set
A�lod�1�{0,d�1, . . . ,(d�1)d�1}.
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A�p�1
d (fm

l0; . . .m ld?�1g)�p�1
d (ml0)� � � �p�1

d (mld?�1)�(a0�m Zc)� � � � (ad?�1�m Zc)

�fa0; . . . ad?�1g�m Zc;

meaning, in accordance with the known facts from [9], that general maximally even sets

are Cartesian products of the two previous types, i.e. bundles of regular polygons which
are anchored in a Clough/Myerson type maximally even set. For example, with the

octatonic scale, we have A?�f4
0;

4
2g; with pre-images 0, 3, 6, 9 for 4 and 1, 4, 7, 11 for

2: A�{0,1}�{0,3,6,9}�B�3Z12.

There is a nice Fourier interpretation of this last and most complicated case: as seen

above, A is periodic with period c?.
Let us introduce for clarity

B�f0; 1 . . . c?�1gSA�f0; 1 . . . c?�1gSp�1
d (A?)�pc?(A)ƒZc?:

We have shown that:

THEOREM 3.8 A is a ME set in Zc if and only if A�B�m Zc and B is a ME set in Zc?.

This is pleasantly related to the following simple equation between Fourier

transforms.

Remark If A�B�m Zc; then /FA(d)�m/FB(d?) (B being considered as a subset of Zc?).

Figure 4. Maximizing for B is maximizing for A.
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This number is of maximal length if and only if B is a ME set in Zc’, which is precisely

the above theorem.

Indeed, the Fourier coefficients of B are (up to the m factor) the meaningful values of

/FA(d), as when A is c?-periodic, all coefficients /FA(k) vanish for k not a multiple of c?
(Proposition 2.6). This is clearly visible in figure 4, with Fourier transforms of the ME

set (0 2 4) in Z7 and its counterpart (0 2 4)�(0 7 14 21) in Z28. This argument seems to

us more illuminating than purely algebraic computations, as it enhances the fact that

the ‘characteristic domain’ B concentrates its energy in the sense of the Huddling

Lemma, in order for A to do the same.

We obtain from this the complete enumeration of ME sets, which is developed at the

end of Supplementary 1, available online.

3.7. Expression by way of J-functions

For the sake of completeness we add this technical but quick derivation of all ME sets.

THEOREM 3.9 Let AƒZc be the pc-set whose elements are given by the J-function, i.e.

A�fJa
c;d(k)jk�0 . . . d�1g�

�
kc � a

d

$ %
; k�0 . . . d�1

�
:

Then pd (A) is a contiguous cluster of d? pitch classes of multiplicity m, i.e. A is maximally

even.

Proof: We compute values of the floor function in Z; but interpret the results in Zc

and Zc?: Further, we assume a�0 w.l.o.g.

From the equations

(k � d?)c

d

$ %
�

kc

d
�

d?c

d

$ %
�

kc

d

$ %
�c?;

we conclude first that A is a disjoint union of m translates of the set

/B�f�kc=d � ; k�0 . . . d?�1g; with multiples of c? as displacements, i.e. A�B�c?Zc:
Thus, each element in the multiset pd (A) has multiplicity m. It remains to be shown

that pd (B) is a contiguous cluster.

We will use the fact that the fractional parts of the rational numbers kc/d�kc?/d? take

d? different values when k runs from 0 to d?�1. This is true because c? and d? are co-
prime. To see this, choose 05k, k?Bd?:

k?c?

d?
�

kc?

d?
�n � Z[(k?�k)c?�d?n[d?j(k?�k)[k?�k; since ½k?�k½Bd?:

From the d? different fractional parts 05kc?=d?� �kc?=d?�B1 we obtain d?
different integers 05kc?�d?�kc?=d?�5d?�1; which are in fact all the integers

0; . . . ; d?: Reduction of the elements kc?�d?�kc?=d?� modulo c? yields the set

�pd (B)��d ?B mod c?:
Thus, pd(B) is a cluster, namely pd(B)�fc?�d?�1; c?�d?�2; . . . ; c?g: I
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4. Generated sets and groups generated by a set

The Fourier approach offers further directions of investigation. Here we restrict

ourselves to maximality conditions for the absolute values for the Fourier coefficients.
As we have seen in section 3, it is the index d �Zc, i.e. the residue class of the chords

cardinality, to which the maximality condition for maximal evenness is attached.

What about the other coefficients? It is illuminating to investigate the maximal

Fourier coefficients among invertible indices t � Z+
c as well as among all non-zero indices

t � Zcnf0g: In the definition below we exclude the index t�0; because the maximum

½FA(0)½�d is shared by all sets A with d elements.

DEFINITION 4.1 For any pitch class set A �Zc let kFAk�maxt �Zc;t"0½FA(t)½ and

kFAk
��maxt �Z+

c
½FA(t)½ be, respectively, the maximal absolute value among all Fourier

coefficients at non-zero indices, and the maximal value of Fourier coefficients at

invertible indices.

First notice that if f : x�a x�b; a � Zc?; is a bijective affine map, then for any

subset A

kF f (A)k
��kFAk

�
; as �t �Zc ½F f (A)(t)½� ½FA(a t)½

(the Fourier coefficients are permuted by affine maps). The same for kFAk: these

quantities are invariant on affine orbits of subsets.
There are three plausible values for the maximum kFAk or kF �

Ak: The first is the

value characterizing ME sets.

PROPOSITION 4.2 Fix a cardinality d coprime with c. Let m(c; d)� ½FB(d)½ for some

(c; d) ME set B. For all d-element subsets of AƒZc, we find that kFAk
�
5m(c; d).

The equality occurs iff A�r �B�t for suitable r � Z+
c and t �Zc, or, equivalently,

/A�a0�f0; f ; . . . ; (d�1)f g is generated by a residue f �Z+
c (coprime with c).

The second plausible value is sin(p d=c)=sin(p=c); which is equal to ½FC(1)½ for C a

cluster, e.g. C�f1; 2 . . . dg: The affine images of C are the generated scales with

cardinality d, and we have a similar proposition.

PROPOSITION 4.3 Let r(c; d)� ½Ff1;2...dg(1)½. For all d-element subsets of AƒZc, we find

that kFAk
�
5r(c; d). The equality kFAk

��r(c; d) occurs if and only if

A�a0�f0; f ; . . . ; (d�1)f g, i.e. A is generated by a residue f �Z+
c coprime with c.

The last interesting value is d itself, as we have seen that FA(t)½5d �t: First of all,

remember that from Lemma 2.2, kFZcnAk�kFAk is at most the lowest of d, c�d, so it is

sufficient to work out the case d5c/2: dealing with a ‘large’ ME set (d	c/2) is

equivalent to dealing with a ‘small’ one (d5c/2), its complement. Henceforth we will

assume the latter case.

PROPOSITION 4.4 kFAk�d iff A is contained in a regular polygon, i.e.


r �N; a0 � Zc; 1BrBc; Aƒa0�rZc:

Notice that, although this includes the generated scales that we missed in the last

proposition, other cases are possible: C�f0; 2; 6g � Z12 also checks FC(6)�3:
The proofs of these propositions, and a discussion of the remaining chords with

maximal kFAk which are not of the previous types, are to be found in Supplementary 3,

available online.
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5. Chopin’s theorem

As the inverse of a ME set (in the musical sense) is also maximally even, either f ?�d?�1

or its opposite �f? will generate a �c?; d?� ME set.* This has a consequence on

complementary ME set classes: as gcd(c; c�d)�gcd(c; d)�m; when one replaces d by

c�d, one obtains the same c?, and replaces d? by (c�d)=m�c?�d?��d? mod c?;
hence

LEMMA 5.1 The same generator f? can be used for the construction of both hc; di and

hc; c�di ME sets.

For instance, the fifth f?�f�7 generates both the pentatonic and the major scales,

when c�12. For, say, c�20 and d�8, one obtains m�4, d?�2, c?�5, f?�3 and the

generated ME sets with eight and 12 elements are f0; 3g�f0; 5; 10; 15g and

f0; 3; 6; 9g�f0; 5; 10; 15g�f0; 3; 1; 4g�f0; 5; 10; 15g: More generally,

THEOREM 5.2 Let 1Bd5c=2, then any given hc; c�di ME set contains several

(exactly c?�2d?�1) hc; di ME sets. In other words, any ‘small’ ME set is contained in

several translates of its complement.

Proof: A hc; di ME set is constructed by truncating to just d? consecutive values the

sequence ff ?; 2f ?; . . . (c?�d?)f ?g mod c?; which generates (adding up c?Zc) the given

hc; c�di ME set A. This can be done in precisely c?�2d?�1 ways.

From this, as seen in Theorem 3.8, it suffices to add c? Zc to obtain both whole ME

sets, since c? is the same for d and c�d, preserving the inclusion relation all the time. I

We would like to baptize this result CHOPIN’S THEOREM in reference to the ETUDE OP

10 N85 (see figure S2 in Supplementary 2, available online) where the right hand plays

the pentatonic (black keys only) while the left hand wanders through several keys, G

flat and D flat major, for instance. This result has been observed (especially in this

pentatonic ƒ major scale case) and commented on,$ although perhaps it has not been

stated and proved as a quality of all ME sets (or, alternatively, generated scales).

So David Lewin, who almost invented ME sets as we have seen, might also have

originated set-complex Kh-theory in one fell swoop.

6. Coda

We have examined the definition of the DFT of a pc-set, according to David Lewin.

Several interesting features of the pc-set are encapsulated in the absolute value of this

function.

Following Ian Quinn, we were led to advance an original definition of Maximally

Even Sets, which appears to be geometrical, concise, elegant, and illuminating.% We

hope that this definition will become a productive one.

* The interesting question of all generators of a scale (not only for ME sets) will be elucidated in [11].
$ For instance, in [1] (2.3): ‘all secondary prototypes are Kh-related to one another’, which seems to be a

statement equivalent to the theorem above.
% Although less general than [10], which allows all possible strictly convex measures on the unit circle to be

chosen indifferently.
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Supplementary 1: concerning maximally even sets

0.1. A short history of ME sets

Maximally Even Sets, or ME sets for short, were defined in [1], generalized in 2 and

later extended to Well Formed Scales, which also exist in non-equal temperaments [3].

The name refers to the intuitive feature of being ‘as evenly distributed in the chromatic

circle as possible’. As we shall see, it is not so easy to make this idea rigorous: many

different, although equivalent, definitions exist, and our main objective in this paper is

to firmly ground the notion of ME sets on a DFT-based definition. We include a short

paragraph for readers who might still be unfamiliar with the notion, followed by a

discussion of several existing definitions. A very thorough paper on state-of-the-art

applications of ME sets is [4].

Originally, Clough, Myerson and, soon after, Douthett observed this yet informal

notion of ‘maximal evenness’ in a collection of famous scales: whole tone scale, major

scale, pentatonic, octatonic, etc. For musicological reasons, and perhaps also because of

mathematical difficulties we shall refer to below, their definition was rather indirect.
In the minor scale there are three different values of intervals between consecutive

notes. Not so for the major scale, or the melodic (ascending) minor, but the latter

features three different fifths.

From these examples, and others, ME sets were defined with regard to the different

(some say ‘diatonic’) possible values of intervals inside the scale: for instance, the major

scale and the pentatonic alike have only two different interval sizes between consecutive

notes*tones and semi-tones for the one, tones and minor thirds for the other. Also

note that the two semi-tones in the major scale, for instance, are as far from one

another as possible. This has some relevance to the organization of black and white

keys on a keyboard, and hence to traditional musical notation in staves.

The common original definition (here reworded) states that

DEFINITION 0.7 Let A be a subset of Zc. For convenience, let use call a ‘second’ any

interval between two adjacent elements of A, a ‘third’ an interval between every odd

note, and so on. Then A is maximally even if, and only if, there are at most two different

kinds of ‘seconds’, ‘thirds’, ‘fourths’, etc.

This definition suffers from the common blemish of many formalized musicological

definitions that take for granted many notions with intuitive, musical support (such as

Journal of Mathematics and Music
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diatonic intervals, adjacency of notes, etc.) which are not so obvious to define

mathematically.*

To state it with numbers: if an ordered scale$ is A�{a1, a2, . . . ad} with indexes taken
modulo d and values taken modulo c, for each value of k there should be at most two

different values of ai�k�ai when i varies (figure S1).

This was named the ‘Myhill property’ in [1]%) and it is not at all straightforward.

Worse still, in our opinion, this definition necessitates an ordering, or reordering, of

the notes: (C E D G A) is not a ME set, although (C D E G A) is! This verges on the

unsatisfactory, if one is interested in pc-sets and not (ordered) scales.

Many geometrical criteria have been given, and proved equivalent [4]; we especially

like the ‘black and white’ definition in [2], very intuitive, although hardly practical (see
figure S2): plot two regular polygons, one white with d vertexes and one black with c�d

vertexes. Then rearrange all the vertexes, preserving order, with identical distance

between consecutive points. Both black and white subsets are ME sets.

The most effective way to actually compute ME sets is as follows: taking c as the

cardinality of the ambient chromatic space, d the number of notes of the looked-for set,

and a some arbitrary number, the J-functions

Ja
c;d : k�

kc � a

d

$ %
; k�0 . . . d�1;

already introduced in [1], give all ME sets with cardinality d by their sets of values

Ja
c;d (0); Ja

c;d(1); . . . Ja
c;d(d�1)

(taken modulo c): for instance, with c�12, d�5, a�12, one obtains the pentatonic

(0 2 4 7 9), but relevance to the intuitive idea of maximum evenness, or even to sizes of

intervals, is less than obvious.

Figure S1. All intervals come in two sizes.

* To be fair, pre-Hilbert mathematics (and also some post-Hilbert) often relied too heavily on intuitions of
the physical world, as the quarrel concerning non-Euclidean geometries made clear.

$ We skip a formal definition of ‘ordered’ in Zc, which will be useless in our approach.
% Note that, in general, it is not sufficient that the Myhill property holds for adjacent notes, e.g. having only

two kinds of ‘seconds’ does not ensure we have a ME set, as shown by the example of the melodic minor scale.
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The most natural definition might be to try and maximize the mutual distances

between all the notes, e.g. aa;a? �A d(a; a?); but the result depends on the chosen distance

function d, and is not satisfactory for the (arguably) most natural one, the interval
metric:

d(u; v)�min
k �Z

½u�v�kc½;

as several unexpected* extraneous solutions crop up, as in figure S3. A ‘good’ definition

would be expected to give one characteristic shape for a given pair (c,d), not so many.

This exemplifies why there is no universal, or obvious, definition for the naı̈ve concept

of ‘Evenness’.

It is because none of these definitions (or others) appears completely satisfactory, in
our opinion, that we ventured to propose another one.

0.2. Symmetries of ME sets

This is the sequel of subsection 3.6.

COROLLARY 0.8 The number of different ME sets of cardinality d in Zc is c?�c/gcd (c,d)

(the number of different possible B’s). All are translates of one another (the group of

translations acts transitively on ME sets).$

mixing two regular polygons the same rearranged

Figure S2. Rearranging the points of two intertwined regular polygons.

Figure S3. Some sets maximizing the sums of differences for the interval metric �c�15, d�6.

* But all strictly convex distance functions on the unit circle will give maximums on the same pc-sets, which
are the ME sets, as shown in [5]. Nonetheless, such a distance (like the chordal distance, length of the line
segment between two points of the circle) has little musical meaning.

$ Only when m�1 do we have simple transitivity, i.e. an interval group in the sense of [6].
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For each couple (c,d) there is but one translation class of ME sets with d points in Zc.

Henceforth, we will denote such a ME set class as hc; di: An actual ME set will be ‘a

hc; di ME set’. For example, there are exactly three different h12; 8i ME sets, i.e. the

octatonic scales.

Remark 1 Each individual hc; di ME set is invariant under the m translations of step c?
and multiples. We have seen (Theorem 2.5) that the inversion operation preserves the

class of ME sets: this means that the inverse of a ME set is one of its translates. Indeed,

a ME set is its own image under exactly% 2	m operations, m translations and m

inversions in the dihedral group T/I of transformations of type x�x�t and x�l�x

in Zc. For instance, inversions x��x; 3�x; 6�x; 9�x preserve the above octatonic.
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% The stabilizer of any pc-set in T/I, isomorphic to the dihedral group Dc, is either a cyclic or a dihedral
group. For hc; di it is always Dm.
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David Lewin and maximally even sets

EMMANUEL AMIOT

1 rue du Centre, F 66570 St Nazaire, France

Supplementary 2: pictures and proofs

In figure S1 with the two complementary hexachords, the fifths have been signalled

with arrows. Each hexachord has the same number of fifths, three in this example

(figure S2).

Proof: (proof of Proposition 2.6) From Theorem 2.5 we have

A is t�periodic <[� t � Zc FA(t)�e�2iptt=cFA(t) <[�t �Zc

(1�e�2iptt=c)FA(t)�0:

Unless e�2iptt=c�1; this compels FA(t) to be 0. Now the condition e�2iptt=c�1 is

equivalent to c ½ tt; i.e. t multiple of m�c=gcd(c; t)*this makes sense for any

representative of the residue classes t and t: This is compatible with reduction modulo

c; and means t � m ZcƒZc: Conversely, if FA is nil except on a subgroup, say m Zc with
0Bm ½ c in Z (we recall all subgroups of Zc are cyclic), then, by inverse Fourier

transform,

�k � Zc 1A(k)�
1

c

X
t �Zc

FA(t) e2ipkt=c�
1

c

X
t? �m Zc

FA(t?) e2ipk;t?=c

�
1

c

X
tƒ�1...c=m

FA(m tƒ) e2ipktƒm=c;

and this is obviously periodic with (the residue class of) c=m as a period, as each term in

the sum is c=m periodic. I

Proof: (proof of Proposition 3.2) For transposition and inversion it is Theorem 2.5. For

complementation we see that

jFZc
(c�d)j�jF Zc

(�d)j�j�FA(d)j�jFA(d)j

holds for any subset A: So one value is maximal whenever the other is, e.g. A is a ME

set iff Zc"A is maximally even. I
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Proof: (proof of remark 1 (subsection 3.6)) Linking the Fourier coefficients of A and its

reduction B mod c?:

FA(d)�
X
k �A

e�2ipdk=c�
X
kƒ �B

Xm�1

l�0

e�2ipd(kƒ�lc?)=c�
X
kƒ�B

e�2ipdkƒ=c
Xm�1

l�0

e�2ipl

�m
X
kƒ �B

e�2ipd?kƒ=c?�mFB(d?):

I

Figure S1. These two hexachords share intervallic content.

Figure S2. Etude N8 5 opus 10, Frédéric Chopin.
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Supplementary 3: concerning other maximums of Fourier coefficients

When d is coprime with c; generated hc; di ME sets (the Clough�Myerson type) obtain

their maximum Fourier coefficient value in d:

kFAk � kFAk
+� jFA(d)j�m(c; d)�

sin(pd=c)

sin(p=c)
:

Any generated scale with a generator coprime with c will share the same value of
kFAk

+
; as

. any ME set A is in affine bijection with any such generated scale, both being affine
images of the cluster f0; 1; 2 . . . d�1g; and

. if f : x�a x�b; a � Zc?; is a bijective affine map, then kF f (A)k�� kFAk�; as

/�t �Zc ½F f (A)(t)½� ½FA(at)½ (the Fourier coefficients are permuted by affine maps).

We can reformulate Proposition 4.2 in more detail.

PROPOSITION 0.7 Fix a cardinality d coprime with c. For all d-element subsets of AƒZc

we find that kFAk�5m(c; d): With regard to equality the following three conditions are

equivalent:

(i) /kFAk��m(c; d);

(ii) /A�r �M(c; d)�s for suitable r �Z+
c and s �Zc and M(c; d) as in definition 3.1;

(iii) /A�a0�f0; f ; . . . ; (d�1)f g is generated by a residue f � Z+
c coprime with c.

Proof: Choose t � Z+
c such that kFAk�� jFA(t)j: Then we have ½FA(t)½� ½F d�1t�A(d)½5

m(c; d): To prove (i) U (ii) we argue that the equality kFAk�� m(c; d)

holds iff /d�1t � A�M(c; d)�s? or, equivalently, iff A�t�1d �M(c; d)�t�1d s?: To

prove (ii) U (iii) we remember that M(c; d)�k0�f0; d�1; . . . ; (d�1)d�1g; hence

/A�r �M(c; d)�s�(rk0�s)�f0; d�1r; . . . ; (d�1)d�1rg: I

When c, d are no longer coprime this is no longer true. The value of m(c; d)�
/½FA(d)½ for a hc; di ME set is now m sin(d?p=c?)=sin(p=c?) (this comes from

Theorem 3.8), which is larger than r(c; d)�sin(dp=c)=sin(p=c) because (by concavity)

sin(p=c?)�sin(m p=c)5m sin(p=c):
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Vol. 1, No. 3, November 2007



D
ow

nl
oa

de
d 

B
y:

 [I
rc

am
] A

t: 
09

:2
7 

18
 M

ar
ch

 2
00

8 

But in that more general case, and with this value, we can characterize scales

generated by some invertible generator (among which are the chromatic clusters): this is

proposition 4.3, the proof of which follows.

Proof: Choose t0 � Z+
c such that kFAk�� jFA(t0)j: Then we have jFA(t0)j�jF t0A(1)j5

m(c; d) by the Huddling Lemma in the simple case m�1: The maximal case is that of a

cluster, i.e. t0A�t�f0; 1 . . . d�1g is a cluster. Multiplying by f � t�1
0 we obtain

A�a0�f f0; 1 . . . d�1g: I

We do not find a characterization of all generated scales, i.e. also for generators

not coprime with c: This is because, for instance, the chunk of whole tone scale A�
f0; 2; 4gƒZ12; generated though certainly not maximally even, realizes FA(6)�3;
clearly an unbeatable value (note that jFA(3)j � 1B3) (figure S1).

In order to understand better the maximality condition for kFAk; it is useful to

inspect the subgroup of Zc that is generated by the intervals of a pitch class set A:

DEFINITION 0.8 For any pitch class set AƒZc let G[A]ƒZc denote the interval group*

of A: It is generated by the differences in A : G[A]:�hA�Ai�fr �(k1�k2)½k1; k2 �

A; r �Zcg: One can see that G[A]�hfa0�k½k � Agi independently of the choice of a0 �

A (cf. [1], p. 125).

It will be impossible to reach kFAk � d for a ‘large’ ME set, i.e. when d�c/2, as, in

general, kFAk5min(d; c�d): So we work with the case d5c/2.

THEOREM 0.9 kFAk � d <[ G[A]"Zc: Any subgroup of Zc being cyclic, say

/G[A]�r Zc (taking r minimal); this means Aƒa0�rZc: This can happen if and only

if d is lower than some strict divisor c?�c=r of c (for instance, whenever c is even).

Proof: Assume kFAk � d: Then jFA(t0)j�jak �A e�2ip k t0=cj � d for some t0"0; but

from Cauchy�Schwarz inequality’s case of equality, this means that all exponentials,

each with length 1, are equal. In other words, multiset t0 A�fd
ag is a singleton with

multiplicity d (and t0 cannot be invertible). Hence A is a subset of the pre-images of a,

1 2 3 4 5 6 7 8 9 10 11

3
chunk of whole tone

1 2 3 4 5 6 7 8 9 10 11

3

other pc set with FA 3

Figure S1.

* In a more general contex, Mazzola [1] (pp. 125�127) calls this the module of a local composition.
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i.e. A�a0�ker8 t0
i.e. G[A]�ker8 t0

: As we have seen when studying maps 8 d ; this

kernel is a regular polygon with c?�c/gcd(c,t0) elements. So Card(A)5c?, a strict

divisor of c.

Conversely, assume d5c?�c/m, a strict divisor of c. Then there are subsets A of c? Zc

with cardinality d, any of which will check ½FA(m)½�d: It is notable that, in that case,

the maximum is reached for members of a subgroup:

jFA(t)j�d <[ t � m Zc:

I

Note that although this includes generated scales, other cases are possible:

/C�f0; 2; 6g � Z12 also checks FC(6)�3 (see figure S1). This includes the ‘secondary’

and many ternary ‘prototypes’* in [2] (2.4), as it appears Quinn had noticed. This class

of maximal pc-sets includes generated scales, but is somewhat wider.

The general question now arises: for a given pair (c, d), what are the subsets AƒZc

with cardinality d that yield the maximal value M of all kFAk? There are three cases.

(i) The maximum value is d: this is well understood from the last theorem. It happens

whenever d is lower than some strict divisor of c.

(ii) The maximum value is the one for ME sets, i.e. m sin (pd?/c?)/ sin (p/c?). This is
very often the case. For instance, for c�11; d�4 the cluster (0 1 2 3) is not

maximal for kFAk: the winner is the h11; 4i ME set (0 3 6 9).

(iii) Sometimes the maximum is not one of the previous types. For instance, for c�75,

d�27 when d is larger than all divisors of c, one obtains m(c, d)�21.6581 for

ME sets or their affine image; the value for clusters or generated scales is lower,

r(c, d)�21.6075 (this is general), but for

A�f0; 4g@f0; 3; 6; 9; 12; . . . ; 66; 69; 72g;

i.e. 3Zc @{1, 4}, one obtains kFAk�/

ffiffiffiffiffiffiffiffi
579

p
�24.062188. The principle involved is, just

as in the Huddling Lemma but in greater generality, to have for some k the multiset

A?�k AƒZc as ‘clustered’ as possible (we depart here from the definition of A? in
figure 1 of the main article). Ideally, from the Huddling Lemma philosophy, one should

aim at a few multipoints as close as possible in kZc, with maximum multiplicities. Let

us clarify this without working out the complete theory.

We are working with a subset A with cardinality d, greater than any strict divisor of c,

which is an odd number. The maximum value of jFAj is some jFA(k)j� jFA?(1)j where

A? is the multiset kA; k is not coprime with c or else we obtain a previous case, and, as

permutations of Fourier coefficients are irrelevant, we can assume (up to an affine

transform of A) that k is a divisor of c.
The kernel of pk: t� kt mod c is c?Zc with c?� c/k, and it has k elements; this is the

maximum possible multiplicity for a point of A?. The distance between consecutive

points of A? (in Zc) will be k, hence the number of different points in A? is d?� �d/k�.

All these points will have multiplicity k, except one on the border with multiplicity

d � kd?. The maximum will be found among the different subsets obtained in this way,

checking on all values of k j c.

In the example, A? has one point (0) with multiplicity k�25 and another one (25)

with multiplicity 2. B? has two points, with multiplicity 15 and 12, respectively, and C?

* (0 2 6) mod 10 falls under the last theorem, but not (0 1 2 3 4 5 7 8 9).
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has five points with multiplicity 5 and one with multiplicity 2 (other possible values of

k have been left aside).

As it happens, the respective values are

kFAk�
ffiffiffiffiffiffiffiffi
579

p
�24:0624; kFBk�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
909�180

ffiffiffi
5

pq
�22:5057; kFCk � 21:529:

In that case, the winner is A, corresponding to the greatest divisor (k�25). But, in

other cases, it may pay to restrict the angular span of the associated multiset�this means

that (d?�1)(2p/c?) is made as low as possible, by choice of the divisor k of c.
For instance, with c�75, d�29, the set analogous to B (i.e. one point with maximum

multiplicity k�15 and another one with multiplicity 14) is the winner, as kFAk�
23.2594B/kFBk�23.4689 and kFCk�22.3884.

So there is an algorithm, but no hard and fast rule for constructing the subsets with

the largest kFAk: The solutions approximate (affine transforms of) ME sets, add or

drop a few points. Perhaps these chords, or scales, which generalize ME sets in a way

(look at the multisets in figure S2), and are defined modulo the action of the affine

group, should be catalogued as, for instance, the tiling subsets of Zn have been. This is
one of many interesting directions for future research on the subject of musically

relevant features of the DFT of discrete structures.
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Figure S2.
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