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Problem

A

[Schuldt04]

> Common assumptions on View:
o Views are fronto-parallel.
» Actors face camerai/ parallel to viewing plane.




Problem

> Application to Realistic Scenarios?
o Arbitrary viewpoints.
o NO constraints on the actor’s orientation.




Overview

> Background and Related Work
o Applications
o Model based vs. template based approaches
e \View independence

> Motion History VVolumes (MHVs)
o 3D action representation > multiple cameras
o Invariant representation - Fourier descriptors

> Single view recognition using 3D exemplar model
o Learning: 3D model / multiple cameras
o Recognition: 2D / single view.
o Probabilistic modelling ofi view changes
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Related work:
Two Main: Directions

Model based: Template based:

i

[Campbell95] Volumes Biankos] Images [Bobick96]




View iIndependence:
Model based

A Can model orientation as independent
variable.

Joint model Is difficult to extract.
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View Independence:
Template Basea

One model per view Invariance

[Rao&Shah01]

> In 2D using linear dependence in 3D (rank
constraints / factorization))

Many Ambiguities

Views are independent > no modelling of
temporal change in view.

Limited number of views and fixed camera
setup.

A Effective and robust to obtain




otion History Volumes

Visual Hull

> Extends Motion History Images to volumetric
representation.

> llemplate representation > Joint model free.
> Needs multiple calibrated cameras.




\iew! Invariance:
Cylindrical Representation

> Assumption: For similar actions main difference in scale,
translation, and rotation around vertical axis.

> Map into normalized and object-centred cylindrical cooerdinate
system.

z-rotation maps
onto translation




View Invariance:
Fourier Descriptors

> Magnitudes of Fourier-transform invariant to
translation shifts (Fourier-shiit theorem).

> Features based on Fourier-magnitudes over 6
for each value r, z.




Learning Actions

> Variations in body and style:
. Learn models of motion.

.+ Simple approach:
» Each class Is represented by it's mean value.
» Closest mean assignment.

» Dimensional reduction using nermalized principal
component analysis (PCA) or linear discriminant
analysis (LDA).

» Leave one out validation.




Results

ixmas dataset (https.//charibdis.inrialpes.fr/)
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Check clock

Cross arms

Seratch head

5 cameras, 330 samples (11 actions, 10 actors, 3 executions)

Action
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Get up

Turn around
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Scratch head.
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Punch
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Pick up

Punch.
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Temporal Segmentation based on
\Viotion Energy

> “Global velocity™ based on MHVs in constant time window.
> Segmentation criteria = local energy Minima.




Recognition on Raw Sequences
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[Recognition on Videos

> Use th reShOId to 1 Recognition seen Motions
detect actions.

> Everything lower -
‘garbage’-class.

Recognition
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> 23 minutes of video,
1166 templates: O odive seetond, "
o 82.79% overall rate.
o 16.79% recognized.
o 14.08% false positive.

o
-

Modelling garbage-class difficult / few: existing
selutions!




Automatic Discovery ofi Action
Taxonomies
> We have:

o Discriminative motion descriptor (MHVS)
o Automatic motion segmentation

= Semi-supervised action recognition:

Segment and cluster complex actions >
discover




Experiments

Lift or lower both arms sideways
Lower both arms sideways

Turn both arms sideways

Lift both arms ahead

Do nothing (single) . Rest

Lift arm sideways (single) in

Lift arm sideways
Rotate both arms lifted

Lift both arms ahead (single)

Lift arm ahead (single) Lower
Lower arm sideways arms

Lower arm from ahead ’
Lift arm ahead

Lift leg firm

Crouch before jump
Rebounce after jump

Turn in new position
Lower firm leg

Jump

Lower bended leg

Lift leg bending

position

15 12 4 10 16 2 8 5 11 17 18 6 13 14

» Clustering oni Primitive motions ~ Clustering on composite actions:
(103 sequences)).




Clustering on Composite Actions

- . i&_- -~

= /

Action Cluster:

Lower Arms

Motion Energy

100
Frame Mumber

Motion History Volume




Clustering (2

Action Cluster:

Bend back
Bend down 1
Bend down 2
Torso up
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Part 2

Action Recognition from
Arbitrary Views using SD
Exemplars

Daniel Weinland, Edmond Boyer, Remi Ronfard
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Problem

> Application to Realistic Scenarios?
o Arbitrary viewpoints.
o No constraints on the actor's orientation.




Problem

> Application to Realistic Scenarios?
o Arbitrary viewpoints.
o« INo constraints on the actor’s orientation.

Y| AVASH

View-invariant.
Need 3D reconstruction from multiple calibrated cameras.

> |ldea:

o A method that can recognize actions fliom arbitrary number and
configuration ofi cameras (even a single!)

o Still use 3D during learning.




Related work:
Two Main: Directions

Model based: Template based:

[Campbell95] Volumes siankos Volumes pweiniandos)




ldea

» Take advantages of both directions:
o [lemplate based: Effective features, no joint space modelling

« Model based: Simple generative modelling of view and orientation
(by projecting a 3D model into 2D).

> Explicit modelling of view transformation as latent variable
[Frey & Jojic 2000, Toyama & Blake 2001]

- A 3D template based model that generates arbitrary 2D views.

Exemplars
‘ x(Visyal Hulls)
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Probabilistic Model of Actions




Probabilistic Model of Actions

Body Configurations

Templates

Body Orientations
View transformation

Observations

> llemplates
o Not result from boedy models and' joint configurations.
o Represented by ) =s?’§(of Vil exemplany templates:

i12[1::M ¥

learned from three dimensional training sequences.




BEEERBER]

> 3D and 2D features are — 2D templates
are obtained simply by projecting 3D templates.

> Silhouettes sequences are withi respect to actions.
> Poweriul exist, e.g. chamfer distance.




Probabilistic Model of Actions

Body Configurations

Templates

Body Orientations
View transformation

Observations

> Hidden State Sequence (Action Dynamics)
o Discrete N-state latent variable q

o Intuitively: a quantization: of the joint motion space Into actien-
characteristic configurations




Probabilistic Model of Actions

Body Configurations

Templates

Body Orientations
View transformation

Observations

> Observations
« 2D observations y, result from a geemetric transfoermation P of

the 3D_exemplars X: i ¢
Py, %, = Xi;ﬁ;rt)/ Jexp i d(y;Pp(x))=72

o dis distance function (e.g. Euclidean or Chamier distance),
o O IS scale > non-parametric modeling (Parzen)




Probabilistic Model of Actions

Body Configurations

Templates

Body Orientations
View transformation

Observations

> Geometric Transformation
P (x) = PIR ;ulk

A . . Ao
o |: Observed parameters: camera calibration P, poesition u

o | latent parameters: body erentation = rcH@-tlfpn F§ aroundivertical
axis, follow a first order Markov: process: & & *




Observed Parameters

Camera calibration

*Position on Ground

- Reduce parameters during Marginalization
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Action Recognition

' Body Configurati
C aCtl()ﬂ Classes 9 C para”el ody Configurations

“HMMs"
each class Is represented by

Templates

Body Orientations
View transformation

Observations

all actions {c = 1..C} share a common set of exemplars and kernel
parameters (tied mixture HMM).

a seguence ofi observations Y=1{Y4,.-.,y1J IS classified with respect to
the maximum, a posteriorn (MAP) estimate:

a(Y) = argmax_p(Yj, )p(, .)




Model Learming

> Models Learning| consists 2 main
operations:

o Selecting or identifying exemplars
o learning probabilities

> Both steps are coupled.




Exemplar Selection

> How to identify discriminative exemplars?

> Clustering (e.g. k-means) tend to cluster different poses performed
by similar actors rather than similar poses performed by different
actors.

— discriminative feature selection approach trough combinatorial
sSubset selection:

Let ) denotes the set of training sequences and J:-’ the set
of test sequences.
1. Set X =0.
2. Find y* € {)\ X}, where the models with exemplar set
{XUy* } have best average recognition performance on
Y. Add y* to X.
3. Repeat step 2 until M observations from )’ have been
added to X.

15 20 25 30 35
Template Number




Learning Probabilities

> In 3D Independent from Viewing process
and under ideal conditions (aligned data).

> In 2D with conditions similar when
learning or recognizing.

> LLearning trough forward-backward
algorithin (HIVIV).




Action Recognition

> Y Is classified using the MAP estimate.
> Computed via forward variable (HIMIV):
®Hi. ) = Py i Y6l o)

=
PYEL )= ¢ O,

> Observations from Multiple cameras:




Experiments

Xmas dataset
5 cameras, 330 samples (11 actions, 10 actors, 3 executions)

Figure 4. Camera setup and extracted silhouettes: (Top) the action “watch clock™ from the 5 different camera views. (Middle and bottom)
sample actions: “cross arms”, “scratch head”, “sit down”, “get up”. “turn”, “walk”, “wave”, “punch”, “kick”. and “pick up”. Volumetric

templates are mapped onto the estimated interest region indicated by blue box.




Learning in 3D

| I cam 1 [ cam2 [ cam3 [ cam4 [N cams |

Figure 5. Recognition rates when learning in 3D and recognizing
in 2D. The average rates per camera are {65.4, 70.0, 54.3, 66.0,
33.6}.

cameras 24 35 135 1235 1234
%% 813 o6l.6 702 75.9

Table 1. Recognition rates with camera combinations. For com-
parisons, a full 3D recognition considering 3D manually aligned
models as observations, instead of 2D silhouettes, yields 91.11%.

check watch |
Cross arms .
scratch head .
sit down .
getupr.

turn around .
walk f.

wave handf.
punchr.

kick .

pick up .

Figure 6. Confusion matrix for recognition using cameras 2 and
4. Note that actions performed with the hand are confused, e.g.
“wave” and “scratch head™ as well as “walk™ and “turn™.

Rate with MHVs: 93.33%
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Conclusion

Y | AVASH

o Discriminative action descriptor for recognition and
segmentation of motion streams.

o Multiple calibrated cameras.

> Exemplar based model:
o Probabilistic model ofi action and view transform.
o Arbitrary number ofi cameras.

> Euture Work:

o Extend exemplar based model, e.g. other distance functions
and template representations.

o External cues, e.g. 3D scene information and objects.




Thank You!




Check watch
Cross arms
Scratch head
Sit down

Get up

Turn around
Walk

Wave hand

Results

Cheack watch
Cross arms |
Scratch head
Sit down|
Getupf
Turn around
Walk
Wave hand
Punch
Kick
Pick upt

Fig. 8. Average class distance: (Left) before discriminant analysis. (Right) after
discriminant analysis.




