View-Independent Action Recognition

Daniel Weinland, Edmond Boyer, Remi Ronfard INRIA, Rhone-Alpes, France.

Problem

> Action Recognition

> Common assumptions on view:

- Views are fronto-parallel.
- Actors face camera / parallel to viewing plane.

Problem

> Application to Realistic Scenarios?

- Arbitrary viewpoints.
- No constraints on the actor's orientation.

Overview

Background and Related Work

- Applications
- Model based vs. template based approaches
- View independence

Motion History Volumes (MHVs)

- 3D action representation \rightarrow multiple cameras
- Invariant representation \rightarrow Fourier descriptors

Single view recognition using 3D exemplar model

- Learning: 3D model / multiple cameras
- Recognition: 2D / single view
- Probabilistic modelling of view changes

Applications

Entertainment

HCI

Ambient Intelligence

Sports

Surveillance

Group Actions

Related work: Two Main Directions

Model based:

[Knossow06]

Template based:

Optical Flow [Efros03]

Figure 2: × and + marks time steps during plies for two dancers; "." marks time steps during other movements. Angles are in radians the plié lies in a region separated from the other movements (data sub

[Campbell95]

Motion History Images [Bobick96]

View independence: Model based

Can model orientation as independent variable.

Joint model is difficult to extract.

[Peursum07]

View Independence: Template Based

One model per view

Invariance

- Views are independent → no modelling of temporal change in view.
- Limited number of views and fixed camera setup.

[Rao&Shah01]

- In 2D using linear dependence in 3D (rank constraints / factorization)
- Many Ambiguities

↑ Effective and robust to obtain

Motion History Volumes

Extends Motion History Images to volumetric representation.

- > Template representation \rightarrow Joint model free.
- > Needs multiple calibrated cameras.

View Invariance: Cylindrical Representation

- > Assumption: For similar actions main difference in scale, translation, and rotation around vertical axis.
- Map into normalized and object-centred cylindrical coordinate system.

View Invariance: Fourier Descriptors

Magnitudes of Fourier-transform invariant to translation shifts (*Fourier-shift theorem*).
 Features based on Fourier-magnitudes over θ for each value r, z.

Learning Actions

Variations in body and style:
 Learn models of motion.

• Simple approach:

- Each class is represented by it's mean value.
- Closest mean assignment.
- Dimensional reduction using normalized principal component analysis (PCA) or linear discriminant analysis (LDA).
- · Leave one out validation.

Results

ixmas dataset (*https://charibdis.inrialpes.fr/*) 5 cameras, 330 samples (11 actions, 10 actors, 3 executions)

Check clock	Cross arms	Scratch head
Sit down	Get up	Turn around
Walk	Wave 1	Punch
Kick		Pick up

#	Action	PCA	Mahal.	LDA
1	Check watch.	46.66%	86.66%	83.33%
2	Cross arms.	83.33%	100.00%	100.00%
3	Scratch head.	46.66%	93.33%	93.33%
4	Sit down.	93.33%	93.33%	93.33%
5	Get up.	83.33%	93.33%	90.00%
6	Turn around.	93.33%	96.66%	96.66%
7	Walk.	100.00%	100.00%	100.00%
8	Wave hand.	53.33%	80.00%	90.00%
9	Punch.	53.33%	96.66%	93.33%
10	Kick.	83.33%	96.66%	93.33%
11	Pick up.	66.66%	90.00%	83.33%
	average rate	73.03%	93.33%	92.42%

Temporal Segmentation based on Motion Energy

> "Global velocity" based on MHVs in constant time window.

Segmentation criteria = local energy Minima.

Recognition on Raw Sequences

check watch cross arms scratch head sit down get up turn around walk wave punch kick pick up

Recognition on Videos

> Use threshold to detect actions.
 > Everything lower → "garbage"-class.

- > 23 minutes of video, 1188 templates:
 - 82.79% overall rate.
 - 78.79% recognized.
 - 14.08% false positive.

Modelling garbage-class difficult / few existing solutions!

Automatic Discovery of Action Taxonomies

We have:

- Discriminative motion descriptor (MHVs)
- Automatic motion segmentation
- → Semi-supervised action recognition:
 Segment and cluster complex actions → discover motion primitives

Experiments

 \geq

 Clustering on Primitive motions (103 sequences).

Clustering on composite actions.

Clustering on Composite Actions

Clustering (2)

Action Cluster: Bend back Bend down 1 Bend down 2 Torso up

Motion History Volume

Action Recognition from Arbitrary Views using 3D Exemplars

Daniel Weinland, Edmond Boyer, Remi Ronfard INRIA, Rhone-Alpes, France.

Problem

> Application to Realistic Scenarios?

- Arbitrary viewpoints.
- No constraints on the actor's orientation.

Problem

> Application to Realistic Scenarios?

- Arbitrary viewpoints.
- No constraints on the actor's orientation.

> MHVs:

- View-invariant.
- Need 3D reconstruction from multiple calibrated cameras.

Idea:

- A method that can recognize actions from arbitrary number and configuration of cameras (even a single!)
- Still use 3D during learning.

Related work: Two Main Directions

Model based:

[Knossow06]

Template based:

Optical Flow [Efros03]

Figure 2: × and + marks time steps during plies for two dancers; "." marks time steps during other movements. Angles are in radians the plié lies in a region separated from the other movements (data sul

[Campbell95]

Space-Time Volumes [Blank05]

Motion History Volumes [weinland05]

- > Take advantages of both directions:
 - Template based: Effective features, no joint space modelling
 - Model based: Simple generative modelling of view and orientation (by projecting a 3D model into 2D).
- Explicit modelling of view transformation as latent variable [Frey & Jojic 2000, Toyama & Blake 2001]

 \rightarrow A 3D template based model that generates arbitrary 2D views.

> Templates

- Not result from body models and joint configurations.
- Represented by a set of M exemplary templates:

learned from three dimensional training sequences.

Visual Hull Exemplars

- > 3D and 2D features are geometrically consistent → 2D templates are obtained simply by projecting 3D templates.
- > Silhouettes sequences are **discriminative** with respect to actions.
- > Powerful **distance functions** exist, e.g. chamfer distance.

> Hidden State Sequence (Action Dynamics)

- Discrete N-state latent variable q
- Follows a first order Markov chain p(q_t jq_t 1, ..., q₁) = p(q_t jq_t 1)
- Intuitively: a quantization of the joint motion space into actioncharacteristic configurations

> Observations

- 2D observations y_t result from a geometric transformation P of the 3D exemplars X: p(y_tJx_t = x_i; i_t; r_t) / ¹/_z exp i d(y_t; P_{(r}(x_i))=³/²
- d is distance function (e.g. Euclidean or Chamfer distance),
- σ is scale \rightarrow non-parametric modeling (Parzen)

Geometric Transformation P_{(r}(x) = P^{(R_µ; u]^x}

- Î: observed parameters: camera calibration P, position u
- [•] Iatent parameters: body orientation = rotation R around vertical axis, follow a first order Markov process:

Observed Parameters

Camera calibrationPosition on Ground

→ Pose

→ Reduce parameters during Marginalization

Hidden Parameters

Body orientation is hidden

1121 • 1 1 1 1 1 7 5 1 t t ß 11111

 \rightarrow We have to marginalize over all possible values!

Action Recognition

- C action classes → C parallel "HMMs"
- each class is represented by * c2f 1;:::;Cg
 - = $f p(q_t j q_{t_i 1}; c); p(q_1 j c); p(x_t j q_t; c)g$

- > all actions {c = 1..C} share a common set of exemplars and kernel parameters (tied mixture HMM).
- a sequence of observations Y={y₁,...,y_T} is classified with respect to the maximum a posteriori (MAP) estimate:

 $g(Y) = \arg \max_{c} p(Y_{j_c}) p(_{j_c})$

Model Learning

Models Learning consists 2 main operations:

- selecting or identifying exemplars
- learning probabilities

Both steps are coupled.

Exemplar Selection

- How to identify discriminative exemplars?
- Clustering (e.g. k-means) tend to cluster different poses performed by similar actors rather than similar poses performed by different actors.
- → discriminative feature selection approach trough combinatorial subset selection: Wrapper forward selection

3. Repeat step 2 until M observations from $\mathcal Y$ have been added to X.

Learning Probabilities

 In 3D independent from viewing process and under ideal conditions (aligned data).
 In 2D with conditions similar when learning or recognizing.

Learning trough forward-backward algorithm (HMM).

Action Recognition

Y is classified using the MAP estimate.
 Computed via forward variable (HMM):
 ®(¶j,_) = p(y_1;...;y_t;q,j,_)

$$p(Yj_{c}) = \Pr_{q_{T}} \otimes (q_{T}j_{c})$$

> Observations from Multiple cameras: $p(y_t^1; ...; y_t^{\kappa} jx_t; f_t; f_t) / \bigcap_{y_t^{\kappa}}^{Q} p(y_t^{\kappa} jx_t; f_t; f_t)$

Xmas dataset 5 cameras, 330 samples (11 actions, 10 actors, 3 executions)

Figure 4. Camera setup and extracted silhouettes: (Top) the action "watch clock" from the 5 different camera views. (Middle and bottom) sample actions: "cross arms", "scratch head", "sit down", "get up", "turn", "walk", "wave", "punch", "kick", and "pick up". Volumetric templates are mapped onto the estimated interest region indicated by blue box.

Learning in 3D

Figure 5. Recognition rates when learning in 3D and recognizing in 2D. The average rates per camera are {65.4, 70.0, 54.3, 66.0, 33.6}.

cameras	24	35	135	1235	1234
%	81.3	61.6	70.2	75.9	81.3

Table 1. Recognition rates with camera combinations. For comparisons, a full 3D recognition considering 3D manually aligned models as observations, instead of 2D silhouettes, yields 91.11%.

Figure 6. Confusion matrix for recognition using cameras 2 and 4. Note that actions performed with the hand are confused, *e.g.* "wave" and "scratch head" as well as "walk" and "turn".

Rate with MHVs: 93.33%

Conclusion

> MHVs:

- Discriminative action descriptor for recognition and segmentation of motion streams.
- Multiple calibrated cameras.

Exemplar based model:

- Probabilistic model of action and view transform.
- Arbitrary number of cameras.

Future Work:

- Extend exemplar based model, e.g. other distance functions and template representations.
- External cues, e.g. 3D scene information and objects.

Results

Fig. 8. Average class distance: (Left) before discriminant analysis. (Right) after discriminant analysis.