

Gaussian Process Dynamical Models (GPDM) for Motion Analysis

Zhenbo Ll

Zhenbo.li@IT-SudParis.eu

28/04/08

- Motion Models
- Linear Motion Models (PCA)
- Gaussian Process Dynamical Models
- Motion Recognition
- Conclusion

Motion Models

What motions are likely?

Applications:

- Computer animation
- Computer vision

NBA Live 2008

- $M(t) = \{p(t), Q(t)\}$
- Little work on motion models [Urtasun 2006]
- Linear motion models
- Non-Linear motion models

- High-dimensional
- Time related (dynamic)
- Stylistic diversity and variation

Motion Models

- S: space of human poses
 igh number of DOF
- S*: lower dimensional subspace
 - Mapping function between S and S*

Linear Motion Models (PCA)

Subspace from PCA

- x is the vector of joint angles
- *F* is the projection of *x* in eigenspace

$$F_{1} = u_{11}x_{1} + u_{21}x_{2} + \dots + u_{p1}x_{p}$$
...
$$F_{m} = u_{1m}x_{1} + u_{2m}x_{2} + \dots + u_{pm}x_{p}$$

Low dimensional description of motions

Classification of activities in eigenspace

選問 Motion generation

Frame

6

page 9

Motion similarity

Golf1(447 frames), Golf2(492 frames), The comparability is: $P_{MW} = 0.9691$

Swim1(1536 frames), Swim2(1780 frames), The comparability is: $P_{MN} = 0.9236$

Motion similarity

P _{MN}	Liu_walk1		Liu_walk2		Liu_walk3	Liu_v	Liu_walk4	
Liu_walk1]		0.96:	0.9653 0.9383		0.8	3405	
PMN	Rory_r	run1	Steve_wa	lk1	Rory_walk	1 Tak	eo_walk1	
Liu_walk1	0.5366		0.6996		0.7080	0.77	0.7759	
	v	Golf1		Swim1		Kickball		
Liu_	Liu_walk1		0.3481 0.		046	0.5889	5889	

- Proposed by Wang, Fleet, Hertzmann in 2005.
- Based on the work of Gaussian Process Latent Variable Model proposed by Lawrence in 2004.

Latent dynamical model:

$$y_t = g(x_t; b) + n_{y,t}$$
 pose reconstruction

$$x_t = f(x_{t-1}; a) + n_{x,t}$$
 latent dynamics
Here, $x_t \in l$ denotes the l
dimensional latent coordinates at
time t, f and g mappings
parameterized by a and b

$$y_1 = g(x_t; b) + n_{y,t}$$
 pose reconstruction

$$y_t = g(x_t; b) + n_{y,t}$$
 latent dynamics

$$y_1 = g(x_t; b) + n_{y,t}$$
 latent dynamics

$$y_2 = g(x_t; b) + n_{y,t}$$
 latent dynamics

$$y_1 = g(x_t; b) + n_{y,t}$$
 latent dynamics

$$y_1 = g(x_t; b) + n_{y,t}$$
 latent dynamics

$$y_2 = g(x_t; b) + n_{y,t}$$
 latent dynamics

$$y_1 = g(x_t; b) + n_{y,t}$$
 latent dynamics

$$y_2 = g(x_t; b) + n_{y,t}$$
 latent dynamics

$$y_1 = g(x_t; b) + n_{y,t}$$
 latent dynamics

$$y_2 = g(x_t; b) + n_{y,t}$$
 latent dynamics

$$y_2 = g(x_t; b) + n_{y,t}$$
 latent dynamics

$$y_1 = g(x_t; b) + n_{y,t}$$
 latent dynamics

$$y_2 = g(x_t; b$$

 $n_{x,t}$ and $n_{y,t}$ are zero-mean, isotropic, white Gaussian noise

page 14 direction ou services

Dynamical models

$$\mathbf{x}_t = \mathbf{f}(\mathbf{x}_{t-1}; \mathbf{a}) + \mathbf{n}_{x,t}$$

Reconstruction

The data likelihood for the reconstruction mapping, given centered inputs $\mathbf{Y} \equiv [\mathbf{y}_1, \cdots, \mathbf{y}_N]^T$, $\mathbf{y}_n \in \mathcal{R}^d$ has the form:

$$p(\mathbf{Y} | \mathbf{X}, \bar{\beta}, \mathbf{W}) = \prod_{j=1}^{d} \mathcal{N}(\mathbf{Y}_{j}; \mathbf{0}, \mathbf{K}_{Y} / w_{j}^{2})$$
$$= \frac{|\mathbf{W}|^{N}}{\sqrt{(2\pi)^{Nd} |\mathbf{K}_{Y}|^{d}}} \exp\left(-\frac{1}{2} \operatorname{tr}\left(\mathbf{K}_{Y}^{-1} \mathbf{Y} \mathbf{W}^{2} \mathbf{Y}^{T}\right)\right)$$
where

where

 \mathbf{Y}_{j} contains the j^{th} -dimension of each training pose \mathbf{K}_{Y} is a kernel matrix with entries $(\mathbf{K}_{Y})_{ij} = k_{Y}(\mathbf{x}_{i}, \mathbf{x}_{j})$ for kernel function (with hyperparameters $\bar{\beta} = \{\beta_1, \beta_2, \beta_3\}$)

$$k_Y(\mathbf{x}, \mathbf{x}') = \beta_1 \exp\left(-\frac{\beta_2}{2}||\mathbf{x} - \mathbf{x}'||^2\right) + \beta_3^{-1}\delta_{\mathbf{x}, \mathbf{x}'}$$

 $W \equiv diag(w_1, ..., w_d)$ scales different pose dimensions

Dynamics

The latent dynamic process on $\mathbf{X} \equiv [\mathbf{x}_1, \cdots, \mathbf{x}_N]^T$, $\mathbf{x}_n \in \mathcal{R}^l$ has a similar form:

$$p(\mathbf{X} | \bar{\alpha}) = \frac{\mathcal{N}(\mathbf{x}_1; \mathbf{0}, \mathbf{I}_l)}{\sqrt{(2\pi)^{(N-1)l} |\mathbf{K}_X|^l}} \exp\left(-\frac{1}{2} \operatorname{tr}\left(\mathbf{K}_X^{-1} \hat{\mathbf{X}} \hat{\mathbf{X}}^T\right)\right)$$

where

$$\hat{\mathbf{X}} = [\mathbf{x}_2, ..., \mathbf{x}_N]^T$$

 \mathbf{K}_X is a kernel matrix defined by kernel function

$$k_X(\mathbf{x}, \mathbf{x}') = \alpha_1 \exp\left(-\frac{\alpha_2}{2}||\mathbf{x} - \mathbf{x}'||^2\right) + \alpha_3 \mathbf{x}^T \mathbf{x}' + \alpha_4^{-1} \delta_{\mathbf{x}, \mathbf{x}'}$$

with hyperparameters $\ \bar{\alpha}$

Markov Property

Subspace dynamical model:

$$\mathbf{x}_t = \mathbf{f}(\mathbf{x}_{t-1}; \mathbf{a}) + \mathbf{n}_{x,t}$$

$$\mathbf{y}_t = \mathbf{g}(\mathbf{x}_t; \mathbf{b}) + \mathbf{n}_{y,t}$$

Remark: Conditioned on $\{a_i, b_j\}$, the dynamical model is 1st-order Markov, but the marginalization introduces longer temporal dependence.

Dynamical models

- Hidden Markov Model (HMM)
- Linear Dynamical Systems (LDS)

[van Overschee et al '94; Doretto et al '01]

Switching LDS

[Ghahramani and Hinton '98; Pavlovic et al '00; Li et al '02]

Nonlinear Dynamical Systems

[e.g., Ghahramani and Roweis '00]

Learning

Training poses: $\mathbf{Y} \equiv [\mathbf{y}_1, \cdots, \mathbf{y}_N]^T, \ \mathbf{y}_n \in \mathcal{R}^D$

Model parameters:

- 3D latent coordinates: $\mathbf{X} \equiv {\{\mathbf{x}_n\}}_{n=1}^N$
- RBF kernel hyperparameters: $\bar{\beta} = \{\beta_j\}$ $\bar{\alpha} = \{\alpha_j\}$
- weights on output dimensions: $W = diag(w_1, ..., w_D)$

Learning: estimate parameters by maximizing

Motion Capture Data

~2.5 gait cycles (158 frames)

Learned latent coordinates (1st-order prediction, RBF kernel)

56 joint angles + 3 global translational velocity + 3 global orientation from CMU motion capture database

Different motions

pag

Reconstruction Variance

Reconstruction

Motion Simulation

Random trajectories (~1 gait cycle, 60 steps)

Original

Generated

Motion	Walking1	Walking2	Football1	Football2	Golf1	Golf2
Length	135	156	369	302	313	292

page 27 direction ou services

GPDM based motion analysis

• 3D curve moment invariants

page 28 direction ou services

GPDM based motion analysis

Motions	m_0	<i>m</i> ₁	<i>m</i> ₂	<i>m</i> 3
Walking 1	10.317	19.832	109.500	136.198
Walking 2	10.728	22.619	135.738	137.800
Walking 3	9.693	21.052	120.148	108.560
Football 1	19.507	60.025	1138.477	6738.425
Football 2	19.527	56.614	1023.861	5954.281
Golf 1	15.262	47.914	741.376	3705.910
Golf 2	16.295	51.833	854.212	4486.878
Golf 3	16.718	43.669	603.590	2650.057

3D curve moment invariants of different motions

GPDM based motion analysis

7	Walking	Walking	Walking	Football	Football	Golf	Golf	Golf
D /	1	2	3	1	2	1	2	3
Walking 1	0	0.056	0.039	1.564	1.410	0.934	1.106	0.770
Walking 2	0.056	0	0.061	1.525	1.370	0.892	1.064	0.725
Walking 3	0.039	0.061	0	1.563	1.408	0.930	1.102	0.771
Football 1	1.564	1.525	1.563	0	0.164	0.642	0.469	0.827
Football 2	1.410	1.370	1.410	0.164	0	0.492	0.322	0.666
Golf 1	0.934	0.892	0.930	0.642	0.492	0	0.174	0.223
Golf 2	1.106	1.064	1.102	0.469	0.322	0.174	0	0.377
Golf 3	0.770	0.725	0.771	0.827	0.666	0.223	0.377	0

The Euclidean distance of different motions

- Linear motion models provide a low-dimensional parameterization for simple motions.
- GPDM provide motion models from small training data sets.
- Motion models be used to constrain inference to plausible poses and motions.
- Perspectives:
 - learn models with many different activities.
 - as prior models to tracking complex motions.

Thank you.

