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Motion Models

 What motions are likely?

 Applications:
• Computer animation
• Computer vision

NBA Live 2008
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Motion Models

• ( ) { ( ), ( )}M t p t Q t=

•  Little work on motion models [ Urtasun 2006]

•  Linear motion models

•  Non-Linear motion models
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Problem

  High-dimensional

  Time related (dynamic)

  Stylistic diversity and variation
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Motion Models

[Safonova et. al’2004] [Pullen&Bregler’2002]
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Motion Models

 S: space of human poses
 high number of DOF

 S*: lower dimensional subspace

     Mapping function between S and S*
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Linear Motion Models (PCA)

 Subspace from PCA
• x is the vector of joint angles
• F is the projection of x in eigenspace

  Low dimensional description of motions

1 11 1 21 2 1

1 1 2 2

p p

m m m pm p

F u x u x u x

F u x u x u x

= + + +

= + + +

L

L

L

1

1

m

i

i

m p

i

i

E

!

!

=

=

=
"

"
Contributive Factor



page 8 direction ou services

Classification of activities in eigenspace

 [Urtasun 2006]
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Motion generation
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Motion similarity
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Motion similarity
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Gaussian Process Dynamical Models

 Proposed by Wang, Fleet, Hertzmann in 2005.

 Based on the work of Gaussian Process Latent Variable Model
proposed by Lawrence in 2004.

Gaussian Process Dynamical Model (GPDM)
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Gaussian Process Dynamical Model (GPDM)
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Latent dynamical model:

pose reconstruction

latent dynamics

Here,                 denotes the

dimensional latent coordinates at
time t, f  and g mappings
parameterized by a and b

l

nx,t and ny,t  are zero-mean, isotropic, white Gaussian noise
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Dynamical models

xt+1xt
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Reconstruction

where

       contains the    th-dimension of each training pose

        is a kernel matrix with entries                                      for
kernel function (with hyperparameters                              )

                                  scales different pose dimensions

The data likelihood for the reconstruction mapping, given centered
inputs                                                       has the form:
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Dynamics
The latent dynamic process on
has a similar form:

where

 is a kernel matrix defined by kernel function

with hyperparameters
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Subspace dynamical model:

Markov Property

Remark: Conditioned on               , the dynamical
model is 1st-order Markov, but the marginalization
introduces longer temporal dependence.
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 Hidden Markov Model (HMM)
 Linear Dynamical Systems (LDS)

[van Overschee et al ‘94; Doretto et al ‘01]
 Switching LDS

[Ghahramani and Hinton ’98; Pavlovic et al ‘00; Li et al ‘02]
 Nonlinear Dynamical Systems

[e.g., Ghahramani and Roweis ‘00]

Dynamical models
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Learning

Learning:Learning:  estimate parameters by maximizing

Training poses:Training poses:

Model parameters:Model parameters:

 3D latent coordinates:

 RBF kernel hyperparameters:

 weights on output dimensions:

reconstruction
likelihood

priorsdynamics
likelihood

training
motions

hyperparameterslatent
trajectories
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Motion Capture Data

~2.5 gait cycles (158 frames) Learned latent coordinates
(1st-order prediction, RBF kernel)

56 joint angles + 3 global translational velocity + 3 global orientation
from CMU motion capture database
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Gaussian Process Dynamical Models

Football

Golf

Different motions
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Reconstruction Variance

   Volume visualization of                           .

[Wang 05]
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Reconstruction
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Motion Simulation

Random trajectories
(~1 gait cycle, 60 steps)

Original

Generated
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Gaussian Process Dynamical Models
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Motion Recognition
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• 3D curve moment invariants

GPDM based motion analysis
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GPDM based motion analysis

3D curve moment invariants of
different motions
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The  Euclidean distance of different motions

GPDM based motion analysis



page 31 direction ou services

Conclusion

 Linear motion models provide a low-dimensional
parameterization for simple motions.

 GPDM provide motion models from small training data sets.

 Motion models be used to constrain inference to plausible
poses and motions.

 Perspectives:
•  learn models with many different activities.
•  as prior models to tracking complex motions.
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Thank you.


