
FTM — COMPLEX DATA STRUCTURES FOR MAX

Norbert Schnell Riccardo Borghesi Diemo Schwarz Frederic Bevilacqua Remy Müller
IRCAM - Centre Pompidou

Paris – France
Real-Time Applications Team & Performing Arts Technology Research Team

1. INTRODUCTION

This article presents FTM, a shared library and a set of
modules extending the Max/MSP environment. It also
gives a brief description of additional sets of modules ba-
sed on FTM. The article particularly addresses the com-
munity of researchers and musicians familiar withMax
[14] or Max-like programming environments such asPure
Data [16].

FTM extends the signal and message data flow paradi-
gm of Max permitting the representation and processing
of complex data structures such as matrices, sequences or
dictionaries as well as tuples, MIDI events or score ele-
ments (notes, silences, trills etc.).

The consequent integration of references to complex
data structures in the Max/MSP data flow opens new pos-
sibilities to the user in terms of powerful and efficient data
representations and modularization of applications. FTM
is the basis of several sets of modules for Max/MSP spe-
cialized on score following, sound analysis/re-synthesis,
statistical modeling and data base access. Designed for
particular applications in automatic accompaniment, ad-
vanced sound processing and gestural analysis, the libraries
use a common set of basic FTM data structures. They are
perfectly interoperable while smoothly integrating into the
modular programming paradigm of the host environment
Max/MSP.

Inheriting most of its functionalities and implementa-
tion from the former jMax project [4], FTM concentrates
on providing a set of optimized services for the handling
and processing of data structures related to sound, gesture
and music representations in real-time. FTM includes a
small and simple C-written object system and graphical
Java editors embedded into Max/MSP. FTM is distributed
in form of a shared library and a set of external modules
under the LGPL open source license.

The acronym FTM is a reference to FTSFaster Than
Sound[15], the real-time monitor underlying the Max soft-
ware on the ISPW platform, which became later the sound
server of other real-time platform projects at IRCAM. One
can imagine FTM standing forFaster Than Musicor Fun-
ner Than Messages.

The original motivation for the development of FTM
were the need for a flexible score representation related to
score following and an efficient representation of matrices
and vectors to allow the modular implementation of var-
ious analysis/re-synthesis algorithms in a unified frame-

work. Today, modules for both domains have been imple-
mented in form of two sets of external modules based on
FTM, Suivi andGabor. Further packages are following
addressing gesture analysis and data base access (see 3.1).

In order to avoid confusion this article consistently re-
fers to instances of FTM classes asobjectswhile using the
termmodulesfor Max/MSP externals.

2. FTM FEATURES AND SERVICES

The features of FTM can be summarized as follows:

• static and dynamic creation of data structures (FTM
objects) of predefined classes

• editors and visualization tools

• expression evaluation including functions, method
calls, and arithmetic operators

• graphical editors (written in Java) and visualization
tools

• import/export of text, standard MIDI, SDIF [20] and
the usual sound file formats

• object serialization and persistence

2.1. Data Structures and Operators

FTM allows for static and dynamic instantiation of FTM
classes creating FTM objects. Static FTM objects are cre-
ated in a patcher using a dedicated Max/MSP external
module. Dynamic object creation is provided by a new-
function within the FTM message box and by other ex-
ternal modules (see 2.1.2). The objects are represented
by references, which can be sent within the data-flow be-
tween the Max modules as arguments of lists and mes-
sages.

FTM strictly separates data objects and operators. Only
basic operations on FTM objects are implemented as meth-
ods of the FTM classes which can be invoked within the
FTM message box or by sending a message to a statically
created object. More complex calculations and interac-
tions with objects are implemented as Max/MSP external
modules receiving references to FTM objects into their in-
lets or referencing objects by name as their arguments.

FTM objects can contain (references to) other FTM ob-
jects. A simple garbage collector handles transparently
the destruction of dynamically created FTM objects refer-
enced by multiple elements of an application.

Static FTM objects in a Max/MSP patcher can be na-
med within a global or local scope and marked as persis-
tent in order to be saved within the patcher file.

2.1.1. Classes and Objects

The following FTM classes are currently provided with
documentation:

mat... matrix of arbitrary values or objects
dict ... dictionary of arbitrary key/value pairs
track ... sequence of time-tagged items
fmat... two-dimensional matrix of floats
fvec... reference to a col, row or diag of anfmat
expr... expression
bpf ... break point function
tuple... immutable array of arbitrary items
scoob... score object (note, trill, rest, etc.)
midi ... midi event

FTM classes are predefined. They are implemented in
C and optimized for real-time performance. The classes
themselves are kept as generic as possible providing a
maximum of interoperability.

In the current packages based on FTM the matrix and
dictionary class are mainly used to organize data. Since
they can contain references to other object they easily al-
low for building up recursive structures such as matrices
of matrices or dictionaries of sequences. Thetuple class
gives the possibility of creating lists of lists (i.e. tuples of
tuples).

The classesfmatandbpfare optimized to perform real-
time processing of sound and movement capture data (see
3.1).

The generic two-dimensional float matrixfmat repre-
sents various data such as vectors of sounds samples, spec-
tral data, coefficients and movement capture data. Com-
plex calculations are implemented within specific meth-
ods, functions or processing modules requiring two-col-
umn matrices as input.

Thetrackclass implements a generic chronological se-
quence of arbitrary time-tagged values. Each track is typ-
ed and contains a single type of values, which can be prim-
itive (int, float or symbol) or FTM objects. Atrack of
scoobor midi objects is used to represent a musical score.
A track of fmatobjects is used to represent an SDIF file.
Methods for import and export are provided for import
and export of MIDI and SDIF files (see 2.2.2). The sup-
port of a complex score format such as MusicXML [2] is
planned. A more detailed description of thetrack class
and the score editor is given in section 2.2.1.

2.1.2. Modules, Messages, Names and Expressions

FTM is released with a set of external Max/MSP mod-
ules providing basic functionalities for the creation and
handling of objects and operations related to the provided

classes. All operations on FTM objects requiring or pro-
viding additional memory, timing or visualization are im-
plemented in form of external Max/MSP modules rather
than methods of the FTM classes.

The modulesftm.object and ftm.mess are two
graphical Max external modules, which integrate FTM
objects and expressions into the Max/MSP graphical pro-
gramming interface (i.e. the patcher). Both modules use
a parser for expressions built into FTM allowing for the
evaluation of arithmetic expressions, functions (mathemat-
ical or others), method calls, ‘$‘-prefixed name references
and access to elements of data structures using brackets
(e.g.$mymat[2 7]). The syntax is kept simple and in-
tegrates infix expressions using binary operators with pre-
fix notation for functions and method calls.

Figure 1. Example of a static FTM object namedmyfmat
in a Max/MSP patcher

Figure 1 shows an FTM object statically created with
the ftm.object module in a Max/MSP patcher. The
module defines afmatmatrix of floats with 4 rows and 7
columns. The module redirects all incoming messages to
the defined FTM object. A bang message causes the mod-
ule to output a reference to the object from the left out-
let. The object can be given a name within global or local
scope. Local scope is limited to a patcher file such as a
loaded top level patcher or an instance of an abstraction.
This way local names can be defined and used within a
patcher file and all its sub-patches, while different patcher
files and abstractions can have each their private name def-
initions. FTM names are used with a leading ‘$‘ character
in all FTM modules including the FTM message box. Dy-
namic names can be easily created and handled using a
dict object.

The persistence of the content of a static FTM object as
well as its name and scope can be set by graphical inter-
actions with the module or using an associated Max/MSP
inspector. A persistent object saves its content within the
Max/MSP patcher file and restores its content when it is
copied and pasted to a patcher using the serialization mech-
anism described at the end of 2.1.3. More over, the con-
tent of any statically defined object can be saved to and
restored from a text file.

The description of an on object consists of a class name
followed by instantiation arguments and optional initial-
ization messages separated by commas. The description
of persistent objects saving their content within the patcher
file is reduced to a minimum description (i.e. in most
cases the class name) in order to avoid conflicts between
the initial state of the object specified by its description
and the content restored from the file when loading a patch-
er. The same module,ftm.object , can be used to give

a name to a number. The description is in this case an
expression resulting in a single value.

The arguments for instantiation and initialization can
be represented by an expression and thus reference other
objects by name. The redefinition of a named object or
value will cause a redefinition at all objects using its name
in their description. Static object definitions are invalid
(i.e. ftm.object appear opaque) when they include
a reference to an undefined name and turn automatically
into valid objects as soon as the name is defined by another
ftm.object module.

Editing the description of anftm.object can cause
the recursive re-instantiation of multiple other modules.

The moduleftm.mess implements an extended Max
message box. The object provides the possibility to com-
pose and output messages in a way which is similar to
the usual message box built into Max/MSP. As an exten-
sion the FTM message box allows the dynamic evaluation
of expressions. Figure 2 shows several examples of ex-
pressions in theftm.mess module. Function calls re-
quire parenthesis around the function name followed by
the arguments. Method calls are similar within parenthe-
sis starting with an object followed by the method name
and arguments. Methods can be invoked on objects ref-
erenced by name or by references received into the inputs
using numbered references (i.e. $1, $2, etc).

In general numbered references are evaluated as values
received by the inlets of the message box referring either
to the elements of an incoming list (like the Max/MSP
message box) or single values received by the inlets. FTM
message boxes can have an arbitrary number of inlets. The
syntax ‘$*‘allows to use an incoming list or a list of all
input values in an expression. An initialization values can
be specified for each numbered reference in the inspector
of theftm.mess module.

It is planned to allow the definition of functions by ex-
pressions and Max patches or abstractions in the future.

Figure 2. Three examples of messages using expressions
in the FTM message box

Since methods of FTM classes have return values the
result of a method call can be used in an arithmetic expres-
sion or as argument of another method or function call.

FTM expressions of the same syntax as used in the
ftm.object andftm.mess modules can be represen-
ted by objects of the classexpr. Theexprclass is instanti-
ated with a symbol containing an unparsed expression and
has a single methodeval. Theevalmethod accepts a dic-
tionary and a list of values as arguments. The dictionary is
used to resolve ‘$‘-prefixed name references in the evalu-
ation of the expression while the list of values is referred

to by the numbered references. Names which can not be
resolved in the given dictionary are resolved in the global
scope (local scope is not defined).

Since expression object generally don’t have a scope,
names referenced inside the expression are resolved in the
global scope and using the dictionary given as argument of
theevalmethod. The additional arguments of the method
are replacing the numbered ‘$‘-references of the expres-
sion.

FTM expressions can not be used within ordinary
Max modules such as those provided with FTM apart
from ftm.object andftm.mess . Nevertheless, FTM
modules can use the ‘$‘-syntax to reference objects or
numbers by name in their instantiation arguments. Sim-
ilar to static object definitions FTM modules are automat-
ically re-instantiated when the definition of a name refer-
ence changes. Many FTM modules follow the convention
for attributes using symbols with a leading ‘@‘-character
in order to specify initialization arguments by name.

The following external modules are currently provided
with FTM:

ftm.object ... static object definition
ftm.mess ... extended message box
ftm.copy ... copy objects to an internal reference
ftm.clone ... copy objects to new references
ftm.value ... store and output any value
ftm.list ... convert an object to a lists
ftm.iter ... iterate on an object
ftm.schedule ... delay incoming value
ftm.print ... FTM version ofprint

ftm.play ... play atrack
ftm.record ... record to atrack
ftm.midiparse ... raw bytes tomidi objects
ftm.midiunparse ... midi objects to raw bytes
ftm.buffer ... buffer~ interface forfmatclass
ftm.vecdisplay ... fmatgraphical display

2.1.3. References, Data-flow and Persistence

The introduction of references to complex data structures
into the Max data-flow creates new possibilities as well as
unusual programming paradigms. While Max messages
are immutable and copied in order to perform successive
calculations module by module following the patches con-
nections, the FTM objects floating in a Max patch are of-
ten modified by the modules they traverse.

Figure 3 shows a simplified example of a patch calcu-
lating the logarithmic magnitude of an FFT spectrum and
a smoothed spectral envelope of a frame of 512 samples
of a speech sound. Each of the messages boxes invoke one
or two methods performing an in-place calculation which
destructively transforms the content of the matrix. Some
methods even change its dimensions.

Max and FTM provide four different ways of program-
ming successive method calls: (1) message boxes con-
nected in parallel or (2) in series, (3) recursive expressions

Figure 3. Max data flow with in-place calculations

and (4) comma or semicolon separated expressions in a
single message box. The example shows three of them.

The Max control flow will execute the message boxes
in right-to-left and top-to-bottom order. Since all of the
fmatmethods used in the example (mul , div , clogabs ,
zero andrifft) return a reference to the object itself,
method calls can be chained such as shown in the expres-
sion ‘(($1 fft) div 256) ‘. Here an FFT is com-
puted on the incomingfmat object before dividing each
element of the resulting two-column matrix — represent-
ing the complex spectrum — by the scalar 256. Each of
the expressions in the message boxes of the example re-
sult in a reference to thefmatnamedframedefined at the
top of the patcher. The references are output by the mes-
sage boxes and since all calculations in the example are
destructive it doesn’t make any difference whether one
message box is directly connected to the next or two mes-
sage boxes are connected in parallel. The right-to-left or-
der has to be respected. Since the execution order of two
Max modules connected to the same outlet depends on the
graphical position of the modules, moving around FTM
modules can change drastically the result of the calcula-
tion.

In additionftm.mess allows (like the Max message
box) to separate expressions by comma causing the suc-
cessive evaluation and output of the resulting values or
lists in left-to-right order. Using a semicolon instead of
a comma after an expression suppresses the output while
the expression is still evaluated.

Max/MSP patches based on FTM rely more systemat-
ically on side-effect and destructive in-place operations
than other applications based on the usual set of Max
modules. It turns out that the extension to the Max
programming paradigm introduced by FTM integrate
consistently into the environment. In general the user

has to be more conscious of the execution order when
working with FTM than when he is using other Max
modules. Various techniques are available to avoid
side-effect and destructive operations on FTM objects
where it is not desired by copying and thus generating a
new reference such as a dedicated FTM module called
ftm.copy .

FTM objects such as amat, dict or track can contain
references to other objects. More over many FTM mod-
ules, such as the message box or the moduleftm.play
interpreting atrack sequence, store references to objects.
The destruction of statically or dynamically created ob-
jects is handled by a simple reference count garbage col-
lector. Objects which have been referenced by other ob-
jects or FTM modules are immediately destroyed when
the last reference to the object has been released. When
deleting aftm.object statically defining an FTM ob-
ject which is still referenced by other components of a
patch, only the static definition is erased. The object re-
mains until the last reference is released.

For persistency, FTM provides a serialization mech-
anism recursively saving the content of objects and the
objects contained as references. Using this mechanism,
FTM objects containing FTM objects can be saved and
restored within a Max/MSP patcher file and copied and
pasted between patchers. When copying, objects contain-
ing references to an object not included in the set of copied
objects, the references will be identically restored when
pasting. When saving a patcher containing a reference to
a statically defined object which is not itself included in
the saved patcher (i.e. scope), the reference will be auto-
matically replaced by a reference to a copy of the object.
Reloading the patcher the data will be correctly restored
but without any relationship to the originally referenced
object.

2.2. FTM Interfaces, Interchange and Integration

2.2.1. Graphical Editors

FTM provides editors for most of the complex classes.
Similar to other Max/MSP modules an editor is opened
when double-clicking on the anftm.object module if
an editor is available for the class of the defined object.
While some editors such as those for thetrack and bpf
class allow for a graphical representation of the objects
content others consist of a simple textual table view (e.g.
mator dict).

All editors are using Java [8] and integrate into Max/
MSP using themxj Java interface. Themxj module has
been originally provided to allow for prototyping and de-
veloping Max/MSP objects in Java. The FTM library uses
a hiddenmxj -module to embed the FTM graphical user
interfaces consistently into the Max/MSP environment.
The choice of Java as the programming environment for
the graphical interfaces of FTM is inspired by the porta-
bility and simplicity of development and the availability
of a rich set of graphical components.

The communication between the FTM runtime envi-
ronment and the Java editors is handled by a centralized
service. It is easily imaginable to distribute both compo-
nents on different machines and redirect their communi-
cation over a simple message protocol such as OSC [25].

The currently most developed FTM editor is available
for the track class when representing a sequence ofscoob
objects. The editor provides a chronometric representa-
tion for musical scores as shown in figure 4. The represen-
tation integrates score events such as notes, rests and trills,
with a temporal structure of bars and additional markers.
The same content can be edited in parallel in a table view
describing the displayed score objects and markers as a
textual list.

Figure 4. Small detail of a screenshot of the score editor

Thescoobclass was mainly developed for the graphi-
cal representation of scores driven by the needs of score
following applications. Thescoobobjects have a type
(note, interval, rest, trill, etc.) which is associated to a
specific graphical representation. The chosen chronomet-
rical score representation is designed as a compromise be-
tween the traditional symbolic music representation and
usual representations of audio and MIDI data in popular
sequencer applications.

2.2.2. SDIF

The Sound Description Interchange Format (SDIF) [20]
is a file format of increasing popularity for the storage
and exchange of sound data in various representations in-
cluding frequency domain descriptions such as partials,
spectral envelopes, STFT frames, FOF parameters or LPC
coefficients but also PCM samples or PSOLA markers.
SDIF is also used for motion capture data and other data
sets with a temporal development.

SDIF is integrated into FTM in form of import and ex-
port methods of thetrack class. Atrack object can repre-
sent an SDIF file as a sequence offmatobjects, eachfmat
object representing a matrix of the SDIF file. Additional
arguments of the import method can specify the selection
of single streams, frame types and matrix types of a given
SDIF file. Using the SDIF selection syntax [20], also time
range and specific matrix columns or rows can be chosen.

FTM uses the IRCAM SDIF library [23].

2.2.3. Max/MSP Integration

FTM can be seen as partly independent from Max/MSP
and can easily be integrated into other environments.

However special care is taken to assure the seamless in-
tegration of FTM into Max/MSP. Especially the graphi-
cal modules embedded to the Max/MSP patcher window,
ftm.object and ftm.mess , are to be mentioned in
this context, but also other modules such asftm.list ,
which transforms any FTM object into a Max lists respect-
ing the conventions for lists and messages of Max/MSP.

Most FTM objects treat and store only single values or
references to objects. Max messages can be easily trans-
formed to FTM tuples and back to messages in order to
store them in FTM objects such astracksequences ordict
tables.

It has been chosen to represent references to FTM ob-
jects in the Max data-flow on the level of elementary types
such as int, float and symbols. Single FTM objects are
sent as a single argument of a special message “ftm.obj“,
which is only understood by the FTM external modules.
As a consequence some Max/MSP modules such aspack
don’t apply to FTM objects. In this case an FTM specific
replacement is provided.

The moduleftm.buffer has been added to the FTM
object set as an interface between the FTMfmatclass and
the Max/MSP modulebuffer~ . The buffer~ mod-
ule is mainly used as container of sound samples and
Max/MSP provides several other modules to record, play,
display and edit the content of the module. In order to cre-
ate a maximum of interoperability between these modules
and thefmatclass as well as the FTM modules operating
on float matrices,ftm.buffer gives the possibility to
interface anfmatobject with the set of objects compatible
with buffer~ without creating any overhead of memory
use nor computation.

3. FTM APPLICATIONS AND PLATFORMS

3.1. Packages

Several packages dedicated to different domains of appli-
cation are available for FTM. The very first operational
package relying on FTM has beenSuivi which imple-
ments recent score following algorithms formerly avail-
able within the jMax environment for Max/MSP. The
packageGabor followed and lately two other packages,
MnM and FDM joined the family of modules exploring
the new possibilities introduced by FTM.

3.1.1. Suivi: Score following

The packageSuivicontains modules performing score fol-
lowing based onHidden Markov Models(HMM) [12]
[13].

The package consists mainly of two objects performing
score following on MIDI and audio input. They reference
trackobjects containing the score information.

3.1.2. Gabor: "Microsound" and analysis/re-synthesis

TheGaborpackage is a toolbox for analysis/re-synthesis
applications [24]. The name of the package is an homage

to Dennis Gabor1 the inventor of the concept of atomic
sound particles [7].

The modules of theGabor package are built around
the notion of generalized granular synthesis. They treat
atomic units of short sound (samples) [17].Gabor pro-
vides a unified framework for granular synthesis [22],
PSOLA [11], phase vocoder [5] [10] and other overlap-
add techniques for the time-domain as well as the spec-
tral domain [19] operations. Based on the FFT-1 method
[3] [18] also additive synthesis is well integrated in this
framework.

Gaborprovides several modules to transform (i.e. cut)
a Max/MSP signal processing sound stream to a stream of
overlapping FTMfmatvectors within the Max/MSP mes-
sage scheduler. Each of the modules is oriented towards
a different timing-paradigm requiring parameters for the
period and size of the generated vectors precisely in mil-
liseconds or samples or automatically synchronizing to
the pitch of an incoming monophonic signal. Another ba-
sic module ofGaborreconstitutes a Max/MSP signal pro-
cessing sound from FTMfmat vectors precisely respect-
ing the timing of the incoming control stream. The mod-
ule uses the 64-bit floating point time-tags provided as
the logical time with each Max/MSP message and option-
ally performs interpolation in order to provide a timing-
precision beyond the sampling period.

The otherGabor modules implement specific analy-
sis/synthesis algorithms such as optimized FFT, convolu-
tion or FFT-1 additive synthesis as well as auxiliary func-
tions for windowing and waveform generators. ManyGa-
bor applications extensively use SDIF formats.

3.1.3. MnM: Mapping and statistical modeling

The packageMnM [1] is a set modules providing ba-
sic linear algebra, mapping and statistical modeling al-
gorithms such asPrincipal Component Analysis(PCA),
Gaussian Mixture Models(GMM) and Hidden Markov
Models(HMM).

MnM stands for “Music is not Mapping“. The close in-
tegration of motion capture with complex statistical mod-
els and sound analysis/re-synthesis within in an environ-
ment such as Max/MSP is a promising platform encourag-
ing the development and composition of new artistic ap-
plications going far beyond simple mappings.

3.1.4. FDM: Data base access

The most recent package based on FTM introduces data
bases and the access to indexed data using FTM classes.
FDM includes theSQlite[9] library to implement generic
data base storage and retrieval of FTMfmat float matrix
objects.

The package anticipates basic modules for envisaged
future implementations of concatenative data driven syn-
thesis [21].

1 Nobel prize in Physics 1971 for his invention and development of
the holographic method

3.2. Platforms and Environments

FTM is available for Max/MSP on Mac OS X and Win-
dows. The porting of FTM toPure Data[16] on Linux is
in an advanced state.

3.3. Platform Independent API for External Modules

FTM provides an API for the development of FTM mod-
ules such as Max/MSP externals independently from a
specific real-time environment. The API is currently im-
plemented for Max/MSP andPure Data. It assures the
possibility of easily porting the available FTM modules
to any Max-like environment. The API supports the dec-
laration of Max/MSPstyle attributes and transparently in-
cludes a redefinition mechanism for named references to
FTM objects in instantiation arguments as explained in
section 2.1.2

3.4. License and releases

FTM is released under theLesser GNU Public License
(LGPL)[6]. Recent releases are available from the web
page of the IRCAM Real-Time Applications Team2 . The
sources of FTM are available via CVS from the FTM
SourceForge project3 .

The packagesGabor, MnM andFDM are released with
the FTM distribution for Max/MSP.Suivi as well as ad-
vanced examples and additional phase vocoder compo-
nents are available within the IRCAM Forum4 .

4. CONCLUSIONS

FTM provides a consistent set of features integrated to
Max/MSP opening new possibilities for the development
of interactive music and multi-media applications. FTM
successfully absolved a phase of proof-of-concept and is
today freely distributed with a set of packages oriented
towards different domains forming a coherent ensemble
around a kernel of basic FTM modules.

FTM and its libraries have been successfully employed
in various concert, dance and theatre performances for
score following, voice and sound processing, mapping and
gesture recognition.

5. ACKNOWLEDGMENTS

The development of FTM wouldn’t have been possible
without the contribution of musical assistants and com-
posers at IRCAM. All in all FTM integrates the work of
about ten years of continuous development including dif-
ferent predecessor projects such as Max/FTS and jMax.
Especially Francois Dechelle has to be acknowledged for
his commitment to these projects.

Special thanks goes to Roland Cahen, Jean-Philippe
Lambert, Olivier Pasquet, Romain Kronenberg, Benoit

2 http://www.ircam.fr/ftm
3 http://sourceforge.net/projects/ftm
4 http://forumnet.ircam.fr/

Meudic, Alexis Baskind and Gilbert Nouno who patiently
tested early versions of FTM. Additional acknowledg-
ments are owed to innumerable partners of continuous
exchanges inside and outside of IRCAM who have con-
tributed to the understanding of sound and music process-
ing woven into FTM.

6. REFERENCES

[1] F. Bevilacqua, R. Muller, and N. Schnell. MnM: a
Max/MSP Mapping Toolbox. InProceedings of the
International Conference on New Interfaces for Mu-
sical Expression, NIME, Vancouver, Canada, 2005.

[2] G. Castan, M. Good, and P. Roland. Extensible
Markup Language (XML) for Music Applications:
An Introduction. InThe Virtual Score: Represen-
tation, Retrieval, Restoration, pages 95–102, MIT
Press, Cambridge, MA, 2001.

[3] P. Depalle and X. Rodet. Synthese Additive par FTT
Inverse. Technical report, IRCAM, Paris, 1990.

[4] F. Dechelle et al. jMax: a new JAVA-based edit-
ing and control system for real-time musical appli-
cations. InProceedings of the International Com-
puter Music Conference, ICMC, Ann Arbor, Michi-
gan, 1998.

[5] J. L. Flanagan and R. M. Golden. Phase Vocoder.
Bell System Technical Journal, November:1493–
1509, 1966.

[6] Inc. Free Software Foundation. GNU Licenses. Web
page, 1996. http://www.gnu.org/licenses/.

[7] Dennis Gabor. Acoustical Quanta and the Theory of
Hearing.Nature, 159(4044):591–594, 1947.

[8] J. Gosling and H. McGilton. The Java Language En-
vironment, A White Paper.Sun Microsystems Com-
puter Company, 1995.

[9] D. R. Hipp. SQLite Home Page. Web page, 2000.
http://www.sqlite.org/.

[10] J. Laroche and M. Dolson. New Phase Vocoder
Technique for Pitch-Shifting, Harmonizing and
Other Exotic Effects. InIEEE Workshop on Appli-
cations of Signal Processing to Audio and Acoustics,
Mohonk, New Paltz, New York, 1999.

[11] N. Schnell and G. Peeters et al. Synthesizing a Choir
in Real-time Using Pitch-Synchronous Overlap Add
(PSOLA). InProceedings of the International Com-
puter Music Conference, ICMC, Berlin, Germany,
2000.

[12] N. Orio and F. Dechelle. Score Following Using
Spectral Analysis and Hidden Markov Models. In
Proceedings of the International Computer Music
Conference, ICMC, Havana, Cuba, 2001.

[13] N. Orio, S. Lemouton, D. Schwarz, and N. Schnell.
Score Following: State of the Art and New Devel-
opments. InProceedings of the International Con-
ference on New Interfaces for Musical Expression,
NIME, Montreal, Canada, 2003.

[14] M. Puckette. Combining Event and Signal Process-
ing in the MAX Graphical Programming Environ-
ment.Computer Music Journal, 15(3):68–77, 1991.

[15] M. Puckette. FTS: A Real-time Monitor for Multi-
processor Music Synthesis.Computer Music Jour-
nal, 15(3):58–67, 1991.

[16] M. Puckette. Pure Data. InProceedings of the Inter-
national Computer Music Conference, ICMC, pages
269–272, San Francisco, California, 1996.

[17] Curtis Roads.Microsound. The MIT Press, Cam-
bridge, Massachusetts, 2002.

[18] X. Rodet and P. Depalle. Spectral Envelopes and
Inverse FFT Synthesis. InProceedings of the 93rd
Convention of the Audio Engineering Society, AES,
New, York, 1992.

[19] D. Schwarz and X. Rodet. Spectral Envelope Es-
timation and Representation for Sound Analysis-
Synthesis. InProceedings of the International Com-
puter Music Conference, ICMC, Beijing, China,
1999.

[20] D. Schwarz and M. Wright. Extensions and Appli-
cations of the SDIF Sound Description Interchange
Format. InProceedings of the International Com-
puter Music Conference, ICMC, Berlin, Germany,
2000.

[21] Diemo Schwarz. New Developments in Data-Driven
Concatenative Sound Synthesis. InProceedings
of the International Computer Music Conference,
ICMC, Singapore, 2003.

[22] B. Truax. Real-time Granular Synthesis with a Dig-
ital Signal Processor. Computer Music Journal,
12(2):14–26, 1988.

[23] D. Virolle, D. Schwarz, and X. Rodet. SDIF – Sound
Description Interchange Format. Web page, 2002.
http://www.ircam.fr/sdif.

[24] M. Wanderley, N. Schnell, and J. B. Rovan. Escher –
Modeling and Performing Composed Instruments in
Real-time. InProceedings of the IEEE International
Conference on Systems, Man and Cybernetics, San
Diego, California, 1998.

[25] M. Wright and A. Freed. Open Sound Control:
A New Protocol for Communicating with Sound
Synthesizers. InProceedings of the International
Computer Music Conference, ICMC, Thessaloniki,
Greece„ 1997.

