
XSPIF: Developer Guide
a cross standards plugin framework

Vincent Goudard and Remy Muller

September 5, 2003

Abstract

XSPIF : ‘a (X)cross Standard PlugIn Framework’ is a development environment
which offers the possibility of designing audio-plugins within an XML context,
with a total abstraction from platform or standard. The XML files are parsed
via python scripts, and one can get the C/C++ sources files in various plugin
standards.

This document is aimed at providing information for people who would like to
improve XSPIF abilities and performances. Before reading this document, you
should first take a look at other available documentation (especially XSPIF’s
User Guide [GM03a]).
Hence we could describe the Python code, but that would not be of much interest
since it is pretty easy to understand, and almost exclusively consists in writing
lines in a file. What we will describe here is rather the choices that have been
made for the XSPIF environnement implementation for cross-platform and cross-
standard purpose, as well as the specificities of each standard for the translation
of the meta-plugin.

Contents

1 Introduction 3
1.1 About XPSIF . 3
1.2 Semantics . 3
1.3 Open Source License . 4

2 Tools and languages used for development 5
2.1 XML: the plugin specification . 5

2.1.1 Document Type Definition : xspif.dtd 5
2.1.2 Required vs. optionnal features 7
2.1.3 Elements and attributes 7

2.2 Python: parsers and translators 7
2.2.1 XSPIF Python modules 7
2.2.2 PyXML: XML package for Python 8

3 Translation from XML to C/C++ 9
3.1 General scenario of the parsing 9
3.2 C vs C++ implementation . 9
3.3 Common implementation . 10

3.3.1 Headers . 10
3.3.2 XSPIF API: the macros 10
3.3.3 Heading . 11
3.3.4 Includes . 11

3.4 Implementing parameters . 11
3.4.1 Declaration . 11
3.4.2 Mapping and boundaries 11
3.4.3 Attached code . 12

3.5 Pins . 12
3.5.1 Declaration . 12

3.6 Implementing callbacks . 13
3.6.1 instantiate . 13
3.6.2 deinstantiate . 13
3.6.3 activate / deactivate . 13
3.6.4 process . 14

CONTENTS 2

3.7 Implementing controlouts . 14
3.8 Documentation . 14

4 Extending XSPIF 15
4.1 How to add a standard in XSPIF? 15

4.1.1 Modifying xspif.py . 15
4.1.2 Creating a new module . 15

4.2 How to add a feature in XSPIF? 16
4.2.1 Updating the DTD . 16
4.2.2 Updating the checking module 17
4.2.3 Updating the translators 19

5 Perspectives and TODOs 26
5.1 Current limitations and known bugs 26
5.2 MIDI instrument . 26
5.3 Custom GUI support . 26
5.4 More with XML . 27

5.4.1 Document generation . 27
5.5 User front end . 27

5.5.1 XSPIF meta-plugin repositories 27

Bibliography 28

Chapter 1

Introduction

1.1 About XPSIF

XSPIF is born after a study [GM03b] of existing audio plugin standards, namely:
Steinberg’s VST, Apple’s AudioUnit, LADSPA, Cakewalk’s DXi; as well as ob-
jects in modular softwares such as MAX/MSP1, jMax2, PureData3, and Eye-
sWeb4. This study helped deducing a synthetic abstraction from the existing
standards, to ease the development of audio plugins, with the underlying guide-
line: “Write once, export many.”

The XML language was chosen to store the data needed to design an audio plu-
gin. Its syntax is independant from any language, and platform, and it is highly
flexible. The blocks of code are written in the standard ANSI C5 language, which
is also platefom independant.

1.2 Semantics

To help make things clearer, let us define some terms we will refer to in this
manual, to name actors, objects and actions.

Peoples:

• A XSPIF user (or simply “user”) is a person who aims at developping
audio plugins, with the XSPIF assistance. This person should only have

1MAX/MSP from Cycling ’74: http://www.cycling74.com
2jMax from IRCAM: http://www.ircam.fr
3Pure Data from Miller Puckette: http://www.pure-data.org
4EyesWeb from Laboratorio di Informatica Musicale: http://www.eyesweb.org
5C++ is also possible, but it narrows the scope of the exported standards

http://www.cycling74.com
http://www.ircam.fr
http://www.pure-data.org
http://www.eyesweb.org

1.3 Open Source License 4

some basic knowledge of the C language, which was chosen for writing the
callbacks in XSPIF.

• A XSPIF developer (or simply “developer”) is a person who develops
XSPIF to add new features or standards to its scope. This person should
know C/C++, XML, and Python.

• A plugin user is a person who uses audio plugins in an audio software
called ‘host’. This person can know nothing at all about computer pro-
gramming.

Objects:

• A meta-plugin: is a XML spefication which contains the “essence” of
the plugin: i.e. everything needed to describe the plugin’s features and
behaviour. The meta-plugins are stored in files using the .xspif extension
to differentiate them from other XML files.

Actions:

• Validating is the process of examinating the meta-plugin’s XML file, and
ensure that it matches the structure defined in the DTD6

• Parsing is the process of reading the XML file, and transforming it to a
structured object called a DOM7.

• Checking is the process of examinating the DOM elements, and checking
if the description makes sense from the XSPIF point of view; e.g. that a
parameter min value is less than its max value. . . etc.

• Translating: is the process of writing the C/C++ source files of a given
standard, from the elements of the DOM tree.

1.3 Open Source License

XSPIF is Open Source8, released under the General Public License9. This means
that you are free to redistribute it, as long as you do not make a business with
it. You are aslo free to modify and improve it: may this guide help you in this
task.

6Document Type Definition: see 2.1.1 and the XML language syntax.
7Document Object Model
8http://www.gnu.org/philosophy/free-sw.html
9http://www.gnu.org/licenses/gpl.html

http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/licenses/gpl.html

Chapter 2

Tools and languages used for
development

2.1 XML: the plugin specification

XML: ‘eXtended Markup Language’ belongs to the family of markup languages
as HTML for example. It is very useful to describe documents containing struc-
tured information. Structured information contains both content (words, pic-
tures, etc.), and some indications on what role that content plays. As the major
difference with other Markup Languages which comes with a predefined set of
Tags, with XML you can specify you own ones dedicated to you own application
[Wal98].

2.1.1 Document Type Definition : xspif.dtd

The Document Type Definition (DTD) is a file describing the way a specific XML
file should be written. More precisely it defines what the possible or required ele-
ments are, where they are, how many of them one can find in the XML file, what
are their attributes and sub-elements. . .

Here is a short XML symbols glossary:

? allow zero or one element

* allow zero or more elements

+ allow one or more elements

if no symbol, allow one and only one element

On the next page is the DTD specification : xspif.dtd.

2.1 XML: the plugin specification 6

<!ELEMENT plugin (caption?,comment?,code?,pin+,param*,

controlout*,state*,callback+)>

<!ATTLIST plugin label CDATA #REQUIRED

plugId CDATA #REQUIRED

manufId CDATA #REQUIRED

maker CDATA #IMPLIED

copyright CDATA #IMPLIED>

<!ELEMENT caption (#PCDATA)>

<!ELEMENT comment (#PCDATA)>

<!ELEMENT code (#PCDATA)>

<!ELEMENT pin (caption?, comment?)>

<!ATTLIST pin label CDATA #REQUIRED

channels CDATA #REQUIRED

dir (In|Out) #REQUIRED>

<!ELEMENT param (caption?,code?,comment?)>

<!ATTLIST param label CDATA #REQUIRED

min CDATA #REQUIRED

max CDATA #REQUIRED

default CDATA #REQUIRED

type (float|int) #REQUIRED

mapping (lin|log) #REQUIRED

unit CDATA #IMPLIED

noinlet (true|false) #IMPLIED>

<!ELEMENT controlout (caption?, comment?)>

<!ATTLIST controlout label CDATA #REQUIRED

min CDATA #REQUIRED

max CDATA #REQUIRED

type (float|int) #REQUIRED

mapping (lin|log) #IMPLIED

unit CDATA #IMPLIED>

<!ELEMENT state EMPTY>

<!ATTLIST state label CDATA #REQUIRED

type CDATA #REQUIRED>

<!ELEMENT callback (code?)>

<!ATTLIST callback label (process|processEvents|

instantiate|deinstantiate|

activate|deactivate) #REQUIRED>

2.2 Python: parsers and translators 7

2.1.2 Required vs. optionnal features

The Document Type Definition xspif.dtd specifies the elements that the user
can or has to use for the design of the meta-plugin. Some elements or attributes
are required while some are optional, and the DTD helps specifying all this.
However, the DTD alone cannot handle all the cases for which the meta-plugin
design is not complete enough or valid; e.g. if a label contains blank spaces or
any bad character for a C++ class name, the XML file is still valid for the DTD,
while the C source file will definitely fail to compile. This kind of verification
needs special checking, which is performed after the DTD validation with the
generalCheck function and in the standard-specific modules as it will be ex-
plained later in this document.

2.1.3 Elements and attributes

The choice of letting a certain feature be an element or a attribute is not very
well defined in the XML world. In brief, elements either contain information, or
have a structure of subelements, while attributes are characteristics or properties
of the information object. There can be two sub-elements with the same name (if
it is allowed by the DTD), but only one attribute. Then it is up to the developer
to do what is more convenient.

2.2 Python: parsers and translators

Python [vRc03] is a powerful ‘interpreted, interactive, object-oriented program-
ming language’, which has the advantage of being very easy, and intuitive. Fur-
thermore, its license is an Open Source one, and a great number of people are
contributing to its development, so that a large collection of librairies is available
to the developers, as well as a strong community providing support for new users.

Last but not least when one want to design a cross-platform project, the Python
implementation is portable: it runs on many brands of UNIX, on Windows, DOS,
OS/2, Mac, Amiga. . .

2.2.1 XSPIF Python modules

The main Python script xspif.py, which performs the generation of the plugin’s
source files uses a module called xspif. This module contains the following
sub-modules to handle its various tasks:

2.2 Python: parsers and translators 8

xspif.parsexml A sub-module with methods to parse XML, perform some ver-
ifications and manipulate DOM trees.

xspif.tools A sub-module providing common tools relative to the writing of the
sources.

xspif.standard One sub-module per standard : xspif.vst, xspif.ladspa. . . etc.
to write the C/C++ source code.

2.2.2 PyXML: XML package for Python

There are two main API for handling XML documents: SAX and DOM1. XSPIF
uses the DOM API, which loads a whole XML tree as a unique data structure
once in memory, while SAX loads it incrementally, being thus more useful for
bigger XML files containing pictures for example. But as meta-plugins are text
only, they’re not really big, and DOM gives us a lot more flexibility because we
can access the different nodes randomly on-demand.

As the default XML modules in the standard python distribution were not
complete enough for our application, we used the additionnal PyXML pack-
age [Kc03]. A good documentation for PyXML can be found in the libraries
reference [?], on the Python web site : http:www.python.org. The module
xml.parsers.xmlproc is used to validate the meta-plugin file, with respect to
the DTD, and the module xml.dom.minidom is used to parse the meta-plugin
file, and convert it to a DOM data tree.

1SAX: “Simple API for XML”; DOM: “Document Object Model”

http:www.python.org

Chapter 3

Translation from XML to
C/C++

3.1 General scenario of the parsing

To generate the C/C++ source code from the meta-plugin filename.xspif, in the
plugin standard standard, the user launches the script xspif.py by typing:

python xspif.py standard filename.xspif

This will invoke:

1. xspif.parsexml.validate to validate the XML file with respect to the DTD
and generate a DOM tree. The validation handles the XML syntax of the
meta-plugin, i.e. it basically checks the name and number of elements, their
place, and whether the required elements are present. However, this valida-
tion does not check the relevance of the data contained in these elements.

2. xspif.tools.generalCheck performs additional standard-independant check-
ings of the XML elements.

3. A folder is created where the meta-plugin is located, named after the meta-
plugin filename, and a sub-folder named after the target standard name.
The sources will be generated in this sub-folder.

4. xspif.standard The DOM tree is sent to the module corresponding to the
target standard, where the C or C++ source code is written.

3.2 C vs C++ implementation

The choice has been made in XSPIF to let the user access to the parameters,
states and pins directly by their label1. Since in C++, one can directly use the

1For the pins, it is the label of the pin, to which the channel index is appended. See [GM03a]

3.3 Common implementation 10

variable names from within the class scope without using explicitely this->, the
labels written in the meta-plugin can be directly used to name the members vari-
ables.

In the C implementation, one will find the same object oriented style. The class
is replaced by a structure, which is passed to all callbacks. The problem is that
the variable contained in this structure cannot be named directly, and should
be explicitly accessed from the structure with the -> operator. To remedy to
this problem, a local copy of all parameters and states contained in the plugin
structure is done before they can be handled by their original name2. At the end
of the callback, all these local variables are copied back to the plugin structure.
This mechanism may look rather clumsy, since all the states and variables are
not necessarily read or modified in the callback. However, the unused variables
can easily be removed by the compiler, and hence do not burden the CPU cost.

3.3 Common implementation

3.3.1 Headers

At the beginning of any standard’s plugin source-file, just after the #includes,
should be pasted all the code contained in the sub-element <code> of the element
<plugin> “as-is”. The user should indeed write in this element the additionnal
includes, as well as the local functions or macro he will need in his code.
By independant function, we mean routines not defined as callbacks in the XSPIF
API, and which do not know more than what they are given as argument. Hence,
they do not know the states, and parameters unless they are given them as ar-
gument.

3.3.2 XSPIF API: the macros

XSPIF GET SAMPLE RATE should be accessible from any callback de-
fined by XSPIF, and as a consequence, should be declared before them.
It should return a float value corresponding to the current sample rate (in
Hertz).

XSPIF GET VECTOR SIZE should only be called within the process call-
back and return an integer value corresponding to the current buffersize.

2The label declared in the meta-plugin.

3.4 Implementing parameters 11

XSPIF WRITE SAMPLE can only be used in the process callback. The
macro should be redefined as we will see in LADSPA and VST, for handling
replacing and accumulating automatically.3

XSPIF CONTROLOUT can be used both in the process callback and in the
code associated to the parameters, therefore, it should be available in 2
“flavours”:

3.3.3 Heading

At the very beginning of any standard’s plugin source file, should be written a
heading saying that the file is generated automaticlly, and containing information
about the maker, the plugin name, copyright. . . etc. This piece of code can be
taken directly from the XSPIF modules for standards already implemented.

3.3.4 Includes

Then, just after the #includes, should be pasted all the code from the sub-
element <code> of the element <plugin>. The user should indeed write in this
element the additionnal includes, as well as the independant routines he will need
in his code.
By “independant routines”, we mean routines not defined as callbacks in the
XSPIF API, and which do not know more than what they are given as argument.
Hence, they do not know the states, and parameters unless they are given them
as argument.

3.4 Implementing parameters

3.4.1 Declaration

The parameters are always members of the plugin structure or class. It should
be possible for the user to access the parameters value in any callback with the
parameter label defined in the meta-plugin as it has been explained in 3.2

3.4.2 Mapping and boundaries

As much as possible, protection against parameters going out of range should be
handled in the automatic code generation. It is often provided by the standard’s

3These two behaviours corresponding to the send and insert we would find on a mixer
console

3.5 Pins 12

API, but if not, this can be easily done with the following macro, as it has been
done for PD.

#define FIT RANGE(value, min, max)

(((value) < min) ? min : ((value) > max) ? max : (value))

The mapping should be implemented, when the parameter values are not used
directly. For example, parameters in VST are normalized between [0; 1]. Thus,
the mapping from a parameter value param in the range [min, max] to its nor-
malized representation4val would be:

val = (param - min)/(max - min)

for a linear mapping, and:

val = (log(param) - log(min)) / (log(max) - log(min))

for a logarithmic mapping.

Otherwise, in modular hosts where no plugin GUI is provided, it can be imple-
mented as a comment to warn the plugin user, as it was done with method print

generated by pd.py, the module for PureData.

3.4.3 Attached code

These piece of code are meant for parameters which need to recompute some
values, and in particular: the states. Therefore the states should be directly
available where this code is pasted.

3.5 Pins

3.5.1 Declaration

The pins are named after their label and their number of channels with an index
starting from 1. As an example if we have 2 pins with their respective labels
being input and sidechain, and with the first having 4 channels and the second
only 1, we would declare input1, input2, input3, input4 and sidechain1. Each
one is a pointer to a non-interleaved C-array corresponding to its channel.

4normalized value are used by the default GUI to adress the position of their controls. For
example, with a knob, 0.5 means in the midle, while 0.0 is full left and 1.0 is full right

3.6 Implementing callbacks 13

3.6 Implementing callbacks

A callback is written as a block of C code by the user who can assume the
availability of some variables. During the translation, this block of code is not
analysed, and pasted –as is–. Hence, XSPIF does NOT prevent the user from
writing wrong code; yet the compiler will most likely warn him by raising an
error.
As a general remark, when translating a callback, the developer should do all the
necessary, so that all the variables the meta-plugin writer may need are avail-
able5. After the meta-plugin callback’s code, should be written all the necessary
to update any possible change of the variables the user could access.

3.6.1 instantiate

The plugin instanciation should be done automatically, with malloc, new, or any
standard specific method. Since the user should do the memory allocation of
the structures he needs in this callback, all the states and parameters should be
available, even if not initialized.

3.6.2 deinstantiate

All the memory allocated by the user in his instantiate code, should be freed here
by his deinstantiate code. So, again, all the variables the user could need should
be available. The plugin class or structure de-instanciation should be done auto-
matically, obviously after the structures de-instanciation, with free, delete, or
any standard specific method.

3.6.3 activate / deactivate

Activate and deactivate callbacks are used to enable/disable the audio processing
part of the plugin. If the plugin is deactivated, the audio stream should just flow
from input to output without being modified, in a bypass mode.
This feature is already implemented in some standard like VST and LADSPA.
For other standard, a flag can be set, that will be checked in the process callback.

5To know what the user should await, please refer to [GM03a]

3.7 Implementing controlouts 14

3.6.4 process

The pointers to the input and output buffers should be available under the pin
label, to which the channel index is appended, as declared in the meta-plugin.
All the XSPIF macros defined previously should be known at that point, and
XSPIF CONTROLOUT should be defined such that it does not kill the DSP
thread safety (see next paragraph).

3.7 Implementing controlouts

The macro XSPIF CONTROLOUT has been defined to handle control ouputs. When
it is called outside the DSP thread (i.e. outside the process callback), the output
value can be output directly, as soon as possible, the “index” argument being set
to zero.
On the other hand, when XSPIF CONTROLOUT is called in the process callback, it
is possible that outputting the value will not be real time safe6. In that case,
depending on the host way of dealing with outputting control within the process
callback, a clock can be set, so that the controlout does not burden the real time
constraints, and sample accurate synchronicity can be achieved7 and the “groove”
is preserved.

3.8 Documentation

Last but not least, it has been made a part of the meta-plugin specification, to
allow the user to add informative data, such as comments, captions, and units.
These data should seriously be taken in account to generate the code, for both
the person who might read the generated code, and the plugin user through the
default GUI. So consider not forgetting this side of the framework.

6This is not the case for LADSPA where it just consists in writing in a shared memory
location

7with a constant delay however, corresponding to the time-length of an audio buffer.

Chapter 4

Extending XSPIF

XSPIF can be extended in two ways: adding new standards to it, and adding
new features. These two ways are very orthogonal: adding a new standard can be
viewed as a vertical approach, as one has to write down the new standard’s source
file(s). One the other hand, adding a new feature implies a horizontal approach,
as the developer has to visit every standard to implement the new feature with
respect to each standard conventions.

4.1 How to add a standard in XSPIF?

4.1.1 Modifying xspif.py

To be known from XSPIF, the module for the new standard should be imported
in the main script xspif.py by adding the following line, where std stands for
the new module’s name:

import xspif.std

The new standard name should be added wherever it has to be placed in xspif.py.
It should not present any difficulty to do so, by doing the same as what is written
for other standards.

4.1.2 Creating a new module

The new module should be called after the name of the new standard, and placed
in the folder /xspif.
The output files generated by this module will then automatically be written in
a new directory, created where the meta-plugin is stored. For example, if the
meta-plugin text.xspif is stored in the folder /metaplugins, the source code
will be generated in the sub-folder:

/metaplugins/test/std/

4.2 How to add a feature in XSPIF? 16

However, and as much as possible, we recommandto follow the main guidelines
given in chapter 3, as well as respecting the order of the callbacks implementa-
tion: indepedant code, declaration of the parameters, instantiate, deinstantiate,
activate, deactivate, parameter’s code, controlout routines, process. There is ac-
tually no obligation for following that order, but always following the same order
helps keeping the XSPIF API clearer.
The obvious weak point of XSPIF is the lack of a more organized Python code
architecture, concerning the translating part. The code is rather linear and many
things are duplicated. We tried to add some routine when there was strict dupli-
cation, like declaring the states and parameters at the beginning of function for
API in C language.
The function getText(node, label) is available from the module parsexml.py,
to get the data of a sub-element (node or attribute) of a given node.

The problem we faced for a better python code, is the fact that hard-coded parts
of the C/C++ code, and variables parts coming from the meta-plugin are deeply
intricated. This made it difficult to reach a more synthetic Python code, without
making it difficult to read.

4.2 How to add a feature in XSPIF?

We will give here an example: the addition of the controlout feature, used to
output control values from the plugin.

4.2.1 Updating the DTD

First of all, the feature should be added in the Document Type Definition xspif.dtd.
Special attention should be given to this, by stating as required only what is really
required.

<!ELEMENT controlout (caption?, comment?)>

<!ATTLIST controlout label CDATA #REQUIRED

min CDATA #REQUIRED

max CDATA #REQUIRED

type (float|int) #REQUIRED

mapping (lin|log) #IMPLIED

unit CDATA #IMPLIED>

This XML tag has 4 required attributes:

label: which identifies the element, and the possible variables related to this
element in the source code to be written.

4.2 How to add a feature in XSPIF? 17

min and max: is necessary when output values are forced to fit within a given
range (for a given standard), and thus perform any necessary mapping
before outputting these output values.

type: is needed to declare the variable type in the plugin structure and call-
backs, so that the user can handle this variable. Note that the value of this
element is only float or int for now. Note that some plugin API store the
parmeters as float internally and deliver them to you by casting them in
the type you’ve specified.

Additionnal information tags which are not required for a correct implementa-
tion, should be declared as #IMPLIED. This information will be used to generate
commentaries in the source code, and in the plugin GUI.

the caption: gives the full name of the controlout (meaning something more
explicit than the label).

comments: can provide additionnal information about this element.

the mapping: gives the possibility to have a logarithmic mapping. the default
mapping being linear.

4.2.2 Updating the checking module

Then, the feature has to be checked by the sub-module generalCheck of the
module tools.py. This sub-module is called by the main script xspif.py, and
any error that would lead to the writing of bad C/C++ source code should make
this module stop and return -1, so that the script can stop immediately.
There are various things that can be checked with this module. The developer
can go through the various steps, and add what is needed to check the validity
of the data contained in the new element.
Please keep in mind that these verifications should still be standard-independant
at this stage.

Validity of the label

If the new element has a label, the label should be unique to prevent from clashes
in variables naming, and it should not contain any wrong character like spaces,
commas. . . etc.

Unicity of the label can be easily checked with the routine checkNotTwiceSameElement.
This function take a list as argument. It returns the first element that would ap-
pear twice, zero otherwise.

4.2 How to add a feature in XSPIF? 18

For our example, we just have to add controlouts in the list of elements that
own a label:

---------------------- [begin Python code] ----------------------

Check every label is unique

for tag in [pins, params, states, controlouts]:

for el in tag:

labels.append(getText(el,’label’))

labels.append(pluginLabel)

extraLabel = checkNotTwiceSameElement(labels)

if (0 != extraLabel):

print(T+"Error: label "+extraLabel+" was used more than once")

return -1

----------------------- [end Python code] -----------------------

Correctness of the label name can be checked with the routine stringHasChar.
This function take a string and a list of wrong characters as arguments. It returns
the first wrong character that would appear in the string, zero otherwise.

---------------------- [begin Python code] ----------------------

Check labels do not contain bad characters

WrongCharList = [" ","&","’",’"’,"&","#","@","-","*"]

for myString in labels:

if ("" == myString):

print(T+’Error: One of the labels is null!!!’)

WrongChar = stringHasChar(myString, WrongCharList)

if (WrongChar):

print(T+"Error: Label ’"+l+"’ contains bad characher ’"+WrongChar+"’")

return -1

----------------------- [end Python code] -----------------------

Validity of the min, max and default values

Min, max, and default values can be checked with the routine checkMinMaxDefault.
This function take as argument an element that has min, max, mapping and
default attributes. It will check that:

• min is stricly less that max.

• min and max are strictly superior than zero if the mapping is log.

• default fits within min and max.

4.2 How to add a feature in XSPIF? 19

4.2.3 Updating the translators

Then, this feature should be handled in all the translation modules. Here after
is the example of the addition of the controlout’s handling in various standards.
First, we add the following line to get a node list of all controlout elements:

controlouts = domTree.getElementsByTagName(’controlout’)

VST

With VST, the only way to output control consist in using MIDI Continuous
Controllers. As most of the MIDI instruments only takes into account single CC
(i.e. 7-bit) we haven’t implemented the use of 2 CC to extand the dynamic range
to 14-bit.
Implementing controlout into VST firstly consists in declaring a MIDI out port
wich is paradoxaly done by calling wantEvents() inside the resume() method
and returning 1 to the following canDo() : ’’sendVstEvents’’ and ’’sendVStMidiEvent’’

this done with the follwing python code:

---------------------- [begin Python code] ----------------------

Plugin suspend and resume

fcpp.write(’//---’+’\n’

+’void ’+pluginLabel+’::resume()’+’\n’

+’{’+’\n’)

if controlouts != []:

fcpp.write(T+’wantEvents();’+’\n’)

fcpp.write(T+activateCode+’\n’

+’}’+’\n’

+’\n’)

----------------------- [end Python code] -----------------------

and further:

---------------------- [begin Python code] ----------------------

fcpp.write(’long ’+pluginLabel+’::canDo(char* text)’+’\n’

+’\t’+’{’+’\n’)

if controlouts != []:

fcpp.write(T+’if (!strcmp (text, "sendVstMidiEvent")) return 1;’+’\n’

+T+’if (!strcmp (text, "sendVstEvents")) return 1;’+’\n’)

fcpp.write(’}’+’\n’)

4.2 How to add a feature in XSPIF? 20

----------------------- [end Python code] -----------------------

Now that we have declared a midi Out port we have to handle the mapping of
the control dynamic to the 0-127 range according to the specified mapping and
then send this MIDI event to the host. The XSPIF CONTROLOUT() macro is
wrapped to the the controlout() method:

---------------------- [begin C code] ----------------------

#define XSPIF_CONTROLOUT(label, index, value)(controlOut(label,index,value))

----------------------- [end C code] -----------------------

and this method method is defined by the following python code which takes
care of filling a VstMidiEvent structure as defined in the VSTSDK, for more
detailed information on this topic refer to [?]:

---------------------- [begin Python code] ----------------------

if controlouts != []:

fcpp.write(

’//---’+’\n’

+’// control out’+’\n’

+’\n’

+’void ’+pluginLabel+’::controlout(long label, long index, float value)’+’\n’

+’{’+’\n’

+T+’char out=0;’+’\n’

+T+’char cc=0;’+’\n’

+T+’switch(label)’+’\n’

+T+’{’+’\n’)

i = 38 # first MIDI CC that will be used fo control out

for controlout in controlouts:

label = getText(controlout,’label’)

max = label+’Max’

min = label+’Min’

mapping = getText(controlout,’mapping’)

controloutCode = getText(param,’code’)

if i >127:

print ’warning too much controlouts, CC numbers exceed 127’

return

fcpp.write(T*2+’case ’+label+’ :’+’\n’

+T*3+’cc = ’+str(i)+’;’+’\n’)

i = i+1

4.2 How to add a feature in XSPIF? 21

if mapping == ’lin’:

fcpp.write(T*3+’out = 127*((value-’+min+’)/(’+max+’-’+min+’));’+’\n’)

elif mapping == ’log’:

fcpp.write(T*3+’out = 127*(log(value/’+min+’)/log(’+max+’/’+min+’));’+’\n’)

fcpp.write(

’\n’

+T*2+’default: return;’+’\n’

+T+’}’+’\n’

+’\n’

+T+’if(index>vector_size)’+’\n’

+T*2+’index = vector_size;’+’\n’

+’\n’

+T+’VstMidiEvent vstEvent;’+’\n’

+T+’VstEvents vstEvents; ’+’\n’

+T+’vstEvents.numEvents =1; ’+’\n’

+T+’vstEvents.reserved = 0; ’+’\n’

+T+’vstEvents.events[0] = (VstEvent*)(&vstEvent); ’+’\n’

+T+’vstEvents.events[1]= NULL; ’+’\n’

+’\n’

+T+’memset(&vstEvent, 0, sizeof(vstEvent));’+’\n’

+T+’vstEvent.type = kVstMidiType;’+’\n’

+T+’vstEvent.byteSize = 24;’+’\n’

+T+’vstEvent.deltaFrames = index; ’+’\n’

+T+’vstEvent.midiData[0]=0xb0; // tells it sends midi CC’+’\n’

+T+’vstEvent.midiData[1]=cc; ’+’\n’

+T+’vstEvent.midiData[2]=out; ’+’\n’

+T+’((AudioEffectX *)this)->sendVstEventsToHost(&vstEvents);’+’\n’

+’}’+’\n’

)

----------------------- [end Python code] -----------------------

LADSPA

In LADSPA, controlouts can be implemented in a very direct way, as it just
consists in writing a value to a pointer. All parameters, audio input and output,
and control output are declared as “ports”. For convenience, a list with all these
ports already exists; we will just add the controlouts to it, and they will be
declared in the plugin structure:

---------------------- [begin Python code] ----------------------

4.2 How to add a feature in XSPIF? 22

ports = audio_ports + param_ports + controlout_ports

(...)

fc.write(’/* Audio and parameters ports */’ + ’\n’)

for port in ports:

fc.write(’#define PORT_’+port[0].upper()

+T*2+ str(ports.index(port))+’\n’)

----------------------- [end Python code] -----------------------

Then, we will first define the XSPIF CONTROLOUT macro, after the #include’s,
for the parameters’ attached code sections. Here the method can be called di-
rectly, hence the macros is defined like this:

---------------------- [begin Python code] ----------------------

if ([] != controlouts):

fc.write(’// Macro for control output’ + ’\n’)

fc.write(’#undef XSPIF_CONTROLOUT’+ ’\n’

’#define XSPIF_CONTROLOUT(dest, index, source)’

+ ’(*(dest) = (LADSPA_DATA(source)))’+ ’\n’)

----------------------- [end Python code] -----------------------

Finally, we have to declare the controlouts in the _init method of the LADSPA
API:

---------------------- [begin Python code] ----------------------

control_nodes = params + controlouts

for cp_node in control_nodes:

pl = ’PORT_’+ getText(cp_node, ’label’).upper()

fc.write(

T*2 + ’/* Parameters for ’ + getText(cp_node, ’caption’)+’ */’ + ’\n’

+ T*2 + ’port_descriptors[’+ pl + ’] =’ + ’\n’)

if (’param’==cp_node.nodeName):

fc.write(T*2+’ LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL;’ + ’\n’)

elif (’controlout’==cp_node.nodeName):

fc.write(T*2+’ LADSPA_PORT_OUTPUT | LADSPA_PORT_CONTROL;’ + ’\n’)

fc.write(

T*2 + ’port_names[’ + pl + ’] =’ + ’\n’

+ T*2 + ’ strdup("’ + getText(cp_node, ’caption’) + ’");’ + ’\n’

+ T*2 + ’port_range_hints[’ + pl + ’].HintDescriptor =’ + ’\n’

+ T*2)

----------------------- [end Python code] -----------------------

4.2 How to add a feature in XSPIF? 23

PureData

In PD, the controlouts will appear as outlets, and values are output via an API
specific method called outlet_float1.
We will first define the XSPIF CONTROLOUT macro, after the #include’s, for
the parameters’ attached code sections. Here the method can be called directly,
hence the macros is defined like this:

---------------------- [begin Python code] ----------------------

// Macro for control outputs

#undef XSPIF_CONTROLOUT

#define XSPIF_CONTROLOUT(dest, index, value)(outlet_float(dest, value))

----------------------- [end Python code] -----------------------

Then we need to declare the controlouts in the object’s structure. Each controlout
will own:

• A variable storing the value to be sent to the outlet.

• An object of type t_outlet as defined in the PD API.

• A clock than can be set in the process callback to postpone the output.

---------------------- [begin Python code] ----------------------

fc.write(’typedef struct _’ + pluginLabelTilde + ’ {’ + ’\n’

(...)

fc.write(T + ’// Pointers to the outlets:\n’)

for c_node in controlouts:

c_label = getText(c_node, ’label’)

c_type = getText(c_node, ’type’)

fc.write(T + c_type + ’ ’+ c_label+’Value;’+ ’\n’)

fc.write(T + ’t_outlet *’ + c_label + ’;’ + ’\n’)

fc.write(T + ’t_clock *p_’+c_label+’Clock;’+ ’\n’)

(...)

----------------------- [end Python code] -----------------------

Then we need a function that will do the output, when called by the clock of a
given controlout:

---------------------- [begin Python code] ----------------------

if ([]!=controlouts):

fc.write(’\n’ + ’\n’ + separator)

fc.write(’// Functions for controlouts called by clocks’+’\n’)

1Only float values can be output.

4.2 How to add a feature in XSPIF? 24

for c_node in controlouts:

c_label = getText(c_node, ’label’)

fc.write(’static void ’+pluginLabelTilde+’_’+c_label+’(’

+t_pluginLabel+’ *x){’+’\n’)

fc.write(T+’outlet_float(x->’+c_label+’,

x->’+c_label+’Value);’+’\n’)

fc.write(’}’ + ’\n’)

----------------------- [end Python code] -----------------------

The following function is the one that will be called by the macro XSPIF CONTROLOUT,
when called from the process callback. Note that the conversion from the sample
index to the clock delay (in ms) is done here.

---------------------- [begin Python code] ----------------------

fc.write(’// Function for controlouts : setting the clock’ + ’\n’)

fc.write(’static void ’+pluginLabelTilde+’_controlouts(’

+t_pluginLabel

+’ *x, t_outlet *dest, t_float index, t_float value){’+’\n’)

for c_node in controlouts:

c_label = getText(c_node, ’label’)

fc.write(T + ’if (dest == x->’+c_label+’){’+’\n’)

fc.write(T*2+’clock_delay(x->p_’+c_label+’Clock,

index*1000/XSPIF_GET_SAMPLE_RATE());’+’\n’)

fc.write(T*2+’x->’+c_label+’Value = value;’+’\n’)

fc.write(T+’}’ + ’\n’)

fc.write(’}’ + ’\n’)

----------------------- [end Python code] -----------------------

Then, just before writing the process callback, we need to re-define our macro,
so that it set the relevant clock, instead of calling float_outlet:

---------------------- [begin Python code] ----------------------

fc.write(’// Macro for control outputs in the perform method : use clock’ + ’\n’)

fc.write(’#undef XSPIF_CONTROLOUT’+ ’\n’

’#define XSPIF_CONTROLOUT(dest, index, value)(’

+ pluginLabelTilde+’_controlouts(x, dest,

index*1000/XSPIF_GET_SAMPLE_RATE(), value)) ’+ ’\n’)

----------------------- [end Python code] -----------------------

In the instantiate callback, we need to create the outlets and the clocks corre-
sponding to the controlout outlets:

---------------------- [begin Python code] ----------------------

fc.write(’void *’ + pluginLabelTilde + ’_new(’

4.2 How to add a feature in XSPIF? 25

+ ’t_symbol *s, int argc, t_atom *argv)’ + ’\n’

+ ’{’ + ’\n’

(...)

for c_node in controlouts:

c_label = getText(c_node, ’label’)

fc.write(T + ’// controlout ’ + c_label + ’\n’)

fc.write(T+’x->’+c_label+’ = outlet_new(&x->x_obj, &s_float);’+’\n’)

fc.write(T+’x->p_’+c_label+’Clock =

clock_new(x, (t_method)’+pluginLabelTilde+’_’+c_label+’);’+’\n’)

(...)

----------------------- [end Python code] -----------------------

In the deinstantiate callback, we need to destroy the outlets and the clocks:

---------------------- [begin Python code] ----------------------

if (deinstantiate or [] != controlouts):

fc.write(’\n’ + ’\n’ + separator)

fc.write(’// Plugin cleanup method’ + ’\n’)

fc.write(’void ’ + pluginLabelTilde + ’_free(’+t_pluginLabel+’ *x){’ + ’\n’)

(...)

for c_node in controlouts:

c_label = getText(c_node, ’label’)

fc.write(T+’clock_free(x->p_’+c_label+’Clock);’+’\n’)

(...)

----------------------- [end Python code] -----------------------

Chapter 5

Perspectives and TODOs

5.1 Current limitations and known bugs

C and C++

The current version of XSPIF imposes the C language, to be compliant with
plugins usually written in C, namely LADSPA, PureData, and jMax1. It is
possible to write LADSPA and PureData sources in C++ but we didn’t explore
that field. Maybe that would be nice to be able to write the meta-plugin code
parts, in both C and C++, with an optionnal flag warning the XSPIF translator
for that.

5.2 MIDI instrument

Though it is possible to develop simple synthesizers with XSPIF, MIDI suppoort
to develop instruments is not yet implemented. This is partly due to the fact
that MIDI is not currently supported by LADSPA.

5.3 Custom GUI support

Since the Graphical User Interface (GUI) is a critical part for cross plateform and
standard development, it would be nice to be able to specify the GUI with an
XML specification. Such attempt has already been raised for LADSPA by Paul
Davis2, but is still at an early stage and meant for LADSPA only. In our case,
we could imagine adding a < gfx > tag which could specify the type of control
widget for each parameter, its size and its position. If custom GUI support is
added, it will help to take in account plugins standard which do not have default
GUI like MAS or DX.

1Though not done in the current version, this is one of the target standards
2see [Dev03]

5.4 More with XML 27

5.4 More with XML

5.4.1 Document generation

Though incomplete and at a rather early stage, XSPIF has been modelized with
perpectives of evolutions, by making the plugin design part totally independant
of the standards conventions, and using flexible and cross-platform language like
XML and Python. The benefit is that you can use the information of the meta-
plugin to generate additional documents concerning the plugin, such as HTML
documentation. For example, we can think of a general plugin’s GUI, which could
use this information.

5.5 User front end

Though faster and easier than writing C or C++ code, writing XML is not
that funny. A graphical front end to implement the various elements of the
meta-plugin, launch the source code generation, and compilation would be more
friendly.

5.5.1 XSPIF meta-plugin repositories

As XSPIF meta-plugin files are written in XML, it is very easy to share them
over the internet. We could imagine building a cooperative database where these
files could be centralized, so that people could inspire from pre-existing works
instead of re-inventing the wheel.

Bibliography

[Dev03] Linux Audio Developers. Linux audio developers simple plugin api.
http://www.ladspa.org/, 2003.

[GM03a] Vincent Goudard and Remy Müller. XSPIF user guide, 2003.

[GM03b] Vincent Goudard and Rémy Müller. Real-time audio plugin architec-
tures, 2003. http://www.ircam.fr/equipes/temps-reel/xspif/.

[Kc03] A.M. Kuchling and col. Pyxml. http://pyxml.sourceforge.net/,
2003.

[vRc03] Guido van Rossum and col. Python. http://www.python.org/, 2003.

[Wal98] Norman Walsh. A Technical Introduction to XML, October 1998. http:
//www.xml.com/pub/a/98/10/guide0.html.

http://www.ladspa.org/
http://www.ircam.fr/equipes/temps-reel/xspif/
http://pyxml.sourceforge.net/
http://www.python.org/
http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com/pub/a/98/10/guide0.html

	Introduction
	About XPSIF
	Semantics
	Open Source License

	Tools and languages used for development
	XML: the plugin specification
	Document Type Definition : xspif.dtd
	Required vs. optionnal features
	Elements and attributes

	Python: parsers and translators
	XSPIF Python modules
	PyXML: XML package for Python

	Translation from XML to C/C++
	General scenario of the parsing
	C vs C++ implementation
	Common implementation
	Headers
	XSPIF API: the macros
	Heading
	Includes

	Implementing parameters
	Declaration
	Mapping and boundaries
	Attached code

	Pins
	Declaration

	Implementing callbacks
	instantiate
	deinstantiate
	activate / deactivate
	process

	Implementing controlouts
	Documentation

	Extending XSPIF
	How to add a standard in XSPIF?
	Modifying xspif.py
	Creating a new module

	How to add a feature in XSPIF?
	Updating the DTD
	Updating the checking module
	Updating the translators

	Perspectives and TODOs
	Current limitations and known bugs
	MIDI instrument
	Custom GUI support
	More with XML
	Document generation

	User front end
	XSPIF meta-plugin repositories

	Bibliography

