
Real-time audio plugin architectures
a comparative study

—
IRCAM – Centre Pompidou

Vincent Goudard and Remy Muller

September 8, 2003

Abstract

This document is born after a study of the existing standards for real-time audio
plugins. It aims at giving an idea of the underlying structure behind all these
incompatible standards, and pointing out differences when they occur.

Contents

1 Introduction 3

2 What is an audio plugin? 4
2.1 General model . 5
2.2 Inputs – Outputs . 6
2.3 The “process” . 7
2.4 The user interface . 8
2.5 Plugin developpement . 8

3 The signal stream 9
3.1 Nature of the signal stream . 9
3.2 Signal processing . 10
3.3 General considerations about Digital Signal Processing 10

4 Control 11
4.1 External parameter declaration 12

4.1.1 Mandatory declarations 12
4.1.2 Optional declarations . 12

4.2 Parameter update . 14
4.2.1 Update mechanism . 14
4.2.2 Automation . 16
4.2.3 Parameters encapsulation and meta data 16

4.3 Parameter persistence and presets 17
4.4 MIDI . 17

4.4.1 Synthesizers . 18
4.4.2 MIDI-controlled effects . 18

5 Host environment integration 19
5.1 General information . 19

5.1.1 Meta information . 19
5.1.2 Audio setup . 19

5.2 Runtime information . 21
5.3 Acces to the plugin . 21

CONTENTS 2

5.3.1 Plugin Location . 21
5.3.2 Plugin ID . 21
5.3.3 Entry points . 22

6 Conclusion 23

A Ressources 24

Chapter 1

Introduction

Currently, there is more than ten audio plugin standards, basically one per major
host manuacturer such as Steinberg or Digidesign but Microsoft and Apple have
also developped multimedia APIs1 integrated to their OS2 that include audio
plugins. These standards share a lot of features and behaviours while remaining
incompatible. Many converters have been released these last years for breaking
those incompatibilities, but they have some unwanted drawbacks: they increase
the CPU charge and they are often limited to an OS. In addition, porting plugins
from an OS to another does take time especially when dealing with graphics or
filesystem access. Many people have tried for their own use to develop tools to
abstract from the plateforms and the standards when developping plugins, thus
reducing the cost of developpement and easing developers’ life. Unfortunately
few of these tentatives have been released publically.

The purpose of this document, beyond plugin formats, is to identify what is the
specificity of audio plugins, what is common to all standards and what may dif-
ferentiate them.

We do not pretend to write a tutorial for writing cross-plateform/cross-standards
plugins nor to be exhautive but rather give an overview of what one may en-
counter when trying to target different plateforms and standards, and look for a
common model that can be extracted.

1Application Programmers Interface.
2Operating System.

Chapter 2

What is an audio plugin?

What is its purpose?

A plugin is intended to extend an audio creation environment by the use of
dedicated third party libraries. Thus any user should be able to find plugins that
fits perfectly their needs to customize this environment. Typically plugins can be
considered as virtual devices based on the analogy with hardware devices such
as reverbs, compressors, delays, synthetizers, samplers or beatboxes that can be
connected together in a modular way. This allows host manufacturers to focus on
the conviviality and efficiency of their products while specialized manufacturers
rather focus on the Digital Signal Processing part.

Approaches

We can distinguish 3 approaches to do plugins

• Plugins integrated into a multimedia API like Apple’s Audiounits and Mi-
crosoft’s DirectX.

• Plugins related to a reference host like VST, RTAS, MAS1. Some of them
can be found on different plateforms like VST or RTAS.

• Modules attached to modular softwares like the ”Max family”2, Buzz or
EyesWeb.

We should also consider LADSPA on GNU-linux which is the de-facto standard
for that plateform but that can not be attached to any of the above categories.

1respectively cubase, protools and digital performer
2Cycling 74’s Max/Msp, Ircam’s jMax an CRCA’s Pure Data.

2.1 General model 5

2.1 General model

A plugin treats an audio signal then it needs to be controlled and in order to
work in a host environment, host and plugin have to know their repective setup
& properties.
The audio stream is usually treated by blocks (buffers) inside whom samples are
synchronous to the samplerate. In general, control parameters have a lower re-
fresh rate and can be either treated between audio blocks – on-demand – if the
value has changed, or queued with time-stamps relative to a position in a block
for audio-rate resolution. Properties are mostly static flags but some can be dy-
namic though.

Figure 2.1: A common model behind musical plugin architetures

Setup & properties

Plugins have to know about the host’s capabilities like sending/receiving events,
providing multichannels busses. . . In addition there are lot of situations where
we would appreciate that plugins can know more about the musical context (i.e.
tempo, score-position, metric. . .) than just audio and control data.
The plugin has to give information about its ins/outs, their specificities such as
side-chain, mono, stereo or surround and many things such as its latency3 or its
tail-time4. There is also some hosts that allow plugins to give them commands

3An algorithm like a Fourrier Transform may introduce a pure delay in the signal chain
because it needs a minimum number of sample to start. In a sequencer (not in real-time!) this
pure delay can be compensed by the host by sending data to the plugin in advance.

4Basically all the algorithms based on convolution may introduce a tail i.e. output samples
even when there is no more input data (e.g. a delay, a reverb a FIR filter. . .)

2.2 Inputs – Outputs 6

such as play, stop or set tempo but it is not really wide-spread.

2.2 Inputs – Outputs

To understand what is relevant to determine the number and the kind of IOs, we
may analyse what plugins algorithms does around 3 different of kind function-
nalities – analysis (A), transformation (T) and synthesis (S) – that can be either
alone or mixed together in the same entity.

Figure 2.2: functions

Moreover, plugin setups highly depend on what the host allows and how the
plugin will be attached to its environment. While most hosts only support mono
and stereo (even if surround begins to be popular with the recent success of the
DVD and the famous 5.1 surround format5), we can also distinguish between
effects that will be treated as inserts (integrated in a chain on a single bus),
sends (they can be shared by many voices in a mixing-console and the output is
summed on the master bus), instruments (no audio input) or simply integrated
into a modular host.

Audio

The number of audio inputs and outputs vary from one plugin to another,
they can be grouped into busses that can be mono, stereo, surround. . . but they
mostly depends on the host capabilities. Moreover, in some standards – the
number is still growing –, it is possible to define side-chain6 (see figure 2.3).

Control

Though it is possible to build a plugin that has no way to be controlled, like a
phase inverter, it is of limited interest in a musical context where tweaking the

5left, center, right, rear left, rear right plus subwoofer
6a side-chain channel can be analyzed or used directly to modify the main audio stream

processing.

2.3 The “process” 7

Figure 2.3: A side-chain example: a compressor

parameters or sending notes is part of the creation. You may want to both change
the plugin’s parameters and record their variation for later playback. Hence most
plugins should provide control input and output at the same time. Most of the
time hosts and plugins notify each other of parameters’ evolution in a simple
way but one can also find callback and polling mechanisms. In addition sending
control data between plugins can sometimes be performed either directly via
parameters (LADSPA) or by an event-oriented protocol like MIDI (VST).

2.3 The “process”

All plugins have this function in common often called “process”. This is where
the most important thing happens: audio processing. All the current standards
treat audio as input and output buffers (of given length), that can be given as
floating-point sample arrays, or by more sophisticated structures with additionnal
information. Processing can be in-place, in which case in and output buffers
are the same (i.e. they share the same memory location, processing is thus
destructive.), or buffer-to-buffer, where they are different in this case it is possible
to have either accumation (send effects) or replacing (inserts). Parameters are
usualy known before the process starts, but you may have to update them by
hand. For simple audio processing like biquadratic filtering, it should be enough
to use directly the buffer provided, but when doing FFT processing for example
you may want to re-buffer audio samples to fit your internal buffer size in which
case you may introduce additionnal latency in the signal chain.

2.4 The user interface 8

2.4 The user interface

The GUI should be considered at least as important as the audio processing al-
gorithm because it is the filter thru wich your plugin will be perceived. It is
a key-point for the conviviality and usability of a plugin, everything should be
fast and easily tuneable in a precise way with a convenient visual feedback. In
particular, parameters’ mapping can really make the difference in the way people
feel about how your plugin sounds.
The GUI can be either generated automatically by the host with the help of
the information or hints that the plugin can provide about itself (its parameters
type, their range and units. . . , and the type of control that should be used –
slider, combo-box, switch, knob, 2D controler, . . . –) or provided by the plugin
manufacturer to reach a higher level of customization.
However we will skip the GUI topic in this document. We consider control pa-
rameters as the plugin interface without taking account the way these parameters
are changed by the user.

2.5 Plugin developpement

The API defines the layer through which plugins and hosts can see each other
and also the tools that can be used to ease the developpement step.
The Host needs different information than the user about plugins such as their
ID, their capabilities, their setup, the number of parameters or their names. The
host needs to receive computer-readable data in the way it is programmed to. In
addition most of the SDKs7 provide a set of tools, functions, utilities. In the same
effort, they often allow the use of OOP8 languages such as C++, ObjectiveC or
Pascal to ease the modelisation step and the tasks distribution inside a same
plugin.

7Software Developpement Kits.
8Object Oriented Programming.

Chapter 3

The signal stream

3.1 Nature of the signal stream

Most of the time, the signal stream is represented as floating-point samples in the
intervall [−1; 1] full-scale. However some standards supports fixed-point samples1

for historical or technical2 reasons .
For efficiency purpose, those samples are packed into buffers whose size can be
fixed or variable from one call to the other. Though sample-by-sample processing3

is already used in some DSP libraries, there isn’t already any standard doing the
processing that way. The samplerate is supposed to be constant (and known) at
least during the length of the buffer and may change at the buffer-rate though it
is unusual4.
Audio buffers can either be surrounded by additionnal information like time-
stamps5(DXi, EyesWeb, AU), samplerate, buffer-size. . . or transmitted (most of
the time) as simple arrays.
Some plugin API – DX, AU – allow channels interleaving for compatiblity with
files types and streaming protocol, but it is quite marginal and tends to disappear
at least for real-time processing. The most common (and easiest) way is to
transmit channels as separated mono buffers.

1e.g. The CD format uses 16-bit signed integer samples allowing signal to be coded in the
intervall [215 − 1;−215] while the DVD uses 24-bit ones: range=[223 − 1;−223]

2DirectX, AudioUnits and TDM supports fixed-point samples because their plugins may
deal directly with files, cd-rom, dvd-rom, soundcards or fixed-point DSP while other standards
only deals with hosts for whom the floating point representation is more convenient.

3It allows feedback and recursion between objects and is very useful for ‘physical modeling’
4typically values like 44,1kHz for the CD, 48kHz for DAT or video and 96kHz for the DVD

are used.
5It can be used for synchronisation purpose by the host scheduler when many complex audio

paths are present.

3.2 Signal processing 10

3.2 Signal processing

Here we come to most important part of a plugin, almost every plugin standards
have the same method called process() to do the audio processing, only the way
it is called and the arguments are different between standards. This method is
either called directly by the host or by the next plugin in the chain in the case of
graph-oriented hosts. Input and output buffers are, most of the time, provided
by the host and can either be the same or different to allow in-place or buffer-
to-buffer processing but the plugin can’t assume one or another and should work
correctly in both cases or specify if it suports it (LADSPA).

As a major difference with hardware Digital Signal Processors, this method is
assumed to be non interruptible. Therefore parameters interpolation (if needed)
or other sample-accurate processing has to be done inside the process and can’t
be done automatically since processing audio by buffers prevent from audio-rate
control as soon as the buffer-size exceeds 1 sample.

3.3 General considerations about Digital Signal

Processing

This section doesn’t plan to explain rules of ‘audio processing algorithm opti-
mization’. We just want to explicitely note that since audio-rates are measured
in tenth of kHz and that plugins may handle several channels, the number of
samples to process can become huge, thus one should pay special attention to the
DSP algorithm complexity6.

Without going into assembler coding, one should avoid memory allocations, con-
ditional expressions inside loops7, too many non-static-inline-function calls or
intensive float–int conversion among other general programming tips. Note that
in a lot of case down-sampling during the analysis step (e.g. in envelope detec-
tion) can save precious CPU time for other purpose.

6In particular algorithms whose complexity is exponential or polynomial with the number
of sample to process, shouldn’t be used in a real-time context.

7It can break pipe-lining optimizations

Chapter 4

Control

The control interface allow the user to act on parameters, to tune the behaviour
of the audio processing function. This can be done in real-time, so that the user
can directly hear the consequence of his changes on the audio signal transform.
There are different kinds of parameter, that require different handling. We can
consider three main categories of parameters:

• Continuous parameters: These parameters can be characterized by the
fact that they do not introduce a discontinuity in the audio stream 1, when
they change of a small amount. As a consequence, these parameters can
be interpolated. These parameters are obviously represented by numerical
values and can be considered ‘passive’, in the sense that they are just used
as a variable value in a generic computation. As examples: a filter’s cutoff-
frequency, a volume gain, a modulation frequency or a clipping threshold
are continuous.

• Events: These parameters, sometime referred to as messages or com-
mands(EyesWeb), are characterized by their discrete nature. These mes-
sages can be of any type, but should belong to a set of predefined messages,
known from the plugin. They are not directly used in computation, but are
rather interpreted to trigger a specific action, without breaking the audio
stream process. As examples: the choice between ‘sawtooth’, ‘sine’, and
‘square’ for a modulator signal, a MIDI note-on event or the number of
echoes in a delay.

• Setup parameters: These parameters affects the plugin’s configuration.
They are non-realtime because they involve computationally expensive op-
erations, like memory allocation, that definitely break the audio signal
stream. As exemples: the choice of a impulse response file for a convo-
lution plugin or a fft-size in a frequency domain transform.

1A dicontinuity in the audio stream is characterized by audible ‘zipper noise’ or ‘clicks’

4.1 External parameter declaration 12

This distinction between these three categories is not always that clear and well
defined, but these three kinds of parameter correspond to different handlings.

With the increase of complexity of the plugins, which require more and more
internal parameters to get finer acoustic results2, there is an ongoing need of
mapping and conversion routines, so that the user can still control them in an
ergonomic manner. The parameters available to the user and the host (external
parameters) can differ from the parameters used in the process computation
(internal parameters). There may exist a conversion layer between them.This
conversion can be of various kind, such as scaling a gain expressed in dB to a
linear scale, mapping of frequency, gain and resonance to filter coefficients or
clipping of the parameter to its range.

4.1 External parameter declaration

4.1.1 Mandatory declarations

The external parameters should be declared, to allow the host and/or the user to
modify them. However, the host and the user do not need the same information
to handle them. The minimum required set of parameters properties that the
host should know contains, at least, the two following:

• The parameter ID: This ID is used as a selector among the parameter
structure. Parameters ID are signed or unsigned long integers in all ma-
jor audio plugin standards, sometimes of an enumerated type (DXi, VST,
RTAS).

• The type: LADSPA and VST make use of 32-bit float only for all control
data, and VST restrict the range to [0,1]. Other standards like DXi and
AudioUnits implement all parameters as 32-bit float for efficiency, but keep
a field in a parameter info structure, that defines whether to interpret the
value as an integer, floating-point value, boolean, or enumeration (integer
series). We find a similar mechanism in EyesWeb, but with three base for-
mat: double, int, and character string, plus a ‘Parameter type’ flag.

4.1.2 Optional declarations

Most plugin standards do offer much more information about parameters, to pre-
vent the host and the user from manipulating them wrongly, and to let the user

2e.g. in physical-modelling of instruments, reverb rooms...

4.1 External parameter declaration 13

access them in a friendlier way. Such information may be stored in a ‘Parame-
terInfo’ structure (DXi, AU), or suggested as defined flags or ‘hints’ (LADSPA).

• The name or label is interesting for the user who do not speak like
machines. . . The parameter name can be part of a parameter information
structure, like in DXi, EyesWeb and AU. LADSPA stores the port names
(audio AND control) in an array. Parameter’s name is not mandatory
in VST, but a ‘GetParameterName’ method exists in the API, that the
developper can implement.

• The units gives more sense to the values. Few standards offer this fea-
ture: DXi,and EyesWeb stores the unit of each parameter in the ParamInfo
structure. In AU, the units is part of the type: for example the type ‘angle’
is expressed in degrees or radians, the type ‘frequency’ in Hertz. . . and the
parameter’s mapping is chosen with respect to this.

• The range: It gives hints about what values this parameter is assumed
to take. This is useful to prevent the plugin from doing error-leading com-
putations, like log(0), negative frequency for a filter . . . etc. It also helps
the user to grasp the meaning of the parameter he’s handling. Almost all
standards allow to specify the range of the parameters, except VST for
which the range is normalized between [0;1] and conversion has to be done
by hand.

• A default value: It can initialize the parameter to a relevant value, within
the parameter range, at instantiation time. This feature is implemented in
LADSPA, DXi, EyesWeb AU, MAS. In VST, it is stored in the default
preset.

• The mapping: It helps manipulating the parameter in a more ergonomic
way. For example, frequency and gain are often more convenient when
handled with logarithmic mapping. Mapping may be linear (all stan-
dards), logarithmic (LADSPA, AU), boolean (LADSPA, DXi, AU), indexed
(LADSPA, DXi, AU). . . VST provides conversion tools for GUI-display only.

• Automation3: Automatable parameters have to be declared as such by
the apropriate mean:

– AudioUnits: Flag in the parameter information structure.

– DXi: Index of automated parameters should be less than
NUM_AUTOMATED_PARAMS within the parameters enumeration.

– MAS: Automated parameters should be public.

3See 4.2.2 for explanation.

4.2 Parameter update 14

Name/Label Units Range Default Mapping
VST Not mandatory, but — [0,1] fixed — conversion tools

method in the API for display only
AU In a ParamInfo In a ParamInfo Min, max stored in In a ParamInfo Many many!

structure structure ParamInfo struct structure
LADSPA In the PortNames — min and max suggested as lin,log,int,

array suggested as hints hint, relative bool,SR-multiple
MAS ??? ??? ??? ??? No
DXi In a ParamInfo In a ParamInfo Min, max stored in In a ParamInfo —

structure structure ParamInfo struct structure
EyesWeb In a ParamInfo In a ParamInfo Flags HAS MINMAX Yes —

structure structure and values
RTAS ??? ??? ??? ??? ???

Table 4.1: Available parameter information

– VST: During run-time, one should use the specific method
setParameterAutomated.

Many other meta-information can be found in some standards:
EyesWeb specifies with the help of flags, whether the parameter can be changed
at design-time, at runtime (and if so, if it can be exported), and if it is initially
disabled.
AudioUnits provides a really rich API, with many predefined types of param-
eters, which have their own units, mapping, and range. This include indexed,
boolean, percent, second, phase, cent, decibel, hertz, pan, a general type which
is float between 0.0 and 1.0, and others. The developper can also add his own
types.

4.2 Parameter update

The parameter update mechanism should efficiently take in account the fact that
the parameter update rate4 is asynchronous in nature, in general significantly
lower than the audio stream, and that many changes could occur at the same time.
Some parameters are known in advance (e.g. like MIDI events in a sequencer
track), and some are not (e.g. live actualisation through hardware knobs).
The parameter update can be represented as a two steps operation: external
parameters which have changed must be sent to the plugin; then, a conversion –
if necessary – must make the corresponding internal parameters available to the
process in a correct format. The figure 4.1 illustrates this mechanism.

4.2.1 Update mechanism

The most simple way to update parameters is the one implemented in LADSPA,
and consists in a polling mechanism. At connection time, the host gives the

4There is no ‘rate’ in the strict sense, but we used this word for convenience.

4.2 Parameter update 15

Figure 4.1: Internal and external parameters

plugin the adresses where it will write the external parameter values. The plugin
can retrieve these values during the process function – and only then –, assuming
they may have changed. Everything that should be performed for mapping and
conversion of these external parameters can only be done then.

In the second approach (VST, jMax), the host or the GUI calls a specific plugin
method, usually called setParameter. This method can only be called between
two buffer processings. Necessary conversions and mappings should be imple-
mented there by the plugin developer, so that internal parameters are up-to-date
when the process function is called for the next buffer processing.

As a third case, some standards (DXi, AU) provide a conversion layer in the API
between the plugin and the host or the GUI. Conversion and mapping are auto-
matically done with the help of the parameter information structure. However,
it is still necessary to retrieve the value of the parameters in the process function,
and additionnal conversion have to be done here (e.g. computing filter coefficients
from the cutoff frequency and the resonance, or checking mutual consistency of
parameters).

Ways of handling events differ among plugin standards. A common and simple
solution is to treat this set of value just like other parameters: reading and writing
the value of the message with the GetParameter and SetParameter methods, and
deciding on what should be done with a ‘case’ or ‘if’ condition. It can also be

4.2 Parameter update 16

directly treated in the SetParameter method (EyesWeb).

4.2.2 Automation

The automation allow the user to record changes of parameters along a sequenced
timeline, and play them back. These changes can be either recorded inline (i.e.
in realtime, during playback) or offline (e.g. by editing graphically a curve on a
sequenced track). The automation recording consists in taking the parameter’s
value every timeslice.
Most standards tends to allow this (DXi, AU, MAS, RTAS, VST) since it is a
quite powerful tool. The parameters declared as automated parameters should be
‘realtime-able’, i.e. they should not introduce too heavy computations or memory
allocation.

4.2.3 Parameters encapsulation and meta data

Some header-information might be provided to the plugin during runtime, in
addition to the new parameter’s value. Precisely, the time at which change occur,
and the way the value should be modified can be specified.

Type of data

As it has been mentionned in the ‘Parameter declaration’ section, some standard
make use of a unique -or a restrained set of- data type for transport. In this case,
a flag attached to the parameter in a parameter-info structure, specifies the type,
into which the value should be casted.

Timestamps

The user who controls the interface can act at any time, disregarding what the
plugin is doing. Thus, more than one change can occur during the time interval
a timeslice is being processed. When considering punctual events such as audio
attacks, synchronicity can play a major role in the audio rendition, and need
more precision than the timeslice, which can last more than 50 ms.
Hence, timestamps can be attached to the parameter changes, to specify the
precise sample accurate time at which they should occur. These events can be
queued, their timestamp converted to the sample position within a buffer times-
lice, and then be performed with the right time distribution during the next buffer
processing.
In general, timestamping of parameters is limited to midi messages. Only Eye-
sWeb make use of it for other control parameters.

4.3 Parameter persistence and presets 17

Interpolation

On the other hand, for most parameters considered previously as ‘continuous’,
such a precision does not matter, since the audio timeslices are really small,
but the continuous nature of the parameters should be respected to avoid ‘zipper
noise’ in the audio output signal. Therefore, various standards have implemented
a way of interpolating the parameter’ values to smooth the change, and avoid
gaps in the audio stream that would generates these ‘clicks’. A common way of
doing is to take in account the last value of the given parameter, and perform
an interpolation between the new value and the previous one. Different kind of
interpolation may be available to perform the interpolation such as linear (DXi,
EyesWeb, AU) , quadratic (DXi) or sine (Dxi).

4.3 Parameter persistence and presets

Persistence of parameters is a saving of the parameters values, that enable the
user to find these same values – and not the default ones – when the user re-open
the plugin. It means that when the user close the host and relaunch it for a
new session, the persistent parameters adjustments will be the same as when he
quitted. This feature is useful when manipulating plugins with lots of control
values, like an equalizer for example.
Presets are actually an extension of the persistence system to the user’s will: the
user can decide to store different sets of parameters that he likes, usually identi-
fying them by a name. The way to store the preset depends on the presets size:
if the preset is small, it can be stored by the host (VST) or in a register (DXi);
whereas if the preset is bigger (e.g. it contains a waveform, or a picture), it will
be stored in a separate file as a bytestream 5.

4.4 MIDI

MIDI (Musical Instrument Digital Interface) is a protocol that transmits infor-
mation about how music is produced. It is asynchronous but quantized at a
maximum rate of 31,25 kbit/s6, and encode control values that fit in both event
(e.g. ‘note on/off’) and continuous parameters (e.g. ‘pitch bend’) categories. As
a major difference with GUI interaction, MIDI messages usually use time-stamps,
allowing sample accurate rendering. One can distinguish different families among

5The path of this file will be saved the same way a small preset would have been saved.
6This rate was the standard for communication with hardware devices. However, hosts

generally overcome this limitation internally: an adaptative resolution of 480 ‘ticks’ per quarter-
note is usual.

4.4 MIDI 18

musical plugins using MIDI: synthesizers, MIDI-controlled effects, pure MIDI ef-
fects7 and analysis plugins – though those last ones aren’t formalized in any
standard for now – depending on the kind of input and output data. In this
document, we will only deal with synthesizers and MIDI-controlled effects.

4.4.1 Synthesizers

Synthesizers (or ‘instruments’) appeared in the second generation of plugin stan-
dards. As harware ones, they get MIDI messages as input, usually have no audio
input, and output audio data on many pins compared to chained effects. They
often have a lot more parameters, and many of these ones are mapped to MIDI
continuous controllers for a convenient live interaction.

4.4.2 MIDI-controlled effects

Integration of synthetizers into standards has allowed the interaction with plugins
via MIDI. It allows to ‘play’ an effect as an intrument, using the incoming audio as
a primary material to generate sound. They are often intented for musicians more
than sound-engineers. As examples we can cite filters whose cut-off frequency is
tuned to MIDI notes, or live-samplers using the incoming audio as a wave-table.

7MIDI effects consist in taking MIDI messages as data input and process them. No audio
data is implied in the process. Most common MIDI effects are arpegiators, delays and echoes. . .

Chapter 5

Host environment integration

In order to work together, host and plugin have to know about each other both
static and dynamic information. Some are fundamental other are optionnal, the
options can vary a lot between standards. They can be either asked or told at
any time, but construction-time – or opening-time – is more usual. We describe
below the most important of them.

5.1 General information

5.1.1 Meta information

For most standards it is possible to provide a plugin name, a vendor name, a
description and a category. One should also have a way to add version number to a
plugin as well as to have a way to ask the host’s name and version for compatibility
purpose1 It is much more convenient than providing dedicated versions of the
same plugin for different versions and kind of host.

5.1.2 Audio setup

Audio pin properties

In this document, we assume that an audio input or output (pin) can be made of
mono-channels grouped together that have to be treated as one entity. It makes
sens when dealing with mono, stereo or surround channels. In a plugin graph
or in a host context, a plugin can negotiate its connexions with other plugins
or directly with the host. For that purpose, a plugin need to specify the total
number of audio channels it supports and the way they have to be grouped if
necessary. Character strings can often be provided to name the pins (see table
5.1). Often there is only one input and one output pin with the same propeties

1e.g. Plugins can declare their abilities depending on what hosts support and also depending
on known bugs about one particular host.

5.1 General information 20

(classical chained inserts), but in the case of instruments, multiple output pins
are common (e.g. one by MIDI channels or one by drum sound in order to be
compressed/equalize separately) and with spacializer, panner or down mixing
plugins, input and output pin properties can be different (e.g. mono in - sur-
round out). Moreover some channels can be tagged as side-chain.

Type Channels Name Sidechain Interleaved IO switch.
VST 32-bit float any yes yes no in theory
AU 32-bit float any no both yes
LADSPA 32-bit float any yes no no no
RTAS 32-bit float any yes no no
DIRECTX WaveFormatEx any yes no Both in theory
MAS 32-bit float 11x11 max yes yes no no
EYESWEB 32-bit float any no no no
MAX-like 32-bit foat any no yes no yes

Table 5.1: Audio pins properties

Audio processing properties

A plugin can notify the environnement about its DSP properties. These proper-
ties include:

• The buffer processing type : ‘in place’ or ‘buffer to buffer’ as well as ‘ac-
cumulation’ for send effects or ‘replacing’ for inserts (LADSPA, DXi, Eye-
sWeb)

• The generation of a tail : The tail is the part of the processed audio signal,
added at the end of the stream processed2. (DXi3, VST)

• The latency : The latency is the pure delay introduced by the computation4.
(VST)

• The real-time quality : In some plugin GUI, one can choose a lower quality
(typically obtained by down-sampling) for the audio signal preview, to get
faster computation. (VST, RTAS)

2A tail will typically be generated in effects like reverbs, delays, time-streching . . .
3DXi does this dynamically in the process function.
4e.g. to compute a FFT at 44100Hz with 512 samples of hopesize, the latency would be

512/44100 = 11,5 ms.

5.2 Runtime information 21

5.2 Runtime information

Audio plugin can often be used within a sequencer, where several tracks are
arranged along a common timeline. During runtime, some plugin – MAS, VST,
DX– can send or ask for time-information5 about the position of the current
timeslice being processed within this timeline. It is very useful to set parameters
to musical meaningful values (e.g. a number of quarter note instead of a time in
millisecond) or even sync some transformation patterns on the current position
in a mesure.
It is even possible with some standard – MAS – to send control information to
the host, related to the sequencer run, like ‘start’, ‘stop’, ‘goto locator’, ‘rewind’
. . . thus enabling beat-tracking algorithms to synchronize a host on a recorded
performance track.
One may also be prepared with standards like VST, DirectX, that the sample-
rate or the buffer size may change during runtime. Non power of 2 or even size
of buffer are possible, so be careful.

5.3 Acces to the plugin

5.3.1 Plugin Location

Although plugins are usually stored at a common place, there is no real standard
location for plugins storage. Still, one will often find a recommended path for
the plugins location, to make things cleaner. The possibility for having multiple
possible paths actually depends on the host. For some standards, it can be
modified, either by adding new locations in an environnement variable (LADSPA)
or by changing the path, or in the system register (DirectX), or browsing for a
plugin during runtime. However this depends more on the host’s strategy and on
the OS than on the standard.

5.3.2 Plugin ID

In order to be known by the host, a plugin should provide a unique way to be
identified among other plugins: a ’unique ID’. Depending on the scope in which
the host is assumed to seek to find the plugins, the ID may be a simple value, a
more complex registration key.
This ID can be made of 1 or many value(s), that is(are) assumed to be chosen
different from other plugins’ ID, by the plugin developer. In this case, it
is usually a long integer, or a combination of long integers: this is the case is
LADSPA, AU, VST, RTAS, MAS,. . . In the case of multiple IDs, one may find
the manufacturer ID (AU, MAS, RTAS), a variation ID (MAS), a plugin-type

5Time information include tempo (bpm), time signature, temporal and/or musical position

5.3 Acces to the plugin 22

ID (AU) . . . Note that a plugin ID can be registered by the host manufacturer to
become ’official’ and avoid clashes with other third party developer’s IDs.
It is noteworthy to notice that the shared library files in which the plugins are
compiled might contains several plugins – this can be done in LADSPA, AU,
MAS and VST (using a plugin shell6) –. In this case, every plugin inside this
library should have a unique ID.
The other solution is specific to DirectX, and consists in registering the plugin-
object in the system register through GUID’s (Globally Unique ID), which
are 128-bit registration keys automatically generated by the system. This
solution has the advantage of avoiding identity clashes between plugins, because
of developpers ignorance of all already existing plugins ID.The DirectShow filters
used by Cakewalk and SonicFoundry as ’DirectX effects’, and by EyesWeb for its
modules use this mechanism.

5.3.3 Entry points

The plugin code stored within a Shared Object or Dynamic Linked Librairy file 7

that may contain one or several plugins. The host application accesses the plugin
by calling the Entry Point function(s). The user then accesses the plugin thru
the host’s interface in a totally integrated way. The Entry Point function will
instantiate the plugin and provide information to the host.

6from one entry visible in the host you can access all the plugin from a manufacturer
7These libraries are *.so files in Linux and *.dll in Windows

Chapter 6

Conclusion

As we have seen through this document, from an abstract point of view, plugins
standards looks very similar and share a lot of functionnalities. Some are very
quick and simple to develop, like LADSPA, leaving the hard work to the host
and the user (GUI, mapping), while other like DirectX or RTAS, have a harder
learning curve because they give (too?) many possibilities to the plugin manufac-
turers (Custom GUI, handling of control surfaces or onboard DSP, automation,
MIDI. . .). Between we can find AudioUnits and VST trying to make ends meet
through easy APIs to start with, but allowing still many possibilities for (quite)
experienced programmers.
However when looking into details, we can raise many differences. These dif-
ferences are mostly dependent on the context in which the plugin standards
were born. For historical, technical and commercial reasons, host manufacturers
started on specific plateforms, targeting different kind of users and/or activi-
ties among audio-engineers, musicians, professionals, amateurs, post-production,
multimedia, video These initial constraints still remains present in standards
because of backward-compatibility, despite the fact that since those early times
companies and host have evolved, changed of plateform or even of customer’s
target.
In this specific context, the GMPI1 group was formed, at the end of 2002, on the
initiative of Ron Kupper from Cakewalk and under the authority of the MMA2, to
design a new open and cross-plateform plugin standard, that would meet everyone
needs, and put in common all the experience accumulated by people since the
first host and plugin systems. However there is still a long way before we can
use and develop for a unique kind of plugin that would be easy and quick to
develop, highly scalable and efficient. In the meantime, developping for different
standards and plateforms is still necessary and time-consuming. Furthermore the
choice of the supported standards is fundamental to determine the audience that
will be targeted.

1Generalized Musical Plugin Interface
2MIDI Manufacturer Association

Appendix A

Ressources

Most of the ressources we used to write this study are available on the Internet.
Here are the links to the web sites and SDK’s of the principal standards:

• AudioUnits Site: http://developer.apple.com/audio/

• DirectX – DXi Site: http://www.thedirectxfiles.com/

• EyesWeb Site: http://infomus.dist.unige.it/eywindex.html

• LADSPA Site: http://www.ladspa.org/

• jMax Site: http://www.ircam.fr/jmax/

• MAS Site: http://www.motu.com/

• Max/MSP Site: http://www.cycling74.com/

• PureData Site: http://www.pure-data.org/

• RTAS Site: http://www.digidesign.com/

• VST Site: http://ygrabit.steinberg.de/

http://developer.apple.com/audio/
http://www.thedirectxfiles.com/
http://infomus.dist.unige.it/eywindex.html
http://www.ladspa.org/
http://www.ircam.fr/jmax/
http://www.motu.com/
http://www.cycling74.com/
http://www.pure-data.org/
http://www.digidesign.com/
http://ygrabit.steinberg.de/

	Introduction
	What is an audio plugin?
	General model
	Inputs -- Outputs
	The ``process"
	The user interface
	Plugin developpement

	The signal stream
	Nature of the signal stream
	Signal processing
	General considerations about Digital Signal Processing

	Control
	External parameter declaration
	Mandatory declarations
	Optional declarations

	Parameter update
	Update mechanism
	Automation
	Parameters encapsulation and meta data

	Parameter persistence and presets
	MIDI
	Synthesizers
	MIDI-controlled effects

	Host environment integration
	General information
	Meta information
	Audio setup

	Runtime information
	Acces to the plugin
	Plugin Location
	Plugin ID
	Entry points

	Conclusion
	Ressources

