
conga: A Framework for Adaptive Conducting Gesture
Analysis

Eric Lee, Ingo Grüll, Henning Kiel, and Jan Borchers
Media Computing Group
RWTH Aachen University
52056 Aachen, Germany

{eric, gruell, kiel, borchers}@cs.rwth-aachen.de

ABSTRACT
Designing a conducting gesture analysis system for public spaces
poses unique challenges. We present conga, a software frame-
work that enables automatic recognition and interpretation of
conducting gestures. conga is able to recognize multiple types of
gestures with varying levels of difficulty for the user to perform,
from a standard four-beat pattern, to simplified up-down conduct-
ing movements, to no pattern at all. conga provides an extendable
library of feature detectors linked together into a directed acyclic
graph; these graphs represent the various conducting patterns as
gesture profiles. At run-time, conga searches for the best profile
to match a user’s gestures in real-time, and uses a beat predic-
tion algorithm to provide results at the sub-beat level, in addition
to output values such as tempo, gesture size, and the gesture’s
geometric center. Unlike some previous approaches, conga does
not need to be trained with sample data before use. Our prelim-
inary user tests show that conga has a beat recognition rate of
over 90%. conga is deployed as the gesture recognition system
forMaestro!, an interactive conducting exhibit that opened in the
Betty Brinn Children’s Museum in Milwaukee, USA in March
2006.

Keywords
gesture recognition, conducting, software gesture frameworks

1. INTRODUCTION
Orchestral conducting has a long history in music, with his-

torical sources going back as far as the middle ages; it has also
become an oft-explored area of computer music research. Con-
ducting is fascinating as an interaction metaphor, because of the
high “bandwidth” of information that flows between the conduc-
tor and the orchestra. A conductor’s gestures communicate beat,
tempo, dynamics, expression, and even entries/exits of specific
instrument sections. Numerous researchers have examined com-
puter interpretation of conducting gestures, and approaches rang-
ing from basic threshold monitoring of a digital baton’s verti-
cal position, to more sophisticated approaches involving artificial
neural networks and Hidden Markov Models, and even analyz-
ing data from multiple sensors placed on the torso, have been
proposed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
NIME 06, June 4-8, 2006, Paris, France
Copyright remains with the author(s).

Figure 1: Maestro!, an interactive conducting exhibit for
children that we developed, at the Betty Brinn Children’s
Museum in Milwaukee, USA. Photo appears courtesy of the
Betty Brinn Children’s Museum in Milwaukee, WI, USA.

Our work is motivated by research on novel computer music
and multimedia interfaces for public spaces such as museums
(see Figure 1), and conga builds on our prior experience with de-
signing interactive orchestral conducting exhibits, including Per-
sonal Orchestra, an exhibit for the HOUSE OF MUSIC in Vienna
(coordinated by Max Mühlhäuser, now at Darmstadt University)
[1] and a collaboration with Teresa Marrin Nakra on You’re the
Conductor, a children’s exhibit for the Boston Children’s Mu-
seum [9]. Our systems allow the user control over tempo, by
making faster or slower gestures; volume, by making larger or
smaller gestures; and instrument emphasis, by directing the ges-
tures towards specific areas of a video of the orchestra on a large
display (instrument emphasis is not supported in You’re the Con-
ductor). Designing a gesture recognition system for a museum-
type environment poses unique and interesting challenges, pri-
marily because museum visitors have a wide range of experience
with conducting. Moreover, there is little to no opportunity to
either train a user to use the system, or to train the system to a
specific user; a museum on a busy day may see over 1000 visi-
tors, and so a visitor will spend, on average, less than one minute
at an exhibit.
In this paper, we present conga, a system for conducting

gesture analysis. Unlike current systems, conga does not restrict
the user to conduct in a specific way, nor does the system itself
require training to tune itself to a user’s specific movements; in-
stead, it continuously evaluates user gestures against a set of ges-
ture profiles, which are encoded with the characteristic features
of particular types of gestures, and uses the best-matching profile
to extract information such as beat, tempo, size, and center from

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

260



the user’s gestures.
We begin with a more detailed description of the scope and

requirements for conga, followed by a quick survey of existing
work in the area of conducting gesture recognition. Then, we
describe our design of conga, and provide some implementation-
specific details and challenges. We conclude with a discussion of
some preliminary results obtained by testing conga with users.

2. REQUIREMENTS AND SCOPE
Our target user group for this work is museum visitors, and

thus, one of our primary goals was to build a gesture recogni-
tion system that works for a wide spectrum of users. We also
wanted to accommodate people with a wide variety of musi-
cal/conducting knowledge. This led to requirements that conga
be able to:

• recognize gestures from a user without any prior training
(either for the user or for the system).

• recognize a variety of gestures to accommodate different
types of conducting styles.

One of our goals was also to design conga as a reusable com-
ponent of a larger system that requires gesture recognition; thus,
we also required conga to:

• integrate well with a computationally-expensive rendering
engine for digital audio and video.

• not depend on the specific characteristics of any particular
input device.

While conducting is an activity that typically involves the en-
tire body [11], it is generally agreed that the most important in-
formation is communicated through the hands [6, 17]. Since we
also intended conga for use in a public exhibit, we have thus far
limited our gesture analysis with conga to input from the user’s
dominant hand. The output of the gesture analysis consists of
four parameters: rate (tempo), position (beat), size (volume), and
center (instrument emphasis). It is important to note, however,
that the design of conga itself does not place any restrictions on
the types of inputs or outputs, although we leave the implemen-
tation of such extensions for future work.

3. RELATED WORK
Gesture-controlled conducting systems have a long history in

computer music research. Mathews’ early work on the Radio
Baton [12], which triggers a beat when the baton goes below a
certain vertical position, has inspired a number of researchers to
study conducting as an interface to computer music systems.
Ilmonen and Takala’s DIVA system [5] features a conductor

follower that is capable of classifying and predicting beats, and
even sub-beats, to control tempo and dynamics. The system uses
artificial neural networks, and needs to be trained with user data
prior to use.
Usa and Mochida’s Multi-modal Conducting Simulator [18]

analyzes two-dimensional accelerometer data using Hidden
Markov Models and fuzzy logic to detect beats in gestures. The
system features beat recognition rates of 98.95–99.74%, although
it also needs to be trained with sample data sets prior to use.
Murphy et al.’s work on conducting audio files uses computer

vision techniques to track tempo and volume of conducting ges-
tures [14]. Users’ movements are fitted to one of several possible
conducting templates, described in [13]. While the system does
not require any training, the user must be familiar with the gesture
templates. Murphy used a combination of C code and EyesWeb
[3], a library for gesture processing.

1

3
2

4

1

32

4

Figure 2: Beat patterns for the four-beat neutral-legato (left)
and expressive-legato (right), as described by Rudolf. The
numbers indicate where beats are marked in the gestures.

Marrin’s Conductor’s Jacket [11] collects data from sensors
along the arms and upper torso, measuring parameters such as
muscle tension and respiration. She was primarily interested
in mapping expressive features to sections in the music score,
rather than obtaining measurements on how movements map to
rhythm and beats. In her later collaboration with us on You’re the
Conductor [9], she developed a gesture recognition system that
mapped gesture velocity and size to music tempo and dynamics.
Her systems were built using LabVIEW [15], a graphical devel-
opment software for measurement and control systems.
Kolesnik’s work also uses Hidden Markov Models for recog-

nizing conducting gestures [6], although the focus of this work
was on expressive gestures with the off-hand rather than beat
recognition with the dominant hand. His conducting system was
built using a combination of EyesWeb and Max/MSP [16].
Our system is thus unique in the following ways:

• the system does not need to be trained prior to use, un-
like those that use artificial neural networks and Hidden
Markov Models.

• users are not required to learn or be proficient with specific
gestures before using the system.

• the system interprets multiple types of gestures, allowing
it to respond to the precise gestures of a conductor’s four-
beat conducting pattern as well as the potentially erratic
movements of a child.

4. DESIGN
The design of conga is inspired by Max Rudolf’s work on the

grammar of conducting [17]. In his book, he models conducting
gestures as two-dimensional beat patterns traced by the tip of a
baton held by the conductor’s right hand (see Figure 2). Con-
ducting, then, is composed of repeating cycles of these patterns
(assuming the user keeps to the same beat pattern), with beats
corresponding to specific points in a cycle. By analyzing cer-
tain features of the baton’s trajectory over time, such as trajec-
tory shape or baton movement direction, we can identify both the
specific pattern, and the position inside the pattern, as it is traced
by the user.
Unlike Murphy’s work on interpreting conductors’ beat pat-

terns [13], we do not try to fit the user’s baton trajectory to scaled
and translated versions of the patterns shown in Figure 2; as a ma-
jority of our target user base are not proficient conductors, such
a scheme would most probably not work very well for them; in
fact, we have found in previous work that even after explicitly
instructing users to conduct in an up-down fashion, the resulting
gestures are still surprisingly diverse [10]. Murphy also makes
use of the dynamics encoded in the music that the user is con-
ducting to differentiate between unintentional deviation from the
pattern and intentional deviation to change dynamics; the ability
to make this distinction requires one to assume that the user is
already familiar with the music (an assumption we are unable to
make).

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

261



a

b

/

5

+⎧
⎨
⎩

inputs

output

Figure 3: A basic conga graph to compute 5 + a

b
. The ad-

dition triggers a division, which then in turn pulls data from
the inputs a and b.

Our general approach is to instead identify specific characteris-
tics (features) in various types of gestures, such as turning points
in the baton position with a certain direction or speed. These
features are encoded into gesture profiles, and the features are
triggered in sequence as the user moves the baton in a specific
pattern. The advantage of this approach is that the system does
not require the user to perform the gesture too exactly; as long as
the specific features of the gesture can be identified in the result-
ing movements, the overall shape of the gesture is unimportant.
conga, as a software framework, allows a developer to work at

several layers of abstraction; at the most basic level, it provides
a library of feature detectors. These feature detectors can then
be linked together into a more complex graph to identify spe-
cific gesture profiles, and to date, we have encoded three types of
gesture profiles into conga, with increasing levels of complexity:
wiggle (for erratic movements), up-down (for an inexperienced
conductor, but one who moves predictably), and the four-beat
neutral-legato (for the more experienced conductor). Finally, we
have developed a profile selector that evaluates which of these
profiles best matches the user’s baton movements at any given
time, and returns the results from that profile.

4.1 Feature Detectors
conga’s library of feature detectors offers basic building blocks

that provide a specific function; for example a bounce detector
may detect a change in the baton’s direction. Each feature de-
tector node has one or more input ports and at least one output
port. It takes, as input, a continuous stream of data (e.g., two-
dimensional position of a baton). The output is a “trigger”, a
Boolean value that is true when the feature is detected, and false
otherwise. There may be other outputs from the feature detector,
so that any nodes that use the output from the feature detector can
obtain more information regarding what caused the feature detec-
tor to trigger. Other types of nodes also exist to manipulate data,
such as rotating the data about an axis, applying various types of
filters, etc.
These nodes are connected into directed, acyclic graphs. The

graph is evaluated using a pull model, where the output requests
data which then pulls on its input nodes to perform the necessary
computation (see Figure 3).
This graph-based approach has been used successfully in a

number of existing frameworks, including LabVIEW, EyesWeb,
and Max/MSP. While it would have been possible to build conga
as a layer on top of one of these systems, we decided against such
a solution after evaluating each of these three systems. conga
was envisioned from the beginning as a component of a larger
system for conducting digital audio and video streams running
on Mac OS X [7]; of the three aforementioned frameworks, only
Max/MSP runs on the Mac, but, unfortunately, Max/MSP does
not provide all of the basic building blocks that we needed to im-
plement conga. An alternative would be to use a two-machine
solution, such as in [6, 1, 9], although we have learned from prior
experience that such setups are awkward to maintain in a museum
setting. Nevertheless, we feel these are implementation-specific
details, and we emphasize that conga’s contribution to the re-

x

y

Max

Min

Min

Max

Speed

Center

Size

Average
Beat

Accumulator

instrument emphasis

volume

tempo

beat
∆

∆

Figure 4: The conga graph for the Wiggle gesture profile.
The gesture speed determines tempo, gesture size determines
volume, and the gesture’s geometric center determines in-
strument emphasis.

x

y

∆

∆ Tempo

beat
Rotate

π

Bounce

Detector Beat

Predictor

tempo

Figure 5: The conga graph for the Up-Down gesture profile.
The downwards turning points of the gestures correspond to
beats; a beat predictor beat values in between these values.

search community is not just the feature detector framework, but
our design of a system for conducting gesture analysis based on
such a framework.
Further details of the feature detector framework and types of

nodes it provides are given in [4]; we will discuss only the feature
detectors of relevant interest to our discussion here.
The next three subsections describe the three profiles that we

have built for conga using our feature detector library.

4.2 Wiggle Profile
Figure 4 shows the conga graph for the Wiggle profile, which

is the most fundamental of the three gesture profiles that conga
recognizes. Inspired by Teresa Marrin Nakra’s work on You’re
the Conductor [9], gesture speed is mapped to tempo, gesture
size is mapped to volume, and the geometric center of the gesture
determines instrument emphasis (see Figure 4). conga falls back
to this profile when it cannot use any other means to interpret the
user’s gestures.
The “x” and “y” nodes hold time-stamped positional data from

the baton that has been preprocessed to remove noise. conga as-
sumes the origin is at the lower left of the coordinate system.
From there, “min” and “max” nodes store the most recent mini-
mum and maximum values of the baton position; these are then
used to determine the gesture size and center.
The gesture speed is computed by taking a numerical time

derivative of the baton position, followed by a moving average
of this derivative. Since the gestures themselves are not synchro-
nized to the music beat, a numeric integral of the speed is used to
arbitrarily derive beat information from the gesture speed.

4.3 Up-Down Profile
The Up-Down profile tracks the vertical movement of the user

to determine beat and tempo (the method for deriving gesture size
and geometric center remain the same as Wiggle, and will not be
repeated here). Figure 5 shows the conga graph for the Up-Down
profile.
The primary feature that is detected is the downwards turning

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

262



point, using the “bounce detector” node. The bounce detector
node takes, as input, the current velocity of the baton, and looks
for a positive to negative zero crossing in the y component of the
velocity (i.e., an upside-down “U” shape). Since such a detector
would normally track the upwards turning point, the data from
the baton must first be rotated by 180 degrees. To prevent false
triggers, the bounce detector imposes a criterion that the magni-
tude of the vertical movement over the last few samples be some
multiple of the magnitude of the horizontal movement (set as op-
tional parameters in the bounce detector node).
The triggers sent by the bounce detector mark whole beats, and

so the tempo can be derived by taking the numerical time deriva-
tive of these beat positions over time. This tempo is then used
to predict the current fractional beat value until the next trigger
occurs. If r is the current tempo in beats per minute, and t0 is
the time of beat b0 in seconds, then our predicted fractional beat
value b for time t is computed using b = b0 + r

60
(t − t0). We

also impose the additional constraint that b < b0+1 until the next
trigger occurs, to ensure that beats are always monotonically in-
creasing.
We found this simple beat prediction algorithm to work well

for estimating the fractional beat values between beats in early
prototypes of conga. While the beat prediction could be im-
proved if we detected more features in the gesture (e.g., detecting
the upper turning point to mark the halfway point into the beat,
in addition to the lower turning point), doing so would also place
more constraints on the types of movements that would fit the
profile. For example, we found that many users naturally tend
to conduct “pendulum-style”, rather than in strictly vertical up-
down movements.

4.4 Four-Beat Neutral-Legato Profile
The Four-Beat Neutral-Legato profile is the most complex, and

unsurprisingly, the most challenging beat pattern to detect. Mul-
tiple features are detected in parallel, which then drive a proba-
bilistic state machine to track where in the four-beat pattern the
user currently is at (see Figure 6).
The features that are detected are: the downwards turning point

at beat 1; the upper turning point just after beat 1; the change in
horizontal direction just after beat 2; the change in horizontal
direction just after beat 3; and the upper turning point after beat
4. Note that the features detected do not necessarily correspond
to the beats themselves (see Figure 6).
The first and third features are very distinct sharp turns, and

so the bounce detector is again used to track these features. The
second feature tends to be more subtle, and thus we look only for
a zero crossing in the baton’s vertical velocity at that point, with-
out the additional constraint that the bounce detector imposes, as
described earlier. Finally, the fourth and fifth features also have a
softer curvature, and are also tracked with a zero crossing node.
Since zero crossing nodes trigger on both positive to negative,
and negative to positive transitions, the undesired trigger is fil-
tered out before sending it to the state node. The state machine
node tracks the progress through the beat cycle; it also detects
and compensates for missed or false beats using a probability es-
timation based on the current tempo and time in which the last
trigger was received. For example, if we are currently in state
4, and the state machine receives a trigger for state 1, it checks
to see how much time has elapsed, and together with the current
tempo, guesses what the correct state should be. If it appears that
the feature for state 5 was just simply not detected, the state ma-
chine will jump directly to state 1. Otherwise, it will assume the
trigger for state 1 was simply a falsely detected trigger and ignore
it.
The state machine node also acts as a beat predictor; however,

unlike the beat predictor in the Up-Down profile, which receives

CONGANode *a, *b, *div, *five, *plus;

// Inputs nodes.  Their values will be set externally.
a = [[CONGAPassiveValueNode alloc] initWithTime:0.0f];
b = [[CONGAPassiveValueNode alloc] initWithTime:0.0f];

// Division node.
div = [[CONGADivisionNode alloc] initWithTime:0.0f];
[div setInputPorts:[NSArray arrayWithObjects:a, b]];

// A node with a constant value.
five = [[CONGAPassiveValueNode alloc] initWithTime:0.0f];
[five setValue:5.0f];

// Addition node.
plus = [[CONGAAdditionNode alloc] initWithTime:0.0f];
[plus setInptPorts[NSArray arrayWithObjects:five, div]];

Figure 7: The source code corresponding to the basic conga
graph shown in Figure 3, which computes 5 + a

b
.

whole beat information and predicts beat values in between the
whole beats, the state machine receives fractional beat informa-
tion – this is to compensate for the phase shift between the beats
and features in the gesture cycle. For the four-beat pattern, beats
1 to 4 are at 0, 0.25, 0.5 and 0.75 (percentage of one whole cycle),
respectively, while the features occur at values of 0, 0.12, 0.31,
and 0.63 (see Figure 6).

4.5 Profile Selection
The three gesture profiles described above run concurrently in

conga, and the final step in interpreting the user’s gestures is a
profile selection scheme that decides which of the profiles is re-
turning the most reasonable data. Our algorithm for performing
this selection is based on the assumption that the user does not
make erratic changes to the tempo; our informal observations of
users using our prior systems have confirmed that users moving
in an up-down gesture, or a four-beat neutral-legato pattern must
exert considerable effort to make relatively sudden changes to the
conducting pattern, and thus, the conducting pattern is usually
quite regular.
At each regular update cycle, each of the profile graphs is eval-

uated to determine the current beat. A threshold value is com-
puted based on the standard deviation of the last four calculated
beat values, and a confidence value returned by the beat predictor
for each of the profile graphs. If this value falls below a certain
threshold, we conclude that the profile is returning a sensible re-
sult. Profiles are also given a precedence order, so that if more
than one profile falls below the given threshold, the one with the
highest precedence wins. Our order of precedence from highest
to lowest is: four-beat neutral-legato, up-down, and wiggle.

5. IMPLEMENTATION
conga was implemented using the Objective-C programming

language under Mac OS 10.4 with the support of Apple’s AppKit
libraries. Nodes and graphs are created programmatically rather
than graphically, a departure from systems such as LabVIEW,
EyesWeb, and Max/MSP (see Figure 7). While it is possible to
build a graphical editor to create conga graphs, such an editor
was beyond the scope of this work. conga builds into a standard
Mac OS X framework, making it easy to include it as part of a
larger system, as we have done withMaestro!, our latest interac-
tive conducting system [8].
conga graphs are evaluated at 9 millisecond intervals; compu-

tation occurs on a separate, fixed-priority thread of execution.
We tested early prototypes of conga with a Wacom tablet. Our

current implementation uses a Buchla Lightning II infrared baton
system [2] as the input device. While the design of conga itself
is device agnostic, the specific characteristics of the Buchla did

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

263



π

2

x

y

∆

∆ beat

Rotate

π

Bounce

Detector

tempoRotate
Bounce

Detector

State

[S1]
0.00

State

[S2]
0.12

State

[S3]
0.31

State

[S4]
0.63

State

[S5]
0.84

State Machine

1

3
2

4

S1

S2

S3

S5

S4

Zero

Crossing and

=+

Zero

Crossing and

=+

Zero

Crossing and

=+

S1
0.00

S4
0.63

S3
0.31

S2
0.12S5

0.84

Figure 6: The left figure shows the conga graph for the Four-Beat Neutral-Legato gesture profile. Five features are detected,
which are used to trigger the progress of a state machine that also acts as a beat predictor. The input to the state machine is the
current progress (0 to 1) of the baton as it moves through one complete cycle of the gesture, starting at the first beat. The right
figure shows the corresponding beat pattern that is tracked; numbered circles indicate beats, squared labels indicate the features
that are tracked and the state that they correspond to.

Table 1: Summary of latency results for the Up-Down profile.
User Avg Tempo [bpm] Latency [ms]

Min Max Avg
1 54 36 117 96
2 58 63 117 86
3 96 81 144 113
4 114 81 144 118
5 130 108 135 122

present some challenges during implementation. For example,
data from a Wacom tablet is relatively high resolution and noise-
free, compared to the Buchla Lightning II, which has a resolution
of only 128 in both width and height. Data from the Buchla can
also be quite noisy, and we experimented with different types of
filtering to compensate. Based on these experiments, we found
a combination of hysteresis filtering and a 32 point Hanning fil-
ter to denoise the data gives the best results. Unfortunately, this
Hanning filter also adds between 4 to 10 samples of latency to
the overall system (36 to 90 ms), and we are looking into alterna-
tive methods to reduce this latency without compromising overall
accuracy.

6. EVALUATION
We conducted some preliminary testing with users to evaluate

conga’s accuracy and response. We asked five users (four male,
one female) to conduct using up-down movements, and three
users (all male) to conduct using the four-beat neutral-legato pat-
tern. The users conducted for approximately 30 seconds each.
The three users conducting the four-beat pattern were already
somewhat proficient with the gesture prior to the experiment.
The system starts by default using the Wiggle gesture profile;

for all five users, the system switched to the Up-Down profile
within the first two beats. After that, conga did not falsely detect
any beats, nor miss any beats, in the user’s gestures (100% recog-
nition rate). We also measured conga’s overall latency by mea-
suring the time difference between when the user marks a beat,
and when it is detected by conga; the results are summarized in
Table 1.
Since the smoothing that we apply to the Buchla baton data in-

troduces an average 63 ms delay, we estimate conga’s latency to
be between 23 and 59 ms. There also appears to be a correlation

Table 2: Summary of latency results for the Four-Beat
Neutral-Legato profile.

User Avg Tempo [bpm] Latency [ms]
Min Max Avg

1 104 27 675 175
2 96 72 666 203
3 98 18 225 107

between tempo and latency, although more data points would be
required to make a conclusive statement.
For the Four-Beat Neutral-Legato pattern, we found that for

one user, conga fell back to the Up-Down profile 8% of the time,
and failed to detect his beats 6% of the time. For the other two
users, conga stayed in the Four-Beat profile 100% of the time,
and did not fail to detect any of their beats. The latency results
are summarized in Table 2.
The maximum latencies for users 1 and 2 were particularly

high; a closer analysis of the data showed that these high laten-
cies occurred consistently on beat 3, and sometimes for beat 4.
One possible explanation is that the users’ unfamiliarity with the
four-beat gesture confused the beat predictor, resulting in conga
behaving unpredictably. For user 3, who is the most familiar with
the gesture, conga fared significantly better. Again, we believe
that more data points and detailed analysis would be required to
make a conclusive statement.

7. FUTURE WORK
We have identified a number of areas that we are actively pur-

suing to further the development of conga:
More gesture profiles: We have currently implemented three

gesture profiles in conga, which already illustrate the capabilities
and potential for the framework. However, only one of these is
actually a real conducting gesture, and thus we would like to in-
corporate more professional conducting styles, such as the four-
beat expressive-legato pattern shown in Figure 2.
Improved profile selector: As we incorporate more gesture

profiles, we will naturally have to improve the profile selector as
well. For example, the four-beat neutral-legato and the four-beat
full-staccato have very similar shapes, but their placement of the
beat is different, as is the way in which they are executed.
Lower latency:While the current latency introduced by conga

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

264



is acceptable for non-professionals, professionals will find the
latency much more disturbing. One way to reduce the latency is
to implement a better beat predictor, especially for the four-beat
profile. Another method to reduce latency is to realize that conga
can only detect a feature after it has occurred; thus, by the time
the trigger is sent, we are already at some future point in time.
conga nonetheless reports the feature as having triggered “now”,
and by compensating for this time delay from when the feature
actually happened to when it is detected in the beat predictor,
we can reduce the perceived latency further. Again, this would
require a more sophisticated beat predictor.
Graphical conga editor: conga graphs are currently cre-

ated programmatically rather than graphically, like in Max/MSP.
A graphical editor for creating conga graphs would make our
framework more approachable to a wider range of potential de-
velopers.

8. CONCLUSIONS
We presented conga, an analysis framework for conducting

gestures. conga distinguishes itself from current approaches to
conducting gesture recognition in that it uses a feature detector
approach, which allows the user’s data to be fitted to multiple
gesture profiles. These gesture profiles represent the key char-
acteristics of a particular beating pattern. The advantage of this
approach is that conga does not need to be trained with sample
data sets, nor does it require users to conduct in specific patterns.
As long as their movements trigger the features of a particular
profile, the precision by which they are executed is unimpor-
tant. A profile selector decides which profile best matches the
user’s movements, in order to maximize the user’s communica-
tion bandwidth with the virtual orchestra. We showed our de-
sign for three gesture profiles of varying quality and difficulty
for the user: four-beat neutral-legato, up-down, and wiggle. Our
preliminary evaluation of conga showed that it has a remarkably
high beat recognition rate, although the latency can be quite high,
making our current implementation a little premature for profes-
sional use.
Nonetheless, conga is both a significant improvement over our

previous work, and a novel approach to a well-studied problem,
and we hope to continue its development to further advance con-
ducting as an interface to computer music.

9. ACKNOWLEDGEMENTS
The authors would like to thank Teresa Marrin Nakra for early

pointers and advice on this project, and Saskia Dedenbach for her
assistance with the preliminary user evaluation of conga. Work
on conga was sponsored by the Betty Brinn Children’s Museum
in Milwaukee, USA as part of the Maestro! interactive conduct-
ing exhibit.

10. REFERENCES
[1] J. Borchers, E. Lee, W. Samminger, and M. Mühlhäuser.

Personal Orchestra: A real-time audio/video system for
interactive conducting. ACM Multimedia Systems Journal
Special Issue on Multimedia Software Engineering,
9(5):458–465, March 2004. Errata published in ACM
Multimedia Systems Journal 9(6):594.

[2] D. Buchla. Lightning II MIDI controller.
http://www.buchla.com/.

[3] A. Camurri, B. Mazzarino, and G. Volpe. Analysis of
expressive gesture: The EyesWeb expressive gesture
processing library. In Gesture Workshop 2003, volume
2915 of Lecture Notes in Computer Science, Genova,
2003. Springer.

[4] I. Grüll. conga: A conducting gesture analysis framework.
Diploma Thesis, University of Ulm, April 2005.

[5] T. Ilmonen and T. Takala. Conductor following with
artificial neural networks. In Proceedings of the ICMC
1999 International Computer Music Conference, pages
367–370, Beijing, October 1999. ICMA.

[6] P. Kolesnik. Conducting gesture recognition, analysis and
performance system. Master’s thesis, McGill University,
June 2004.

[7] E. Lee, T. Karrer, and J. Borchers. Toward a framework for
interactive systems to conduct digital audio and video
streams. Computer Music Journal, 30(1):21–36, 2006.

[8] E. Lee, H. Kiel, S. Dedenbach, I. Grüll, T. Karrer, M. Wolf,
and J. Borchers. iSymphony: An adaptive interactive
orchestral conducting system for conducting digital audio
and video streams. In Extended Abstracts of the CHI 2006
Conference on Human Factors in Computing Systems,
Montréal, Canada, April 2006. ACM Press.

[9] E. Lee, T. Marrin Nakra, and J. Borchers. You’re the
conductor: A realistic interactive conducting system for
children. In Proceedings of the NIME 2004 Conference on
New Interfaces for Musical Expression, pages 68–73,
Hamamatsu, Japan, June 2004.

[10] E. Lee, M. Wolf, and J. Borchers. Improving orchestral
conducting systems in public spaces: examining the
temporal characteristics and conceptual models of
conducting gestures. In Proceedings of the CHI 2005
Conference on Human Factors in Computing Systems,
pages 731–740, Portland, USA, April 2005. ACM Press.

[11] T. Marrin Nakra. Inside the Conductor’s Jacket: Analysis,
interpretation and musical synthesis of expressive gesture.
PhD thesis, Massachusetts Institute of Technology, 2000.

[12] M. V. Mathews. Current Directions in Computer Music
Research, chapter The Conductor Program and Mechanical
Baton, pages 263–282. MIT Press, Cambridge, 1991.

[13] D. Murphy. Live interpretation of conductors’ beat
patterns. In 13th Danish Conference on Pattern
Recognition and Image Analysis, pages 111–120,
Copenhagen, 2004.

[14] D. Murphy, T. H. Andersen, and K. Jensen. Conducting
audio files via computer vision. In Gesture Workshop 2003,
volume 2915 of Lecture Notes in Computer Science, pages
529–540, Genova, 2003. Springer.

[15] National Instruments. LabVIEW.
http://www.ni.com/labview/.

[16] M. Puckette. Max at seventeen. Computer Music Journal,
26(4):31–43, 2002.

[17] M. Rudolf. The Grammar of Conducting: A
Comprehensive Guide to Baton Technique and
Interpretation. Schirmer Books, 3rd edition, June 1995.

[18] S. Usa and Y. Mochida. A multi-modal conducting
simulator. In Proceedings of the ICMC 1998 International
Computer Music Conference, pages 25–32. ICMA, 1998.

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

265


