
GAINER

A reconfigurable I/O module and software libraries for education

Shigeru Kobayashi, Takanori Endo, Katsuhiko Harada, Shosei Oishi
IAMAS

3-95, Ryoke-cho, Ogaki City
Gifu, Japan

{mayfair, endo, harada03, shosei05}@iamas.ac.jp

ABSTRACT
How to teach creating musical interface or installations to
students who don’t have backgrounds in electronic engineer-
ing is a longtime issue. This paper describes how it is taught
at IAMAS (an institute dedicated to media arts) with the
use of the newly developed environment, ‘GAINER.’ The
GAINER environment consists of a reconfigurable I/O mod-
ule and software libraries for common programming environ-
ments.

Keywords
learning, reconfigurable, rapid prototyping, sensor interface

1. INTRODUCTION
In 2004, we held a one-month workshop about physical

computing[1] (mainly focused on creating musical interfaces
and installations) using commercially available I/O boards,
a few readymade sensors and actuators (one set lent to each
student). The participants were six students who wanted
to acquire skills to create interfaces or installations. Most
of them had had some soldering experience (in junior high)
and some programming experience (Max/MSP and Java),
but little knowledge of electronics. During the workshop,
we found the following difficulties:

• The participants feel a big gap between using ready-
made sensors or actuators and using bare sensors or
actuators.

• The participants tend to break I/O ports by accident
(i.e. electric overload). For most commercial products,
repair parts are provided. But, it’s difficult to purchase
repair parts from foreign countries, so I/O modules
tend to be left partly broken.

• Since configuration (e.g. number of analog inputs,
PWM outputs) is fixed, the participants often find dif-
ficulty connecting sensors or actuators (e.g. the par-
ticipant wants to connect a full color LED that re-
quires three PWM outputs, but the module has only

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME06, June 4-8, IRCAM, Paris, France
Copyright 2006 Copyright remains with the author(s).

two PWM outputs). It is possible to solve this issue us-
ing proper external components (e.g. a multiplexor),
but not so easy for a participant who does not have
enough knowledge about electronics.

• To handle small signals from sensors (e.g. accelerome-
ter), the participants have to add an external amplifier.
It’s difficult to design a proper amplifier circuit for a
participant who has no experience.

• The price of the I/O board was reasonable as a com-
mercial product, but it was a little bit expensive for
students. Most of them became interested in the I/O
board, but non purchased one.

As a result, the quality of the final projects (a prototype
of an interface or an installation) was not satisfactory: Only
one of the six students could create a prototype of an instal-
lation, the others remained at experimental level.

Based on the experience of the workshop, we started de-
velopment of an environment (GAINER) for both educa-
tion and actual interfaces and installations. Around that
time, we decided that PSoC microcontrollers from Cypress
Semiconductor would be a key component in our new I/O
board[2]. The PSoC microcontroller is a mixed signal array
that has configurable analog and digital blocks[3]. This flex-
ibility allows the user to make their own configuration within
the limitations of the hardware, and can change from one
configuration to another on the fly. And the analog blocks
have programmable gain amplifiers. This microcontroller is
the key component of our I/O board.

2. CONCEPTS
Key concepts of the GAINER are as follows:

• The user starts with bare components and a solderless
breadboard. This combination is used in real applica-
tions.

• The user builds their own I/O module from compo-
nents by soldering to acquire basic techniques of elec-
tronics work and keep the cost of the I/O board as low
as possible.

• The user can replace a broken microcontroller them-
selves.

• The user can choose from various configurations to suit
their needs.

• The user can easily utilize a programmable gain am-
plifier to amplify small signals from sensors.

• The user can easily handle an I/O module with both
graphical (i.e. Max/MSP[4]) and code-based (i.e. Process-
ing[5]) programming environment .

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

346



• All I/O ports are directly connected to the I/O pins of
a microcontroller. The user can enhance capabilities
of I/O ports with the use of ‘bridge’ modules if needed.

• Open source hardware and software: Advanced users
can modify existing hardware to create a new one for
their project.

3. RELATEDWORKS
As related works, Wiring[6], Arduino[7] and The CRE-

ATE USB Interface[8] have been proposed. GAINER dif-
ferent from these projects in terms of concept and imple-
mentation, but basically the same with regard to orienta-
tion. Verplank et al reported about a course on controllers
at Stanford University[10], and D’Arcangelo reported about
a cource on musical controllers at New York University[11].
Additionally, Lehrman et al. has proposed that creating dig-
ital musical instruments is effective in bridging the perennial
gap between the arts and the sciences[9].

Wiring is an open project initiated by Barragán et al. that
is a programming environment and I/O board. Arduino is
a sister project to Wiring. The programming environments
build on Processing, and an I/O board equips an AVR mi-
crocontroller from Atmel. Both I/O boards can be used to
develop stand-alone interactive objects, or can be connected
to software on a PC (e.g. Processing, Max/MSP).

The CREATE USB Interface is an I/O board project by
Overholt. The I/O board equips a PIC microcontroller with
built-in USB function from Microchip Technology. The user
can purchase an I/O board at low cost, or purchase compo-
nents and build themselves.

For Wiring, the user can purchase an I/O board at low
cost, and for Arduino and the CREATE USB Interface, the
user can purchase an I/O board at low cost, or purchase
components and build themselves.

4. THE GAINER ENVIRONMENT
The GAINER environment consists of the following parts:

A GAINER I/O module, ‘bridge’ modules (if needed), soft-
ware libraries for programming environment on a PC (i.e.
Max/MSP and/or Processing). Figure 1 shows the relation-
ships between these components.

Figure 1: The structure of the GAINER environ-
ment. A user can combine a proper I/O module
and a proper software platform as needed.

As mentioned in the key concepts, the user can choose
from various configurations. Table 1 shows all configura-

Table 1: All possible configurations of the GAINER
I/O module. ‘ain’ stands for analog inputs, ‘din’
for digital inputs, ‘aout’ for PWM pseudo analog
outputs and ‘dout’ for digital outputs.

config ain din aout dout caption
C1 4 4 4 4 default configuration
C2 8 0 4 4
C3 4 4 8 0
C4 8 0 8 0
C5 0 16 0 0
C6 0 0 0 16
C7 0 8 0 8 capacitive sensing
C8 0 0 8 8 matrix LED control

tions of GAINER. The first six configurations are versatile.
For example, if the user chooses C4, they can connect eight
potentiometers as input devices and eight LEDs with bright-
ness control as output devices. On the other hand, the last
two configurations are for specific purposes. For example, if
the user chooses C8, the person can utilize four capacitive
sensing switches by just connecting four electrodes and four
resistors, and furthermore, the person can use an additional
four digital inputs and eight digital outputs.

4.1 GAINER I/O module

4.1.1 Hardware: I/O module
Figure 2 shows the actual GAINER I/O module. The

key components are a PSoC mixed-signal microcontroller
(Cypress CY8C29466) and a USB-to-UART bridge (FTDI
FT232RL). Except for these key components, the rest are
standard and common components (i.e. a USB connector,
LEDs, capacitors, resistors and so on). From a PC side, an
I/O module appears as a serial port (38400bps, 1 stop bit,
non-parity, no flow control).

Figure 2: The GAINER I/O module. The module
is placed on a breadboard with some components,
and connected to a PC via a USB cable.

4.1.2 Hardware: ‘bridge’ modules
Figure 3 shows an actual ‘bridge’ I/O module to be com-

bined with an I/O module. The right module is the ‘powered

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

347



output bridge’ for expanding the capability of the output
ports (utilizing field emission transistors). For one or two
ports, the user can substantialize the same function through
use of discrete components on a breadboard. But it becomes
difficult as the number grows since the space of a breadboard
is limited. The user can create complicated (i.e. realistic)
circuts on a breadboard through the use of ‘bridge’ modules.

Figure 3: An examples of ‘bridge’ module: On the
right is the ‘powered output bridge.’

4.1.3 Firmware
While the hardware connection between the microcon-

trollers and the I/O ports is fixed, the configuration within
the microcontroller is reconfigurable by the firmware. Fig-
ure 4 shows the internal configurations of 1 and 8. We
designed specific hardware configuration and firmware for
each. As shown, these internal configurations are totally dif-
ferent except for a UART module for communication. From
the standpoint of the user, choosing or changing a config-
uration is a matter of simply selecting a ‘patcher’ (in the
case of Max/MSP) or supplying an argument (in the case of
Processing). Analog inputs are 8bit resolution, about 300sps
speed (available in C1, C2, C3 and C4). Digital inputs are
pulled-down internally. Analog outputs are pseudo analog
(PWM) outputs. Both analog and digital outputs are set to
‘strong’ drive mode.

Figure 4: Examples of configurations: The left one
is configuration 1 and the right one is configuration
8. The user can change from one configuration to
another on the fly.

4.2 Software libraries
Figure 5 and 6 shows an example of a software library for

Max/MSP. Currently, the software libraries for Max/MSP
are provided as a ‘patcher’ (e.g. gainer.io.c1.pat) and a help
patch (e.g. gainer.io.c1.help) for each configuration. As a
start point, the user can use a help patch, or create their
patch from scratch.

Figure 5: An example of a software library for
Max/MSP. The library encapsulates low messages
between a PC and an I/O board, representing them
as higher level messages.

Figure 6: An example of a help patch. All connec-
tions in a configuration are displayed in a help patch.
The user can start creating their own patch from a
help patch.

Figure 7 shows an example of a ‘sketch’ in Processing en-
vironment, and figure 8 shows an example of a reference
document of a class for Processing. All messaging from/to
a GAINER I/O module are implemented as methods of
the ‘Gainer’ class. A user can easily communicate with a
GAINER I/O module via an instance of the Gainer class
(e.g. gainer.setHigh(0)).

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

348



Figure 7: An example of a ‘sketch.’ Since all I/O
module functions are represented as methods of the
‘Gainer’ class, a user doesn’t have to deal low mes-
sages from/to an I/O module.

Figure 8: An example of a reference document. A
user can easily open reference documents to see de-
tailed descriptions.

5. CURRICULUM
We held a workshop on physical computing from Novem-

ber 8th to December 5th at IAMAS in 2005. IAMAS consists
of a specialized training college (International Academy of
Media Arts and Sciences) and a graduate school (Institute
of Advanced Media Arts and Sciences). The participants
numbered ten (eight from the specialized training college
and two from the graduate school). All of them were in-
terested in creating interfaces and/or installations. All of
them had a certain degree of experience of programming
(e.g. Max/MSP and/or Java), but none of them had knowl-
edge about electronics. We had three hours per day, two
days (on Mondays and Thursdays) per week.

The schedule of the workshop was as follows:

• week 1, day 1: Basic electronics

– How to use a breadboard?
– Ohm’s law
– Turn on a LED with a resistor
– Ordering components of your I/O module

• week 1, day 2: Building your I/O module

– How to do soldering?
– Building your I/O module
– Testing the I/O module

• week 2, day 1: How to handle outputs?

– How to use software libraries for Max/MSP?
– How to connect a LED?
– How to connect a SSR?
– How to connect a R/C servo motor?

• week 2, day 2: How to handle inputs?

– How to connect a switch?
– How to connect a potentiometer?
– How to connect a CdS?
– How to connect an accelerometer?

• week 3, day 1: How to process data in Max/MSP?

– How to do scaling in Max/MSP?
– How to do data processing in Max/MSP?
– How do you map incoming data to outputs?

• week 3, day 2: What is Processing?

– Basic introduction about Processing
– How to use software libraries for Processing?
– How to handle inputs?
– How to handle outputs?
– How to process data in Processing?

• week 4, day 1: Plan presentation

– Show a plan for the final presentation
– Discussion with lecturers
– Order components and materials

• week 4, day 2: Building

– Build a prototype

• week 5, day 1: Final presentation

– Present one’s prototype
– Discussion
– Closing

Figure 9 shows a scene of the second day of the first week
of the workshop.

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

349



Figure 9: A student is soldering to assemble her own
I/O module. Most participants had some soldering
experience in junior high.

6. RESULTS

6.1 Winter 2004 student projects
At the final presentation, all participants presented as de-

scribed in Table 2. Although the preparation period was
short (about one week), most students presented a work-
ing prototype as shown in Figure 10. Additionally, a few
students actually used prototypes in their musical perfor-
mances or installations in the weeks following after the final
presentation. With regard to configuration, eight students
used the default configuration (C1), and two students used
another configuration (C4) as needed.

Table 2: The breakdown of the final presentation

type number
musical interface 6
installation 3
performance 1

Figure 10: A student is presenting his prototype to
all participants.

Figures 11, 12 and 13 show examples of the final projects
in musical interface category. The first one is a musical
interface consisting of RGB color sensors and a full color
LED. The RGB color sensors on the bottom face recognizes
a color, then PC side software turns the color information
into sounds. An I/O module is used to handle the sensors
and the LED. The second one is a musical interface consist-
ing of pressure sensors and a CCD camera-based computer
vision. A performer plays the instrument with their hands,
and changes parameters by pressing on the sensors. An I/O
module is used to handle pressure sensors. The third one is
a musical interface consisting of CdS sensors and LEDs un-

der a half-mirror. A performer plays the instrument with a
bulb light. When a sensor detects the light, a corresponding
LED is turned on and a sound is played for a short while.
An I/O module is used to handle sensors and LEDs.

Figure 11: Input is color information from a RGB
color sensor. Output is a light from a RGB color
LED and corresponding sounds from a PC.

Figure 12: Input is color information from a CCD
camera and pressure information from pressure sen-
sors. Output is visual feedback on a projected screen
and corresponding sounds from a PC.

Figure 13: Input is brightness information from CdS
sensors. Output is lights from white LEDs and cor-
responding sounds from a PC.

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

350



6.2 The results of questionnaires
We asked students to answer questionnaires several times

throughout the workshop. First of all, the result of “Was
the workshop of interest to you?” was 4.44 (5 was “very
well” whereas 1 “not well.”, SD = 0.96). According to this
result, the workshop was of interest to most of the students.

Secondly, the result of “Did you easily assemble your I/O
module?” was 3.33 (SD = 0.80). According to this result,
the degree of difficulty was thought to be reasonable.

And the result of “Did you become interested in the GAINER
after assembling by yourself?” was 3.78 (SD = 1.03). Ex-
cept for two students, the score was 4 or 5. The two students
who scored 2 to this question gave supplemental answers to
the question as follows: “Since no interesting real applica-
tions are presented currently, I’m not very interested.” This
was one of the points of reflection about the curriculum of
the workshop.

Q1 in Table 3 shows understanding of electronics before
and after the workshop. According to the result, the under-
standing of electronics seems to have been deepened through
the workshop.

Q2 in Table 3 shows understanding of programming be-
fore and after the workshop. According to the result, there
was no change about the understanding of programming.
We hoped that the understanding of programming would
increase as it did in electronics, but it didn’t. We think that
there was not enough time for most of the students to un-
derstand both electronics and programming simultaneously.

Q3 in Table 3 shows interests in creating works with elec-
tronics. According to the result, the score is mostly same be-
fore and after the workshop. Before the workshop, the stu-
dents were highly motivated. But during the workshop, they
experienced many difficulties in creating their final projects.
In spite of the difficulties, they remained highly motivated
throughout the workshop. We think that the workshop was
meaningful for the students.

Table 3: An excerpt of questions: Q1 was “How
well do you understand electronics?” Q2 was “How
well do you understand programming?” Q3 was “Do
you want to create works with electronics?” The
numbers shown in parentheses are SD values.

before after
Q1 1.67 (0.47) 2.78 (0.91)
Q2 2.72 (0.85) 2.72 (0.85)
Q3 4.44 (0.68) 4.33 (0.81)

7. CONCLUSIONS AND FUTUREWORK
According to the results of the workshop, we achieved

some positive results with utilizing the GAINER environ-
ment. During the workshop, we couldn’t explore possibili-
ties of the reconfiguration in deep. According to the ques-
tionnaire after the workshop, 66% of the students wanted to
attend an advanced workshop. We have no detailed plans
for an advanced workshop, but we would like to explore pos-
sibilities of the reconfiguration in the workshop. In regard
to scalability, we would like to provide a wider range of I/O
modules and ‘bridge’ modules as follows:

• Documentation in multiple languages (currently in sin-
gle languages only).

• Smaller I/O modules to be embedded into a small de-
vice (to expand scalability).

• Stand-alone capability (both firmware side and devel-
opment tool side).

• Wireless connection capability (e.g. Bluetooth, par-
tially tested).

• More software libraries (e.g. PureData, Adobe Flash
and so on).

In regard to the effectiveness of the GAINER environment
and the workshop, it’s hard to do control experiments. So
we want to keep holding the workshop for a few years to
examine its effectiveness and to improve the environment.

8. ACKNOWLEDGMENTS
This research has been a part of the ‘Programmable De-

vice Project’ (PDP)[12] at IAMAS. The authors wish to
acknowledge of the assistance of Masayuki Akamatsu for
suggestions as a media artist, Takahiro Kobayashi for tech-
nical advice, Kazuki Saita for reviewing the documentations
and all members of the PDP and workshop attendees for co-
operative suggestions. The source code of the firmware, the
hardware and software libraries are available at the following
location: http://gainer.sourceforge.net/

9. REFERENCES
[1] O’Sullivan, D. and Igoe T. Physical Computing.

Muska LipmanPremier-Trade, 2004.

[2] Seguine, D. Just add sensor - integrating analog and
digital signal conditioning in a programmable system
on chip. Sensors, 2002. In Proceedings of IEEE
Volume 1, 12-14, p.665–668.

[3] Ashby R. Designers Guide to the Cypress PSoC.
Newnes, 2005.

[4] Cycling ’74. Max/MSP. Available at:
http://www.cycling74.com/

[5] Reas, C. and Fry, B. Processing: a learning
environment for creating interactive Web graphics. In
Proceedings of the SIGGRAPH 2003.

[6] Wiring. Available at: http://wiring.org.co/

[7] Arduino. Available at: http://arduino.berlios.de/

[8] Overholt, D. The CREATE USB Interface - where art
meets electronics. Available at:
http://www.create.ucsb.edu/˜dano/CUI/

[9] Lehrman, P. and Ryan, T. Bridging the Gap Between
Art and Science Education Through Teaching
Electronic Musical Instrument Design. In Proceedings
of New Interfaces for Musical Expression (NIME05)
(Vancouver, Canada, May 26–28). p.136–139

[10] Verplank, B. A Course on Controllers. In Proceedings
of New Interfaces for Musical Expression (NIME01)
(Seattle, USA, April 1–2)

[11] D’Arcangelo G. Creating a Context for Musical
Innovation: A NIME Curriculum. In Proceedings of
New Interfaces for Musical Expression (NIME02)
(Dublin, Ireland, May 24–26)

[12] Programmable Device Project.
http://www.iamas.ac.jp/project/pdp/

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

351


