
the gluion
advantages of an FPGA-based sensor interface

Sukandar Kartadinata
glui

Hagenauerstr. 6
10435 Berlin, Germany

sk@glui.de

ABSTRACT
The gluion is a sensor interface that was designed to overcome

some of the limitations of more traditional designs based on

microcontrollers, which only provide a small, fixed number of

digital modules such as counters and serial interfaces. These are

often required to handle sensors where the physical parameter

cannot easily be converted into a voltage. Other sensors are

packed into modules that include converters and communicate

via SPI or I2C. Finallly, many designs require output

capabilities beyond simple on/off.

The gluion approaches these challenges thru its FPGA-based

design which allows for a large number of digital I/O modules.

It also provides superior flexibility regarding their

configuration, resolution, and functionality. In addition, the

FPGA enables a software implementation of the host link - in

the case of the gluion the OSC protocol as well as the

underlying Ethernet layers.

KEYWORDS
Digital Sensors & Actuators, Sensor Interfaces, FPGA, OSC.

1. INTRODUCTION
The renewed interest in sensor technology in recent years has

resulted in an enormous pool of resources, both in terms of

online information and available tools. Part of this trend is an

ever-growing number of sensor interfaces each with its own

special feature set, concept, and price range. What they all have

in common, however, is the fact that they are built around a

microcontroller. This seems like a perfectly reasonable choice

as these integrated circuits combine everything that is required

for the design of a sensor interface: a CPU to handle program

flow and perform arithmetics, memory to store programs and

data, and I/O modules. The latter are of particular importance as

they allow the microcontroller to connect directly to both

sensors and host computer without the use of additional I/O

chips. For the host link this is usually a serial interface like

MIDI or RS232, or, in more recent designs, USB or Ethernet.

On the sensor side the most important I/O modules are the

analog inputs that accept the voltages generated by the sensors.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and

that copies bear this notice and the full citation on the first page. To

copy otherwise, or republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee.

NIME 06, June 4-8, 2006, Paris, France.

Copyright remains with the author(s).

These are then measured by an integrated Analog-to-digital

converter for subsequent processing by the CPU and

transmission towards the host. In addition, microcontrollers

provide a number of digital I/O pins that can be controlled, or

queried, under program control. They can also be associated

with additional internal modules to perform dedicated functions.

A typical example is a PWM (Pulse-Width Modulation)

generator that is often used to control the speed of a motor. This

is usually implemented by using a timer module whose value is

constantly compared to a register that contains the desired

pulse-width. The (binary) result of this comparison then leaves

the chip directly thru a dedicated pin which is connected to the

motor circuitry.

Now, while the above approach is fine for many smaller

projects, it is not uncommon that an instrument or installation

design requires more than just a few PWM-, or other digital

I/O-, modules. What's more is that the timers are also required

for other tasks, e.g. generating the MIDI clock. Unfortunately,

simply switching to a bigger microcontroller only helps to a

certain extent as the focus is usually on more memory and

general purpose pins rather than I/O modules. And adding more

microcontrollers complicates the overall system design as they

have to communicate with each other.

FPGAs, in contrast, do not have these limitations. As the name,

Field Programmable Gate Array, suggests, the building blocks

of these devices are gates, the logic foundation of any digital

device. However, rather than wiring up countless TTL chips

like in the early days, the designer can enter the schematic with

a suitable editor1 which is then compiled into a configuration

file for the FPGA. This means that before programming the

microcontroller one would first design it according to the

requirements. While this may seem like reinventing the wheel,

modern design tools hide a lot of the complicated details while

the added flexibility outweighs the extra effort. More to the

point though, we will see that many components of the

microcontroller can be left out of the design.

2. BACKGROUND
The gluion is not the first device that employs FPGAs in a

music technology context. Two examples for their use in

custom controller designs are Dan Overholt's MATRIX [1] and

the "continuous keyboard" by Freed & Avizienis [2]. What they

have in common is a large number of identical sensors that

would otherwise require a large array of microcontrollers. But

their technology is very specific to the instruments and not

available as a separate interface. The latter, however, is related

1. The preferred method though is the use of a hardware

description language like Verilog or VHDL

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

93

to CNMAT's Connectivity Processor [3], an interface that

integrates multi-channel audio as well as GMICS2 and a

"gesture port".

The only other pure sensor interface with an FPGA is

surprisingly one of the first at all - STEIM's SensorLab [4]. For

its time it offered remarkable features such as its own

programming language SPIDER that was particularly well

suited to event handling. It also supported special sensors like

e.g. ultrasound distance measurement and was able to drive

character displays over a synchronous serial link. While the first

two revisions implemented this additional functionality with

discrete TTL logic, rev. C combined a 80C535 microcontroller

with a Xilinx LCA3 to accomplish this task and expand on it.

However, this rather complex design came at its price, so in the

following years simpler MIDI interfaces were released that

focused on analog inputs and simple digital I/O. Another trend

was that MIDI was used less and less to control hardware

synthesizers and samplers, but was fed directly into computers

as those became powerful enough for realtime software

synthesis. This also meant that the controller no longer had to

perform event processing as this was a comparably easy task for

the computer, where it could also be implemented in a much

more flexible way. The downside of this approach is that sensor

data has to be streamed continuously which can be quite taxing

for a slow interface like MIDI. Consequently the move to USB,

Ethernet [5], and even digital audio [6].

3. TOWARDS FPGAS

3.1 Concurrency and Precision
If one dispenses with event processing like outlined above this

also means that there is actually little left to do for the

microcontroller's CPU in terms of performing arithmetical and

logical operations. Tasks like signal filtering, threshold

detection, or even simple scaling can all be done on the host

now, so the microcontroller effectively becomes a data pump

where its main job is now to configure, control, and query the

individual I/O subsystems. The most common technique here is

the use of interrupts that signal e.g. the completion of an

analog-to-digital conversion or the successful transmission of a

data byte/packet.

This approach can be managed comparably easy as long as

there are not too many subsystems involved and interrupt

service routines can be kept short. However, in the scenario

proposed in the introduction, where more and more I/O modules

are added, the overall timing can become critical as different

interrupts collide and one has to deal with priorities and more

complex scheduling strategies.

The situation gets worse when the desired functionality has to

be implemented under program control. E.g. if an array of

PWM outputs is required but only a single counter module is

left, rather than writing the pulse-widths into their separate

registers (and then "forget" them) the main process constantly

has to read this one counter and perform comparisons to the

PWM values stored in data RAM (using the ALU4), before it

can set or clear the corresponding output pins accordingly. This

sequential scheme alone results in a reduced accuracy of the

2. A bi-directional interface for audio and sensors proposed

by Gibson

3. LCA = Logic Cell Array, conceptually similar to FPGAs

4. ALU = Arithmetic Logic Unit

PWM signal; it gets far worse when it is interrupted by other

activities..

Now, how does an FPGA, or more specifically the gluion,

handle this challenge. To begin with, there simply is no

program flow to be interrupted. While it would not be a problem

to implement a CPU inside an FPGA (including program

counter, program memory access, ALU, instruction decoder,

execution unit, etc.), it simply is not necessary. Instead all

modules operate concurrently and communicate thru registers

or dual-ported RAM. In other words, there are no shared

resources that have to be arbitrated. Every PWM of the above

array can have its own counter and pulse-width register, which

are compared continuously and not just when the CPU gets to

the matching program location. As a result the signal is accurate

down to a single cycle of the master clock, 50ns in the case of

the gluion. This may seem like overkill, but it allows the

implementation of high-frequency PWM while maintaining

high resolution.

3.2 Fine-tuning and unique functionality
Not only can an FPGA host a large number of precise I/O

modules, it also allows the user to fine-tune their parameters.

While counters and registers inside microcontrollers are usually

fixed at 8 or 16 bit resolution, with an FPGA it is just as easy to

have a 3-bit counter to drive an 8-way multiplexer, or a 50-bit

counter to cover days. This allows the designer to balance the

resources of the specific chip being used.

Furthermore, originally simple modules can be enhanced with

functionality not available in most microcontrollers. In the case

of the PWM example introduced above, this could be dynamic

control of the frequency or a 'burst' register to specify a defined

number of pulses to be sent rather than the usual continuous

stream. Effectively this becomes a basic stepper motor control.

More examples are discussed in chapter 5.

Finally, the FPGA allows for unique modules not found in any

microcontroller, enhanced or not.

3.3 Portability
When porting an existing design to a new microcontroller-based

interface it is rather likely that it will have a different chip than

the previous one. This will possibly be from the same chip

family or at least the same vendor, although sometimes the

latter has to be abandoned when more drastic changes are

required. In any case, the assumption that C-code should be

easily portable is not entirely applicable here. Considering the

above scenario where the microcontroller is freed from event

processing and is mainly busy managing I/O registers, the

programmer cannot simply transfer the existing C-code but has

to map the old I/O register set to the new one, with all its

pecularities. Similarly, functionality that has been implemented

under program control has to be thorougly reviewed to match

new timing constraints.

In the FPGA-case, this is less of a problem as we have defined

our registers ourselves. In fact, the main feature of new FPGA

releases is their bigger size. Exceptions are e.g. RAM blocks or

PLLs5, but these are ususally generic enough, so the design can

be easily adapted. Admittedly at the current state this is

somewhat theoretical though as it is not backed by extensive

experience.

Finally, it should be noted that by defining the very details of a

5. PLL = Phase Locked Loop

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

94

chip's architecture it is possible to apply the concepts of open-

source software to hardware designs, with all their socio-

economic implications.

4. DESIGN OF THE gluion
In designing the gluion’s hardware one of the goals was to use

as few external components as possible. This was particularly

true for the Ethernet-based host link. Following the above

portability goal, no external Ethernet-PHY (physical layer) chip

was used with all the lengthy and device-specific setup

procedures. Instead this functionality was implemented entirely

as a soft core, so for this part the only external components are

the RJ-45 connector and the isolation transformer. On the

downside, only 10base-T could be achieved, but this is usually

enough for sensor data.

On top of this lie rudimentary data and transport layer modules.

Rather than going for a complete TCP/IP stack only those

protocols are implemented that are necessary for OSC, i.e.

UDP, ARP, and IP. The choice for OSC [7] was for its high

speed, powerful protocol, and driver/OS-independency.

Figure 1: the gluion 'barefoot'

Apart from the I/O modules described above and in the

following chapter, the gluion provides functionality to upload a

new configuration via Ethernet. This means additional

flexibility as the interface can be adapted when moving from

project to project. Users can enter their requirements into a web

interface which generates a script that drives the build process

of the FPGA design tools. At the current state this is not yet

fully automated though.

5. EXAMPLES FOR MODULES

5.1 Scanned Switch-Matrix
While connecting a switch to a sensor interface is a simple task

with just about any sensor interface (usually a pull-up resistor

and the switch/button towards ground), setting up a matrix of

switches requires a multiplexed approach with both in- and

output pins.

Figure 2: 6 I/O lines required for 9 buttons

The latter have to send synchronized pulses into the rows of the

matrix, while the columns are connected to the inputs that listen

for returned pulses which can then be matched to specific

switches. The advantage of this concept is that less I/O pins are

required compared to the pin-per-switch approach (approx. 2 N

vs. N). As an example consider an interactive installation with a

grid of 30x30 floor switches - the ordinary approach would ask

for 900 pins, which is clearly beyond any available interface. In

contrast, the gluion with its 68 digital pins can easily

accommodate the 60 connections required for such a matrix.

5.2 Rotary Encoder
This component can be frequently found in commercial music

gear as well as other industries where it is used to adjust values

that are under software control. In contrast to a potentiometer it

has no stops but can be turned "endlessly". In doing so it

outputs a dual stream of pulses that can be counted while their

phase relationship signals the direction of the rotation.

Figure 3: dual pulse trains from an encoder

A microcontroller could do this task under program control, but

none of the reviewed sensor interfaces do this. It also becomes

difficult to capture all pulses when using high-resolution

encoders that create hundreds of increments per 360º turn. In an

FPGA a simple state machine connected to a counter ensures

that no pulse nor phase is lost.

Figure 4: optical encoder from an old mechanical mouse

mounted on the fingertip of a data glove

5.3 Ultrasound Distance Sensor
One way to measure distances is to send out an ultrasound pulse

and wait how long it takes to reach the receiver. Three timers/

counters are required here: one to generate the 40kHz signal

that common transducers operate at, one to count to ~10 for a

small burst, and finally the actual time lag counter whose value

is proportional to the distance covered.

Figure 5: measuring distance by timing ultrasound lag

As the time lag counters are driven by the 20MHz master clock

the internal resolution is 50ns equivalent to 0.017mm. The

effective resolution, however, is limited by the thresholding

circuit and is about a magnitude less. But compare this to the

1ms resolution achievable (at best) when doing the timing on

the host machine, which translates into roughly 30cm.

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

95

Some ultrasound designs built for more common sensor

interfaces actually have their own microcontroller to determine

a distance value, which they then have to convert into a voltage

to be measured by the interface's ADC. These additional steps

obviously limit the achievable resolution and are hardly elegant.

5.4 Frequency Measurements
A frequency counter is ususally just a counter that is clocked

from an external signal for a certain period called the gate time

(which requires another counter). It can be used for sensors

where the sensing element is part of an oscillator whose

frequency changes depending on the physical parameter. Of

course, frequencies can be converted to a voltage, however this

adds to the complexity. Moreover, the frequency can be sent

over long lines with less signal degradation than a voltage. In

the example below a low-cost inductance sensor has been fitted

on a tuba to measure its key positions.

Figure 6: left: coil free-standing, right: coil covered by tuba

key

In addition to the single-channel frequency module the gluion

also has a multiplexed version that is e.g. used to measure the

61 key heights of the SKRUB keyboard [8].

5.5 Pulses
For signals with low frequencies it is often better to measure

their period. The process is complementary to the above

frequency measurement, as the external signals provides the

gate for a counter driven by the internal clock.

Figure 7: optical sensor and motor of a belt-driven record

player

In the upper part of the above picture an optical sensor

measures the duration of black bars passing by as the turntable

rotates, effectively determining its speed. Pulses also flow in the

other direction as a PWM signal controls the motor located in

the lower part of the image.

5.6 Serial Data
While the above modules allow the direct control of many

different sensors and actuators there are often existing devices

that need to be tied into the overall system. Wether it is a

Polhemus 6DOF tracker, a character display, or a DMX lighting

setup, they usually communicate thru a serial interface. For this

it is possible to configure modules for various serial protocols.

Currently available are RS232, MIDI, DMX, and SPI. I2C and

PS/2 are planned.

6. FUTURE PLANS
Currently wireless transmission of sensor data is possible

through a simple WiFi bridge. However, a more integrated

solution is being considered to keep the overall design compact.

Several enhancements to the existing I/O modules are underway

as are entirely new modules like a touchscreen controller.

Other plans call for more hardware modules, like ultrasound

amplification or drivers for motor control.

Finally a move to a bigger FPGA might be necessary to host

more complex designs.

7. ACKNOWLEDGMENTS
I would like to thank Podewil (Elke Moltrecht) as well as its

successor Tesla (Carsten Seyfarth) for their continued support

in hosting the glui lab. Also thanks to Nic Collins and Reinhold

Friedl.

8. REFERENCES
[1] D. Overholt, The MATRIX: A Novel Controller for

Musical Expression, In Proceedings, CHI '01 Workshop

on New Interfaces for Musical Expression (NIME'01),

Seattle, WA, 2001.

[2] A. Freed and R. Avizienis: A New Music Keyboard

featuring Continuous Key-position Sensing and High-

speed Communication Options, In Proceedings,

International Computer Music Conference, Berlin,

Germany, 2000.

[3] A. Freed, R. Avizienis, T. Suzuki, and D. Wessel:

Scalable Connectivity Processor for Computer Music

Performance Systems, In Proceedings, International

Computer Music Conference, Berlin, Germany, 2000.

[4] http://www.steim.org/steim/sensor.html

[5] T. Coduys, C. Henry, and A. Cont: TOASTER and

KROONDE: High-Resolution and High-Speed Real-

time Sensor Interfaces, In Proceedings, New Interfaces

for Musical Expression (NIME-04) Hamamatsu, 2004.

[6] J. Allison and T. Place: Teabox: A Sensor Data Interface

System, In Proceedings, New Interfaces for Musical

Expression (NIME-05) Vancouver, 2005.

[7] M. Wright and A. Freed: OpenSound Control: A New

Protocol for Communicating with Sound Synthesizers,

In Proceedings, International Computer Music

Conference, Thessaloniki, Hellas, 1997.

[8] http://glui.de/prod/gluiph/SKRUB.html

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

96

