Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

Towards a catalog and software library of mapping
methods

Hans-Christoph Steiner
at.or.at
New York, NY, USA

hans@at.or.at

ABSTRACT

Mapping has been discussed for decades, yet there is not
standard catalog of mapping methods. The Mapping Li-
brary for Pd is a fledgling library of mapping primitives
with the aim of cataloging existing mapping methods. Also
included are techniques for conditioning sensor data to make
it usable in the context of instrument design.

1. INTRODUCTION

Everything should be made as simple as possible
- but no simpler. - Albert Einstein

Mapping for instruments has been discussed for decades.
There have been a huge range of ideas touted, and many
instruments built and tried. Shared elements and ideas are
repeated, and re-implemented again and again. The foun-
dations of audio have been long since codified with the stan-
dard unit generators, with few audio software packages dis-
regarding them. They have become a basic language to ex-
press ideas in that realm, whether in software or hardware.
There is no catalog of fundamental mapping algorithms, and
little work has been done to build the foundations into soft-
ware.

With no standard framework, instrument designers are
constantly reinventing the wheel, re-implementing mapping
algorithms whenever creating a new instrument. Many map-
ping operations are very common, so it makes sense to have
a software library that includes these operations. Even for
uncommon and more complex operations, having a library of
mapping methods allows the instrument designer to rapidly
test a wide variety of mapping ideas without having to im-
plement them, and even derive some inspiration from scan-
ning the contents of a mapping library and rapidly inter-
changing elements.

In a similar vein, there are a myriad of methods of condi-
tioning sensor data. When using sensors, there is often noise
and errant results. Many useful sensors do not produce lin-
ear data, or even easily modeled curves. There are many

Permission to make copies of all or part of this work for any purpose are
granted under a Creative Commons Attribution-ShareAlike license: http:
//creativecommons.org/licenses/by-sa/2.0/

NIME 2006, June, 2006 Paris, France

Copyright 2006 Copyright remains with the author(s).

106

techniques for conditioning this data to make it straightfor-
ward to use. These techniques are well established in the
realm of electronics [8] [12]. Many of these ideas are very
useful in the context of instrument design and can be applied
in the software realm. Yet there seems to be no catalog of
software algorithms for conditioning, especially when talk-
ing about applying them to instrument design.

This paper aims to start the discussion of what these map-
ping primitives are and describes work towards building a
library of these ideas: the Mapping Library for Pd. Algo-
rithms for processing sensor data are included because many
of them are also used in mapping data, such as applying
transfer functions to shape the data. This library is also
intended to become a catalog of mapping techniques which
can freely be implemented in other ways, with the hope of
developing some standardized terminology.

2. PREVIOUS WORK

I started my work on the topic of mapping with the [hid]
toolkit [9], which mainly focused on streamlining the process
of getting data from game controllers for creating instru-
ments. The [hid]1 object already provides access to a wide
range of devices. In addition, there is work underway on
supporting sensorboxes in a way that follows standards laid
out by the [hid] toolkit objects. The other key part of that
work is the objects for mapping data. Cyrille Henry, who is
a major contributor to the software library, had developed
a collection of Pd objects for sensor processing techniques.
It is these sets of objects that the Mapping Library for Pd
is based on.

There have been a couple of attempts at building frame-
works for creating musical instrument mappings. Two no-
table packages come from IRCAM. "MnM is a set of Max/MSP
externals... providing a unified framework for various tech-
niques of classification, recognition and mapping for motion
capture data, sound and music.” [2] An earlier attempt from
IRCAM is the ESCHER toolkit for jMax [11] which is a set
of objects to address various problems of mapping. Goude-
seune presented his mapping technique based on high dimen-
sional interpolation he calls ”simplicial interpolation” [4] .
While this is an interesting technique that shows promise,
it only addresses a specific approach to mapping and is not
broken up into more generally useful modules. Both of these
are complex systems which show promising results, but they
seem to address the opposite end of the spectrum that this
paper is addressing. They are built from complicated ob-
jects and take a mathematical approach to mapping. While

'a word in square brackets denotes a Pd object

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

mathematics are an integral part of mapping, the user need
not experience it in that way.

3. DESIGN IDEAS

When talking about mapping, we are almost always talk-
ing about computer software, anything from custom C code
to Pd patches to application preferences. Therefore it makes
sense to implement a catalog of mapping methods as a soft-
ware library. Mapping is generally represented firmly within
the realm of mathematics. By abstracting the math into
software objects, mapping can be approached as a system of
logic. Software derives its vast power from the encapsulation
of ideas and the reuse of code. Many complex mapping al-
gorithms can be encapsulated into software objects, opening
up new opportunities for exploration. One need not under-
stand much about an algorithm within an object in order
to insert it into a program and play with it. This way of
interacting is much more like how many musicians learn to
play an instrument: they play with it and see what they can
figure out. Having encapsulated software objects, mapping
can be more in this spirit of play, rather than purely a sep-
arate, studied effort. Also, catalog of mapping primitives
aids in teaching and standardized terminology allows more
fluid discussion and exchange of mapping ideas.

This paper covers explicitly defined mapping methods,
where the instrument designer directly controls each as-
pect of the mapping. Other papers cover methods involv-
ing generative techniques or neural networks[3]. While such
systems might be based on the same mapping primitives
as other methods of mapping, it is difficult to derive the
mapping since it is only represented internally to the map-
generating process.

There is still a lack of a set of commonly agreed upon
primitives for the building of mappings. There are many
great ideas about mapping, but lack reusable implementa-
tions. The goal of the Mapping Library for Pd is to first
provide a set of mapping primitives, then to build more com-
plex objects using the primitives. This modular approach
has a number of advantages: the code is easy to read since
its based on encapsulated ideas, code can be easily tweaked
or repurposed since its all written within Pd, and as more
objects get written, it becomes easier to write higher level
objects. These objects be general, making as few assump-
tions as possible for how they should be used. This idea is
key to the design of Pd itself. TCP/IP was famously de-
signed this way, and it has proven itself to be useful in ways
far beyond the original creators’ intentions.

In some ways, this library is a return to basics. Many
interesting yet complex methods of mapping have been pro-
posed and discussed. It seems that its too soon to be moving
onto such complex methods when the basics are not clearly
established. Software has become an integral part of de-
signing new instruments, and it is rare for a new instrument
these days to have absolutely no software component. Map-
ping should then be codified in software beyond being writ-
ten about. Not only is software functional, but it is also a
highly effective method of communicating the ideas related
to mapping, arguably more effective that written language.
There are numerous clearly defined ideas in audio synthe-
sis which are implemented in most computer music software
these days. Much how the standard audio unit generators
encapsulate the mathematics used in synthesizing audio, a
mapping ideas should also be laid out and encapsulated.

107

As with the [hid] toolkit, the Mapping Library uses the
data range of 0 to 1 wherever possible for the reasons out-
lined in the paper on that software. Almost all of the map-
ping objects expect input and output data in the same range.
This range is applied everywhere wherever possible, includ-
ing to somethings that might disturb mathematicians, like
[polar], which converts cartesian coordinates to polar coor-
dinates. Even the angle is scaled to the range of 0 to 1. This
allows other mapping objects to be used after the conver-
sion without having to rescale the data. Though the objects
are designed to work within this range, many of them also
work beyond that range. For example, [spiral] has an infinite
range, with 1 representing one full rotation.

Another realm of mapping which has not yet mentioned
are the issues of processing sensor data to make it usable.
Sensors are subject to noise, errant glitches, and unique
properties which make them difficult to use. Like the world
of instrument mapping, there is not a standard catalog of
sensor primitives in the realm of software. Another promis-
ing area of research is data stream processing. The Stanford
STREAM group has created a standard query language for
data streams[10]. This language is oriented towards typical
database applications, but many of their techniques could be
useful in processing sensor data stream. A key part of the
Mapping Library effort is to create software that encapsu-
lates these techniques and make them usable to instrument
designers.

4. EXAMPLES OF MAPPING OBJECTS

There are already quite a few objects implemented, here
are some selected examples: control rate filters ([iir], [fir],

[mpfilter], [lop]); basic transfer functions ([curve], [curve_power],

[gaussian]); interpolation ([wave], [interpolate]); sensor data
conditioning ([hysteresis|, [local-min], [local_max]); testing
([test-n], [box], [stream_presense]); and, ranging and sizing
([resample], [upsample], [downsample], [clip], [distance]). At
the most basic level, the Mapping Library includes objects
for generating various curves over a range. [curve] is an
object that provides a continuum of curves starting from
0 for linear. For positive numbers, the curve is a power
curve, for negative numbers, its a root curve. For people
who want to use standard functions, [gaussian], [sinusoid],
[curve_power], [curve_root], [curve_exp], and [curve_log] are
provided. Scaling is another common operation, so there is
[autoscale] which dynamically scales input data to an out-
put range, [notescale] which scales 0 to 1 to the specified
range of integer note values. Other ranging objects include
[local_min], [local_max], [min_n], and [max_n]. Objects with
the ”_n” suffix mean that they take an numeric argument
which control how many previous values that object should
consider (i.e. apply the function to n elements). Averaging

The mapping objects are built from the ground up from
quite primitive operations into higher level objects. For ex-
ample, the [spiral] object is built using the [polar] object,
which is in turn built using the [vector] object, which uses
[radians-;mapping]. The objects names have been carefully
chosen to accurately represent the idea with a minimum of
confusion. Commonly used words for certain methods were
adopted wherever possible, for example with [diverge] for
one-to-many and [converge] for many-to-one since these are
words commonly used to describe such mappings [5]. Some
unusual words are used, like [disjoin], because it makes sense
with its opposite operation: [join]. This is just a fledgling

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

(pressure) (X input) (¥ input)

add in angle of unison line
TIEFETC

step into 24 semitones [stepper 24 2| “-- transfer functions

[curva_log
11.5623| base note == Fil
(amplitude) (final pitch in frequency)

Figure 1: A Pd patch showing the mapping of The
Ski’s pitched mode.

effort, so the names are bound to change as things develop.

S. BREAKDOWN OF EXISTING MAPPINGS

To explore these ideas, the mappings of two specific in-
struments are analyzed and reproduced using the Mapping
Library for Pd. There is a huge variety of new instruments
and wide range of ideas for mapping. These instruments
where chosen because they have been played extensively,
performed in concert, and each instrumentalist has achieved
a high level of fluency with his instrument. Instruments that
are regularly played will have a more honed mapping, and
the spotlight of performance is excellent at drawing exposing
problems.

5.1 The Ski Angular Mode

With Huott’s Ski [6], he outlines four different modes for
mapping the tactex pads to controlling samples: linear, po-
lar, angular, and linear velocity. All of these can be easily
implemented using exisiting mapping objects. For example,
here is how to implement angular mode. First, [autoscale]
automatically scales in the incoming data to a floating point
range of 0 to 1. The scaled cartesian coordinates from the
tactex pad are then fed to the [polar] object, which converts
the data to a magnitude and angle. The angle is output in
the range of 0 to 1 instead of the more usual -7 to m. The
allows other mapping objects to be easily chained after the
[polar] object.

5.2 The Ski Pitched Mode

The front pads are used in a pitched mode, this layout is
diagramed in Figure 4 of Huott 2002. First, the pads are
split into left and right sides using [disjoin]. The left side
is reversed using [reverse]. The cartesian coordinates are
converted to polar, then the angle of the unison line is cre-
ated by subtracting 0.03 from the angle (represented from
0 to 1 not -7 to m). The data is then converted back to
a rotated cartesian plane, and the Y value is taken to con-
trol frequency. The range is split into 24 semitones and a x>
transfer function is applied to allow glissando between notes.
The range is multiplied by 2 to span 2 octaves, then con-
verted to frequency with a base note of F#1. The pressure
data is curved logarithmically to control amplitude.

108

joystick ﬂ tablet —=======-
\h—-_\[___hbu::ons to skip up/down an octave
[Foute 1 button2|

float
spiral cleckwise| u

<-- gtart in the fourth pctave

adjust the transfer fynction Hiii
B - L=
stepper 12 5| <-- 12 semitonef per octave

curve_L
angle of 0 == Fi{l [El

<-coordinates to
timbre space)

-final pitch in frequency) [-amplitude)

Figure 2: A Pd patch showing the mapping of the
Voicer.

5.3 The Voicer

Kessous developed his Voicer [7] using a tablet and a joy-
stick as controllers. The tablet controls the pitch and am-
plitude while the joystick navigates a timbre space of vowel
sounds. Pitch is derived from the polar angle, in a spi-
ral. The [spiral] object does this using [polar] to convert
to polar coordinates, then it keeps track of rotations. Since
the [spiral] object has a ”clockwise” argument in the patch,
the data increases in the clockwise direction, rather than
counter-clockwise as is usual with polar coordinates. [step-
per] converts the linear angle data from [spiral clockwise]
into a stepped line. The first argument of 12 creates 12
steps within the range of 0 to 1. Each step locally curved
according to the transfer function specified by the last argu-
ment/inlet. This curved by taking the input and raising it to
the power specified by the transfer function argument /inlet.
The output of [stepper] is then converted into frequency val-
ues, with an angle of 0 equal to the beginning of the F#4
segment. In Arfib, et at, 2002, Figure 5 displays a graph
of the output of the [stepper] object. It is built using other
Mapping Library objects: [segment], [curve_power], and [de-
segment]. [segment] is in turn built using [disjoin], and [de-
segment] is built using [join]. For the amplitude control,
the pressure in taken from the pen using the [tablet] object,
which outputs all axes in the range of 0 to 1. The pres-
sure data is then curved logarithmically using [curve_log],
to match the human perception of amplitude.

6. CONCLUSION

The process of analyzing these two instruments has af-
firmed many of the existing ideas in the Mapping Library
for Pd, and has exposed a number of weaknesses and omis-
sions. Many interesting approaches to mapping, such as a
multi-layered approach discussed by Arfib[1], Kessous, Wan-
derley, do not seem inherently compatible with these current
objects. This is just the beginning, but these two exam-
ples clearly demonstrate that there is promise to this ap-
proach to mapping. With a flexible toolbox of mapping
methods, instrument designers can experiment more fluidly
with mapping ideas. With a catalog of mapping methods,
we can more easily discuss new mapping ideas and demon-
strate them using code.

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

7. FUTURE WORK

Now that the basic foundation has been laid, a more ob-
jects will be created to work towards completing a catalog
of sensor processing and mapping methods. Also, follow-
ing up on the [hid] toolkit, we aim to create a framework
for working with raw sensors and sensor boxes, and making
them interoperate with game controllers and the Mapping
Library for Pd. This will lead away from a focus on music
and hopefully towards a more generally useful library, con-
tributing towards visual instruments, mapping for interac-
tive installations, robotics, or whatever needs data mapped
to controls.

8. ACKNOWLEDGMENTS

Cyrille Henry contributed in a number of key ways. He
was involved in the formations of the original ideas, and
helped me focus my ideas through discussions about map-
ping, and wrote a wealth of objects for the Mapping Library.

9. REFERENCES

[1] D. Arfib, M. Couturier, L. Kessous, and V. Verfaille.
Strategies of mapping between gesture data and
synthesis model parameters using perceptual spaces.
Organised Sound, 7(2):127-144, 2002.

[2] F. Bevilacqua, R. Muller, and N. Schnell. MnM: a
Max/MSP mapping toolbox. In Proc. of the
Conference on New Interfaces for Musical Expression
(NIMEO5), Vancouver, Canada, 2005.

[3] A. Cont, T. Coduys, and C. Henry. Real-time gesture
mapping in pd environment using neural networks. In
Proc. of the Conference on New Interfaces for Musical
Expression (NIMEO4), Hamamatsu, Japan, 2004.

[4] C. Goudeseune. Interpolated mappings for musical
instruments. Organised Sound, 7(2):85-96, 2002.

[5] A. Hunt and M. Wanderley. Mapping performer
parameters to synthesis engines. Organised Sound,
7(2):97-108, 2002.

[6] R. Huott. An interface for precise musical control. In
Proc. of the Conference on New Interfaces for Musical
Ezpression (NIME(2), Dublin, Ireland, 2002.

[7] L. Kessous. Bi-manual mapping experimentation, with
angular fundamental frequency control and sound
color navigation. In Proc. of the Conference on New
Interfaces for Musical Expression (NIME(02), Dublin,
Ireland, 2002.

[8] R. Pallas-Areny and J. G. Webster. Sensors and Signal
Conditioning. John Wiley and Sons, 2nd edition, 2001.

[9] H.-C. Steiner. [hid] toolkit: a unified framework for
instrument design. In Proc. of the Conference on New
Interfaces for Musical Ezpression (NIME05), 2005.

[10] The STREAM Group. Stream: The stanford stream
data manager. IEEE Data Engineering Bulletin,
26(1), March 2003.

[11] M. Wanderley, N. Schnell, and J. B. Rovan.
Escher-modeling and performing composed
instruments in real-time. IEEE Systems, Man, and
Cybernetics, 1998. http://intl.ieeexplore.ieee.
org/xpl/abs_free.jsp?arNumber=727836.

[12] J. S. Wilson, editor. Sensor Technology Handbook.
Elsevier, 2005.

109

