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ABSTRACT
This paper introduces the Software Architecture for Im-
mersipresence (SAI) framework to the computer music
community. SAI is a software architecture model for de-
signing, analyzing and implementing applications that per-
form distributed, asynchronous parallel processing of ge-
neric data streams. The most significant innovation of
SAI is its ability to handle real-time DSP, interactive con-
trol, and data-centered representations in a unified model.
This generality facilitates the design and implementation
of complex interactive systems that combine music analy-
sis, synthesis and on-line control. Two examples illustrate
the use of SAI in the design and implementation of inter-
active music systems: MuSA.RT, a system for real-time
analysis and interactive visualization of tonal patterns in
music, and ESP, a driving interface (wheel, pedals and
display) for creating expressive performances from expres-
sionless music files.
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1. INTRODUCTION
This paper introduces the Software Architecture for Im-

mersipresence (SAI) framework [15] to the computer mu-
sic community. SAI is a software architecture model for
designing, analyzing and implementing applications that
perform distributed, asynchronous parallel processing of
generic data streams. Two examples illustrate the use of
SAI in the design and implementation of interactive music
systems.

The design principles underlying SAI are rooted in Fran-
çois’ past and ongoing cross-disciplinary research on inter-
active systems at the Integrated Media Systems Center
(IMSC), an NSF Engineering Research Center at the Uni-
versity of Southern California, and on computer vision sys-
tems, at USC’s Institute for Robotics and Intelligent Sys-
tems. Although originally motivated by the Immersipres-
ence vision–that is, combining immersion and interactiv-
ity [20]–, SAI provides a general formalism for the design,
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analysis and implementation of complex software systems
of asynchronous interacting processing components.

SAI defines architectural level abstractions that are con-
sistent with a general model of computation. These ab-
stractions resolve a class of seemingly related fundamental
issues, that are characerized by Puckette as a divide be-
tween processing and representation paradigms [26], and
by Dannenberg as the difficulty of combining (functional)
signal processing and (imperative) event processing [9].

Interactive systems are particularly interesting and chal-
lenging, as they require on-line (real-time) analysis and
synthesis of data media of different nature. SAI is de-
signed explicitly to address the limitations of traditional
approaches in this context. For historical reasons, SAI was
first applied to the design and implementation of real-time
and interactive computer vision systems [17]. Its relevance
in the context of interactive music systems was explored
and established over the past few years through collabo-
rations between the authors, started at IMSC.

The remainder of this paper is organized as follows. Sec-
tion 2 relates the SAI approach to major landmarks in the
rich computer music history. Section 3 describes the main
features of the framework: the architectural abstractions
that form the SAI style, important properties, and design
and implementation tools. Section 4 demonstrates the use
of the framework with two interactive music systems. Fi-
nally, Section 5 offers concluding remarks and outlines re-
search and development directions for ongoing and future
work.

2. RELATED WORK
Amatriain’s thorough review and analysis of the audio

and music processing software landscape in his thesis [1]
testifies to the richness and diversity of this field.

Existing approaches can be characterized according to
various criteria. For example, levels of abstraction range
from programming languages to code libraries, to applica-
tion frameworks, to programming environments (possibly
visual), and graphical applications. Another criterion is
the primary objective, which can be music or audio analy-
sis, synthesis, or composition. Requirements may include
real-time constraints or interactivity (i.e. low latency).

Focusing on interactive systems and their underlying
models of computation separates on-line from off-line ap-
proaches. In the on-line group, synthesis-oriented efforts
adopt models from Digital Signal Processing (DSP), and
are often concerned with scheduling (because of the hard
real-time requirement). This category comprises of the lin-
eage rooted in the Music N languages [18], which includes
Csound [28, 27, 13], the Max paradigm [25] in its various
forms (e.g. Max/MSP [19] and Pure Data [24]), and oth-
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ers. All of these assume a process oriented dataflow model,
which is not adapted to interactive manipulation. Re-
searchers have introduced various mechanisms for interac-
tive control in on-line DSP-style systems (either synthesis-
or analysis- oriented). For example, in Aura [9] a message-
passing model complements the dataflow model. This hy-
bridation occurs at a rather low level of abstraction (lan-
guage).

The off-line group comprises of analysis and composi-
tion oriented systems that focus on representation. The
interactive nature of these systems, if any, comes from
the existence of a visual graphical user interface (GUI)
to manipulate the structures or their computations (note
that GUIs are typically built on message passing mod-
els). OpenMusic [22, 3, 4] is a representative member
of this category. Its visual interface adopts the popular
patch metaphor used in Max/MSP and most visual envi-
ronments for music processing, but it does so with very
different semantics: as observed by Puckette in [26], Max
patches contain dynamic process information, while Open-
Music patches contain static data. The dataflow model
of OpenMusic maps to the functional programming ap-
proach, and has no model for representing or handling
real-time (or on-line) events.

Both semantics are useful for different purposes, and
part of their appeal is that they define high-level abstrac-
tions. Unfortunately, the two models are incompatible.
Assayag and Dubnov’s improvisation system [2] provides
a concrete example. Off-line versions of the learning and
generation algorithms are implemented in OpenMusic. The
on-line implementation of the system, OMax [11], uti-
lizes the OpenMusic implementation in conjunction with
Max/MSP to handle the on-line aspects, such as real-time
control, MIDI and audio acquisition and rendering. Com-
munication between, and coordination of, the two sub-
systems requires the use of a special interaction protocol,
OpenSound Control [23].

SAI introduces abstractions that aim to reconcile real-
time DSP, interactive control, and data-centered represen-
tations in a unified model. SAI can therefore be seen as a
hybrid architectural style (the approach taken here), or as
a more general model in which the ones listed above can
be characterized as architectural patterns.

SAI’s abstractions are high-level (architectural) ones that
are independent of the programming models used to imple-
ment them. SAI is therefore different in nature from pro-
gramming and application frameworks such as CLAM [1].
(The relationship between SAI and code libraries will be
addressed below.) SAI abstractions are also independent
of any visual metaphors that might be employed to ma-
nipulate them.

3. THE SAI FRAMEWORK
SAI constitutes a framework in the sense that it defines

a set of concepts and abstractions that together constitute
a model of some application domain. The model can be
instantiated to represent a particular application. In an
attempt to providing a unifying model, the application
domain targeted for SAI is, by choice, extremely general.
The SAI model builds on three pillars: (1) an explicit
account of time both in data and processing models; (2)
the distinction between persistent and volatile data; and,
(3) asynchronous parallelism. This section describes SAI’s
abstractions, formalized as an architectural style; a few
interesting properties of the style; and, existing design and
implementation tools.

Figure 1: SAI elements and graphical notation.

3.1 Architectural style
SAI specifies a formal architectural style [16] comprising

of an extensible data model and a hybrid (shared mem-
ory and message-passing) distributed asynchronous paral-
lel processing model. Figure 1 presents an overview of SAI
defining elements in their standard graphical notation.

In SAI, all data is encapsulated in pulses. A pulse is
the carrier for all the synchronous data corresponding to a
given time stamp. Information in a pulse is organized as a
mono-rooted composition hierarchy of node instances. The
nodes constitute an extensible set of atomic data units that
implement or encapsulate specific data structures. Pulses
holding volatile data flow down streams defined by con-
nections between processing centers called cells, in a mes-
sage passing fashion. They trigger computations, and are
thus called active pulses. In contrast, pulses holding per-
sistent information are held in repositories called sources,
where the processing centers can access them in a con-
current shared memory access fashion. Processing in a
cell may result in the augmentation of the active pulse
(input data), and augmentation and/or update of the pas-
sive pulse (process parameters). The processing of active
pulses is carried in parallel, as they are received by the
cell. Data binding is performed dynamically in an opera-
tion called filtering. Active and passive filters qualitatively
specify, for each cell, the target data in respective pulses.
This hybrid model combining message passing and shared
repository communication, combined with a unified data
model, constitutes a universal processing framework.

A particular system architecture is specified at the con-
ceptual level by a set of source and cell instances, and their
inter-connections. Specialized cells may be accompanied
by a description of the task they implement. The logical
level specification of a design describes, for each cell, its
active and passive filters and its output structure, and for
each source, the structure of its passive pulse.

In the graphical notation, cells are represented as squares,
sources as circles. Source-cell connections are drawn as fat
lines, while cell-cell connections are drawn as thin arrows
crossing over the cells. When color is available, cells are
colored in green (reserved for processing); sources, source-
cell connections, and passive pulses are in colored in red
(persistent information); and, streams and active pulses
are colored in blue (volatile information).

3.2 Architectural properties
By design, the SAI style shares many of the desirable

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

151



Figure 2: VisualSAI: a prototype Integrated Visual Architecture Design and Analysis Environment. The
graph shown is that of the MuSA.RT system.

properties of classical dataflow models. The explicit repre-
sentation of the flow of data allows for the intuitive design
and fast high level understanding of a system’s compo-
nents and their interactions. The modularity of the model
facilitate distributed development and testing of particu-
lar elements, and easy maintenance and evolution of exist-
ing systems. SAI also naturally supports distributed and
parallel processing. The SAI style provides unified data
and processing models for generic data streams, allowing
for the simultaneous modeling of DSP, control, and data-
centered approaches.

The underlying asynchronous parallel processing model
promotes designing for optimal (theoretical) system la-
tency and throughput. SAI abstractions do not impose
arbitrary hard real-time constraints, but rather suggest
(and enable) the implementation of synchronization mech-
anisms only when needed. On current hardware, most
interactive systems do not require hard synchronization,
but rather best-effort performance for low-latency, com-
plemented by time consistency checks. Modeling systems
as inherently dynamic, and with explicit account of real-
time, leads to the natural expression and efficient imple-
mentation of such requirements.

The distinction between volatile and persistent data is
key to providing a consistent model for both process- and
data-centered approaches. The resource and instance mod-
els described in [10] illustrates the collapse of these two
notions in classical models: the instrument is a persis-
tent model while a note generated by the instrument is
a volatile message. The examples described in the next
section offer other illustrations of persistent and volatile
data.

SAI spawns a continuum of intermediate-level represen-
tations from conceptual to physical specifications, a prop-
erty reinforced by the graphical notation. SAI promotes
the encoding of system logic in the structural organization
of simple computing components rather than in the com-
plexity of the computations carried by individual compo-

nents. SAI designs exhibit a rich variety of structural and
functional architectural patterns, whose systematic study
will produce tools for assisting in design and re-use.

3.3 Design and implementation tools
An open source architectural middleware called Modu-

lar Flow Scheduling Framework (MFSM) [21], developed
in C++, provides cross-platform code support for SAI’s
architectural abstractions, in the form of an extensible set
of classes. MFSM is (heavily) multi-threaded and trans-
parently leverages hyper-threading and multiprocessor ar-
chitectures. A number of software modules regroup spe-
cializations that implement specific data structures, al-
gorithms and/or functionalities. They constitute a con-
stantly growing base of open source, reusable code, main-
tained as part of the MFSM project. In particular, the
MFSM framework facilitates the leveraging of existing third-
party code libraries through encapsulation. Extensive doc-
umentation, including a user guide, a reference guide, and
tutorials, are available on the project Web site.

The graphical and compositional nature of the SAI model
suggests the creation of integrated visual design and analy-
sis environments. The formal nature of the model make it
suitable for automatic static analysis and code generation
(currently under development).

Figure 2 shows a screen shot of VisualSAI [29], a proto-
type of the user interface for such an environment, imple-
mented as a plug-in for the Eclipse platform [12]. (The SAI
graph shown is that of the MuSA.RT system described be-
low.) As already noted, the SAI model is not linked to any
visual metaphor, so that custom environments dedicated
to specific activities are possible.

4. EXAMPLE SYSTEMS
This section describes two examples of interactive mu-

sic systems designed using the SAI model. Both exhibit
architectural patterns typical of interaction [14]. They are
implemented using the MFSM middleware and share a sig-
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Figure 3: MuSA.RT synopsis with conceptual level system architecture in SAI notation.

nificant amount of code that exist in the form of MFSM
modules.

4.1 The MuSA.RT System
MuSA.RT (Music on the Spiral Array . Real-Time) [7,

6] is a system for real-time analysis and interactive visu-
alization of tonal patterns in music. Figure 3 presents a
synopsis of the project with a conceptual level system ar-
chitecture in SAI notation.

The system processes and analyzes MIDI input, for ex-
ample captured during a live performance, in real-time,
and maps the data to the Spiral Array [5], a 3D model
for tonality. A center of effect (CE) summarizes contex-
tual tonal information by mapping any pitch collection to
a spatial point, and any time series of notes to meaningful
trajectories, inside the Spiral Array. CE trajectory analy-
sis allows the viewer to infer the presently active set of
pitch classes, and higher level constructs, such as the cur-
rent chord and key, revealed through real-time 3D render-
ing. An operator can concurrently navigate through the
Spiral Array space using a gamepad to zoom in and out,
tilt the viewing angle and circle around the spiral to get
a better view of the tonal structures. An automatic pilot
option seeks the best view angle and centers the camera
at the heart of the action.

The system therefore combines on-line analysis of music
data, computation of dynamic music structures, and real-
time synthesis of visual data with interactive parameter
adjustments. These computations are defined by four in-
dependent streams: (1) MIDI input and event processing;
(2) tonal analysis (real-time CE algorithms); (3) render-
ing of the Spiral Array structures; and, (4) control device
(gamepad) input and camera manipulation. These four
streams potentially operate according to different modali-
ties (e.g. push or pull input models) and at different rates.
The Spiral Array structure, processing and rendering pa-
rameters are persistent (yet dynamic) data; the MIDI mes-

sages and the rendered frames for visualization are volatile
data.

The precise scheduling and synchronization of multiple
data streams processed and synthesized in real-time would
constitute a major challenge in creating the MuSA.RT sys-
tem adopting a traditional approach. Instead, the SAI
model provides the tools to design an architecture that
ensures best achievable latency between input and visual
feed-back to the spectators.

From an engineering point-of-view, the complexity of
such cross-disciplinary experiments is traditionally limited
by actual system integration, which is the main source
of unforeseen problems. Using SAI and MFSM greatly
simplified system design, implementation and integration.
From research point-of-view, the MuSA.RT system con-
stitutes a platform for testing and validating the different
modules involved. Each functional module can be replaced
by a functionally equivalent module, allowing strictly con-
trolled comparisons in an otherwise identical setting.

4.2 The ESP System
ESP(The Expression Synthesis Project) [8] is a driving

interface (wheel, pedals and display) for creating expres-
sive performances from expressionless music files. The use
of a compelling and intuitive metaphor makes high-level
expressive decisions accessible to non-experts. Figure 4
presents a synopsis of the project with a conceptual level
system architecture in SAI notation.

The performer drives the car through a road in a virtual
world. The driving (specifically, the state of the dynamic
car model) directly controls the tempo and loudness of the
music as it unfolds over time. The turns in the road are
based on music structure, and guide the user’s expressive
choice.

The ESP system combines analysis of user input, on-line
computations of the dynamic model, and real-time synthe-
sis of synchronous visual and music data. These computa-
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Figure 4: ESP synopsis with conceptual level system architecture in SAI notation.

tions are defined by four independent streams: (1) control
device (driving wheel and pedals) input and velocity up-
date for the car model; (2) discrete time integration of the
dynamic equations for the car model; (3) visual render-
ing of the driver’s view (including dashboard instruments);
and, (4) aural rendering (MIDI event generation).

The architecture of the ESP system exhibits similari-
ties in structure and function (patterns) with that of the
MuSA.RT system. The score (MIDI event buffer), car
model, processing and rendering parameters are persistent
(yet dynamic) data; the MIDI messages and the frames
rendered for visualization are volatile data.

The ESP system does not explicitly implement any hard
synchronization mechanism to ensure that the music syn-
thesized and visual data are presented with some fixed
temporal error bound. Although by no means ruled out by
the SAI model, such a mechanism would be computation-
ally expensive, and difficult to certify, given the complexity
of the network of external software and hardware elements
involved in the final result. Rather, the design minimizes
latency on each stream. “Synchronous effect” is achieved
when the time discrepancies are below the threshold of hu-
man perception, a performance level usually achievable on
modern commodity computing platforms.

5. SUMMARY AND FUTURE WORK
This paper introduced the SAI framework in the con-

text of computer music systems. SAI defines high-level
abstractions that form a general formalism for the design,
analysis and implementation of complex software systems
of asynchronous interacting processing components. The
open source architectural middleware MFSM provides an
extensible set of classes that implement SAI’s architectural
abstractions.

The most significant innovation of the SAI framework
is its ability to handle real-time DSP, interactive control,
and data-centered representations in a unified model. This
generality facilitates the design and implementation of com-

plex interactive systems that combine music analysis, syn-
thesis, and on-line control. For example, Figure 5 shows
a possible architecture for a real-time improvisation sys-
tem such as that of Assayag and Dubnov [2]. The de-
velopment of audio- and music-oriented code modules, es-
pecially modules encapsulating existing libraries, will help
motivate the use of the framework for music system design
and implementation.

The SAI framework also aims to facilitate the design
and development of interactive music systems that involve
other input and output modalities, such as graphics and
vision. The collection of available modules pertaining to
these domains is more substantial and constantly grow-
ing (see for example the open source WebCam Computer
Vision project [30]).

As research on theoretical aspects of SAI and tool de-
velopment continue, it is the adoption of the framework in
various interacting fields of research that bears the promise
of ground-breaking cross-disciplinary explorations.
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