
Mapping with planning agents in the Max/MSP
environment: the GO/Max language

Paolo Bottoni, Stefano Faralli, Anna Labella,
Mario Pierro

Università di Roma La Sapienza Dipartimento di Informatica
Via Salaria, 113, 00198 – Rome, Italy

(bottoni,faralli,labella, pierro)@di.uniroma1.it

ABSTRACT
GO/Max is an agent programming language that facil-
itates the design of algorithms for real-time control of
sound/music generation programs crafted in the Max/MSP
environment. We show how software planning agents pro-
grammed in GO/Max can be used to transform abstract
goal states specified by the performer in potentially com-
plex sequences of Max/MSP control messages.

Keywords
mapping, planning, agent, Max/MSP

1. INTRODUCTION
In the context of real-time interactive musical systems,

mapping represents the correspondence between the con-
trol space in which the performer acts and the parameter
space of the system that is being controlled. The cen-
tral role of mapping and the importance of having efficient
methods to design mappings have been exposed by several
works [1].

Several approaches for translating from the control space
into the parameter space have been proposed (see section
1.1). In this paper we present our experiments on using
state models and planning agents to perform such trans-
lation. The basic idea behind this approach is to repre-
sent the controlled system using a state model. If a state
model for the system is finite, it is possible to implement
a software agent that will be able to foresee the evolution
of such model using a planning algorithm [2]: the agent
will be able to produce a command sequence that leads
from one model state to another goal state, provided that
such transition is possible, or state its non-existence. If
the model also specifies a correspondence between state
transitions in the model and commands for the system, a
sequence of states in the model can be used to drive the
actual system.

The combination of the system model and the plan-
ning agent will thus form an abstraction layer between
the performer and the controlled system. The performer
will drive the agent by sending it requests for goal states;
the agent will devise sequences of operators to reach those

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
NIME 06, June 4-8, 2006, Paris, France
Copyright remains with the author(s).

Figure 1: Performer requests a goal to the gomax
agent, agent’s plans to reach the goal are trans-
lated in control sequences for the Max/MSP patch.

goal states; operator sequences correspond to message se-
quences used to steer the abstracted system (see Figure
1).

The abstraction is obtained because of the independence
between goal/operator definitions and messages which are
sent to the patch. This can be particularly effective when
used in conjunction with other mapping techniques which
can be used to form goal state requests depending on the
performers input. One example could be the mapping of a
discrete set of hand gestures to a set of agent goal states.

We have experimented abstracting the control of Max/
MSP patches. To do so we developed a language (GO/Max,
standing for Goal-Oriented Max) to describe determinis-
tic state models of Max/MSP patches, and a Max/MSP
external (gomax) to implement a software agent which per-
forms planning and translates state model transitions into
actual patch commands [3].

1.1 Related Work
The mapping problem has been approached in numerous

ways: [4] is a comprehensive review of mapping techniques.
Generally mapping is a one-to-one, one-to-many or many-
to-one correspondence between the control space and the
parameter space, where their dimension numbers gener-
ally differ. Van Nort et al. [5] have formalized mapping
as a continuous function from the control to the param-
eter space and, representing those as subsets of a highly-
dimensional Euclidean space, have analyzed the geometri-
cal and analytical properties of that function.

Some continuous mapping algorithms such as Escher
[6] use an intermediate layer of abstract parameters to
translate between the control space and parameter space.
The recent MnM toolbox [7] uses matrices to represent
mappings and provides methods to build them iteratively.
Many-to-one mappings have also been approached as a
pattern recognition problem to which neural networks have
been applied (most recently in [8]). The recent proposal of
ChucK ([9], [10]) has exposed the central role played by the
programming paradigm in the context of high-level com-

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

322

puter music languages, and specifically in the definition of
complex mappings.

2. PLANNING AND MAPPING
The task of planning is generally summarized as “finding

a sequence of actions that will achieve a goal”[11].
A deterministic state model is defined as a set of states

S, a set of actions A, and a transition function f : S×A →
S which describes how actions map one state into another.
If the system to which actions are applied is represented
by a deterministic state model, the planning problem is a
deterministic control problem [2].

An instance of a planning problem can be described us-
ing a formal language: STRIPS [12] is the classic example
on which also GO/Max is based. A STRIPS description of
a planning problem describes a deterministic state model
in which the action costs are all equal [2]. If the agent en-
vironment is “fully observable, deterministic, finite, static
(change happens only when the agent acts), and discrete
(in time, action, objects, and effects)” then the planning
task is called classical planning [11].

A planning problem instance described in GO/Max is a
tuple P = 〈L, A, I, G〉 where:

L is a set of literals (atoms), so that every state s of the
state model is a subset of L: ∀s ∈ S, s ⊆ L. In a GO/Max
program, literals can be defined explicitly

literal someBooleanCondition;

or they can be implicitly specified using variables on fi-
nite domains. Domains can be either integer intervals or
explicit lists of strings:

domain intDomain: 0..8;

domain listDomain: {a, b, c, d};

var someVariable: intDomain;

A is a set of actions. For every a ∈ A we define the
preconditions set pre(a) ⊆ L. An action is applicable in a
state s if pre(a) ⊆ s; the postconditions describe the effects
of the action and are represented by a set pair post(a) =
(add(a), del(a)) where add(a) ⊆ L and del(a) ⊆ L. The
state s′ resulting from the execution of the action a in a
state s is defined as s′ = (s∪del(a))\add(a). Extending the
syntax of the traditional STRIPS language, every operator
is described in terms of:

• parameters, as local GO/Max variables,

• preconditions, either expressed as literals or as boolean
conditions on the variables,

• postconditions, either expressed as literals, negated
literals (using the ! operator) or as GO/Max vari-
able assignments (using the := operator)

• a Max message, which will be sent during the oper-
ators execution. Message syntax is a subset of the
one used in the standard Max message box object, so
a message can be composed of integers, floats, bang
and symbols. Several messages can be sent sequen-
tially by separating them with a comma. It is not
possible to use the semicolon to send the message
to a specified receiver object. An expression evalua-
tion operator &() has been added to create integer
and symbol values from GO/Max variables with in-
teger and string-list domains respectively, as well as
expressions containing integer variables.

Here is an example of an operator declaration:

operator someOperator(someParameter: intDomain)

pre(someBooleanCondition, someVariable < 3)

out(set &(someVariable))

post(someVariable := someParameter);

This operator will allow the agent to change the value of
someVariable to any of the values in intDomain, provided
that the someBooleanCondition literal is present in the
current state, and that the current value of someVariable
is less than 3. Every time an agent will use this operator,
it will choose a target value in intDomain, output the Max
message set followed by the current value of the variable
someVariable, and finally update the variable’s value to
the chosen target value.

I ⊆ L is the initial state, declared explicitly using the
state construct:

state(someBooleanCondition, someVariable=0)

In this case, the literal someBooleanCondition is included
in the start state, and the initial value of someVariable is
zero.

G is the goal description, in terms of a set pair (Gpos,
Gneg) where Gpos ⊆ L and Gneg ⊆ L: a state s is a
goal state if Gpos ⊆ s and Gneg ∩ s = ∅. Goal states
are specified at run-time, sending the goal message to an
agent (see 2.1). For example:

goal someBooleanCondition someVariable=100

Every literal in a GO/Max model corresponds to a boolean
condition in the agent environment. A closed world as-
sumption is adopted, so that if a state does not contain
some literal l, then the boolean condition associated to l
is assumed to be false. Every state is then a complete
description of the agent environment.

Given a STRIPS-like problem description, a planning
agent autonomously finds an action sequence leading from
the initial state to the goal state, if such sequence ex-
ists. A problem description in a suitable language, such as
GO/Max , can therefore be used as a declarative-paradigm
agent programming language. This allows the program-
mer to specify just what should be done instead of how it
should be done, and assures that all states reached dur-
ing program execution respect the model declaration. By
declaring the operations and the initial state, a GO/Max
program potentially describes different execution sequences
for them, thus being equivalent to several iterative pro-
grams. Compared to existing procedural-code features of
Max (Javascript, Java, RTCmix), this adds compactness
and flexibility to programs, especially in mapping appli-
cations where the agents can automatically devise a new
action sequence if a new goal request occurs.

States in the model can be mapped to configurations
of parameters in continuous data spaces, so that other
interpolation techniques can be used to translate from one
configuration to another.

Note that since the actions are assumed to have de-
terministic effects, the agent can operate without reading
any feedback from the actual state of the system (Fig. 1).
Also, classical planning relies on atomic plan generation
and execution: the environment does not change while
the agent is calculating the plan (see 2.2).

The classical planning problem is a well-known AI topic
and has been approached with many different algorithms
([11], [13], [14], [15]). STRIPS planning is a highly com-
plex computational task [16] . Nevertheless, planning is a

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

323

very powerful tool even for models with small state spaces,
and is used in many applications which include robotics
and computer games.

2.1 The gomax software agent
The GO/Max patch model can be compiled by a gomax

software agent which operates in the patch itself as an
external object. A model is compiled with the message
parse (filename).

A performer interacting with the patch will be able to
issue requests for goal states to the agent using the goal

message. A goal state will be described in terms of literals
in the currently compiled model. When a request for a
goal state is made, since every operator is associated with
a Max message, the computed sequence of operators is
associated with a sequence of Max messages that are sent
out via the agent’s outlet. While the goal state is specified
by the performer, the way in which it is reached will be
determined by the agent based on the GO/Max model that
has been compiled and on the search algorithm used.

2.2 Patches and state models
As we can see from the scheme in Figure 1, gomax agents

currently do not receive any feedback from the patch, so it
is assumed that the actual state of the patch reflects the
state of the GO/Max model which is used for planning.
This obviously limits the structure of patches which can
be represented by a GO/Max model, and it is now needed
because the algorithms used to implement planning in the
agent do not allow for a non-deterministic effect of actions.
Building a model whose changes reflect the patch changes
is the model designer’s responsibility. Also, since classical
planning is used, the modeled patch is expected to change
only when the agent acts.

Max/MSP has a well-defined semantics for its patches,
where the order of activation of the connections between
objects is based on the objects positions and right-to-left
inlet ordering [17].

If a patch contains a purposely non-deterministic sec-
tion, such as a random number generator, that section
can be either ignored in the GO/Max model or used to
generate goal requests for the agent so that the internal
state of the model can be re-aligned with the actual state
of the patch.

2.3 Planning algorithms and real-time per-
formance

Since there is no optimal algorithm for planning [11],
it is possible to choose which algorithm the gomax agent
should use by means of the search message. This will also
determine the behavior of the agent when multiple equiva-
lent plans are found: while normal algorithms will account
for operator declaration order to choose which plan will
be used, the provided “non-deterministic” variants will
choose a plan at random.

In the present version the available algorithms are a sim-
ple breadth-first search and a heuristically-guided A-star
search. Both operate in the state space and are provided in
deterministic and non-deterministic variants. The A-star
search is a modified version of the algorithm described
in [13], the details of the algorithm are described in [3].
More search algorithms will be added as new versions of
the agent will be released.

The current algorithms allow real-time use of the agent
with models containing up to about 200 states, even if
this greatly depends on the structure of the model. With

Figure 2: Using multiple agents

a model of this size, plan generation time is under 0.1
seconds using an Intel Pentium 4 1.8Ghz processor. It is
expected to optimize plan generation time further in the
next agent versions.

However, even with very simple models, using an ab-
straction layer is a fast way to implement mappings which
would be difficult to realize with other techniques. Sub-
dividing a large model into independent sub-models can
reduce its computational cost (see 2.5).

2.4 Models and time representation
Once a plan is determined, a gomax agent fully out-

puts the corresponding sequence of messages atomically.
The resulting messages can then be, for example, stored
in a buffer and read every n milliseconds, so that no ex-
plicit notion of time is needed in the model. A different
model could output messages with a specific timestamp,
thus making the buffer a sequencer. The GO/Max lan-
guage does not offer any predefined construct to specify
an operator execution order. Time can be represented in
the model used, so that, for instance, certain precedences
between operators are established (”always choose a note
length before playing a note”) or that messages output by
the agents carry a timestamp, which is the case when the
”abstracted” patch has a sequencer-like behavior.

2.5 Multiple agents
Max messages associated with GO/Max operators are

arbitrary and can be used to issue goal messages to other
gomax agents, thus decomposing a large model in smaller
independent models, each handled by a separate agent.

The different agents coordinate their operations using
the Max/MSP depth-first message handling scheme [17].
A plan generation started from an agent will not return
control to the patch until all sub-agents have either gen-
erated a plan or returned an error. Also, the plan-starting
agent will not update its internal state nor continue the ex-
ecution of its plan if, at some point during plan execution,
one of the sub-agents has reported an error.

In the example of Figure 2, a system containing three in-
dependent parameters has been modeled using three sepa-
rate GO/Max models/agents, and a “master” agent which
sends individual goal requests to each. If the parameters
are independent, this distributed model offers the same
functionality as a single model containing all three pa-
rameters, but uses a smaller state space. For example, if
each of the three parameters has a 0-127 range, a single
model will contain 1273 states while a distributed model
will have only 127∗3. This kind of model decomposition is
often a feasible solution to allow real-time control of large
patches. Using different agents, every agent offers a dif-
ferent abstraction layer to the performer. Since agent op-

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

324

Figure 3: Meta-Piano and Additive patches

erations are always coordinated, the performer can freely
switch between the different abstraction layers to control
the system in different ways.

3. EXAMPLES
Since GO/Max models use standard Max messages, they

have a broad range of applications (music, graphics, etc.).

3.1 Meta-Piano
The model used in this patch represents a 16-step buffer

and a writing position inside it. Operators output a buffer
step value (key variable) and its position (numstep), rolling
back to zero when the last step is reached. The key vari-
able value is a MIDI note pitch, and the operators change
its value following rules such as chromatic/major/minor
scales, predefined note successions, etc.. When the per-
former chooses a target note pitch and a target buffer po-
sition (Fig. 3) the agent will find a succession of notes
that follows the rules specified by the operators and ends
exactly on the required step. An example operator is:

var key: 36..83; var numstep: 0..15;

operator SemitoneUp

pre ()

out (&(key + 1) &(numstep + 1))

post(key := key + 1,

numstep := (numstep + 1) % 16);

3.2 Additive Synthesis
Here different agents control partials independently, each

using a different model, constructed so that the opera-
tors change the agent’s state and output fixed values for
the partial’s frequency, phase and amplitude (Fig. 3). A
buffer is used to output agent messages at a fixed rate,
and line˜ objects smooth transitions between values. A
further “master” agent can send goal requests to all sub-
agents as shown before (see 2.5). When the performer
asks one partial or master-agent to reach a goal state, the
activated agent will determine a sequence of its model op-
erators which will respectively correspond to a sequence
of partial parameters, or to a sequence of goal requests
for all the partials simultaneously. Control is therefore
abstracted by generating goal requests from an input pa-
rameter, indicating the target sound state. Here we show
a short model for one of the partial-agents, which outputs
constant phase and volume values and links the partial’s
frequency to the model’s state number, establishing a sim-
ple state transition scheme:

var pState: 0..10;

operator SwitchToNextState

pre ()

out (&(pState*50) 0.0 1.0)

post(pState := (pState + 3)%10);

state (pState=1)

When a target value for pState is specified, the partial’s
frequency will thus change in a model-dependent way.

4. FUTURE WORK AND CONCLUSIONS
GO/Max brings the benefits of a high-level, declarative

language to Max/MSP, and is currently in beta stage for
its 1.0 release. On the language side, an interesting de-
velopment would be a visual editor to construct a specific
subset of GO/Max models. This could be an evolution
of the traditional one-to-one MIDI Learn facility. On the
agent side, we plan to work on an explicit feedback mecha-
nism and on asynchronous (non-blocking) plan generation.
We also plan to port GO/Max to other computer music
languages such as ChucK or OSC. To achieve this, a suit-
able state model must be determined as well as efficient
planning algorithms for that model.

5. REFERENCES
[1] A. Hunt M. Wanderley and M. Paradis. The importance

of parameter mapping in electronic instrument design. In
Proc. of NIME-02, pages 149–154, 2002.

[2] B. Bonet and H. Geffner. Planning and control in
artificial intelligence: A unifying perspective. Applied
Intelligence, 14(3):237–252, 2001.

[3] M. Pierro. Sistemi di controllo per la generazione
musicale, Tesi di Laurea, Corso di Laurea in Informatica,
University of Rome “La Sapienza”, 2005.
http://hci.uniroma1.it/multimedialab/

[4] M. Wanderley and M. Battier, editors. Trends in
Gestural Control of Music. IRCAM, 2000.

[5] D. Van Nort, M. Wanderley and P. Depalle. On the
choice of mappings based on geometric properties. In
Proc. of NIME-04, pages 87–91, 2004.

[6] M. M. Wanderley, N. Schnell, and J. Rovan.
ESCHER—Modeling and Performing composed
Instruments in real-time. In IEEE Systems, Man, and
Cybernetics Conference, October 1998.

[7] F. Bevilacqua, R. Müller and N. Schnell. MnM: a
Max/MSP mapping toolbox. In Proc. of NIME-05, pages
85–89, 2005.

[8] A. Cont, T. Coduys and C. Henry. Real-time gesture
mapping in pd environment using neural networks. In
Proc. of NIME-04, pages 39–42, 2004.

[9] G. Wang and P. R. Cook. On-the-fly programming:
Using code as an expressive musical instrument. In Proc.
of NIME-04, pages 138–143, 2004.

[10] G. Wang, A. Misra, A. Kapur, P. R. Cook. Yeah, chuck
it! => dynamic, controllable interface mapping. In Proc.
of NIME-05, pages 196–199, 2005.

[11] S. Russel and P. Norvig. Artificial Intelligence. Prentice
Hall, 1995.

[12] R. E. Fikes and N. J. Nilsson. Strips: A new approach to
the application of theorem proving to problem solving. In
Proc. of the 2nd IJCAI, pages 608–620, 1971.

[13] J. Hoffmann and B. Nebel. The FF planning system:
Fast plan generation through heuristic search. J. Artif.
Intell. Res. (JAIR), 14:253–302, 2001.

[14] H. A. Kautz and B. Selman. Planning as satisfiability. In
Proc. of ECAI’92, pages 359–363, 1992.

[15] S. M. LaValle. Planning Algorithms. Cambridge
University Press, 2006.

[16] T. Bylander. The computational complexity of
propositional STRIPS planning. Artificial Intelligence,
69(1-2):165–204, 1994.

[17] Cycling ’74. Max Reference manual, 2004.

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

325

