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Preface
Welcome to DAFx-11

On behalf of the Local Organizing Committee, we would like to welcome you to the 14th conference on Digital Audio Effects,
DAFx-11, which is organized and hosted by the Institut de Recherche et Coordination Acoustique/ Musique (IRCAM), Centre
Pompidou in Paris, France. The DAFx conference is an international forum for the presentation of technological advances and
research results in the field of digital audio effects and related disciplines. It brings together leading researchers, engineers,
and developers from around the world.

DAFx-11 is structured around three full days of conferences preceded by an afternoon of 3 tutorials and followed by
a full day of 3 satellite workshops providing in-depth treatment of specific topics. The three-day conference consists of
technical paper and invited keynote talks. 69 papers have been selected organized in 33 oral presentations (12 sessions), 33
poster presentations (9 sessions), 3 State-of-the-Art (STAR) papers and 3 keynote talks. The STAR paper is a new category
of submission that aims at providing profound review of recent research in particular research fields. Due to the many
submissions related to audio signal processing (audio representation, modeling, coding, synthesis, and transformation), 5
oral sessions are dedicated to these topics. Traditional key issues of DAFx, such as the capture, analysis of audio signals,
the synthesis of acoustic fields/ spatial sounds, virtual analog models, physical models and virtual musical instruments are
represented in 7 oral sessions. Among these topics, audio indexing and sonic interaction are the focus of many contributions.
In addition to the 12 oral sessions, 9 poster sessions will be held. In DAFx-11, poster sessions do not have a specific topic.
We intentionally mixed the contributions inside each session in order to favour exchanges among researchers of a given field
and continuous interest of the audience. In order to better highlight posters, each poster author is welcome to provide a short
oral presentation at the end of the preceding oral session.

The program committee invited three keynote speakers, which will open each conference day in the morning. Udo
Zölzer, one of the founder of DAFx, will discuss Pitch-based Digital Audio Effects. David Zicarellli, founder of Cycling 74
(Max/MSP), will discuss the advantages and disadvantages of working on algorithms for digital signal processing in a visual
way and he will present recent works in visual editing of generalized synchronous DSP graphs, domain-specific graphs, visual
performance monitoring, and filter design. Patrick Flandrin will present and illustrate some recent methodological advances
in spectral processing, from wavelet-like transforms to sparse time-frequency distributions and oscillations-based empirical
mode decompositions 200 years after Fourier published his fundamental essay on heat diffusion.

Complementing the scientific program, DAFx-11 also offers a full program of social events, providing a brief overview of
the numerous IRCAM activities in audio research and music production. It includes the world premiere of composer Andrea
Agostini "Electrons libres", an IRCAM production commissioned by the Musée du Louvre, presentations by some of IRCAM
research groups and a demonstration of the wave field synthesis system at IRCAM. The social events also include a visit of
the National Museum of Modern Art (Centre Pompidou) and a charming gala dinner on a riverboat that will sail up and down
the Seine.

We thank all the authors for submitting their works, all the local scientific committee members and reviewers ensuring a
high quality of the scientific program of DAFx-11. Thanks to our sponsors: the Centre National de la Recherche Scientifique
(CNRS), the French Ministry of Culture and Communication and the Centre Pompidou. We would also like to thank the
organizers of the DAFx-10 conference, Alois Sontacchi, Franz Zotter and Hannes Pomperger as well as Udo Zölzer kindly
sharing their practical experience in organizing a DAFx-conference with us. We also want to thank all other helping hands
that made the organization of DAFx-11 possible: Thank you!

The members of the DAFx-11 organizing committee wish you a successful meeting, accompanied by many fruitful
discussions, experiences, exchanges, and new contacts. We hope that this year’s DAFx conference raises more challenging
questions than it answers. Enjoy Paris!

Paris, September 7, 2011 - Geoffroy Peeters, Markus Noisternig, Olivier Warusfel - DAFx-11 Chairs

DAFx-iii



Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFX-11 Local Organizing Committee
Geoffroy Peeters Conference and paper chairs

Markus Noisternig
Olivier Warusfel

Sylvie Benoit Coordination
Samuel Goldszmidt Web

Stéphanie Leroy Registration
Claire Marquet Communication

Murielle Ducas

DAFx-2011 Local Scientific Commitee
Christophe d’Alessandro LIMSI/ CNRS

Laurent Daudet ESPCI
Emmanuel Favreau INA/ GRM

Thomas Hélie CNRS
Markus Noisternig IRCAM/ CNRS

Geoffroy Peeters IRCAM/ CNRS
Clara Suied ENS/ FPGG

Olivier Warusfel IRCAM/ CNRS

DAFx Conferences
DAFx Main Web Page http://www.dafx.de/

DAFx 1998 Barcelona Spain November 19-21, 1998 http://iua.upf.edu/dafx98/
DAFx 1999 Trondheim Norway December 9-11, 1999
DAFx 2000 Verona Italy December 7-9, 2000 http://profs.sci.univr.it/~dafx/
DAFx 2001 Limerick Ireland December 6-8, 2001 http://www.csis.ul.ie/dafx01/
DAFx 2002 Hamburg Germany September 26-28, 2002 http://www2.hsu-hh.de/ant/dafx2002/
DAFx 2003 London United Kingdom September 8-11, 2003 http://www.elec.qmul.ac.uk/dafx03/
DAFx 2004 Naples Italy October 5-8, 2004 http://dafx04.na.infn.it/
DAFx 2005 Madrid Spain September 20-22, 2005
DAFx 2006 Montreal Canada September 18-20, 2006 http://www.dafx.ca/
DAFx 2007 Bordeaux France September 10-15, 2007 http://dafx.labri.fr/main/
DAFx 2008 Espoo Finland September 1-4, 2008 http://www.acoustics.hut.fi/dafx08/
DAFx 2009 Como Italy September 1-4, 2009 http://dafx09.como.polimi.it/
DAFx 2010 Graz Austria September 6-10, 2010 http://dafx10.iem.at/
DAFx 2011 Paris France September 19-23, 2011 http://dafx11.ircam.fr/

DAFx 2012 York United Kingdom
DAFx 2013 Maynooth Ireland
DAFx 2014 Erlangen Germany

DAFx-iv

http://www.dafx.de/
http://iua.upf.edu/dafx98/
http://profs.sci.univr.it/~dafx/
http://www.csis.ul.ie/dafx01/
http://www2.hsu-hh.de/ant/dafx2002/
http://www.elec.qmul.ac.uk/dafx03/
http://dafx04.na.infn.it/
http://www.dafx.ca/
http://dafx.labri.fr/main/
http://www.acoustics.hut.fi/dafx08/
http://dafx09.como.polimi.it/
http://dafx10.iem.at/
http://dafx11.ircam.fr/


Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

Notes on the Review Process
The call for contributions to DAFx-11 was published in December 2010. The call concerned several categories of contribu-
tions: research papers, State-of-the-Art (STAR) papers, tutorials and satellite workshops. The newly introduced STAR paper
category is a 12-page paper associated with a 30-minutes oral presentation. Its aim is to provide a comprehensive overview
of the current state of research in a given DAFx topic. The STAR papers were reviewed like the other types of submissions
but had to provide a deep, full and fair review of existing works. Their number was limited to three.

DAFx-11 received over 100 submissions from which 69 submissions have been selected and assigned to 12 oral and
9 poster sessions: 3 STAR papers, 33 oral presentations and 33 poster presentations. The rejection rate of the DAFx-11
conference is therefore around 30%.

DAFx-11 introduced a new reviewing process. In order to allow a better assignment of papers to reviewers and therefore
better reviews, a local scientific committee (LSC) composed of nine senior researchers whose expert knowledge covers
at least one of DAFx topics has been composed. A first LSC meeting was held to assign each paper to one of the LSC
members according to its addressed topic(s). The PC members pre-reviewed the submissions before assigning them to three
international reviewers. Consequently, not only title, keywords and topics but also the content of a submission have been taken
into account for the paper assignment procedure. This procedure further helps to avoid possible conflicts of interest. Most of
papers were reviewed by three independent reviewers, among which at least one DAFx Board member (when possible), one
previous DAFx participant (in order to preserve continuity over years of DAFx program and spirit) and one extra specialist.
Hence, more than 100 different reviewers participated to the reviewing process.

A second LSC meeting was then held to discuss all acceptance decisions in detail. Submitted papers were ranked accord-
ing to their average reviewing score. Decision on their acceptance was based on this ranking and, in case of contradictory
reviews, on reviewing comments. For the assignment to oral or poster sessions, the LSC took also into account specific
requests of the authors, recommendations of reviewers, and the interest of the paper for DAFx general audience. It should
be noted that the length of the final paper was not systematically taken as a criterion for orienting the presentation to oral
or poster sessions. The DAFx co-chairs agreed on a non-restrictive policy on the lengths of the submitted papers in order to
avoid large modifications of the papers between the reviewing process and the publication process. The authors have been
encouraged to revise their manuscripts according to the comments of the reviewers and LCS members. The revised papers
are published in the DAFx conference proceedings.

The reviewing process was done using the OpenConf (free version) system (and ad-hoc Matlab and Python scripts).
We would like to thank all the reviewers and authors for their tremendous work and for shaping this conference. We are

very grateful to the Local Scientific Committee members for their dedication and efforts to improve the scientific quality and
research value of DAFx-11.

Satellite workshops and tutorials were selected directly by the DAFx organizing committee. The selection of satellite
workshops was based on the abstracts submitted and personal talks with the workshop organizers. They comprise phys-
ical modeling (Modalys), audio-graphic virtual environments, and Computational Auditory Scene Analysis (CASA). The
main criterion for the selection of tutorials was "inter-disciplinarity". The three selected tutorials present new mathematical
tools which are applicable to various research fields, such as blind source separation (BSS), Volterra series expansion, and
geometric information.

.
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Tutorial 1 - Introduction to Volterra series and applications to physical audio signal processing - Thomas Hélie

A Volterra series is an input-to-output representation which is adapted to dynamical systems including some analytic
nonlinearities. It extends notions of linear filtering: the Òimpulse responseÓ and the "transfer function" are generalized into
multi-variate "convolution kernels" and "transfer kernels", respectively. These kernels isolate and sort the linear, quadratic,
cubic (etc) homogeneous contributions of the dynamics. In this tutorial, Volterra series, their basic properties and their links
with standard linear tools are presented. A practical method to solve nonlinear differential problems by using Volterra series
is proposed in two steps. It sequentially answers to the following questions: (1) How to derive the transfer kernels for a
given problem? (2) How to build a realization and a simulation from the transfer kernels? Then, applications on audio and
acoustical problems are presented. Finally, some computable results on convergence domains and guaranteed error bounds
are given.

Tutorial 2 - Music Source Separation - Emmanuel Vincent

Source separation consists of extracting the signal produced by each sound source from a recording. It is a mainstream
topic in music and audio processing, with applications ranging from speech enhancement and automatic speech recognition
to 3D music upmixing and post-production. In this tutorial, I will present the sound cues which can be exploited for source
separation and explain how they translate into three main paradigms: computational auditory scene analysis, probabilistic
linear modeling and probabilistic variance modeling. I will give example algorithms for each paradigm, including the popular
ICA and NMF algorithms, and illustrate the performance via a number of sound examples. Finally, I will show that the latter
paradigm leads to a flexible audio source separation framework able to jointly exploit a wide range of prior information about
the sources.

Tutorial 3 - Introduction to Volterra series and applications to physical audio signal processing - Arshia Cont, Arnaud
Dessein

In this tutorial, we present some applications of information geometry to audio signal processing. In general terms, infor-
mation geometry is a field of mathematics that studies the notions of probability and of information by the way of differential
geometry. This provides a comprehensive framework that allows to quantify, process and represent the information contained
in audio signals. We focus on the computational aspects of information geometry, and discuss generic tools to deal with
exponential families which encompass most of the distributions commonly used in statistical learning. Moreover, exponen-
tial families possess a canonical dually flat geometry which generalizes the standard self-dual Euclidean geometry, with two
dual Bregman divergences instead of the self-dual Euclidean distance, as well as dual geodesics, a generalized Pythagorean
theorem and dual projections. We demonstrate a Matlab toolbox implementing several machine learning algorithms that
have been recently generalized to these geometries, such as centroid computation and hard clustering (k-means), parameter
estimation and soft clustering (expectation-maximization), proximity queries in ball trees (nearest-neighbors search, range
search). We show some applications to audio processing, in particular to segmentation into quasi-stationary chunks that form
consistent informative entities. These entities can then be treated as symbols for applications such as music similarity analy-
sis, musical structure discovery, query by similarity, audio recombination by concatenative synthesis, and computer-assisted
improvisation.

Keynote 1 - Pitch-based Digital Audio Effects - Udo Zölzer

Digital audio effects are usually controlled by certain parameters of users and the incoming audio signal. The combination
of user defined parameters and signal adaptive parameters leads to more exiting audio effects where the main effect parameters
change according the audio input. The talk will cover several pitch-based audio effects, will discuss detection algorithms and
special effect realizations.

Udo Zölzer received the Diplom-Ingenieur degree in electrical engineering from the University of Paderborn in 1985,
the Dr.-Ingenieur degree from the Technical University Hamburg-Harburg (TUHH) in 1989 and completed a Habilitation in
communications engineering at the TUHH in 1997. Since 1999 he has been a professor and head of the Department of Signal
Processing and Communications at the Helmut Schmidt University Ð University of the Federal Armed Forces in Hamburg,
Germany. His research interests are audio and video signal processing and communication.
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ABSTRACT
When multiple microphones are used to reproduce multiple sources
microphone interference, or bleed, can occur due to each micro-
phone picking up more than one source. This paper proposes com-
bining the crosstalk resistant adaptive noise canceller (CTRANC)
algorithm with centred adaptive filters using an estimation of delay
to suppress the interference, while making little change to the tar-
get signal. The proposed method is compared with similar meth-
ods in both the anechoic and echoic cases. The method is shown
to outperform the other methods in the anechoic case while in the
echoic case it is shown to perform less well at reducing the level of
the interference but still introduces the least artefacts. Extension to
the proposed method to the N source and microphone case is also
discussed.

1. INTRODUCTION

In a live sound performance it is common for multiple instruments
or musicians to be performing at the same time. A common tech-
nique for setting microphones in this situation is to place a ded-
icated microphone to reproduce each sound source. Ideally, a
given microphone signal will only contain the sound from a sin-
gle source. In reality, a microphone may reproduce any number of
sources surrounding it. This is similar to the concept of crosstalk
in telecommunications and can be called bleed or leakage.

A microphone reproduces sound that enters the area surround-
ing it which is described by its polar pattern. When placing a mi-
crophone to reproduce a target sound source, it is placed to ensure
the source is within this area. Sound from other sources may also
enter this area and will also be reproduced, which can be referred
to as interference. This interfering signal is assumed to consist
of target signals of other microphones, as shown in Figure 1 and
described in Equation (1)

x1[n] = α11s1[n − τ11] + α21s2[n − τ21]

x2[n] = α12s1[n − τ12] + α22s2[n − τ22], (1)

where x1 and x2 are microphone signals at timestep n, s1 and s2

are the sound sources, τ11, τ12, τ21 and τ22 are the delays of each
source arriving at each microphone and α11, α12, α21 and α22

represent gain.
Interference of other sources causes a number of problems. An

interfering signal can be a nuisance and can reduce the intelligibil-
ity of the target source. It can affect the overall gain of the micro-
phone signal. It also means that if any processes are applied with

∗ The test audio in this research was excerpts of the raw
audio of "Ana" by Vieux Farka Touré, available under a
Creative Commons Attribution-NonCommercial license.
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Figure 1: A configuration of 2 sources being reproduced by 2
microphones with the direct signal paths and equivalent delays
shown.

the intention of being applied to the target signal, such as equal-
isation, it will also be applied to the interfering signal potentially
causing problems in a mix.

Microphone interference can also cause comb filtering. Comb
filtering occurs when a signal and a delayed version of the same
signal are summed. A comb filter has defined peaks and troughs in
the frequency response, caused by reinforcement and cancellation
in the frequency domain. The comb filtering effect can be heard
when the duplicated source is as much as 18dB quieter than the
original [1].

If the microphone signals defined in Equation (1) are summed
to the output y this becomes

y[n] = x1[n] + x2[n] (2)

= α11s1[n − τ11] + α12s1[n − τ12]+

α21s2[n − τ21] + α22s2[n − τ22]
(3)

assuming

τ11 < τ21 (4)
τ22 < τ12. (5)

Equation (3) shows that two versions of each source with differ-
ent delays will be summed, thus causing comb filtering of both
sources. The relative difference of the delay of each source arriv-
ing at each microphone is defined by

τ1 = τ21 − τ11 (6)
τ2 = τ12 − τ22 (7)

DAFX-1

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-2



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

and the relative gain difference as

α1 = α21 − α11 (8)
α2 = α12 − α22. (9)

Microphone and instrument placement plays an important role in
the amount of microphone bleed that occurs. In a studio situa-
tion, for example, instruments can be isolated either in separate
live rooms or by erecting baffles to provide some sound isolation.
In a live sound situation this is not aesthetically appropriate. Mi-
crophone placement can be used to an advantage by using direc-
tional microphones and placing interfering signals in the null areas
of a microphone’s pick up area. This will not eliminate all inter-
ference and could cause other artefacts to occur, such as problems
in the low frequencies due to the proximity effect.

1.1. Blind Source Separation

This problem can be looked at from a Blind Source Separation
(BSS) point of view. BSS methods attempt to extract N sources
from a mixture. The work in this paper is aimed at live sound
where it is imperative that a method is able to run in real time. BSS
methods generally are offline processes but a number of real-time
implementations exist such as [2] and [3]. The method in [3] is
taken from the DUET method of source separation, first presented
in [4] and extended in [5]. Although stated to run in realtime, this
method of source separation is aimed at the unmixing of N sources
from 2 mixtures, i.e. from a stereo mix of panned sources. It is
possible to use this method for 2 microphone recordings, but there
are limitations to the distance between the microphones, which is
reliant on sampling frequency for example at 16kHz the maximum
distance allowed between the microphones for the method to run
is when d ≤ 2.15cm [5]. The method in [2] is also used for stereo
mixtures, assuming there is phase coherence between the mixtures
and only intensity differences. This cannot be assumed in the mul-
tiple microphone case.

1.2. Noise Cancellation

Many of the problems that affect live sound are also present in
telecommunications, for example noise and reverberation. Tech-
niques exist in telecommunications for echo and noise cancella-
tion, which share the same principles, and also run in real-time.
The drawback is that most techniques are optimised for voice sig-
nals with lower bandwidths, for example a sampling rate of 8kHz
is common [6] whereas in live sound we require a bandwidth to
represent all the audible frequencies from 20Hz to 20kHz. For this
reason, when an algorithm optimised for voice application is ex-
tended to incorporate wider bandwidth signals, the computational
cost inherently increases.

In telecommunications, it is common that an external noise
source will interfere with the direct source, for example a person
speaking into a telephone may also have an interfering noise, such
as air conditioning, in the same room. If an adequate estimation of
the noise source is possible, this can be removed from the direct
signal. This is where noise and echo cancellation can be used.

Common techniques for noise cancellation make use of an
adaptive filter to estimate the impulse response of the interference
of the noise signal to the main signal. These methods rely on a
clean reference of the noise signal. In reality, this is not always the
case. In a live sound scenario, a clean reference signal may not be

available as microphone bleed is assumed to be occurring on all
signals.
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Figure 2: Block diagram of an adaptive filter

The Least Mean Squares (LMS) adaptive filter error is calcu-
lated by

e[n] = x1[n] − WT [n]X2[n], (10)

where the error e is also the clean output signal, where

X2[n] = [x2[n], x2[n − 1], . . . , x2[n − L + 1]]T (11)

and the estimated update filter is

W[n] = [w0, w1, . . . , wL−1]
T . (12)

The estimate of W[n] is then calculated by minimising E
{
e2[n]

}

W[n + 1] = W[n] + µe[n]X2[n], (13)

where µ is the adaptation step, which is generally a small value
that effects convergence speed and accuracy, and the error signal e
is the clean output.

Work in [7] addresses the same problem assuming close mi-
crophones and finding the Wiener filter solution by Power Spectral
Density (PSD) estimation.

2. CTRANC

A crosstalk resistant adaptive noise canceller (CTRANC) [8] as-
sumes there is crosstalk or as it is referred to in this paper, micro-
phone bleed, between the microphones. For this reason a clean
reference is not assumed. Adaptive filters are then cascaded so the
output of one becomes the input of the other, as shown in Figure
3. In this way, once one signal has the interference cancelled out
it can be used as the reference for the interference cancellation of
another source and vice versa [9], [6]. The LMS algorithm then
becomes

e1[n] = x1[n] − WT
AE2[n] (14)

e2[n] = x2[n] − WT
BE1[n], (15)

where the FIR adaptive filters are

WA[n] =
[
wA

1 [n], wA
2 [n], . . . , wA

N [n]
]

(16)

WB [n] =
[
wB

1 [n], wA
2 [n], . . . , wB

N [n]
]

(17)
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Figure 3: Block diagram of the CTRANC with 2 sources

and error vectors are

E1[n] = [e1[n], e1[n − 1], . . . , e1[n − N ]] (18)
E2[n] = [e2[n], e2[n − 1], . . . , e2[n − N ]] . (19)

Each filter is then updated by

WA[n + 1] = WA[n] + µE2e1[n] (20)
WB [n + 1] = WB [n] + µE1e2[n]. (21)

3. CENTRED ADAPTIVE FILTERS

In the purely anechoic case, the output of the adaptive filter in
Equation (13) will simply be a single peak at a position represent-
ing delay and an amplitude representing gain and all other values
are assumed to be 0. In reality, with the addition of reverbera-
tion and noise there will be a noise floor but there will still be a
peak at the delay position. If the delay value is known, it is then
possible to update fewer coefficients to get an accurate estimation
of gain. Fewer coefficients means faster and more accurate con-
vergence and less computational cost. Only a rough estimation of
delay is required as a window of coefficients around the estimated
delay value are updated. If the delay estimation is inaccurate by
less than the window size then the method will still converge to the
solution [10], [11], [12].

As in the LMS adaptive filter, the error is defined as

e[n] = x1[n] − WT [n]X2[n] (22)

and the filter coefficients updated using

W[n + 1] = W[n] + µe[n]X2[n], (23)

but where

W[n] = [wδ−D[n], . . . , wδ+D[n]] (24)
X2[n] = [x2[n − δ − D], . . . , x2[n − δ + D] , (25)

and where δ is the estimation of the delay and D is a user-defined
error distance around the delay to update the coefficients. A higher
value of D will yield slower convergence but will encompass ad-
ditional echoes or reverberation.

3.1. Delay estimation

There are many delay estimation methods [13] for estimating δ,
equivalent to τ1 and τ2 in Equations (6) and (7). Adaptive filters
themselves can be used to estimate delays [14], but this has the
same computational cost that is trying to be avoided. A common
method used is the Generalized Cross Correlation (GCC), first in-
troduced in [15]. This method is computationally cheap and allows
weightings to be applied to improve performance against noise and
reverberation, such as the Phase Transform (PHAT).

The GCC is calculated using

Ψ = F−1 {X∗
1 [k] · X2[k]} , (26)

where Ψ is the GCC, F−1 denotes the Inverse Fast Fourier Trans-
form, ∗ denotes the complex conjugate and X1 and X2 are x1 and
x2 in the frequency domain. By applying the PHAT, Ψ becomes

ΨP = F−1

{
X∗

1 [k] · X2[k]

|X∗
1 [k] · X2[k]|

}
, (27)

where | · | denotes the absolute magnitude. The estimate of delay
δ is then calculated by

δ = arg max
n

ΨP [n]. (28)

To reduce computational cost, it is also possible to calculate multi-
ple delays from a single GCC-PHAT calculation [16] by extracting
the position of N peaks rather than just 1.

4. CENTRED CTRANC

This paper proposes combining the CTRANC with the centred
adaptive filters, known as centred CTRANC, to improve perfor-
mance and convergence of the CTRANC method. As the CTRANC
method the error signals are defined as

e1[n] = d1[n] − WT
AE2[n] (29)

e2[n] = d2[n] − WT
BE1[n], (30)

but where

WA[n] =
[
wA

δ1−D[n], . . . , wA
δ1+D[n]

]
(31)

WB [n] =
[
wB

δ2−D[n], . . . , wB
δ2+D[n]

]
(32)

and

E1[n] = [e1[n − δ1 − D], . . . , e1[n − δ1 + D] (33)
E2[n] = [e2[n − δ2 − D], . . . , e2[n − δ2 + D] (34)

and the filter coefficients are updated using

WA[n + 1] = WA[n] + µE2e1[n] (35)
WB [n + 1] = WB [n] + µE1e2[n], (36)

which requires estimation of both δ1 and δ2.
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5. DIRECT CALCULATION

The aim of using adaptive filters is to estimate the delay and gain
changes of the sources arriving at each microphone, as defined by
Equations (6) - (9). It is therefore possible to directly calculate the
delay and gain difference for each frame of audio. This informa-
tion is then used to scale and delay the interference, which is then
subtracted from the direct signal, thus removing the interference.

This method is not commonly used as it requires averaging to
simply provide a stable solution. For example the amplitude dif-
ference calculated for each frame will be slightly different, thus
causing amplitude modulation of the interference. The adaptive
filters have to converge to a solution which is then stable and will
not modulate the signal. This method also does not take into ac-
count the crosstalk, relying on a clean interference signal.

!

Figure 4: Simulation microphone and source layout where d =
0.5m

6. COMPARISON

The methods outlined in this paper were compared by measuring
the amount of interference reduction and how artifacts and distor-
tion effect the target sound. The CTRANC and centred CTRANC
methods were optimised to produce the best results by selecting a
suitable value for the adaption step, µ and the error distance D.
The methods were compared in the 2 source, 2 microphone case.

6.1. Simulation Experimentation

The methods were first compared using simulated microphone sig-
nals. The sources and microphones were positioned virtually and
the equivalent delay and gain calculated for each source to each
microphone. The input sources were a guitar and vocal track. The
sources were then combined to simulate each microphone signal
with bleed. The microphones were assume to be omnidirectional
in an anechoic environment. The sources were placed between
10cm and 12cm from the microphones, as shown in Figure 4. The
distance d was increased from 10cm to 5m, producing different
values for delay and gain. The relative position of each source to
each microphone remained the same.

6.2. Results

The simulated microphone outputs containing the direct source
and lower amplitude bleed were then passed through each method.
The results were analysed using the BSS_EVAL Matlab toolbox
[17] to extract the signal-to-interference (SIRdB), signal-to-artefact
(SARdB) and signal-to-distortion (SDRdB) ratios. The unprocessed
microphone signals were also analysed for comparison. The re-
sults in this paper show the scenario where s1 is the target signal
and s2 is the interfering signal.

Figure 5 shows the calculated SIRdB for each method at each
microphone distance of d. The centred CTRANC can be shown
to have the highest values of SIRdB for all but the d = 0.1 case,
where DUET outperforms it. It is expected that the DUET method
may perform well for small values of d as, although it is not aimed
at microphones signals, it can perform source separation at small
distances. The SIRdB determines how much the interference has
been reduced. As mentioned previously, studies have shown that
comb filtering can be heard when the duplicate source is as much
as 18dB lower in amplitude than the original [1]. It can be seen that
the centred CTRANC reduces the level of the interference by more
than 18dB for each value of d, therefore the possibility of comb
filtering will be removed, even if the interference is not completely
cancelled out.

The Wiener filter method [7] proved to outperform the pro-
posed method in certain instances of d for SIRdB but overall per-
formed inconsistently over all values of d in the simulation exper-
iment. The Wiener filter method assumes each microphone is an
approximation of the ideal impulse response of the direct sound
path and that is the interference is of a lower amplitude. If the in-
terference is of a high enough amplitude, this assumption will no
longer hold.
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Figure 5: Signal-to-interference ratio of each method at each iter-
ation of microphone distance for the simulated case.

Although DUET performs best on SIRdB at d = 0.1 Figure 6
shows the centred CTRANC has a higher value of SARdB at the
same distance. Signal to artefact ratio describes the amount of arte-

DAFX-4

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-5



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

facts that have been introduced by a method. This shows that the
DUET method introduces a lot of artefacts to the processed signal.
Methods based on adaptive filters will generally not add additional
artefacts to the target source as it is attempting to subtract the in-
terfering source in the time domain. In live sound, this is desired
as it would be preferable to remove some of the interference but
leave the target signal intact rather than completely remove the in-
terference but heavily distort the target signal. The results shown
in Figure 7 also agree with this.
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Figure 6: Signal-to-artefact ratio of each method at each iteration
of microphone distance for the simulated case.
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Figure 7: Signal-to-distortion ratio of each method at each itera-
tion of microphone distance for the simulated case.

6.3. Real Recordings

To test each method’s effectiveness in a real space, a test was setup
using 2 speakers and 2 microphones. The speakers were spaced
from 10cm to 100cm at 10cm intervals while the microphones
were always placed 10cm from each speaker, with an error of ±
1cm as in Figure 8. This distance was chosen to simulate a close
microphone configuration. It is not assumed the layout is symmet-
ric.

!
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Figure 8: Layout of speakers and microphones in the test record-
ings

6.4. Results

As with the simulation, the SIRdB , SADdB and SDRdB for each
method and value of d was calculated and can be seen in Fig-
ures 9, 10 and 11. Figure 9 shows the method with the highest
performance is the original CTRANC method. The reason for
this is that due to the excess noise and reverberation, the cen-
tred CTRANC would produce errors in the impulse response at
the edges of the window but would estimate the amplitude and
delay so would improve the SIRdB , as it has higher SIRdB than
the unprocessed microphone signals. Using a higher value of D
may improve this, but by increasing D the computational cost in-
creases. The Wiener filter method performed only slightly lower
than the traditional CTRANC method. Unlike in the simulation
experiments, the Wiener filter method performs more consistently
with real recordings. The DUET method proved to be more suc-
cessful at some lengths of d but is not consistent over all the dis-
tances tested.

Figures 10 and 11 show the SARdB and SDRdB for the real
test. As shown in the simulations, the DUET method adds ad-
ditional delay and artefacts. The centred CTRANC overall per-
forms best when measuring SARdB , agreeing with the simulations
that the centred CTRANC does not add artefacts or distortion and
is consistent over all values tested of d. In the real recordings
the CTRANC has shown to perform consistently well, particu-
larly by the SIRdB measure, but performs worse than the centred
CTRANC in measures of SARdB and SDRdB , thus using the cen-
tred CTRANC also reduces the amount of artefacts and distortion
over the CTRANC. The Wiener filter method performed worse
than the centred CTRANC method but with slightly higher val-
ues of SARdB and SDRdB than the traditional CTRANC. It can
therefore be said that for SARdB and SDRdB these methods had
similar performance.

7. CONCLUSIONS AND FUTURE WORK

A centred CTRANC method has been proposed that combines cen-
tred adaptive filters with the CTRANC system of noise cancella-
tion. The proposed method outperformed other methods for in-
terference reduction in the simulated anechoic case with little ad-
ditional artefacts compared to the other methods under test. The
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Figure 9: Signal-to-interference ratio of each method at each iter-
ation of microphone distance for the real case.
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Figure 10: Signal-to-artefact ratio of each method at each iteration
of microphone distance for the real case.

proposed method was shown to be outperformed by the simple
CTRANC system in real recordings but was shown to also intro-
duce less artefacts.

The efficacy of the centred CTRANC is not effected by the
level of the interference but by the environment within which the
sources and microphones are placed and the reverberation and noise
present therefore it is currently best suited to close microphone ap-
plications. Work continues into modifying the centred CTRANC
to improve the robustness in real environments, such as manipulat-
ing the filter output at each iteration using the estimate of delay by,
for example, applying a weighting to the coefficient update range,
assuming the correct delay lies close to the centre of the range.
The time domain filter can also be assumed to only have positive
coefficients therefore the negative components can be set to 0. The
problem with this approach is it may effect the convergence prop-
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Figure 11: Signal-to-distortion ratio of each method at each itera-
tion of microphone distance for the real case.

erties as the error is now no longer the calculated error.

7.1. CTRANC - N source and N microphones

Theoretically, the CTRANC method can be scaled to N sources
and microphones, assuming the number of sources is equal to the
number of microphones and therefore the system is homogenous.
A diagram of this can be seen in Figure 12. As the number of
source and microphones increases, the number of adaptive filters F
required increases, with the relation F = N(N − 1). For this rea-
son computational complexity increases as N increases. Work will
continue looking at whether centred filters can be implemented in
the N source case to improve bleed reduction.
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Figure 12: Block diagram of the CTRANC method with 3 microphone inputs and 3 sources.
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ABSTRACT

The image method is generalized to geometries with an arbitrary
number of spatial dimensions. n-dimensional (n-D) acoustics is
discussed, and an algorithm for n-D room impulse response calcu-
lations is presented. Synthesized room impulse responses (RIRs)
from n-D rooms are presented. RIR characteristics are discussed,
and computational considerations are examined.

1. INTRODUCTION

Reverberation is a widely used and indispensable audio effect. It
is used to simulate environmental acoustics and as a means for
artistic modification of audio.

Descriptions of reverberation are often broken into two por-
tions, the early echoes and the tail. The characteristics of each
portion is important for predicting the resultant effect [1] [2] [3].
Early echoes are important for conveying spatial information to the
listener. This is often implemented in commercial reverberators as
a tunable parameter referred to as "pre-delay." The tail portion of
the reverberation response can vary greatly in length and thereby
determines how long reverberation persists after an excitatory in-
put.

Before digital electronics became commonplace, room acous-
tic simulation was achieved through analog means. Audio signals
were processed mechanically by transmitting vibrations through a
spring or a plate. Today, digital emulations of springs and plates
are popular with musicians and they continue to be the topic of
many papers such as [4] [5] and [6] [7], respectively.

Comb and all-pass filters have long been used in reverbera-
tors. The approach can be generalized as a feedback delay network
(FDN) [8] and it has the benefit of having relatively low computa-
tional overhead [9].

Various wave-based models have been a popular research topic.
They have the drawback of being computationally intensive, al-
though progress is being made to accelerate computation [10].

It is also possible to measure an RIR using a real room. This
may be done either for analysis or as an finite impulse response
(FIR) filter for direct simulation. Implementation of FIR filters
tend to require greater overhead than FDNs; however, this is now
less of an issue as computers have become more powerful. Meth-
ods such as segmented convolution can be used to reduce latency
[9].

RIRs can also be synthesized using methods based in geomet-
rical acoustics theory. Methods using this approach include mirror
images[11], ray tracing[12], and, more recently, beam tracing[13].
Aside from the typical time domain models, frequency domain
methods exist as well [14] [15]. The validity of these types of
simulations was explored in [16].

While geometrically complex rooms have been simulated, the
additional physical complexity requires higher algorithmic com-
plexity. Models of box-shaped rooms, however, are sufficient for
many purposes and they continue to be an active topic in research
[9] [11] [14] [15].

There are other effects related to reverberation, though some
might not clearly meet the criteria for what is commonly under-
stood to be reverberation. These include delay, gated reverb, musi-
cal instrument body models [17] [18], and resonance effects [19].
While this paper will not deal with such concepts directly, it has
been written in the context of the full scope of reverberation-related
effects.

1.1. Review of Dimensionality in Existing Models

There has been very little research in the area of n-dimensional
reverberation. There are, however, a few notable exceptions [20]
[21] [22]. These papers discussed n-D DWM, hyperdimensional
finite difference time domain (FDTD) mesh, and hyperdimensional
DWM, respectively.

In contrast, most reverberation algorithms are either developed
in reference to some type of 3-D acoustic space or they seek to
directly model a 3-D acoustic space. Examples of this include
wave-based methods [10], the image method [23], and beam trac-
ing [13].

Aside from 3-D models, equivalent 2-D models have been
studied as well. Two dimensional digital waveguide mesh (DWM)
implementations have been used to model both 2-D acoustic spaces
[24] [25] and vibrations on plates and membranes [26]. A 2-D im-
age method has been used to model room reverberation [27], and
a 2-D beam tracer has been used to model acoustics in [28] [29].

Outside of the field of room simulation, the image method has
been used to model vibration in 1-D beams [30], 1-D beams and
2-D plates [31], and 2-D plates [32]. While there is little pub-
lished discussion of reverberation models based on 1-D systems,
such models produce delay effects. Interestingly enough, delay
and reverberation are easily confused by novice musicians.

What is lacking in all of this is a unified model characterizing
1-D, 2-D, and 3-D systems using a method based on geometrical
wave theory. There is also no such model comparable to the mesh
simulations described in [21] [22] that is extendable to higher di-
mensions. There is very little formal discussion on why 1-D, 2-D,
and 3-D models all produce similar effects, and there is a void
of research regarding how higher dimensional resonant systems
ought to sound.

Sec. 2 discusses background mathematics related to RIR cal-
culations. Sec. 3 examines n-D geometry and its implications for
rooms and acoustics. Algorithmic implementation is discussed in
Sec. 4 . In Sec. 5, implications of n-D room simulations are
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analyzed. An approach for modeling non-integer dimensions is
presented in Sec. 6. Sec. 7 examines algorithmic efficiency,
presents benchmarks, and then discusses simulations. Finally, Sec.
8 presents the conclusions.

2. BACKGROUND MATHEMATICS

The image method generates an impulse response by creating mir-
ror images of a sound source across the walls of an enclosure. The
acoustical pressure impulse of the image with index q is given by

p(r, t)q =
Aq
|r− rq|

δ

(
t− |r− rq|

c

)
(1)

whereAq is a constant, |r−rq| is the distance between the receiver
and the qth source, δ is the Dirac delta function, and c is the speed
of sound. The pressure impulses are then summed together as if
they are a superposition of independent sources. This results in the
pressure impulse response function given by

h (t) =
∑

q

p(t)q (2)

where the summation takes place over all images in 3-D.
By taking the Fourier transform of Eq. 1 the acoustical pres-

sure impulse may be given in the frequency domain as

p(w, t)q =
Aq
|r− rq|

e−j
ω
c
|r−rq| (3)

This results because of a property of the Dirac delta function. This
property was given in [33]. In a fashion similar to Eq. 2, the
summation may be taken in the frequency domain. This results in

H (ω) =
∑

q

p(w, t)q (4)

In [34] it was shown that the inverse Fourier transform of Eq.
4 could be taken to yield an expression equivalent to Eq. 2.

h (t) =
1

2π

∫ ∞

−∞
H (ω) ejωtdω (5)

n-D box-shaped enclosures can preserve much of the simplic-
ity of 3-D box-shaped enclosures, while also permitting impulse
responses with more greatly varying properties.

By inverting the derivation in the appendix of [23], a modal
frequency solution for the rigid walled rectangular-room boundary
value problem can be obtained from Eq. 2. In [21], this solution
was given for an n-D room in the form

pd1d2..dn (x1, x2, ..., xn) = C

n∏

i=1

cos

(
diπxi
Li

)
(6)

where di is an integer, n is the total number of spatial dimensions,
Li is the length of the room along the ith dimension, and C is a
constant. What follows from here will be a time-domain solution
to the n-D normal mode expansion using the image method.

3. N-DIMENSIONAL SPACE

3.1. n-D Acoustic Space

A room in n-D occupies a volume with units (distance)n. It is
bound by a hypersurface with units (distance)n−1. The concept
of 2-D walls is based on the presumption of a 3-D space. The
concept of 2-D walls is thus replaced with the concept of (n-1)-D
reflectors. As for time, it will be considered distinct from space
and it will not be treated as a dimension. The discussion here will
be limited to rectilinear room shapes, as other shapes in n-D space
are beyond the scope of this paper.

Any dimension of space has both a positive and a negative
direction. For an n-D room, the source and receiver, along any one
dimension, are located between two reflectors. The total number
of reflectors in an n-D room is thus equal to 2n. A room in 4-D is
depicted in Fig. 1 .

Figure 1: A 2-D parallel projection of a 4-D rectangular room.

3.1.1. Real Physical Systems for 1-D and 2-D

There are few, if any, tangible real-world systems analogous to an
acoustic space with more than three dimensions. Acoustics tubes
and plates, however, behave in a fashion similar to 1-D spaces and
2-D spaces, respectively. Waves in tubes are truly 1-D propagation
of acoustic waves. Waves on plates propagate in 2-D, however, the
propagation medium is metal and the waves are transverse rather
than longitudinal. In [6] a comparative analysis was made between
plates and rooms. Among the major differences is a phenomenon
known as frequency dispersion. Frequency dispersion causes the
propagation speed of a wave to vary with frequency. This occurs
very significantly in plates, but not in rooms.

3.2. Reflection Coefficients

The constant Aq in Eqs. 1 and 3 includes a factor for the total re-
flection coefficient, which is itself the product of a set of reflection
coefficients. Each reflection coefficient is given as β = ±

√
1− α,

where α is the absorption coefficient [34]. Classically the value of
β is a positive number on the interval [0, 1]. Negative coefficients,
however, have been studied as well [34] [35] [36]. In contrast to
3-D rooms, the reflection coefficients on 2-D plates are classically
negative [31] [32]. This results in a reversal of the wave phase each
time it is reflected by the plate boundary.

The value of a reflection coefficient depends on a number of
factors. Because the existence of a higher dimensional room would
require exotic forms of matter, the possible values for reflection
coefficients can reasonably be presumed to include the interval
[−1, 1].
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0 1 x2N1st dimension {

0 1 y2N 0 1 y2N 0 1 y2N2nd dimension {

z2N10 z2N10 z2N10 z2N10 z2N10 z2N10 z2N10 z2N10 z2N103rd dimension {

Figure 2: Iteration tree for calculation in 3-D. Dimension number increases top to bottom. Look-up table indices increase left to right.
Image points are calculated for each leaf starting with the leftmost and moving to the right.

3.3. Energy Conservation and Pressure Amplitude

A sound source emits a finite amount of power. It is known that
the distance attenuation of acoustic intensity is proportional to 1/r
and 1/r2, for 2-D and 3-D, respectively [37]. Specifically in 3-
D, acoustical intensity, or the power flux density, is I3 = P/4πr2,
where the denominator is the area of a sphere with radius r. In 2-D,
or equivalently, a cylindrical wave, the intensity is I2 = P/2πr1.
Similarly, the intensity in a 1-D acoustic tube is I1 = P/2r0.

Integrating In for a source with power P over a closed Gaus-
sian surface must yield the same value regardless of the problem’s
dimensionality. This results from the law of conservation of en-
ergy, and is shown as

∮
I (P )m dSm =

∮
I (P )n dSn (7)

where n and m are the number of dimensions. The expression for
n-D power flux density can be written In = P/Ssn, where Ssn
is the surface area of the n-D sphere. For a mention of several
formulas for n-D geometry see Appendix A.

The calculation of an RIR requires a formula that relates sound
pressure amplitude with distance. This formula should also be con-
sistent with Eq. 7 and, hence, obey the law of energy conservation.
Such a formula is given by

p (r)n =
A√
rn−1

(8)

A derivation of Eq. 8 is provided in Appendix B.

4. COMPUTATIONAL PROCEDURE

For boxed-shaped rooms, the summation can be taken over each
dimension. In [11], an algorithm using the formula

h(t) =

2Nx∑

i=0

2Ny∑

j=0

2Nz∑

k=0

p (t)ijk (9)

was used where p(t)ijk is the pressure impulse resulting from the
ijkth image in 3-D. In this case, i, j, and k are indices for look-
up tables rather than indices for an image lattice. The summation
operation is depicted graphically in Fig. 2 as a tree diagram. The
algorithm has a reduced number of floating point operations com-
pared to prior algorithms and thus has better performance. For this
reason, a modified version of the algorithm was chosen for n-D
calculations. The primary modification to the algorithm was to the
summation procedure. For n-D, Eq. 9 can be written as

h(t) =

2N1∑

i1=0

2N2∑

i2=0

2N3∑

i3=0

...

2Nn∑

in=0

p (t)i1i2i3...in (10)

The tree diagram in Fig. 2 has a fractal structure that can similarly
be extended to any number of dimensions. To perform calcula-
tions for a truly arbitrary number of dimensions, a scheme that
recursively stepped into higher dimensions was used.

Square of the distance summations and reflection coefficient
product operations were collected recursively on each function
call. This resulted in fewer floating point operations than [11]. To
account for distance losses, a relation based on Eq. 8 was used.
RIRs for several different dimensions are plotted in Fig. 3.
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Figure 3: RIRs calculated for 3-D, 4-D, 5-D, and 6-D. Rooms
measure approximately 10 meters in each dimension. RIRs are
normalized and aligned to the first non-zero impulse.
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5. ANALYTICAL IMPLICATIONS

The total number of echoes accounted for in an impulse response
calculation of length tlength is given by the volume of an n-sphere
of radius ctlength divided by the room volume. The result of this
is given in by

E (t)n =
π

n
2 cntn

Γ
(
n
2

+ 1
)
Vrn

(11)

where Γ is the gamma function. The variable Vrn is the volume of
the n-D room. The temporal echo density can be given by the time
derivative of the total echo count, which leads to

dE

dt n
=

2π
n
2 cntn−1

Γ
(
n
2

)
Vrn

(12)

On a 2-D plate, the echo density increases with t [6]. In a 3-D
room, the echo density increases with t2. As is shown in Eq. 12 ,
the echo density in an n-D space continues on with this pattern and
increases with tn−1. Plots for both Eqs. 11 and 12 are shown in
Fig. 4 .
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Figure 4: Plots for one to twelve spatial dimensions. left) total
number of echoes, right) temporal echo density.

The literature describes various methods for calculating mix-
ing time, many using different definitions [38] [39]. Generally,
mixing time can be described as the transition from the early part
of the response to the late part of the response. A commonly used
definition for the point of transition is when the temporal echo den-
sity reaches some particular value. According to [2], this density
is around 2000 - 4000 echoes / sec. Using 3000 echoes / sec as the
transition point, the mixing time, tmix, in n-D can be estimated as

tmix =

(
3000

Γ
(
n
2

)
Vrn

2π
n
2 cn

) 1
n−1

(13)

The mixing time is plotted for 1 to 45 dimensions in Fig. 5 on
the left. It may be noted that a minimum occurs near n = 8.
This occurs because dE/dtn intersects dE/dtm for n 6= m. This
intersection is shown on the right in Fig. 5.

A curious effect that results from introducing additional di-
mensions to a given room configuration is that it increases the de-
lay to existing impulses. Mathematically, this can be shown with
an n-D extension of the Pythagorean theorem. It is illustrated in
Fig. 3 where the delay time of the first impulse increases as the
number of dimensions is increased. Here, the delay is observed as
a shifted sample-time index. The delay can also be seen later in
Fig. 6 as a change in distance to the nearest image point.
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Figure 5: left) mixing times for rooms of n dimensions with Vrn =
8n, right) temporal echo density for 2-D, 4-D, 8-D, and 16-D.

Because the computational costs have the potential to increase
dramatically for higher dimensions, care must be taken in choos-
ing input parameters. Table 1a shows, for a given dimension, the
increase in the number of images as a factor when the time-length
of the output RIR is increased by a factor of 2.

Table 1: a) Increase in sphere volume when the time-length of the
impulse response is increased by a factor of 2. b) Required room
volume Vrm when E (t)m = E (t)n and r = 68.6.

(a)

n V (2t)sn/V (t)sn
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1024

(b)

m Vrm/Vr3
1 1.01 e -04
2 1.09 e -02
3 1.00 e +00
4 8.08 e +01
5 5.91 e +03
6 3.98 e +05
7 2.50 e +07
8 1.47 e +09
9 8.21 e +10

10 4.35 e +12

The higher computational costs of higher dimensional RIRs
can be offset by using rooms with larger volumes. This is true
presuming that the total time-length of the output RIR is held fixed.
Computational costs for higher dimensional rooms will be similar
to that of lower dimensional rooms if the total number of image
points considered in each calculation is also similar. To estimate an
m-D room volume that will produce an RIR with a similar number
of image points as a given n-D room, the number of echoes from
Eq. 11 can be set so that E (t)m = E (t)n. Solving for Vrm
results in

Vrm =
π

m
2

π
n
2

rm

rn
Γ
(
n
2

+ 1
)

Γ
(
m
2

+ 1
)Vrn (14)

The relative increase in volume resulting from Eq. 14 is shown in
Table 1b for n = 3, r = 68.6 and various values of m.

If the total number of images can not be reduced, there are still
other approaches that may prove useful for modeling n-D systems.
The tail portion of RIRs have a strong noise-like behavior. Mod-
eling this behavior has been shown to reduce computational costs
for 3-D systems [40] and it is likely that this type of approach can
also be extended to n-D.
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(a) (d) (e)(c)(b)

Figure 6: Diagrams of 2-D virtual source lattices radially transposed. The resultant temporal echo density profiles correspond to: a) 1.7
dimensions, b) 2.0 dimensions (original), c) 2.5 dimensions, d) 3.3 dimensions, e) 4.2 dimensions.

6. FRACTIONAL DIMENSIONS AND LATTICE
TRANSPOSITION

It is possible to transpose a lattice of virtual sources from an n-D
temporal echo density to an m-D temporal echo density. This can
shape the pseudorandom behavior of the echoes and result in an
IR with properties of an m-dimensional lattice. In this case, m
can be any positive number including non-integers. The approach
that follows is to generate a lattice of virtual sources and to then
transpose them radially around the receiver.

Given an n-D lattice, each virtual source has a relative radial
location with respect to the receiver. This radius is given by ∆rn.
To obtain a transposition function, assume that En = Em, where
E is given by Eq. 11 and m is the desired dimensionality. Next,
within the formulas forEn andEm, replace the variables cntn and
cmtm with the equivalent ∆rn

n and ∆rm
m, respectively. This

results in

π
n
2 ∆rn

n

Γ
(
n
2

+ 1
)
Vrn

=
π

m
2 ∆rm

m

Γ
(
m
2

+ 1
)
Vrm

(15)

Solving Eq. 15 for ∆rm results in the transposition function

∆rm = η∆rn
n
m (16)

where ∆rm is the new radius and η is a constant given by

η =

(
π

n
2 Γ
(
m
2

+ 1
)
Vrm

π
m
2 Γ
(
n
2

+ 1
)
Vrn

) 1
m

(17)

Radially transposed image lattices, along with the original 2-D lat-
tice, are shown in Fig. 6.

7. RESULTS

7.1. Computational Complexity

The fast image method is demonstratably faster than the Allen and
Berkley algorithm [40][11]. There is limited discussion in the lit-
erature, however, on the theoretical basis for this. There has also
never before been an extension to n-D.

7.1.1. Mathematical and Algorithmic Theory

Computation time in existing algorithms [23][11] is dependent on
many factors. Much of the computational costs result from calcu-
lating the distances to the virtual sources. Distance calculations for
sources outside the "sphere of interest" are unnecessary and can be

omitted [11]. This omission leads to a theoretical speedup factor
for the distance calculations that is given as the ratio of the volume
of an n-cube over the volume of an inscribed n-sphere. This is
given as

snd =
2nΓ

(
n
2

+ 1
)

π
n
2

(18)

Some values of snd are given in Table 2. When the number of
dimensions is n = 20, the number of distance calculations is re-
duced by a factor of 4.1×107, and thus the total computation time
ought to be dramatically reduced.

Table 2: Reduction factor for the number of distance calculations
in n-D space.

n snd
1 1.0000 e +00
2 1.2732 e +00
3 1.9099 e +00
4 3.2423 e +00
5 6.0793 e +00
6 1.2385 e +01
7 2.7091 e +01
8 6.3074 e +01
9 1.5522 e +02

10 4.0154 e +02
11 1.0870 e +03
12 3.0676 e +03
13 8.9960 e +03
14 2.7340 e +04
15 8.5905 e +04
16 2.7848 e +05
17 9.2971 e +05
18 3.1912 e +06
19 1.1246 e +07
20 4.0632 e +07

The Allen and Berkley algorithm calculates the total reflection
coefficient as

βtotal =β
|i1−u1|
x1,1

β
|i1|
x1,2

β
|i2−u2|
x2,1

β
|i2|
x2,2

β
|i3−u3|
x3,1

β
|i3|
x3,2

. . . β
|in−un|
xn,1

β
|in|
xn,2

(19)
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where the i’s and the u’s are indices corresponding to the room
index. This requires 2n multiplies, 2n exponentiations, and n
subtractions. Each exponentiation can be calculated by either a
product summation or by using the identity

β|i|x = e|i| ln β (20)

which is classically expressed as a series expansion.
In contrast, the algorithm in [11], calculates the total reflection

coefficient as

βtotal = βx1,i1βx2,i2βx3,i3 ...βxn,in (21)

where the value of each βx,i is taken from a look-up table. This
requires nmultiplies, 0 exponentiations, and 0 subtractions. While
some computation time is needed to produce the look-up tables,
it is small and only becomes significant when the calculation is
limited to low order reflections.

Computation time is also required when calculating the pres-
sure amplitude distance relation given in Eq. 8. The denominator
has the term rn−1. Because n − 1 is always an integer, the value
of the exponentiation can be calculated by either a series of multi-
plies or as a series expansion of Eq. 20. By using the former, total
computation time was reduced by around one half for calculations
in 6-D.

7.1.2. Benchmarks

Both the Allen and Berkley algorithm and the fast image method
were programmed for a fixed number of dimensions. This effort
was continued until both algorithms had been programmed for all
dimensions from one up through eight. Each of the 16 algorithms
ran within a small separate standalone executable. Benchmarks
were performed on a Linux system, and the time command was
used to measure program run-time. Each program was set to loop
its respective algorithm a fixed number of times so that the total
run-time was at least one second. The average algorithm run-time
was then calculated and used to find the speedup factor.

When considering program run-time, the time-length of the
RIR filter should be considered relative to the room volume. In
fact, time-length and room volume can be used to accurately esti-
mate the total number of image points, and this will correlate very
well with total execution time. Time-length is an important prop-
erty of an RIR, and for this reason, benchmarks were made with
time-length as an input variable. Because different time-lengths
cause the number of mathematical operations to vary somewhat,
benchmarks were performed for two time-lengths: t1 and 2t1.

The results of the tests are listed in Table 3. The speedup factor
for time-length t1 starts at 1.5 for 1-D and steadily increases to
316.0 for 8-D. For time-length 2t1 the results were similar with
a factor of 1.6 for 1-D and 210.0 for 8-D. The speedup factors
obtained for 3-D were similar to those obtained in [11] and [40].

Both the number of image points and the computation time
increased greatly with the number of dimensions. For the 8-D
Allen and Berkley algorithm with time-length 2t1, the algorithm
run-time was nearly three hours. It’s expected that benchmarks
in dimensions higher than eight would consume an unreasonable
amount of time.

In theory, the outputs from the two algorithms are identical. In
practice, there is a slight difference due to the way that each imple-
mentation produces floating-point round-off error. The difference,
however, is small and the two outputs can still be validated against
one another.

Table 3: Speedup factor sn for RIRs of length t1 and 2t1.

t1 2t1
n sn image points sn image points
1 1.5 7 1.6 17
2 1.8 57 2.0 236
3 6.1 311 7.1 2,725
4 23.6 1,618 13.5 28,033
5 70.2 7,929 30.8 262,155
6 133.0 35,660 64.3 2,262,971
7 230.6 147,327 147.7 18,206,694
8 316.0 562,993 210.0 137,616,917

7.2. Evaluation

Using the methods laid out in this paper, impulse responses of
rooms from one to twelve spatial dimensions have been calculated.
Calculations in dimensions higher than twelve are also possible.

By transposing the locations of virtual sources, n-D lattices
have been forced to produce the same temporal echo densities as
both higher and lower dimensional lattices. Image lattices have
also been transposed to fractional dimensions, and the range of
this extends below 1-D.

Calculated RIRs have been convolved with audio signals to
perform n-D room simulations. All simulations sounded similar
to reverberation. Simulations in 1-D produced delay type effects
while simulations that had been scaled to dimensions near 1-D pro-
duced exotic delay type effects. In 2-D, they produced a reverber-
ation effect and the RIR had plate-like properties. It is interesting
to note that calculations in the frequency domain could model fre-
quency dispersion and this would result in RIRs with even more
plate-like properties. In 3-D, RIRs produced reverberant-like ef-
fects. In dimensions above three, the effects were also reverber-
ant like. It was noted that decay times seemed to drop off more
abruptly, although a rigorous numerical analysis would be more
informative.

8. CONCLUSIONS

The image method has been generalized to n-D. Acoustic spaces
up to 12-D have been simulated, and the behavior of fractional
dimensions has been modeled. Strong similarities between delay,
plate, and room reverberation have been illustrated.

Computation time increases significantly with each additional
dimension. Use of the fast image method dramatically reduced the
number of computations. Its use became critical for higher dimen-
sional calculations where computation time became an issue.
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A. APPENDIX: N-D GEOMETRIC FORMULAS

The volume of an n-D room is given by

Vrn =

n∏

i=1

Li (22)

The volume of an n-sphere is given by

Vsn =
π

n
2 rn

Γ
(
n
2

+ 1
) (23)

where r is the radius of the sphere and Γ is the gamma function.
The surface area is the derivative of the volume. Using the gamma
function identity

2

Γ
(
n
2

) =
n

Γ
(
n
2

+ 1
) (24)

the surface area of an n-sphere is given by

Ssn =
2π

n
2 rn−1

Γ
(
n
2

) (25)

B. APPENDIX: DERIVATION OF N-D PRESSURE
DISTANCE RELATION

There are a number of acoustics-related relations that can be found
in general physics texts [41]. The following derivation will be
based heavily around this.

The acoustic pressure amplitude is given by

p = vρωs (26)

where v is the propagation speed of the wave, ρ is the mass density,
ω is the angular frequency, and s is the displacement amplitude.
The acoustical kinetic energy contained in an infinitesimal element
of air is given by

dK =
1

2
dmvs

2 (27)

where vs is the velocity of the oscillating air mass element dm.
For a spherical wave traveling radially outward, vs is given by

vs = −ωs sin (kr − ωt) (28)

The mass of the air element is given by multiplying density ρ by
the volume element. For an n-D spherical wave, the volume el-
ement is given by the product of the surface area of an n-sphere
and an infinitesimal shell thickness dr. For the mass element, this
results in

dmn = ρ
2π

n
2 rn−1

Γ
(
n
2

) dr (29)

Substituting Eqs. 28 and 29 into Eq. 27 results in

dK =
1

2

(
ρ

2π
n
2 rn−1

Γ
(
n
2

) dr

)
ω2s2 sin2 (kr − ωt) (30)

The rate of flow of kinetic energy can be shown to be

dK

dt
= ρ

π
n
2 rn−1

Γ
(
n
2

) vω2s2 sin2 (kr − ωt) (31)

where the propagation speed v is equal to dr/dt. It follows that
the time average of the kinetic energy flow rate is given by

(
dK

dt

)
=

1

2
ρ
π

n
2 rn−1

Γ
(
n
2

) vω2s2 (32)

where the time average of sin2 (kr − ωt) = 1
2

. The power trans-
mitted is equal to the sum of the rates of both the kinetic energy
and the potential energy. This is equivalent to two times the aver-
age kinetic energy.

P =

(
dK

dt

)
+

(
dU

dt

)
= 2

(
dK

dt

)
(33)

Substituting Eq. 32 into 33 and simplifying results in

P = ρ
π

n
2 rn−1

Γ
(
n
2

) vω2s2 (34)

Solving for s results in an expression for the n-D particle displace-
ment.

s =

√
PΓ
(
n
2

)

ρvω2π
n
2 rn−1

(35)

Substituting Eq. 35 into Eq. 26 gives

p = (vρω)

√
PΓ
(
n
2

)

ρvω2π
n
2 rn−1

=

√
vρPΓ

(
n
2

)

π
n
2 rn−1

(36)

Finally, setting

A =

√
vρPΓ

(
n
2

)

π
n
2

(37)

Eq. 36 can be rewritten as

p(r)n =
A√
rn−1

(38)

In Eqs. 1 and 3, the constant Aq is assumed to include an addi-
tional factor for the total reflection coefficient.
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ABSTRACT

The Hammond organ is an early electronic musical instrument,
which was popular in the 1960s and 1970s. This paper proposes
computationally efficient models for the Hammond organ and its
rotating speaker system, the Leslie. Organ tones are generated us-
ing additive synthesis with appropriate features, such as a typi-
cal fast attack and decay envelope for the weighted sum of the
harmonics and a small amplitude modulation simulating the con-
struction inaccuracies of tone wheels. The key click is realized
by adding the sixth harmonic modulated by an additional enve-
lope to the original organ tone. For the Leslie speaker modeling
we propose a new approach, which is based on time-varying spec-
tral delay filters producing the Doppler effect. The resulting vir-
tual organ, which is conceptually easy, has a pleasing sound and is
computationally efficient to implement.

1. INTRODUCTION

The Hammond organ was one of the very first electronic synthe-
sizers constructed in the early 20th century. Originally it was
designed to be a low-cost substitute to the pipe organs used in
churches, but later in the 1960s and 1970s it also became a com-
monly used keyboard instrument in popular music productions due
to its characteristic timbre. This special timbre of the Hammond
organ was partly produced by the speaker that was used for the
reproduction of the organ sound. This reproduction device, the
Leslie speaker, had two rotating units and its original target was to
simulate the continuously shifting sound sources emanating from
the different parts of the broad wall of pipes of the church organs.

Due to the difficulties in transporting the heavy organ unit (al-
most 200 kilograms) and the Leslie speaker and the possible tech-
nical failures of the electromechanical instrument, musicians have
craved for a more easily portable unit that can be operated reliably.
To meet this demand, many electronic and digital keyboards have
a readily available tone that imitates the sound of the Hammond
organ. On the other hand, the sound of other organs that did not
necessarily imitate the Hammond organ have also been emulated,
see e.g. [1]. In addition, the effect produced by the Leslie speaker
is still widely used and devices that emulate the processing per-
formed by the speaker are also available.

In this paper, computationally efficient models for both the
Hammond organ and the Leslie speaker are presented. The sound

This work was partly supported by the Academy of Finland, project
numbers 122815 and 121252. The work of the second author has been par-
tially funded by the European Research Council under the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement no [240453].

generation principle used in the organ is presented Section 2 and its
discrete-time replication is discussed. Section 3 presents the pro-
posed Leslie rotating speaker effect model that is based on time-
varying spectral delay filters (SDFs). The computational complex-
ity of the models is discussed in Section 4. Section 5 concludes
the paper.

2. ORGAN MODEL

The Hammond organ was originally designed to be a more com-
pact version of the Telharmonium synthesizer [2]. Similarly to
the Telharmonium, the Hammond organ mixed the sound of sev-
eral electrical tone generators, tone wheels, to synthesize a desired
sound [3]. Each tone wheel consisted of a metallic disk having a
grooved rim in the proximity of a magnetic pickup. When the disk
was rotated, the grooves of the rim induced an alternating current
to the coil of the pickup. The generated current was sinusoid-
like, and the frequency of the sinusoid depended on the number
of grooves and the speed of rotation [3].

For each key in the manual (in practice, a keyboard) seven tone
wheels were assigned and they produced the first, the second, the
third, the fourth, the fifth, the sixth, and the eighth harmonic of the
frequency corresponding to the musical note associated with the
key [3]. Since there were only a limited number of tone wheels
built inside the organ chassis, the produced harmonics were not al-
ways exact multiples of the fundamental frequency. In such cases,
the tone wheel that produced the closest frequency to the harmonic
was selected [3]. In the later production models of the Hammond
organ, the number of tone wheels associated with a key was in-
creased to nine. The added components were the octave below the
fundamental frequency (0.5 times the fundamental) and the musi-
cal fifth (1.5 times the fundamental).

The amplitudes of the harmonics were controlled separately
with a set of sliding controllers, drawbars [3]. The original organ
design contained two hand-operated manuals for both of which an
individual drawbar was associated. In addition, the original design
contained a pedal manual that had a separate drawbar with only
two contollers [3]. In the later production models, the drawbar of
the pedal manual was merged with the other drawbars to create
two nine-bar controllers. In the early models, the drawbars had
discrete values ranging from zero (off) to eight (fully on). Later,
continuous-value controllers were introduced to provide a more
flexible control. In addition to the manual mixing of the generated
harmonics, the original design of the Hammond organ included a
set of preset switches that set the amplitudes of the harmonics to
predefined values [3].

The Hammond organ also contained a tremolo effect unit that
could be applied to the resulting sound after the mixing stage [3].
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The frequency of the tremolo effect, five Hertz, was set by the syn-
chronous motor rotating the tone wheels. The depth of the tremolo
effect could be controlled continuously, and the effect was more
pronounced at high frequencies than at low frequencies due to the
construction of the effect [3].

2.1. Digital modeling of the Hammond organ

According to the description given above, a simplified digital Ham-
mond organ model can be constructed using the additive synthesis
technique. The number of sinusoids is directly set by the number
of tone wheels dedicated for a key. However, it should be noted
that since the amplitude of the sinusoids is controlled by the draw-
bar, some of the sinusoids can have an amplitude that is so weak
that they are not reasonable to be synthesized at all. In addition to
the sinusoids required for the actual organ tone synthesis, a sinu-
soid with frequency of five Hertz can be included to the model to
simulate the tremolo effect.

Since the drawbars were used to control the timbre of the pro-
duced sound by setting the individual amplitudes, there are numer-
ous possible combinations even when the discrete-valued drawbars
are used. Of these possible combinations, a mixture that consists of
four components is considered as an example timbre in this paper.
The (exact) harmonic components used in the example tone are
the first, the second, the third, and the eighth when the fundamen-
tal frequency is above 130 Hz (note C3). Below that frequency the
first and the eighth harmonic are used together with the sub-octave
harmonic and the musical fifth. The notes above the given fre-
quency can be understood to be played with one (hand-operated)
manual whereas the notes below that frequency are played with
another manual and/or with the pedal manual. These components
were manually chosen to produce a pleasent tone with the manu-
ally chosen mixing setup given below.

The component amplitudes of the example timbre are 1 (full
amplitude), 0.2, 0.2, and 0.1, ordered from the lowest frequency
to the highest in both cases. As the general amplitude envelope an
envelope that has a rapid (order of a few milliseconds) attack and
release is used. After the attack phase of the amplitude envelope,
the envelope can have a fast decay (a constant decay time of 50
ms) to a sustain level that is quite close to the maximum ampli-
tude. With this decay simulation, the initial burst of current at the
synthesizer output introduced by the rapid pressing of a key [3]
can be simulated. An example of the general amplitude envelope
is plotted in Figure 1(a).

2.2. Model extensions

The model described above can be extended in a couple of ways.
First, the noise-like signal produced by the closing and the open-
ing of the tone generation circuits at the events of key pressing and
release, respectively, can be added to the generated sound at the
respective events. The noise produced by these events has most
of its energy at high frequencies, and especially the ”key click“
produced by the key pressing is quite pronounced and it is often
used by musicians due to its percussive effect it adds to the tone.
However, instead of simulating the key click by filtering a noise
signal, it can be approximated by adding the sixth harmonic com-
ponent with an additional amplitude envelope to the output signal.
The amplitude envelope of the click signal has again a rapid attack
and release (the same values as with the main tone can be used)
and a fast decay (a constant decay time of 70 ms) to the zero level,
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Figure 1: (a) Amplitude envelope of the example timbre. (b) Time-
domain plot of the proposed ”key click“ effect.

as indicated in the time-domain plot shown in Figure 1(b). This
manually chosen approximation effectively adds a click-like com-
ponent to the tone and it is computationally efficient to implement.

Second, since the tone wheels were mechanical devices, the
rotating disks cannot be constructed to be perfectly symmetric.
These imperfections in the symmetry can be included to the model
with a small sinusoidal amplitude modulation (at the frequency
of the tone wheel rotation and the tremolo effect, five Hertz) that
simulates the small distance fluctuations between the disk and the
pickup. Similarly, the imperfections in the grooving of the disk
rim will produce the harmonics of the nominal frequency of the
wheel.

3. ROTATING SPEAKER EFFECT

The Leslie rotating speaker is constructed from two separate rotat-
ing units, the treble unit and the bass unit [4]. The treble unit is
formed by a symmetrical dual-horn structure which is rotated with
a motor. Only one of these horns is used for the sound reproduc-
tion with the other acting as a dummy for symmetrical mass and
form. These horns are quite directive and thus the output effect
contains significant amplitude modulation. Furthermore, the loca-
tion of the sound source is at the mouth of the rotating horn. This
means that the distance of the horn from the listener is changing
resulting in a frequency modulation effect.

The bass unit is constructed with a stationary loudspeaker with
produced sound fed through a rotating wooden drum. This drum
effectively adds a directional pattern to the bass sound and thus
generates amplitude modulation when rotated. Henricksen [4] also
mentions that it is possible that there is a frequency modulation ef-
fect present near the crossover frequency of the two units although
the amplitude modulation is the dominant effect.

To create a similar effect compared to the rotating speaker
both frequency modulation and amplitude modulation should be
applied similarly to the real speaker. Amplitude modulation is
simple to implement if the frequency-dependent directivity of the
loudspeaker is dismissed. Then it is enough to multiply the sig-
nal with a sinusoidal oscillator scaled appropriately for the desired
depth of effect.

The frequency modulation of an arbitrary signal can be pro-
duced by feeding the signal into a delay line and by modulating
the delay-line length [5]. However, in order to produce a smooth
effect, fractional-delay filters (like the linear interpolator) [6] have
to be applied, which makes the implementation more complex. An
alternative efficient solution is to apply spectral delay filters (SDF)
for this purpose.

Several studies have previously been published about the mod-
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eling of the Leslie rotating speaker. Smith et al. [7] simulated the
Doppler effect with interpolated delay lines and used Leslie sim-
ulation as an example case. Their implementation is comparable
to the one presented here. Kronland-Martinet and Voinier [8] pro-
vided a study on the perceptual simulation of moving sources and,
similarly to Smith et al., used the Leslie speaker as one of their
application examples. Herrera et al. [9] approached the task by
measuring impulse responses in a dense rotational pattern for both
units. They synthesized the effect by applying a time-varying FIR
filter.

3.1. Spectral delay filters

Spectral delay filters [10] are a recently proposed method for pro-
ducing a frequency-dependent delay with a first-order allpass filter
chain. One of their advantages is that the distribution of the delay
in frequency can be controlled with the filter coefficient. The spec-
tral delay filter is formulated by starting from a first-order allpass
filter with transfer function

H(z) =
a1 + z−1

1 + a1z−1
, (1)

where a1 ∈ [−1, 1] is the filter coefficient.
The magnitude response of this filter is 0 dB at all frequen-

cies. The phase response is nonlinear (unless a1 = 0) and thus
the group delay depends on frequency. The group delay of a single
allpass section can be calculated with

τg(ω) =
1− a21

1 + 2a1 cosω + a21
. (2)

With absolute values of filter coefficient a1 close to unity, the delay
can be quite large at some frequencies. For example, with a1 =
−0.9, the delay at low frequencies is close to 19 samples.

As SDF is a cascade of first-order allpass filters, the transfer
function an SDF is

H(z) =

(
a1 + z−1

1 + a1z−1

)N

, (3)

where N is the length of the filter cascade. This effectively mul-
tiplies the amount of produced delay while keeping the control of
delay distribution simple.

Pekonen et al. [11] and Kleimola et al. [12] studied the pos-
sibility of varying the filter coefficient of an SDF through time. It
was noted that the stability conditions for time-varying SDFs are
the same as with the single allpass filter, i.e. |a1| ≤ 1, if the condi-
tion holds for every time step n [11]. Here, the difference equation
of the Direct form I realization,

y(n) = m(n)x(n) + x(n− 1)−m(n)y(n− 1), (4)

where x(n) is the input signal, y(n) is the output signal, andm(n)
is the modulator signal, is used [13, 12].

The modulator signal, and how it is applied, can significantly
affect the produced effect. For example, a sinusoidal modulator
produces different effects if it varies between−1 and 1 or between
−1 and −0.9. Thus, for this paper, two additional variables are
defined for controlling the modulation. This is done by performing
the substitution

m(n) =Msm0(n) +Mb (5)

to (4). Here, m0(n) ∈ [−1, 1] is the unscaled modulator signal,
Ms is a modulator scaling term, and Mb is a modulator bias term.

3.2. Implementation

Based on the construction of the Leslie speaker, a model for imple-
mentation can be created. A block diagram of this model is shown
in Figure 2.

The modulating signal should be sinusoidal as that represents
the movement of the real speaker best. As there are separate mo-
tors for the treble unit and the bass unit in the real speaker, it is
prudent to also use two separate oscillators for modulation. This
enables the use of the characteristic speed-up and slowdown ef-
fects of the Leslie speaker where the bass unit accelerates slower
due to the inertia of the unit. This acceleration mismatch is simple
to implement with different modulator frequency envelopes.

The highpass and lowpass filters can be created with any suit-
able filter implementation although a digital version of the real
crossover filters would be preferable. In the demonstration imple-
mentation, these filters were fourth-order digital Butterworth IIR
filters with the cutoff frequency at 800 Hz.

Amplitude modulation can be implemented directly by multi-
plication with a scaled modulator. This scaling is done so that the
values of the sinusoid are between one and α, where α is a value
between 0 and 1.0. In the demonstration implementation, α was
selected to be 0.9 for both paths.

The frequency modulation is performed with two SDFs. The
parameters of the SDFs differ between the treble and the bass path-
ways to optimize the effect on both pathways. The parameters pre-
sented in Table 1 were found to produce a pleasant effect.

The modulator frequency fm for slow rotation speed was 2
Hz, and for the fast speed was 6 Hz. The modulator of the treble
pathway had 0.1 Hz higher frequency compared to the bass path-
way. This difference is introduced to model the motors running
at similar but slightly different speeds, as described by Henrick-
sen [4] mentioned that the speeds of the real motors are almost but
not exactly the same. It was found that the effect is slightly more
interesting when there is this mistuning present in the modulator
frequencies.

4. DISCUSSION

The organ model presented in Section 2 provides an imitation of
the original Hammond organ design. In general, the computational
load of the model is rather low as it requires only ten sinusoidal
oscillators when each of the nine tone components are generated
separately. The tenth oscillator is dedicated for the tremolo effect.
If the key click is included, one can use the output of the oscil-
lator that produces the sixth harmonic. For the example timbre
described in Section 2, only seven oscillators are required in total.
It should be noted, however, that the actual computational load, i.e.
the number of cycles used by the processor, depends on how the
sinusoidal oscillators are implemented and that the different sine
oscillator implementations may be computationally more costly in
some processors than in other processors.

The number of oscillators can obviously be decreased by tab-
ulating a predefined mixture of sinusoids into a wavetable. How-
ever, since there are numerous possible mixtures, the memory con-
sumption of the wavetable-based approach would be huge. There-
fore, for the general Hammond organ model the tones are gener-
ated more efficiently by synthesizing each of the sinusoids sep-
arately. Yet, for a small set of predefined mixtures that are not
modified afterwards, like in the case of the example timbre of this
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Modulator 1

HPF SDF 1 AM

LPF SDF 2 AM +

Modulator 2

x(n)

y(n)

Figure 2: Block diagram of the rotator effect.

Table 1: Parameter values for the SDFs in Figure 2.

Parameter Treble (SDF1) Bass (SDF2)

SDF length N 4 3
Modulator scaler Ms 0.2 0.04
Modulator bias Mb -0.75 -0.92

paper, the wavetable-based approach does provide a computation-
ally efficient implementation.

The Leslie model presented in Section 3 produces a perceptu-
ally pleasant rotator effect. However, the model is not complete
and could be extended in various ways, e.g. modeling the cabi-
net and the loudspeaker elements, and low-complexity methods
should be implemented for them in the future. Nonetheless, the
advantages of this implementation are evident. The computational
complexity is quite low as the filters are of low order and otherwise
there are only a few required operations. Furthermore, the imple-
mentation is simple as the same oscillators can directly modulate
the amplitude of the signal and the filter coefficients of the SDFs.
Only proper scaling is required to produce the desired effect.

5. CONCLUSION

A computationally efficient model of the Hammond organ and the
Leslie rotating speaker were presented. The original design of the
Hammond organ was described and its digital implementation was
discussed. A practical example setup for the organ timbre was
given, and extensions to the model were discussed. A perception-
based model of the Leslie rotating speaker was proposed based
on time-varying spectral delay filters (SDFs). Practical parameters
for the SDFs were presented and modeling of the two operating
speeds of the original speaker was discussed. In addition, the com-
putational load of both the Hammond organ model and the Leslie
rotating speaker was discussed and analyzed.

As stated above, the proposed digital Hammond organ model
is a simplification of the original electromechanical device. The
model neglects the crosstalk, or tone leakage, of the tone wheels to
their neighboring pickups. This feature can be included by adding
the sinusoids generated by the neighboring tone wheels with rela-
tively small amplitudes to the tone wheel output signal (that is, the
sinusoid). However, it should be noted that the frequencies of the
crosstalk components depend on the ordering of the tone wheels,
and therefore no general rules can be given for the tone leakage
modeling. Furthermore, this feature can increase the computa-

tional complexity of the algorithm quite much and was therefore
not included in the proposed model in the first place. In addition,
the proposed organ model does not include the imperfections in
the disk rim grooving.

Sound examples of the proposed organ and speaker models
can be found online at http://www.acoustics.hut.fi/
go/dafx11-hammond/.
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ABSTRACT
Regression problems with mixed-norm priors on time-frequency
coefficients lead to structured, sparse representations of audio sig-
nals. In this contribution, a systematic formulation of thresholding
operators that allow for weighting in the time-frequency domain is
presented. The related iterative algorithms are then evaluated on
synthetic and real-life audio signals in the context of denoising and
multi-layer decomposition. Further, initial results on the influence
of the shape of the weighting masks are presented.

1. INTRODUCTION

Most audio signals of importance for humans, in particular speech
and music, are highly structured in time and frequency. Typically,
salient signal components are sparse in time (or frequency) and
persistent in frequency (or time). Sparsity in time is connected
to transient events, while sparsity in frequency is observed in har-
monic components. Processing sound signals with time-frequency
dictionaries is ubiquitous. The sparse structure usually seen can
be further enhanced by procedures such as basis pursuit [1] or `1-
regression [2]. In the context of time-frequency dictionaries, a nat-
ural step beyond classical sparsity approaches is the introduction
of sparsity criteria which take into account the two-dimensionality
of the time-frequency representations used. Mixed norms on the
coefficient arrays make it possible to enforce sparsity in one do-
main and diversity and persistence in the other domain. Regression
with mixed-norm priors was first proposed in [3]. In the current
contribution, we consider a family of specific regression problems
with `1 and `2 priors on the coefficients; the algorithms derived
thereof are refined by using local neighborhood-weighting. The
performance of the resulting different operators is systematically
evaluated for classical signal processing tasks like de-noising and
sparse multi-layer decomposition. Applications lead to quite sat-
isfactory results in terms of measured (SNR) and listening.
The presented results reflect a first step in the exploitation of struc-
tured shrinkage in the sense of informed analysis, i.e., using some
available prior knowledge about the signal under consideration.
The main contribution is the generalization and application of struc-
tured shrinkage operators [3] to representations of audio signals by
frames.

2. TECHNICAL TOOLS

We seek to expand a signal s ∈ CL in the form

s(n) =
∑

k,j

ck,jϕk,j(n) + r(n), n = 1, . . . , L (1)

This work was supported by the Austrian Science Fund (FWF) project
LOCATIF(T384-N13) and the WWTF project Audio-Miner (MA09-024)

where the ϕk,j denote the atoms of a time-frequency dictionary Φ,
ck,j are the expansion coefficients and r is some residual. In order
to guarantee perfect and stable reconstruction of a signal from its
associated analysis coefficients ck,j = 〈s, ϕk,j〉, we assume that
the dictionary Φ forms a frame [4]. We consider Gabor frames,
which are exhaustively used in music processing, be it under a
different name: in their simplest instantiation they correspond to
a sampled sliding window or short-time Fourier transform. Gabor
frames consist of a set of atoms ϕk,j = MbjTkaϕ, where Tx and
Mω denote the time- and frequency-shift-operator, resp., defined
by Txϕ(n) = ϕ(n − x), Mωϕ(n) = ϕ(n)e

2πinω
L , and ϕ is a

standard window function. a and b are the time- and frequency
sampling constants, and j = 0, . . . , J − 1, k = 0, . . .K − 1, with
Ka = Jb = L.
We will even assume more, namely tightness of the frames in use,
which means that, up to a constant which may be set to 1, we have
s =

∑
k,j〈s, ϕk,j〉ϕk,j , i.e., synthesis is done with the analysis

window. Tight frames are easily calculated, see [5]. In the finite
discrete case, the frame’s atoms constitute the columns of a matrix
Φ which is of dimensionL×p; for tight frames, we have Φ·Φ∗·s =
s. Since we are especially interested in the redundant case L < p,
the additional degrees of freedom are used to promote sparsity of
the coefficients.

2.1. Regression with mixed norms

Sparsity of coefficients may be enforced by `1-regression, also
known as the Lasso [2]. Given a noisy observation y = s + e
in CL it finds

ĉ = arg min
c∈Cp

1

2
‖y − Φc‖22 + λΨ(c) (2)

with penalty term Ψ(·) = ‖ · ‖1 and λ > 0. Since the sequence
ck,j is ordered along two dimensions for Gabor frames, the `1-
prior Ψ in (2) may be replaced by a two-dimensional mixed norm
`p,q which acts differently on groups (indexed by g in the sequel,
may be either time or frequency) and their members (indexed by
m):

Ψ(c) = ‖c‖p,q =


∑

g

(∑

m

|cg,m|p
)q/p


1/q

(3)

Subsequently, the notation (g,m) will be used in reference to the
group-member structure, whereas (k, j) refers to the time-frequency
indices of the Gabor-expansion. In terms of `p,q , we consider the
cases p = 2, q = 1 and p = 1, q = 2. The former is known as
Group-Lasso (GL) [6] (promoting sparsity in groups and diversity
in members) and the latter was termed Elitist-Lasso (EL) in [3]: the
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`1,2 constraint promotes sparsity in members, only the “strongest”
members (relative to an average) of each group are retained.
Landweber iterations, which solve (2) in the `1-case, [4], also yield
a solution to the generalized minimization problem induced by (3),
if standard soft thresholding is replaced by a generalized threshold-
ing operator Sλ,ξ(zg,m) = zg,m(1 − ξ(z))+. Here, ξ = ξ(g,m),λ

is a non-negative function dependent on the index (g,m) and λ.
The solution to (2) is then given by the iterative Landweber algo-
rithm: choosing arbitrary c0, set

cn+1 = Sλ,ξ(cn − Φ∗(y − Φcn)). (4)

It was shown in [7], that the use of the thresholding operators Sλ,ξ,
defined via ξ, leads to convergence of the iterative sequence (4) to
the minimizer of (2):

p = 1, q = 1 : ξL(cg,m) =
λ

|cg,m|
(Lasso) (5)

p = 2, q = 1 : ξGL(cg,m) =
λ

(
∑
m |cg,m|2)

1
2

(GL) (6)

p = 1, q = 2 : ξEL(cg,m) =
λ

1 +Mgλ

‖cg‖1
|cg,m|

(EL) (7)

where cg = (c′g,1, . . . , c
′
g,Mg ) and {c′g,m′}m′ denotes for each

group g the sequence of scalars |cg,m| in descendant order. Mg

denotes some natural number depending on the magnitudes of co-
efficients in the group (cg,1, . . . , cg,M ) 1.

2.2. Refining the algorithms

To exploit structures in audio signals, like persistence in time or
frequency, we refine the shrinkage operators introduced above for
application in audio analysis. The coefficient cg,m (or groups
of them) undergo shrinkage according to the energy of a time-
frequency neighborhood. In contrast to the groups of GL and
EL, the neighborhoods can be modeled flexibly, e.g., using weight-
ing and overlap. Hence, we compose ξ with some neighborhood
weighting functional ηN :
To an index γ = (g,m) in a structured index set I, we associate
a (weighted) neighborhood N(γ) = {γ′ ∈ I : wγ(γ′) 6= 0}
with weights wγ defined on I such that wγ(γ) > 0, wγ(γ′) ≥ 0
for all γ′ ∈ I and

∑
γ′∈N(γ) wγ(γ′)2 = 1. Then, with ηN (cγ) =

(∑
γ′∈N(γ) wγ(γ′)2|cγ′ |2

)1/2
, we obtain the generalized shrink-

age operators by setting2

ξWGL = ξL ◦ ηN (windowed GL (WGL)),

ξPEL = ξEL ◦ ηN (persistent EL (PEL)),

ξPGL = ξGL ◦ ηN (persistent GL (PGL))

in (5)-(7). These generalized shrinkage operators are not associ-
ated to a simple convex penalty functional, cp. [3]. Convergence
properties of their Landweber-iterations are currently under study,
and numerical experiments suggest convergence.

1Cp. [7] for a more involved, but exact definition of the Mg in EL.
2[3] introduces WGL as generalization of GL while from a formal point

of view it would be more appropriate to call it windowed Lasso. Nonethe-
less, we stick to the former nomenclature.

Figure 1: Sketch of different shapes of the parameterization of the
neighborhoods in a schematic time-frequency plane. Rectangular
and triangular (“tent”-like) windows were implemented.

3. SIMULATIONS

The generalized shrinkage operators were implemented in MATLAB
with the following parameterization of the neighborhoods: For
each time-frequency-index (k, j) and a neighborhood size vector
σ = (σ1, . . . , σ4), the neighborhood Nσ is defined as the set of
indices Nσ(k, j) = {(k′, j′) : k′ ∈ {k − σ4, k + σ2}, j′ ∈
{j − σ3, j + σ1}}. Neighborhoods of indices close to a border of
the time-frequency plane are obtained by mirroring the index set at
the respective border. Rectangular and triangular weighting of the
neighborhoods was implemented, with rectangular weighting only
in section 3.1 and 3.2. In the plots, an index after the operator’s
abbreviation specifies the group-label as time or frequency (not
needed for Lasso and WGL), e.g., PEL-t signifies that the group in
the respective elitist lasso is time. For the neighborhood-smoothed
operators WGL, PEL, and PGL the neighborhood-size vector σ is
given. To test the obtained variety of shrinkage operators, we used
a simulated “toy”-signal consisting of a stationary, a transient and
a noise part.3 The stationary part consists of four harmonics with
fundamental frequency 440Hz and decreasing amplitudes. The ob-
tained harmonics were shaped by a linear envelope in attack and
decay. The transient part was simulated by 4 equidistant impulses
with similarly decaying amplitudes. Finally, Gaussian white noise
with SNR about 15 and 3dB was added.
Landweber iterations are known to converge very slowly and var-
ious methods of acceleration have been proposed [8]. As it was
out of the scope of this paper to elaborate on these ideas, we used
the basic iteration scheme (4). The iterations presented in the fol-
lowing were stopped after 100 steps. Then almost all of the final
relative iteration errors were below 0.3%.

3.1. Structured denoising

As a first experiment the standard de-noising problem with addi-
tive Gaussian white noise was considered. We use a tight Gabor-
frame with Hann window of length 1024 and hop size 256 (at
sampling rate 44100Hz). We measure the operator’s performance
in SNR: with the estimation’s approximate Landweber-limit c∗ of
(4) and ŝ = Φc∗, the SNR is SNR(ŝ, s) = 20 log10( s

ŝ−s ).
For comparison, the SNR is then plotted against the number of
positive coefficients. Of the variety of possible operators, Fig-

3Corresponding sound files and more detailed visualizations are
presented at the conference and on the webpage http://homepage.
univie.ac.at/monika.doerfler/StrucAudio.
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ure 2 presents the SNR curves of the best basic operators and their
neighborhood smoothed counterparts (of which again the best of
each type were chosen for the figure) at two different noise levels.
It is obvious that for the lower noise level Lasso and WGL (with
neighborhoods in frequency) perform best, where the WGL still
outperforms the Lasso. Also, WGL with neighborhoods in time
outperforms Lasso for the higher noise level. Yielding high SNR
over a broad range of sparsity values, WGL thus seems to be a
good choice for the de-noising task (and we made the same obser-
vations for “real life”-audio signals). Compared to WGL, the other
operators GL, PGL, EL and PEL perform quite badly for the lower
noise level. While PGL is constantly worse than GL, PEL seems
to have some advantages over EL for higher sparsity levels. How-
ever, GL is surprisingly the second best operator for de-noising the
toy example at the high noise level. Experiments with longer and
more complex audio excerpts do not replicate this result, which is
not surprising, since the structure of GL naturally promotes simple
signal structures (which can be advantageous in some cases, see
3.2). Conclusively, the neighborhood smoothing seems to pay off
in the de-noising task with Gaussian white noise, where the per-
sistent operators WGL and PEL outperform their respective coun-
terparts Lasso and EL. An exception is made by PGL, which per-
forms in our experiments constantly worse than GL. Concerning
the perceptual quality of the de-noised audio-material, the neigh-
borhood smoothing of the modified operators promotes continuity
in the coefficients and thus reduces the probability of isolated high
energy coefficients and we observed less musical noise and higher
perceptual audio quality, especially under WGL.

3.2. Multilayer decomposition

We continue processing the toy-example by aiming to extract the
signal’s tonal and transient parts at the lower noise level (15dB
SNR). For estimating the tonal layer, we use a tight Gabor frame
with Hann window, window-length 4096 and hop size 1024. The
transients are estimated starting from the transient layer + noise
(which corresponds to the unrealistic but complexity reducing as-
sumption of perfect tonal estimation) using short windows (256
samples, hop size 64). Table 1 and 2 present the performance of a
sample of operators, again of each type a “basic” and neighborhood-
smoothed one. The tables show the maximum SNR value of the
estimation measured w.r.t. the “true” respective layer and the cor-
responding percentage of retained coefficients.
Concerning the tonal estimation displayed in Table 1, WGL with
neighborhoods expanding in time perform best for the extraction
of the tonal part in terms of SNR, while retaining relatively few
coefficients. GL, PGL and PEL exhibit comparable SNR, but only
with far more coefficients. As in the situation of de-noising above,
the neighborhood-smoothing is useful for the Lasso and the Elitist-
Lasso, but not for Group-Lasso.
As Table 2 shows clearly, GL with time as group-index performs
best in terms of SNR for the estimation of the transient layer. This
result is not very surprising since the example’s transient layer has
a simple structure which supports the performance of GL. How-
ever, GL-t should be a good choice for transient extraction in more
complex signals, since it yields broadband transients without ex-
tracting many horizontal (tonal) signal parts.
The next experiment addressed the decomposition of musical au-
dio without the presence of quasi-ground truth. For this “real-life”
application, the choice of sparsity level λ is always a difficult task.
We chose the SNR-maximizing candidates from the simulations.
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Figure 2: Overview of de-noising behavior of (modified) shrink-
age operators (l is for Lasso). Performance measured in SNR
against the number of positive coefficients at two different noise
levels (15dB and 3dB).

This yielded WGL (with rectangularly weighted neighborhoods
extending 4 elements in each direction of time) as estimator of
the tonal layer with sparsity level λ = 0.080, and GL (with the
time-index as group label) for the transient layer with λ = 0.072.
We used a 5 seconds excerpt of a Jazz-record containing piano,
double-bass and drums. In the decomposition, the drums (and
some percussive elements of the bass) are well separated from
the harmonics of piano and bass. Using GL as transient estima-
tor works well in this example, it captures all of the soft 16th notes
drum-patterns. We observed a trade-off in the choice of the spar-
sity level: increasing sparsity in the tonal estimation improves the
separation of both layers but leads to increased damping of higher,
low-energy partials of the tonal part.

3.3. Shapes

As described at the beginning of this section, the neighborhoods’
shapes (constituted by size and weighting) were implemented and
parametrized in a straight-forward fashion, so far allowing for rect-
angular domains with either uniform (i.e. rectangular) or triangular
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Table 1: Comparison of the performance of different operators in
tonal estimation: maximum SNR values of estimation and “true”
layer and corresponding number of retained coefficients in per-
cent. ∗ refers to neighborhoods (4, 0, 4, 0) while + to (0, 4, 0, 4).

Operator
Lasso WGL+ GL-f PGL-f∗ EL-t PEL-t+

max. SNR 28.7 31.2 30.5 30.7 26.2 30.6
%Coeffs 0.4 1.1 3.3 17.0 2.8 4.1

Table 2: Transient estimation: maximum SNR values of estima-
tion and “true” layer and corresponding number of retained co-
efficients in percent. As above: ∗ means (4, 0, 4, 0) and + means
(0, 4, 0, 4).

Operator
Lasso WGL∗ GL-t PGL-t+ EL-f PEL-f∗

max. SNR 10.4 13.2 14.4 9.5 10.4 13.3
%Coeffs 1.0 2.9 2.2 38.9 1.4 3.7

(i.e. “tent”-like) weightings. These shapes do not necessarily have
to be symmetric at the origin, as the energy of most audio signals is
not symmetrically distributed around its peaks either. This fact can
be exploited to feature different parts of a signal under observa-
tion. Consider Figure 3, where the iterated WGL-shrinkage results
with four different neighborhood-shapes, each solely extending in
time, are compared (based on a Gabor-frame with window length
1024 and overlap of 4). It is obvious that the shapes yield different
(sparse) perspectives on the signal content. Whereas the symmet-
ric neighborhoods naturally captures parts before and after the at-
tacks (or rather time-points of maximum energy), the asymmetric
ones rather retain components before (resp. after) the attacks. The
orientation of the neighborhood therefore systematically promotes
the preservation of different temporal segments of the signal.

4. SUMMARY AND PERSPECTIVES

We presented first results on structured sparsity approaches for Ga-
bor frames to audio signals. Future work will focus on the conver-
gence of the algorithms, both in a theoretical and computational
setting. By taking into account methods as [9] the proposed algo-
rithms should be accelerated significantly. On the contrary, eval-
uations of the algorithms’ perceptual qualities will be considered.
Further, using various shapes for the weight, we aim at the extrac-
tion of more specific structures, in the sense of sound objects [10].
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ABSTRACT

The telephone sound effect is widely used in music, television and
the film industry. This paper presents a digital model of the carbon
microphone nonlinearity which can be used to produce a vintage
telephone sound effect. The model is constructed based on mea-
surements taken from a real carbon microphone. The proposed
model is a modified version of the sandwich model previously
used for nonlinear telephone handset modeling. Each distortion
component can be modeled individually based on the desired fea-
tures. The computational efficiency can be increased by lumping
the spectral processing of the individual distortion components to-
gether. The model incorporates a filtered noise source to model
the self-induced noise generated by the carbon microphones. The
model has also an input level depended noise generator for addi-
tional sound quality degradation. The proposed model can be used
in various ways in the digital modeling of the vintage telephone
sound.

1. INTRODUCTION

The age of telephone started during the 1870’s when Bell patented
the electromagnetic telephone. The viability of electroacoustic
transmission was increased when Edison patented the carbon mi-
crophone. The transmission distances grew to a level where the
telephone became an important method of communication due to
the fact that they were easy to manufacture at a fairly low cost.
Later on, carbon microphone performance was improved in vari-
ous steps. About of century later, carbon microphones were out-
dated and replaced with more sophisticated microphone designs
[1].

The telephony in the present day has changed greatly since
early days. Traditional analog telephone networks were digitized,
and later on cellular phones superseded local line telephones. Old
fashioned analog telephone technology is still used in some third
world countries, but is vanishing as the mobile communication
technique is getting more popular. Some work has been done to
maintain the cultural heritage of vintage audio recordings in form
of digital modeling of recording and playback instruments of such
era [2] and also in the field of vintage telephony [3].

The vintage telephone sound effect is widely used in the music
industry. From a musical perspective, the telephone sound effect
is typically used in modifying the singing voice. Complete mu-
sic tracks can be processed with the telephone effect to make an
illusion that they have been produced a long time ago. Another
important field is the television and film industry where the tele-
phone sound effect is widely used is occasions where telephone
discussions are shown.

The scope of this paper is to introduce a method for modeling
the nonlinear features of a carbon microphone to create a vintage
telephone sound effect. The proposed model is flexible and can
be adjusted to meet the demands of the computational efficiency.
The modeling accuracy can be increased in occasions where more
realistic outcome is wanted.

This paper is organized as follows. in Sec. 2 the key ele-
ment of the vintage telephone, the carbon microphone, is reviewed.
Next, the measured distortion characteristics of a carbon micro-
phone are presented. In Sec. 3 the modeling of the carbon micro-
phone nonlinearity is inspected. A novel method for the carbon
microphone nonlinearity approximation is presented in Sec. 4 and
a case example of modeling a carbon microphone using the pro-
posed model is presented in Sec 5. Finally, the conclusions are
drawn in Sec. 6.

2. CARBON MICROPHONE MEASUREMENTS AND
DISTORTION ANALYSIS

In general, telephone systems have a very limited transmission
band and signal transmission is highly nonlinear [4]. Most of
the nonlinearity is originates in the carbon microphones. The sec-
ond harmonic is usually the most dominant [5]. Transmission line
terminations, telephone receivers and switches are also known to
cause nonlinearities.

Carbon microphones are typically made of a metallic cup which
is filled with carbon granules. On top of the cup there is a di-
aphragm which will transform the air pressure variation into a
movement which will affect the resistance of the carbon granules.
The carbon microphone is equipped with a DC bias voltage source
which has one pole connected to the electrically connective di-
aphragm and the other to the bottom of the cup. The changing re-
sistance generates electrical signal which can then be electrically
transmitted. The harmonic frequency response of a carbon micro-
phone is typically dominated by peaks around the 2 kHz and 3 kHz
areas. Due to their construction, carbon microphones are known
to produce harmonic distortion which gives the sound output its
unique characteristics [5].

The nonlinear behavior of carbon microphones was analyzed
using the nonlinear system identification method [6] based on a
Hammerstein model [7]. The nonlinear system under investigation
is excited with a swept-sine input signal while the system response
is recorded. Then the system response is convolved with the time
reversed excitation signal which is multiplied with an exponen-
tially decaying amplitude envelope. As a result, a series of im-
pulse responses representing the linear response (see Fig. 1 upper
part) and corresponding harmonic distortion component responses
is generated (see Fig. 1 lower part). The linear contribution is the
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Figure 1: Upper figure, series of impulses resulting from the
logsweep analysis of a carbon microphone. The impulse of a lin-
ear contribution is at the time origin and corresponding distor-
tion component impulse responses are on the negative time axis.
Lower figure, the linear response is marked with number 1 and the
harmonic distortion components with numbers from 2 to 5 (third-
octave smoothing is applied).

most dominant in the deconvolved impulse response and is pre-
ceded by the impulse responses of the distortion components.

An example of a carbon microphone response with a few low-
est distortion components is presented in Fig 1. The linear re-
sponse (marked with number 1) follows quite closely the single-
button carbon microphone response described in [4]. The har-
monic distortion components (marked with numbers 2-5) gives an
approximate estimate of the total harmonic distortion as a func-
tion of frequency of the microphone under investigation. The sec-
ond harmonic distortion component is the most dominant whereas
the following components are more attenuated. The measurements
were done for a telephone carbon button microphone from the late
60s.

The measurement setup consisted of a PC which was control-
ling the sample playback and recording. The measurement soft-
ware was written in MATLAB [8]. The measurements were con-
ducted in an anechoic chamber where the excitation signal was
produced using an active loudspeaker with known frequency re-
sponse. The reference signal was measured using B&K 4192 mi-
crophone. The carbon microphone under investigation was mounted
to a LM Ericsson telephone handset from the 1970’s. The car-
bon microphone was connected to a custom made microphone
pre-amplifier which provided a 1.5-V bias voltage to the carbon
microphone under investigation. The handset was mounted on a
microphone stand that was placed at a 1 m distance in front of
the speaker. The microphone responses were measured at approx-
imately 80 dB SPL at the measurement point.

3. PROPOSED MODEL

The proposed model is based on the sandwich vintage telephone
model presented by Välimäki et al. [9]. The nonlinearity of the
proposed model is produced using the Chebyshev model for au-
dio effects presented by Novak et al. [10]. The nonlinear com-
ponents are modeled using Chebyshev polynomials together with

individual impulse responses for each distortion component. The
main components of the proposed model are presented in Fig 2.
First, the input signal is bandlimited by using a linear pre-filter
(Line EQ). The nonlinearity is realized by using the output of the
pre-filter as an input signal to the distortion component generation
block where each distortion component is generated individually.
Carbon microphones are known to generate noise [11, 12]. The
self-induced noise of the carbon microphone is realized by adding
a suitable amount of filtered noise to the pre-filtered and the dis-
torted signal. The noise level is controlled with the Gp parameter.
Some extra degradation to the output signal is created by adding
some input signal dependent white noise to the filtered noise. Fi-
nally, the output signal is constructed by mixing the linear response
with the distortion components and the generated noise. The sys-
tem output is then fine-tuned with a band-limiting post filter (Post
EQ). The nonlinear system modeling is done by processing each
distortion component.

3.1. Pre-Filter (Line EQ)

The linear pre-filter is constructed based on the measured carbon
microphone frequency response instead of the synthetically con-
structed response presented in [3]. The pre-filter can be realized
by using the measured impulse response as FIR filter coefficients.
A computationally more efficient realization can be achieved by
using for example Prony’s method to construct an IIR filter ap-
proximation of the impulse response.

3.2. Nonlinearity

According to Novak et al. [10] the nonlinearity is produced by re-
flecting the input signal to the corresponding harmonic distortion
component frequency by using the first-order Chebyshev polyno-
mial definition

Tn(x) = cos(nθ), where x = cos(θ). (1)

The corresponding Chebyshev polynomials Tn(x) are defined re-
cursively as

Tn(x) = 2xTn−1(x)− Tn−2(x), n = 2, 3 . . . , (2)

using the initial conditions

T0(x) = 1, T1(x) = x. (3)

In the proposed model the nonlinearity is produced by using the
linear response for each distortion component. However, this is
not the optimal solution for modeling of the exact physical be-
havior of the carbon microphone, but it offers a computationally
more efficient solution compared to the use of individual impulse
responses for each component.

To add more realism to the model, the distortion component
can be adjusted by using a separate Regalia-Mitra equalization fil-
ter [13]. This equalization filter can be used to fine-tune the com-
putationally efficient distortion components realization, to add de-
sired spectral tilt or to boost or attenuate certain frequency range.
The transfer function of the second-order peak filter is given by

H(z) = 1 +
H0

2
[1−A2(z)], (4)

where A2 is realized using a second-order allpass filter section.
The output of the nonlinear section is constructed by creating a
weighted sum of the distortion components using the gain coeffi-
cients G2 . . . Gn as shown in Fig 2.
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Figure 2: Block diagram of the proposed effect model.

3.3. Self-Induced Noise Generation

The input signal dependent noise can be used to increase the im-
pression of failures in the microphone signal. The input signal de-
pendency is created by modulating the white noise amplitude with
the input signal envelope. The input signal envelope is obtained by
applying the Hilbert transform to it and lowpass filtering the result
with a second-order Butterworth filter with cutoff frequency set to
700 Hz. From the measurement results can be seen that the mi-
crophone output produces a background noise spectrum close to a
1/f relation. The constant background noise is realized by adding
a suitable amount of filtered noise to the distorted signal.

3.4. Post-Filter (Post EQ)

The post-filter is used to reduce the bandwidth to the desired level.
In telephony the transmission band is typically from 300 Hz to
3400 Hz. A post-filter meeting this requirement can be imple-
mented by using a fourth-order Butterworth bandpass filter with
400 Hz and 2800 Hz as transition points. The sound effect can
be enriched by setting the upper threshold value even higher. This
would result in to having more harmonic distortion components in
the sound effect output. The steepness of the band limitation can
also be adjusted to meet the desired output. Finally the distortion
components are summed with the linear response and the noise
output to generate the sound effect output.

4. MODELING OF THE CARBON MICROPHONE
NONLINEARITY

A digital implementation of the telephone sound effect may be
based on the sandwich model where a static nonlinearity is pre-
ceded by a linear pre-filter and followed by a linear bandlimiting
post-filter (See Fig. 3). Originally this model was used to esti-
mate the nonlinear behavior of telephone handsets by Quatieri et
al. [14]. Recently, this method was applied to telephone sound
modeling by Välimäki et al. [9].

The nonlinearity approximation is based on Taylor series poly-
nomials which are used as static nonlinearity functions [14]. The
following approximation is controlled with the nonlinearity pa-
rameter α and is valid for low values

Q(u) =

{
(1− α)u∑∞k=1 α

kuk, u ≤ 1, |α| < 1
1, u > 1,

(5)

where u is the input signal and k is the model order. An example
of a logsweep analysis of this model output using a measured mi-

x[n]

White 
Noise

Linear
Pre-Filter

Linear
Post-Filter

Nonlinear
Filter

y[n]

Figure 3: Sandwich model for the telephone sound effect where the
nonlinearity is produced with a static nonlinear function [9].

crophone response is presented in Fig. 4. The model is capable
of producing the linear response but fails in producing accurately
the distortion components. The level of third-order and higher har-
monic components is greatly attenuated compared to the measured
response.
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Figure 4: Logsweep analysis of the simple sandwich model with
a static nonlinearity (N=5). The linear response is marked with
number 1 and the harmonic distortion components with numbers
from 2 to 5 (third-octave smoothing is applied).

5. RESULTS

The model was tested by constructing the pre-filter from the mea-
sured carbon microphone response and the nonlinearity was mod-
eled based on the harmonic distortion analysis. The FIR pre-filter
was constructed from the measured system impulse response. To
limit the model computational complexity the distortion compo-
nents were composed from the pre-filtered input signal. This does
not exactly follow the actual carbon microphone distortion compo-
nent behavior, but results in more realistic distortion characteristics
(Fig. 5) compared to the simple sandwich model (Fig. 4).

The pre-filtered signal was conditioned to correct the low-
frequency attenuation by designing a second-order Regalia-Mitra
equalization filter by boosting the filter resonance frequency of 300
Hz by 30 dB. The resonance width was controlled with the Q-value
of 0.4. The resulting logsweep analysis of the model output is pre-
sented in Fig. 5. It can be seen that the distortion components have
a larger gain at the frequencies from 100 Hz to 1 kHz compared
to the simplified model. The magnitude of each distortion compo-
nent can be adjusted by setting the gain coefficients (G2 . . . Gn) to
match the desired level. In this example the gain coefficients were
adjusted as follows, G2=0.7, G3=0.5, G4=0.4, and G5=0.5 as the
linear part gain was 1. The background noise was controlled with
the filtered noise gain setting of Gp=0.009.

The model output for a 1-kHz sinusoidal excitation signal and
corresponding measurement are presented in Fig 6. It can be seen
that the distortion components produced with this model follow
quite closely the measured values. However, it should be noted
that the distortion component spectra are approximated with the
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Figure 5: Logsweep analysis of the model output. The linear re-
sponse is marked with number 1 and the harmonic distortion com-
ponents with numbers from 2 to 5 (third-octave smoothing is ap-
plied). compare with lower part of the Fig. 1.

measured linear microphone response and this might result in de-
viation between the model output compared to the actual response
to be modeled. The effect can be reduced by using the measured
responses in each modeled distortion component. Sound examples
are made available through a website for downloading1.

6. CONCLUSIONS

A method for modeling carbon microphone nonlinearities for the
telephone sound effect was presented in this paper. The proposed
model consists of the modified sandwich nonlinear model and noise
generation block. The nonlinearity is modeled by using Cheby-
shev polynomials and distortion component frequency responses
individually for each distortion component. The model allows to
control each distortion component and the model can be scaled
according to computational limitations.

A case study of modeling carbon button microphone nonlin-
earity was presented and was found out that the proposed model
can be used to approximate the nonlinearities in telephone sound
effect. In this example the computational efficiency was improved
by modeling the distortion components using the linear frequency
response instead of individual responses. The input signal depen-
dent noise can also be added to the degradation process to create
more disturbances to the sound.
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ABSTRACT

The nodal DK method is a systematic way to derive a non-linear
state-space system as a physical model for an electrical circuit.
Unfortunately, calculating the system coefficients requires inversion
of a relatively large matrix. This becomes a problem when the
system changes over time, requiring continuous recomputation of
the coefficients. In this paper, we present an extension of the DK
method to more efficiently handle variable circuit elements. The
method is exemplified with the Dunlop Crybaby wah-wah effect
pedal, as the continuous change of the potentiometer position is an
extremely important aspect of the wah-wah effect.

1. INTRODUCTION

The nodal DK method is a systematic way to derive a non-linear
state-space system as a physical model for an electrical circuit [1, 2].
Computation of the system coefficients involves inverting a system
matrix, the size of which is determined by the number of circuit
nodes, which is typically significantly higher than the order of the
resulting system. While for time-invariant systems the inversion has
to be performed only once, problems arise when variable elements
like potentiometers are introduced. In that case, the computational
load for continuous recalculation of the coefficients may become
prohibitively large when following the straight-forward approach.
Therefore, in this paper we present a more efficient recomputation
scheme.

We exemplify the method with the Dunlop Crybaby wah-wah
effect pedal, as the continuous change of the potentiometer position
is an extremely important aspect of the wah-wah effect. Whether
a full-featured non-linear physical model of the wah-wah is really
necessary or simpler approaches (e.g. as described in [3]) suffice
is anyone’s choice; but the circuit is well suited to explain the
technique presented in this paper which is why it is used here. The
main part of the circuit is depicted in Figure 1. Omitted here are the
input stage and the power-supply filter. The input stage is a simple
AC-coupled emitter-follower which for reasonable input amplitudes
may be well approximated by a linear high-pass filter. The output
of that filter is used as the input voltage Vi. The supply voltage Vcc
is obtained from the battery by an RC network which stabilizes the
supply to about 90% of the battery voltage. The stabilization is
sufficient to assume constant Vcc.

2. REVIEW OF THE DK METHOD

We shall start with a review of the nodal DK method because
compared to [1], we use a slightly different discretization scheme

for inductors and we need to more rigorously define the involved
steps in terms of matrix operations in order to derive the simplified
update scheme.

2.1. Companion circuits

The first step is to replace the energy-storing elements (capacitors
and inductors) with so called companion circuits, obtained from
discretization. In particular, from the differential equations

iC =C
d
dt

vC vL = L
d
dt

iL (1)

for capacitor and inductor, by applying the trapezoidal discretization
scheme, we get the discrete-time approximations

1
2
(
iC(n)+ iC(n−1)

)
=

C
T

(
vC(n)− vC(n−1)

)
(2)

1
2
(
vL(n)+ vL(n−1)

)
=

L
T

(
iL(n)− iL(n−1)

)
(3)

where T denotes the sampling interval. Solving for the current time
step’s currents then yields

iC(n) =
2C
T

(
vC(n)− vC(n−1)

)
− iC(n−1) (4)

iL(n) =
T
2L

(
vL(n)+ vL(n−1)

)
+ iL(n−1), (5)

where both the voltages and the currents hold state information.
We may, however, introduce canonical states xC(n) and xL(n) by
substituting

iC(n) = xC(n)−
2C
T

vC(n) (6)

iL(n) =−xL(n)−
T
2L

vL(n) (7)

in Equations (4) and (5) to get

xC(n)−
2C
T

vC(n) =
2C
T

vC(n)− xC(n−1) (8)

−xL(n)−
T
2L

vL(n) =
T
2L

vL(n)− xL(n−1), (9)

leading to the final state update equations

xC(n) = 2
2C
T

vC(n)− xC(n−1) (10)

xL(n) =−2
T
2L

vL(n)+ xL(n−1). (11)
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Figure 1: Schematic of the analyzed Crybaby circuit with numbering of the nodes indicated.

i(n)

R x(n−1)v(n)

Figure 2: Companion circuit for capacitor (R = T
2C ) and inductor

(R = 2L
T ).

By substituting Equations (10) and (11) in Equations (6) and (7),
we obtain

iC(n) =
2C
T

vC(n)− xC(n−1) (12)

iL(n) =
T
2L

vL(n)− xL(n−1), (13)

defining our companion circuit as shown in Figure 2. We hence re-
place all energy-storing elements with resistors and current sources,
where the current sources depend on the previous time step and
thereby hold the state information. We can thus analyze a circuit
containing only resistors and sources (as described next) and then
use the results to update the states (by Equations (10) and (11)),
resulting in the next steps source currents.

2.2. Nodal K-method

The circuit is now analyzed using the nodal K-method. We define a
reference node, the ground node as is common, and introduce the
potentials ϕm of the other nodes and the currents is,i through the
voltage sources as unknowns. We now apply the Kirchhoff current
law at all nodes except for the reference node. For example, for the
circuit of Figure 1, the first three nodes yield the equations

1
R1

(ϕ1 −ϕ2)+ is,1 = 0 (14)

1
R1

(ϕ2 −ϕ1)+
1

RC1

(ϕ2 −ϕ3) = xC1 (15)

1
R6

(ϕ3 −ϕ7)+
1

RC1

(ϕ3 −ϕ2) =−xC1 − iB1 (16)

where the current source of the companion circuit of C1 is assumed
to be pointing to the left. The transistor currents (the base current
iB1 in the example equations) are for the moment assumed to be
known and introduced as additional current sources.

The complete system may be written as

(NT
R GRNR +NT

v R−1
v Nv +NT

x GxNx)ϕ+NT
u is

=NT
x x+NT

n in
(17)

where NR, Nv, Nx, Nu and Nn are oriented incidence matrices
which specify the nodes to which the resistors, potentiometers,
energy-storing elements, voltage sources and non-linear elements,
respectively, are connected,

GR = diag
(

1
R1

, . . . ,
1

R10

)
(18)

is a diagonal matrix with the reciprocal resistances,

Rv = diag(αVR1,(1−α)VR1) (19)

is a diagonal matrix with the variable resistances parameterized
with the potentiometer position α ,

Gx = diag
(

2C1

T
, . . . ,

2C5

T
,

T
2L1

)
(20)

is a diagonal matrix with the reciprocal resistances of the companion
circuits, ϕ the vector of unknown node potentials, is the vector
of unknown voltage source currents, x the current states of the
companion circuits and in the currents of the non-linear elements.

The incidence matrices N(·) contain one row per circuit ele-
ment and one column per node (except the reference node). The
entries are mostly zero; at most two entries per element are non-
zero: a 1 in the column of the node where the positive pole of the
element is connected, a −1 where the negative pole is connected;
connections to the reference node are omitted. Polarity of the
sources is obvious, polarity of the passive elements may be chosen
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=

iB

iE

vBE(n)

vCE(n)

Figure 3: Equivalent circuit element used for the transistors.

at will. For the system of Figure 1, we find

NR =




1 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 −1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 −1 0 0 0
0 0 1 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 −1 0 1




(21)

Nv =

(
0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0

)
(22)

Nx =




0 −1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 −1 0
0 0 0 1 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 0 0




(23)

Nu =

(
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1

)
(24)

Nn =




0 0 −1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 0


 (25)

where we describe the transistors in terms of the base and emitter
currents as shown in Figure 3.

To fully describe the circuit, we furthermore need to exploit
that the voltage sources directly give relations among the node
potentials, in our case

ϕ1 =Vi (26)
ϕ13 =Vcc (27)

which may be combined with Equation (17) to give

S

(
ϕ
is

)
=

(
NT

x
0

)
x+

(
0
I

)
u+

(
NT

n
0

)
in (28)

where u=
(
Vi Vcc

)T is the source vector, 0 and I are the all-zero
and identity matrix with size as required by context, and

S =

(
NT

R GRNR +NT
v R−1

v Nv +NT
x GxNx NT

u
Nu 0

)
. (29)

By left-multiplying with S−1 and the respective incidence matrices,

we can then extract all required voltages by

vx =
(
Nx 0

)
S−1

((
NT

x
0

)
x+

(
0
I

)
u+

(
NT

n
0

)
in

)
(30)

vn =
(
Nn 0

)
S−1

((
NT

x
0

)
x+

(
0
I

)
u+

(
NT

n
0

)
in

)
(31)

vo =
(
No 0

)
S−1

((
NT

x
0

)
x+

(
0
I

)
u+

(
NT

n
0

)
in

)
(32)

where vx, vn and vo are the voltages across the energy-storing
elements, the non-linear elements and the desired output voltage,
respectively. The incidence matrix No determines the output volt-
age and in the example is given by

No =
(

0 0 0 0 0 0 0 1 0 0 0 0 0
)
.

(33)

2.3. Non-linear state-space system

We are now ready to formulate the non-linear state space system.
We first rewrite Equations (10) and (11) for a complete system as

x(n) =Z ·
(
2Gxvx(n)−x(n−1)

)
(34)

where
Z = diag

(
1 1 1 1 1 −1

)
(35)

is a diagonal matrix which contains a 1 for a capacitor and a −1
for an inductor to take care of the differing signs in Equation (10)
and Equation (11). Substituting Equation (30), we obtain the state
update equation

x(n) =Ax(n−1)+Bu(n)+Cin(n) (36)

with

A= 2ZGx
(
Nx 0

)
S−1 (Nx 0

)T −Z (37)

B = 2ZGx
(
Nx 0

)
S−1 (0 I

)T (38)

C = 2ZGx
(
Nx 0

)
S−1 (Nn 0

)T
. (39)

Similarly, we may rewrite Equation (32) to obtain the output equa-
tion

y(n) = vo(n) =Dx(n−1)+Eu(n)+Fin(n) (40)

with

D =
(
No 0

)
S−1 (Nx 0

)T (41)

E =
(
No 0

)
S−1 (0 I

)T (42)

F =
(
No 0

)
S−1 (Nn 0

)T
. (43)

Finally, we obtain the voltages across the non-linear elements by
rewriting Equation (31) to

vn(n) =Gx(n−1)+Hu(n)+Kin(n) (44)

with

G=
(
Nn 0

)
S−1 (Nx 0

)T (45)

H =
(
Nn 0

)
S−1 (0 I

)T (46)

K =
(
Nn 0

)
S−1 (Nn 0

)T
. (47)
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Note that Equation (44) defines a relationship between the volt-
ages across and the currents through the non-linear circuit elements
due to the external circuit and its state. Additionally, the non-linear
elements define such a relationship by themselves; combining these
two will allow to solve for the currents in(n) or equivalently the
voltages vn(n).

In the example, the non-linear elements are transistors which
will be modelled using the Ebers-Moll-equations. In particular, we
get

in,1 =
Is

βF

(
e

vn,2−vn,1
Vt −1

)
+

Is

βR

(
e

−vn,1
Vt −1

)
(48)

in,2 =−Is

(
e

vn,2−vn,1
Vt −1

)
+

Is(βR −1)
βR

(
e

−vn,1
Vt −1

)
(49)

in,3 =
Is

βF

(
e

vn,4−vn,3
Vt −1

)
+

Is

βR

(
e

−vn,3
Vt −1

)
(50)

in,4 =−Is

(
e

vn,4−vn,3
Vt −1

)
+

Is(βR −1)
βR

(
e

−vn,3
Vt −1

)
. (51)

The processing for time step n now proceeds according to the
following schedule:

1. Calculate p(n) =Gx(n−1)+Hu(n).

2. Numerically solve p(n)+Kin(n)−vn(n)= 0 together with
Equations (48) to (51) to obtain in(n), e.g. using Newton
iteration.

3. Compute the output with Equation (40).

4. Perform the state update with Equation (36).

3. EFFICIENT HANDLING OF VARIABLE ELEMENTS

As all of the matrices defined above can be precomputed, the main
computational burden lies in solving the non-linear equation. How-
ever, in case of a variable element, like the potentiometer VR1,
the system matrices need to be recomputed every time the ele-
ment changes—and for the wah-wah effect, the potentiometer will
change almost continuously. At first glance, it looks like this means
the matrix S has to be inverted regularly, which would be rather
unfortunate, as inverting a 15×15 matrix would mean a significant
additional computational load.

Fortunately, we may decompose the system matrix as

S = S0 +
(
Nv 0

)T
R−1

v
(
Nv 0

)
(52)

where

S0 =

(
NT

R GRNR +NT
x GxNx NT

u
Nu 0

)
(53)

is independent of the potentiometer setting. We may now use the
Woodbury identity [4] to rewrite the inverse as

S−1 = S−1
0 −S−1

0
(
Nv 0

)T
(Rv +Q)−1 (Nv 0

)
S−1

0 (54)

with
Q=

(
Nv 0

)
S−1

0
(
Nv 0

)T (55)

which reduces the size of the matrix to be regularly inverted to 2×2,
as S−1

0 may be precomputed off-line. As an additional benefit, we
do not have to worry about inverting Rv, which would require
special attention for α = 0 and α = 1 when the resistances become

zero. Plugging Equation (54) into the definition of the state-space
system matrices, we obtain

A=A0 −2ZGxUx (Rv +Q)−1UT
x (56)

B =B0 −2ZGxUx (Rv +Q)−1UT
u (57)

C =C0 −2ZGxUx (Rv +Q)−1UT
n (58)

D =D0 −Uo (Rv +Q)−1UT
x (59)

E =E0 −Uo (Rv +Q)−1UT
u (60)

F = F0 −Uo (Rv +Q)−1UT
n (61)

G=G0 −Un (Rv +Q)−1UT
x (62)

H =H0 −Un (Rv +Q)−1UT
u (63)

K =K0 −Un (Rv +Q)−1UT
n (64)

with the constant matrices

Ux =
(
Nx 0

)
S−1

0
(
Nv 0

)T (65)

Uo =
(
No 0

)
S−1

0
(
Nv 0

)T (66)

Un =
(
Nn 0

)
S−1

0
(
Nv 0

)T (67)

Uu =
(
0 I

)
S−1

0
(
Nv 0

)T (68)

A0 = 2ZGx
(
Nx 0

)
S−1

0
(
Nx 0

)T −Z (69)

B0 = 2ZGx
(
Nx 0

)
S−1

0
(
0 I

)T (70)

C0 = 2ZGx
(
Nx 0

)
S−1

0
(
Nn 0

)T (71)

D0 =
(
No 0

)
S−1

0
(
Nx 0

)T (72)

E0 =
(
No 0

)
S−1

0
(
0 I

)T (73)

F0 =
(
No 0

)
S−1

0
(
Nn 0

)T (74)

G0 =
(
Nn 0

)
S−1

0
(
Nx 0

)T (75)

H0 =
(
Nn 0

)
S−1

0
(
0 I

)T (76)

K0 =
(
Nn 0

)
S−1

0
(
Nn 0

)T
. (77)

Note that all matrices involved in Equations (56) to (64) are rela-
tively small compared to the system matrix S, allowing efficient
recomputation whenever the potentiometer setting changes.

4. RESULTS

The above model, supplemented with a simple first-order high-pass
for the AC-coupled input buffer omitted from the above circuit
analysis, has been implemented as an LV21 plugin. The matrix
operations make use of the GNU Scientific Library2. The non-
linear equation is solved with a simple damped Newton iteration,
where the solution of the previous time-step is used as starting point.
This allows convergence in relatively few (typically less than ten)
iterations, making real-time operation even on not quite up-to-date
PC hardware possible. The plugin along with audio examples may
be found at http://ant.hsu-hh.de/dafx2011/wahwah.

The model has been tested using the nominal component values
and parameters given in Table 1. As a first test, the small-signal
frequency responses of the model and the real circuit are compared

1See http://lv2plug.in/.
2See http://www.gnu.org/software/gsl/.
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Table 1: Component values and parameters used in the model.

R1 68 kΩ C1 10 nF
R2 22 kΩ C2 4.7 µF
R3 390 Ω C3 10 nF
R4 470 kΩ C4 220 nF
R5 470 kΩ C5 220 nF
R6 1.5 kΩ L1 500 mH
R7 33 kΩ Vcc 8.15 V
R8 82 kΩ Vt 26 mV
R9 10 kΩ Is 20.3 fA
R10 1 kΩ β f 1430
VR1 100 kΩ βr 4
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Figure 4: Comparison of measured (crosses) and simulated (line)
small-signal frequency responses for α = 0.008,0.570, and 0.999.

for three different potentiometer settings3. The corresponding value
of α was determined by measuring the potentiometer. The resulting
frequency responses are shown in Figure 4. Clearly, the model
fits the real circuit quite well. Any deviations are easily explained
by the tolerances of the physical circuit elements; especially the
slightly different gain at the peak is no surprise, as the relative high
Q-factor makes the circuit very sensitive to component tolerances.

The second experiment conducted is concerned with the non-
linear behavior. Even for moderate input levels, the high gain at
the peak frequency may result in a clipped output signal. As a very
simple form of analysis, Figure 5 depicts the output level and total
harmonic distortion (THD) in dependence on the input level for
a sinusoidal input. The frequency of the sinusoid is chosen to be
at the peak of the small-signal frequency response. As expected,
for small input amplitudes, the simulated output has slightly higher
output level corresponding to the higher small-signal gain at the
peak frequency. For higher input amplitudes, both the real circuit
and the simulation exhibit a smooth saturation when the output level
approaches 6dB. This smooth saturation is also resembled by the
THD curve, which shows a steady increase for both measurement
and simulation and stays at moderate levels even for a 0dB input,
where the overall gain is reduced by about 13dB compared to the
small-signal gain. While the THD of the simulation is constantly a
few dB higher than that of the real circuit, the shape of the curves
is very similar and it may be expected that better matching of the
component values and the transistor parameters would bring the

3Note that the extremal positions cannot be reached due to mechanical
restrictions when the potentiometer is mounted in the enclosure.
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Figure 5: Comparison of measured (crosses) and simulated (line)
output RMS level and THD in dependence on input RMS level for a
sinusoid of 719Hz with potentiometer setting α = 0.770.

curves to close fit.

5. CONCLUSION

We have reviewed the nodal DK-method with a focus on efficient
handling of variable circuit components, i.e. potentiometers. To that
end, we have given a formulation of the DK-method with explicit
use of the incidence matrices and diagonal matrices holding the
component values, from which a system matrix is constructed that
has to be inverted to obtain the coefficient matrices of a non-linear
state-space model. This explicit form allows efficient handling of
changing component values when the number of variable parts is
low compared to the total number of parts. In that case, chang-
ing the variable component values results in a low-rank update of
the system matrix, and the required inversion may be carried out
efficiently using the Woodbury identity.

The method was presented by example of the Crybaby wah-wah
circuit. The derived model provides a reasonable approximation
of the real circuit considering that the nominal component values
where used and no parameter matching to the real circuit was
performed. The model was implemented as an LV2 plugin which
proved the real-time capability of the model even on somewhat
outdated PC hardware.
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ABSTRACT

The calibration of a digital spring reverberator model is crucial for
the authenticity and quality of the sound produced by the model.
In this paper, an automated calibration of the model parameters is
proposed, by analysing the spectrogram, the energy decay curve,
the spectrum, and the autocorrelation of the time signal and spec-
trogram. A visual inspection of the spectrograms as well as a com-
parison of sound samples proves the approach to be successful for
estimating the parameters of reverberators with one, two and three
springs. This indicates that the proposed method is a viable alter-
native to manual calibration of spring reverberator models.

1. INTRODUCTION

Spring reverberation is an early method of artificial reverberation,
introduced by Laurens Hammond in the 1940s [1]. Its small size
and low cost compared to the contemporary methods of artificial
reverberation at the time, such as plates or chambers, led to its wide
use both in studio applications and within electrical musical instru-
ments and amplifiers. The special sound of the spring reverberator,
caused by the highly dispersive nature of wave propagation on the
spring, became valued as a musical effect distinct from standard
reverberation.

A spring reverberator consists of one or more helical metal
springs, connected in parallel, series or in a hybrid configuration.
The springs are excited via the use of an electromagnetic coil,
which applies a force to a small magnet connected to springs.
Varying the signal in the coil produces corresponding vibrations
in the spring. The output from the system is taken with a similar
configuration. A small magnetic bead oscillates with the spring
at another location (usually the opposite end of the spring), and
induces current in a nearby electromagnetic coil.

There has been much recent work on modelling the behavior
of the spring reverberator digitally for use in a music production
environment. The first attempts used an optimisation method to fit
the dispersion curve of the spring with a number of allpass filters,
and then used these filters within a wave-guide structure [2]. More
recent work has modelled the vibration of the spring using finite
difference methods [3, 4]. Attempts have also been made to pro-
duce a parametric digital spring reverberator which more closely

∗ This work has been supported by the [MIDE program] of Aalto univer-
sity, the Helsinki Graduate School in Computer Science and Engineering
(HeCSE), and the European Research Council under the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement no. [203636].
† This work has been supported by the Academy of Finland, project no.

[122815].

+
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Multi-tap delay line

RND

Figure 1: Low-frequency structure of parametric spring reverbera-
tion effect, based on [5].

resembles the structure of a traditional digital reverberator [5]. It
is this final approach to modelling which we consider in this work.

In this work we propose a method for automatically deriving
the characteristics of a spring reverb unit from a recorded spring
impulse response. These characteristics are used to tune the pa-
rameters of the digital spring reverb model, much like previous
work has proposed an analogous method that allows the fitting of
a digital reverberator to a specific room response [6].

The paper is organised as follows. The parametric spring re-
verb model used for the automated calibration is briefly introduced
in Section 2. Section 3 describes the proposed automated calibra-
tion methods for the parametric spring reverb model. The results
of the automated calibration are discussed in Section 4. Section 5
concludes the paper.

2. THE PARAMETRIC SPRING REVERBERATION
EFFECT

Basis for this work is the parametric spring reverberation effect in-
troduced by Välimäki et al. [5]. Figure 1 shows a block diagram
of the feedback structure used to produce the low-frequency chirp
sequence of the spring reverberation effect (cf. Figure 2). The fil-
ter Hdc(z) is a dc blocking filter with a cutoff frequency at 40
Hz [5]. The filter AM

low(zK) is a spectral delay filter [7] consisting
ofM cascaded allpass filters. Each allpass filter section is an inter-
polated stretched allpass filter, which is composed of a Schroeder
allpass filter with an embedded delay line of K − 1 samples and a
first-order fractional-delay allpass filter to implement a delay equal
to 1 plus the decimal part ofK (in samples). The impulse response
of the spectral delay filter imitates the first low-frequency chirp ap-
pearing in the response of a spring reverb unit.
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Figure 2: Spectrogram of one spring of the Leem Pro KA-1210
spring reverb. The spectrogram is normalised for each frequency
bin, to improve the visibility of the chirp structure.

A multi-tap delay line models the propagation and scattering
of waves in a helical spring. It contains a long delay line with
several extra output taps, which introduce pre-echos in the tem-
poral response and small variations in the loop gain of the system
[5]. A random modulation is applied to the delay line to introduce
blurring of the response over time [5]. Finally, the output of the
model is processed with two filters, Heq(z) and Hlow(z), which
are a second-order resonator and a low-pass filter, respectively. An
allpass cascade Alow is inserted into the feedback path to model
the dispersion of each reflection when traversing the spring back-
wards, as proposed by Parker et al. [8].

To produce the high-frequency chirp sequence in the impulse
response of the spring reverberator, a feedback structure similar
to the one depicted in Figure 1 is used in the model, as proposed
in [5]. It is considered less perceptually important [5]. The all-
pass cascade in the feedback path is omitted for the high-frequency
feedback structure, to reduce the computational complexity of the
model. The reader is referred to [5] for a more detailed description
of the parametric spring reverb model.

3. AUTOMATED CALIBRATION

The starting point for the automated calibration of the parametric
spring reverberation effect is the spectrogram of the impulse re-
sponse to be modelled. Figure 2 shows the spectrogram of one
spring of the Leem Pro KA-1210 spring reverb. It is obtained
via an 8192-point short-time Fourier Transform (STFT) using a
Blackman window with a hopsize of 8 samples. The spectrogram
is normalised at each frequency bin, to enhance the visibility of the
high-frequency chirp structure.

The calibration of the model is performed in three steps: First,
the pulse delay of the low-frequency chirp structure and the tran-
sition frequency are determined. These are the perceptually most
important parameters of the model [4]. In the following steps, the
parameters for the low- and high-frequency chirp structures are
determined separately.

0 100 200 300 400 500
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−0.5
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0.5

1

Time [ms]
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F

T d

Figure 3: Autocorrelation function. The pulse delay is estimated
at the maximum absolute value, Td = 55.6 ms.

3.1. Determine pulse delay and transition frequency

3.1.1. Pulse delay

The time domain representation of a spring reverb impulse re-
sponse is dominated by the low-frequency pulse sequence, which
contains most of the energy [5]. The pulses recur at regular inter-
vals, given by the pulse delay Td. It can be derived from the maxi-
mum absolute value of the autocorrelation of the impulse response
(see Figure 3). For the given impulse response, Td is estimated as
55.6 ms.

3.1.2. Transition frequency

The transition frequency Fc is defined as the cutoff frequency of
the low-frequency pulse series [4]. As can be seen from the spec-
trogram in Figure 2, the low-frequency pulses overlap in time around
the cutoff frequency, and thus cannot be distinguished from one
another.

To determine Fc, the normalised autocorrelation of the spec-
trogram is calculated for each frequency bin along the time axis.
The spectrogram can be represented as a matrix S, with rows cor-
responding to frequency bins and columns corresponding to time
instants. The autocorrelation of each row in S is calculated and
normalised to one at lag zero. The result of this calculation is
shown in Figure 4 (left). As can be seen, Figures 2 and 4 exhibit
a similar pulse structure: For each frequency, the delay caused
by dispersion and propagation in the spring is constant between
pulses. The autocorrelation around the transition frequency con-
tains no distinct peaks, as around this frequency the pulses overlap
in time. Since the autocorrelation is normalised to one at lag zero,
the mean value of the autocorrelation calculated over time at each
frequency bin is a measure for the periodicity of the impulse re-
sponse with respect to frequency. The mean value exhibits a peak
at the transition frequency, where no distinct pulses are visible in
the spectrogram, i.e., the periodicity is lowest (see Figure 4, right).
Here, Fc is estimated as 4216 Hz. The method works well also for
impulse responses with more than one spring, if the springs share
a transition frequency.
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Figure 4: Normalised autocorrelation of spectrogram and mean
of autocorrelation. The transition frequency is estimated at the
maximum (◦), Fc = 4216 Hz.

3.2. Low-frequency chirps

3.2.1. Gain factor

Figure 5 depicts the energy decay curve of the original impulse
response. It is obtained via a backward integration of energy, the
so-called Schroeder integration [9]. The black dots are Td-spaced,
indicating the low-frequency pulse positions, which dominate the
impulse response [5]. In the parametric model used in this pa-
per [5], the energy decay rate of the impulse response is modelled
by applying a constant gain factor glf to the pulse series (cf. Fig-
ure 1). It determines the attenuation of each reflected pulse with
respect to the previous. The value of glf is estimated by fitting a
line through the energy decay curve.

For the perceived reverberance, the early decay time (EDT)
from 0 dB to −10 dB is considered particularly important [10].
To model the EDT, a line is fitted through the energy decay curve
at the pulse positions, from the first pulse to the pulse where the
impulse response energy decays below −10 dB. The fitting is im-
plemented via the polyfit function in Matlab (cf. black line in Fig-
ure 5). The decay per pulse d in dB is obtained as

d = mTd, (1)

where m is the slope of the fitted line and Td is the pulse delay.
From the pulse decay d, the gain factor glf is obtained via

glf = K10( d
20

), (2)

with
K = sgn {max[ACF (x)]} , (3)

i.e., the sign of the maximum of the autocorrelation functionACF
of the spring impulse response x (cf. Figure 3). To compensate for
additional attenuation of the pulses introduced by the modulation
and linear interpolation in the delay line, the gain factor glf is mul-
tiplied by a constant of 1.2. For the given impulse response, this
yields glf = −0.64.
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Figure 5: Energy decay curve (grey line) and low-frequency pulse
positions (black dots). A least-squares fit (black line) indicates a
decay rate of about−5.4 dB per pulse, during the early decay from
0 dB to −10 dB.

3.2.2. Spectral delay filter calibration

A crucial step in the calibration of the model is determining the
parameters for the spectral delay filter. The goal is to tune the out-
put of the filter to match the dispersion characteristics of the real
spring. The transfer function of the stretched interpolated allpass
cascade used in the model [5] to generate the chirps is given by

AM (z) = M
a1 +Afd(z)z−K1

1 + a1Afd(z)z−K1
, (4)

where Afd is a fractional delay allpass filter with

Afd(z) =
a2 + z−1

1 + a2z−1
, (5)

and
K1 = round(K)− 1. (6)

M is the number of allpass sections in the cascade, a1 is the all-
pass coefficient, andK the stretching factor determining the cutoff
frequency of the chirps. The fractional delay filter is necessary to
implement a nonintegral stretching factor K, to accurately obtain
the desired transition frequency of the chirp structure. The param-
eter a2 can be derived from the nonintegral part of the stretching
factor (for details, see [5]). The parametersM , a1 andK of the all-
pass cascade are obtained by iteratively fitting the allpass cascade
to the first chirp in the spectrogram. The procedure is applicable
to spring reverbs with one or more springs, therefore the general
case of N springs is considered in the following.

First, peaks in the spectrogram are extracted at each frequency
bin, up to the transition frequency. After low-passing the rows
of the spectrogram matrix S, which correspond to frequency bins
(cf. Section 3.1.2), the peak locations at each frequency bin are
detected as zero crossings of the derivative of each row. Next,
the peaks in S are grouped to connected segments, by identifying
sequences of peaks that form a connected line in the spectrogram.
Finally, these peak segments are grouped to chirps in an iterative
process, using the output of the allpass cascade as a model for the
chirps:
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Figure 6: The first chirp (red) is identified through iterative fitting
of an allpass cascade to peak segments of the spectrogram.

1. Fit the output of an allpass cascade to the longest peak
segment in the spectrogram, using nonlinear least squares
fitting via the lsqnonlin function in Matlab. This yields a
rough estimate ĉi of the i-th chirp in the spectrogram.

2. Find peak segments that lie close to ĉi, update ĉi to include
those segments and re-fit the allpass cascade to the new ĉi.

3. Repeat step 2 while peak segments close to ĉi are found.

4. Remove all peak segments allocated to any chirp estimate
ĉ, and repeat steps 1–3, until all chirps ĉ1...N are extracted.

This process identifies the chirps in the spectrogram produced
by the N springs and directly yields the parameters of the allpass
cascades to model their estimates ĉ1...N. The pulse delay Td,i of
each chirp is given as

Td,i = Td + 2∆T0,i, (7)

where Td is the pulse delay (cf. Section 3.1.1), and T0,i is the offset
of the i-th chirp from the first chirp visible in the spectrogram.
The result of the chirp extraction for the given impulse response is
shown in Figure 6.

3.2.3. Chirp equalisation

The spectrum of the first chirp is obtained by calculating the Fourier
Transform of the impulse response from 0 to 2Td. To approximate
the spectral shape of the chirp, a second-order IIR filter is used.
Its transfer function is stretched by replacing the unit delays of the
filter structure with a delay line of length K [5]. The filter param-
eters consist of the stretching factor K, the frequency Fpeak of the
peak in the transfer function, and the −3 dB bandwidth B of the
peak. Nonlinear least-squares fitting is used to fit the frequency
response of the equalisation filter to the spectrum of the first chirp
(see Figure 7).

3.3. High-frequency chirps

The high-frequency chirp sequence is considered less perceptu-
ally important [5]. Therefore, a simpler approach towards calibra-
tion can be taken than for the low-frequency structure. Based on
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Figure 7: Spectrum of first pulse (light grey) and fitted equalisation
filter: Fpeak = 183Hz, B = 146Hz, K = 5.

the assumption of a regular pulse structure, the chirps can be ex-
tracted from the autocorrelation of the spectrogram matrix S (cf.
Section 3.1.2). This procedure emphasises periodic energy com-
ponents in the spectrogram, whilst suppressing nonperiodic com-
ponents, such as the first pulse appearing in the spectrogram above
5 kHz (see Figure 2).

To detect the first chirp of the high-frequency pulse series in
the autocorrelation of the spectrogram, the locations of the two
largest peaks are determined for each frequency bin, using the
method described in Section 3.2.2. To eliminate all peaks not be-
longing to the periodic pulse series, a simple check is performed:
All peaks in the autocorrelation belonging to a periodic chirp in
the pulse series must have a corresponding peak at twice the delay
(cf. Figure 8). The peaks in the autocorrelation passing this check
indicate the dispersion and delay induced to a periodic pulse after
traversing the spring twice: Dividing the locations of the peaks by
two yields the form of the first chirp in the spectrogram, at half the
delay between adjacent chirps. It is modelled by fitting an allpass
cascade via nonlinear least-squares fitting.

For simplicity, the decay rate of the high-frequency chirps is
obtained by multiplying the decay rate of the low-frequency chirp
sequence with a constant factor. Based on inspection of the spec-
trograms of spring reverb impulse responses, we chose 1.3 for the
factor, assuming that the decay rate per pulse is about 30% lower
for the high-frequency than for the low-frequency chirp sequence.
This yields a high-frequency gain factor ghf = −0.83.

4. DISCUSSION

Figure 9 allows a visual comparison of the spectrogram of a real
spring reverb unit and the spectrogram of the digital parametric
model after automated calibration.

The main perceptual parameters, i.e., the transition frequency
and pulse delay of the low-frequency chirp sequence are modelled
quite accurately. The form of the low-frequency chirps is captured
well, although the group delay close to the transition frequency ap-
pears to be larger in the real impulse response than in the model.
As a result of the linear approximation of the early decay time
(EDT, cf. Figure 5), the energy of the low-frequency chirps decays

DAFX-4

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-40



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

Time [ms]

F
re

q
u
e
n
c
y
 [
k
H

z
]

20 40 60 80 100

0

5

10

15

20

Time [ms]

20 40 60 80 100

0

5

10

15

20

Figure 8: Left: First and second peaks in normalised autocorre-
lation of spectrogram. Right: Peaks of first pulse after outlier re-
moval (◦) and fitted allpass cascade (–): a1 = −0.34, M = 189.

slower in the real response than in the model. An auditory com-
parison reveals a marked difference in timbre between the real and
modelled low-frequency chirp sequence. This may partly be due
to the coarse approximation of the chirp spectrum (cf. Figure 7),
which results in a discrepancy between the desired and modelled
spectrum, particularly below 1.5 kHz and above 3.5 kHz. Using
a higher-order equalisation filter in the digital model might help
tackle this problem. Furthermore, the acoustic quality of the in-
creasing diffuseness of successive chirps could be modelled more
accurately, for example by replacing the delay line modulation
with an automatically calibrated digital reverberator [5].

The main characteristics of the high-frequency chirp structure
are successfully reproduced by the model. The form of the first
high-frequency chirp is modelled accurately. The following chirps
are more strongly dispersed in the real impulse response than in the
model. To model the dispersion characteristics more accurately, an
allpass cascade could be inserted in the feedback path of the high-
frequency structure of the model. It is omitted here since it is not
considered perceptually important and reduces the computational
load of the model considerably [5]. The decay rate of the chirps
seems to be slightly lower in the real impulse response than in the
model. This is a result of the linear approximation of the decay
rate in the parametric model.

The automated calibration was performed without constraints
in terms of the computational complexity of the digital parametric
model. The computational load is dominated by the allpass chains.
To lower the computational load of the model, an upper limit can
be set to the length of the allpass chains fitted by the optimisation
algorithms described in Sections 3.2.2 and 3.3. As an example,
we set the maximum length of the low-frequency allpass cascade
to max {Mlow} = 100. Table 1 presents an overview of the cal-
ibrated model parameters for the Leem Pro KA-1210 spring re-
verb. The first column contains parameter values obtained through
manual and semi-automated calibration [5]. The middle column
contains the values obtained using the automated calibration pro-
posed in this paper, without constraints in terms of computational
complexity. The last column presents the values obtained with an
upper limit on the length of the low-frequency allpass chain. There
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Figure 9: Spectrogram of the impulse response of the Leem Pro
KA-1210 (top) and of the parametric model with automated cali-
bration (middle). The bottom graph shows the model spectrogram
as an overlay (red) onto the spectrogram of the Leem Pro KA-1210
(greyscale).

is good correspondence between the manual and automated cali-
bration of the values Td and Fc. The form of the modelled chirps
is determined by the parameters a and M , as well as Fc,lf in case
of the low-frequency chirp structure. If an upper limit is set to M ,
the values of a and Fc,lf change such as to obtain an optimal fit
of the modelled chirp. The spectrogram of the model with limited
allpass cascade length is shown in Figure 10. A visual comparison
reveals no substantial differences to the spectrogram of the model
with unconstraint cascade length, indicating that the restriction is a
viable option to reduce computational load without major percep-
tual impact. However, the form of the first chirp is modelled less
accurately with the reduced allpass chain length. Figures 11 and
12 demonstrate the usage of the automated calibration for spring
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Leem Pro KA-1210, Spring 1
Manual [5] Automated Automated∗

Td 0.056 0.056 0.056
Fc 4300 4216 4216

Fc,lf 4300 4980 4275
Mlow 100 318 100
a1 0.62 0.69 0.63
glf -0.8 -0.64 -0.64

Mhigh 200 189 189
ahigh -0.6 -0.34 -0.34
ghf -0.77 -0.83 -0.83
∗ With max {Mlow} = 100.

Table 1: Comparison between manual and automated calibration
of the parametric spring reverberation effect. The transition fre-
quency Fc refers to the transition frequency of the impulse re-
sponse, whereas Fc,lf refers to the transition frequency of the fitted
allpass cascade. The optimised calibration results were obtained
by setting an upper limit to Mlow.

reverbs with two and three springs. In both cases the main features
of the spectrogram of the real impulse response are captured suc-
cessfully by the proposed automated calibration, and reproduced
by the parametric model. However, the modelling accuracy is in-
ferior to the single-spring example, since the parameters of each
spring are extracted from a single response of the whole unit.

5. CONCLUSION

In this paper, an approach was proposed to automatically calibrate
parameters of a spring reverberation model. A slight modification
of a previously presented spring reverberation model is used [5],
which produces impulse responses containing the same basic fea-
tures appearing in responses measured from spring reverb units.

Signal processing methods to estimate the values of several
parameters of the spring reverb model were suggested. All esti-
mations are based on a measured impulse response of a spring re-
verberation unit or its spectrogram. First, the time delay between
repetitive pulses appearing at low frequencies was estimated by
detecting the first peak in the absolute value of the autocorrelation
function of the measured response. Next, the transition frequency,
which corresponds to the cutoff point of the low-frequency chirp
sequence, was estimated from the autocorrelation function of the
spectrogram. The maximum of the mean of the autocorrelation
function appeared to indicate the transition frequency. The value
of the feedback gain factor was computed from the early decay
time, which we estimated as the difference of time instants, where
the energy decay curve passes the -10 dB level.

A spectral delay filter consisting of a chain of first-order all-
pass filters imitates the shape of the first chirp in the impulse re-
sponse. The number of cascaded allpass filters and their filter coef-
ficient value, which is the same for all filters in the cascade, were
chosen by fitting the output of the allpass cascade via an itera-
tive procedure employing the nonlinear least squares method. The
spectral delay filter was equalised by fitting the parameters of a res-
onant second-order filter to the magnitude spectrum of the chirp,
using the nonlinear least-squares method.

Model parameters for the high-frequency chirp sequence are

also extracted from the autocorrelation of the spectrogram, although
the data is noisier than that containing the low-frequency chirps.
No equalisation is performed for the high-frequency chirps.

The proposed calibration methods can be applied to a response
of a single-spring unit or to one with several parallel springs. The
calibrated parameter values were compared against the manually
and semi-automatically calibrated values presented in [5]. It was
observed that slightly different but similar values are obtained. The
optimal number of allpass sections in the spectral delay filter for
the low-frequency chirp can become very large, such as about 300,
leading to a high computational load in the implementation. For
this reason a constrained optimisation was tested in which the max-
imum number of filter sections is limited to 100. This can lead to
a sufficiently good fit and to a reasonable number of filtering oper-
ations per sample.

Recently, Parker has proposed multirate and subband tech-
niques to reduce the computational cost of the parametric spring
reverberation model [11]. These ways to improve the computa-
tional efficiency are suggested to be applied after parameter values
have been calibrated using methods proposed in this paper.
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7. APPENDIX

This appendix presents the spectrograms of the real impulse re-
sponse and of the parametric model with automated calibration
for spring 1 of the Leem Pro KA-1210 spring reverb (see Fig-
ure 10), a no-name spring reverb containing two springs (see Fig-
ure 11), and a Mesa Boogie spring reverb containing three springs
(see Figure 12). Sound samples are available for download at
http://www.tml.tkk.fi/~hannes/DAFx2011/.
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Figure 10: Spectrogram of impulse response of spring 1 of Leem
Pro KA-1210 (top) and of the parametric model with automated
calibration (middle), with length of the low-frequency allpass cas-
cade limited to max {Mlow} = 100. The bottom graph shows the
model spectrogram as an overlay (red) onto the spectrogram of the
real unit (greyscale). Although the main perceptual aspects of the
low-frequency chirp sequence are captured, the limited length of
the allpass chain deteriorates the modelling accuracy of the form of
the low-frequency chirps. This is a trade-off for reducing the com-
putational complexity by limiting the length of the allpass cascade.
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Figure 11: Spectrogram of impulse response of a no-name spring
reverb with two springs (top) and of the parametric model with
automated calibration (middle). The bottom graph shows the
model spectrogram as an overlay (red) onto the spectrogram of
the real spring reverb unit (greyscale). The main features of the
real impulse response are captured well. However, additional low-
frequency chirp reflections and some details of the high-frequency
chirp sequence are not reproduced by the model. The modelling
accuracy could presumably be improved if individually measured
responses of both springs were used for the automated calibration.
The same holds for the model response shown in Figure 12. It
is more difficult to derive parameters of all springs from a single
response measured of the whole unit than using individually mea-
sured responses for each spring.
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Figure 12: Spectrogram of impulse response of Mesa Boogie
spring reverb with three springs (top) and of the parametric model
with automated calibration (bottom). The bottom graph shows the
model spectrogram as an overlay (red) onto the spectrogram of
the real spring reverb (greyscale). All three low-frequency chirp
sequences are modelled relatively accurately, although there are
discrepancies regarding the form of the first modelled chirps and
the details of the high-frequency chirp sequence.
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ABSTRACT

This paper investigates the passivity of the Moog Ladder Filter and
its simulation. First, the linearized system is analyzed. Results
based on the energy stored in the capacitors lead to a stability do-
main which is available for time-varying control parameters mean-
while it is sub-optimal for time-invariant ones. A second storage
function is proposed, from which the largest stability domain is
recovered for a time-invariant Q-parameter. Sufficient conditions
for stability are given. Second, the study is adapted to the non-
linear case by introducing a third storage function. Then, asimu-
lation based on the standard bilinear transform is derived and the
dissipativity of this numerical version is examined. Simulations
show that passivity is not unconditionally guaranteed, butmostly
fulfilled, and that typical behaviours of the Moog filter, including
self-oscillations, are properly reproduced.

1. INTRODUCTION

The Moog Ladder Filter [1] is an analog audio device which is
appreciated by many musicians because of its intuitive control, its
sound singularity and its typical self-oscillating behaviour at high
feedback-loop gains. This nonlinear analog circuit has been deeply
studied and simulated using distinct methods [2, 3, 4, 5, 6, 7, 8].

Approaches based on energy and passivity considerations have
proved to be relevant for simulating nonlinear systems, including
applications to sound synthesis. This issue is of main importance
for conservative systems whose simulation must neither diverge
nor introduce parasitic dampings. These considerations have yet
motivated works on e.g. nonlinear strings, plates and shells (see
e.g. [9, 10, 11]). This approach is also worthwhile for dissipative
systems, especially when they are able to reach conservative and
self-oscillating behaviours. Thus, the filter of the EMS VCS3 syn-
thesizer has been simulated using a decomposition of the circuit
into modules which preserves passivity properties [12]. Moreover,
these methods usually allow to derive simulations which arecom-
patible with real-time computations usable by musicians.

In this paper, a study on the Moog filter passivity is performed
from which a stability criterion is deduced according to theso-
called Lyapunov stability analysis [13]. Lyapunov functions based
on (a) the natural energy stored in the capacitors, (b) energies con-
veyed by eigenvectors of the linearized system and (c) some mod-
ified versions adapted to the nonlinear dynamics are considered.
They allow to characterize stability domains as well as dissipated
quantities. These features are applied to the discrete-time dynam-
ics analysis of the bilinearly-transformed version of the system.

The outline of this paper is as follows. Section 2 recalls the

circuit equations and provides a state-space representation of the
system. Section 3 refreshes the definition of passivity, of Lyapunov
functions as well as basic results on stability analysis. The stability
analysis is performed, first, on the linearized version of the circuit
in section 4, and then, on the original nonlinear circuit in section 5.
Finally, in section 6, a dissipativity indicator especially designed
for the bilinear transform is deduced, which allows to characterize
the passivity preservation in simulated results.

2. CIRCUIT AND EQUATIONS

2.1. Circuit description

The Moog ladder filter is a circuit composed of (see Fig. 1 a-d): a
driver, a cascade of four filters involving capacitorsC, differential
pairs of NPN-transistors and an additional feedback loop (detailed
in (e)). Following [1], transistors are LM3046 or BC109a,b,c, po-
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Figure 1: Circuits : (a) NPN transistor, (b) single-stage filter,
(c) driver, (d) four-stages Moog ladder filter without loop and
(e) Complete filter including a feedback-loop gain−4r.

larization voltages areVP1 = 2.5 V, VP2 = 4.4 V, VP3 = 6.3 V,
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VP4 = 8.2 V, Vcc = 15V corresponding toR1 = 350 Ohms,R2 =
R3 = R4 = 150 Ohms,R5 = 390 Ohms. Capacitances areC =
27 nF for the Moog Prodigy andC=68 nF for the MiniMoog syn-
thesizer. Moreover,Ic is a voltage-controlled current which tunes
a cut-off frequency and parameterr (in Fig. 1e) is a the voltage-
controlled gain which monitors the resonance (no resonanceif r=
0, resonance with infiniteQ-factor (self-oscillations) ifr=1 [2]).

2.2. Circuit equations, energy and power balance

Denoteqn, In andVn the charge, the current and the voltage of
the capacitor in then-th stage, respectively. The circuit equations
are (see e.g. [8, § II] for a detailed derivation for transistor pairs)

Capacitor law: qk = C Vk, (1)

Capacitor current:
dqk

dt
= Ik, (2)

Transistor pair: Ik = − Ic

2
tanh

Vk

2VT
+
Ic

2
tanh

Vk−1

2VT
, (3)

Loop: V0 = Vin − 4rV4. (4)

where the thermal voltage isVT = kb T/q ≈ 25.85 mV at temper-
atureT =300 K (kb = 1.38 10−23 J/K is the Boltzmann constant,
q=1.6 10−19 C is the electron charge).

The total energy which is stored in the capacitors is given by

E =
4X

k=1

q2k
2C

, (5)

the time derivative of which yields the following power balance

dE

dt
=

4X

k=1

qk

C

dqk

dt
=

4X

k=1

VkIk, (6)

which can be formulated as a function ofV0,...,4 using (3).

2.3. Dimensionless version

Consider the dimensionless quantities

xk =
Vk

V ⋆
=
qk

q⋆
, ik =

Ik

I⋆
, u=

Vin

V ⋆
, e=

1

2

E

E⋆
,

with V ⋆ = 2VT , q⋆ =C V ⋆, I⋆ = Ic
2

andE⋆ = (q⋆)2

2C
. Then, (1)

becomes trivial (xk =xk) sincexk characterizes both the voltage
and the charge of capacitors. Moreover, (2-6) become, respec-
tively, 1

ω
dxk
dt

= ik, ik =− tanhxk+tanh xk−1, x0 =x4 − 4ru,

e =

4X

k=1

x2
k

2
, and

de

dt
=

4X

k=1

xk
dxk

dt
= ω

4X

k=1

xk ik, (7)

which can be formulated as a function ofx1,...,4 andu and where
ω=I⋆/q⋆ =Ic/(4C VT ) (in s−1).

2.4. State-space representation and parameters

The dimensionless versions of (2-4) fork = 1, . . . , 4 yield the
state-space representation with statex and inputu, given by

1

ω

dx

dt
=f(x, u) with f(x, u)=

2
64

− tanhx1+tanh(u−4r x4)
− tanhx2+tanhx1

− tanhx3+tanhx2

− tanhx4+tanhx3

3
75, (8)

where the cutoff angular frequencyω= Ic
4CVT

has been extracted
from f for sake of simplicity in the following derivations.

Remark 1. In all the following equations (unless otherwise men-
tioned), the control parametersω andr can depend on time and lie
in ω ∈ R∗

+, r ∈ [0, 1] (the caseω = 0 which yields no dynamics
dx
dt

= 0 so thatx(t) = x(0) is discarded here). Note also that the
signal which is usually used as the output of the filter corresponds
to x4.

3. RECALLS ON PASSIVITY, STABILITY AND
LYAPUNOV ANALYSIS

This section recalls some basic results about passivity, stability
and Lyapunov analysis. The detailed theory can be found in [13,
chapter 6].
Definition. Consider a system with state-space representationdx

dt
=

f(x, u), output y = φ(x, u), wheref : Rk × Rp → Rk is
sufficiently regular (locally Lipschitz),φ : Rk × Rp → Rp is
continuous,f(0, 0) = 0 andφ(0, 0) = 0. This system is said
to be passive if there exists a continuously differentiablepositive
semidefinite functionV(x) called the storage function such that
d
dt

“
V(x)

”
≤ yTu. It is said to bestrictly passiveif

d

dt

“
V(x)

”
≤ −ψ(x) + yTu, (9)

for some positive definite functionψ.
Such a storage functionV is called aLyapunov function. It

can be assimilated to an energy of the system andψ to a dissipated
power. One interest of the following approach is that it can be used
for linear, nonlinear and possibly time-varying systems.
Links between passivity and stability.The passivity is a practical
tool to examine some system stability aspects. It leans on the two
following key points:

• when the excitation of the system stops (u = 0), the posi-
tive storage functionV stops increasing (passive system) or
even decreases as long asx 6= 0 (strictly passive system).

• If V
`
x(t)

´
is bounded, thenx lives inside a closed bounded

set: it cannot diverge. Moreover, sinceV is continuous and
definite, if it decreases towards 0, thenx also tends towards
0 (global asymptotic stability).

This very last case necessarily occurs for strictly passivesystems
with u = 0 if V is radically bounded [13].

In short, this can be summarized as follows:if a system with
a suitable energy (V) continuously dissipates some positive power,
the system dynamics is bounded. Moreover, if functionV is rad-
ically bounded, the dynamics eventually tends to a steady state
(x0 = 0 for u = 0) which is stable.
Passivity of systems in practice.Given a storage functionV, the
passivity can be examined by deriving

P(x, u)
def.
=

“
∂(xT )V(x)

”
f(x, u)

“
=

d

dt
V(x)

”
(10)

which represents apower (∂(xT ) denotes the partial derivatives
w.r.t. the row vectorxT ). Indeed, ifP(x, u) can be written as

P(x, u) = −ψ(x) + φ(x, u)Tu (11)

the passivity is obtained (with equality in (9)) w.r.t to theoutput
y = φ(x, u).
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4. LINEARIZED SYSTEM: STABILITY, ENERGY AND
LYAPUNOV ANALYSIS

4.1. System equations, transfer matrix and pole analysis

4.1.1. Linear state-space equation

Foru = 0, the unique equilibrium point of system (8) is zero. The
linearized system around(x, u)=(0, 0)∈R4 × R is given by

1

ω

dx

dt
= Ax+Bu with A=∂xf(0, 0) andB=∂uf(0, 0), (12)

that is,A=

2
64

−1 0 0 −4r
1 −1 0 0
0 1 −1 0
0 0 1 −1

3
75 and B=

2
64

1
0
0
0

3
75 .

4.1.2. Transfer matrix and pole analysis

For time-invariant parametersω andr, the input-to-state transfer
matrix of (12) is

H(s) = F
“ s
ω

”
whereF (σ) =

`
σ I4 − A

´−1
B

whereI4 denotes the4×4 identity matrix,s denotes the Laplace
variable andσ = s/ω is its dimensionless version.

The poles in theσ-complex plane are the roots of the charac-
teristic polynomial

PA(σ) = det(σ I4 − A) = σ4 + 4σ3 + 6σ2 + 4σ + 1 + 4r.

For positive gainsr, they are given by

σ1 = −1 + 4
√
r + ι̇ 4

√
r, σ1, σ2 = −1 − 4

√
r + ι̇ 4

√
r andσ2.

(13)
Their real parts are all strictly negative for gainsr < 1. This
condition characterizes the strict stability domain.

Remark 2. Ass = ωσ andσ-poles do not depend onω, changing
ω modifies the cutoff frequency of the filter. But, it does not mod-
ify the quality factor of the resonance which is exclusivelytuned
by r. This is an appreciated particularity of the Moog filter since
it makes its control easier (see [2]).

4.1.3. Conclusion on stability

For time-invariant parameters, the pole analysis reveals that the
linearized system is strictly stable (poles have all a strictly negative
real part) if the positive gainr satisfiesr < 1. The caser =
1 corresponds to the limit of stability. The linear filter becomes
unstable forr > 1. The stability domain does not depend on
ω. Finally, for constant parameters, the strict stability maximal
domain is

(ω, r) ∈ Dmax = R∗
+ × [0, 1[. (14)

4.2. Passivity analysis based on the natural circuit energy

This section tries to restore the result (14) with a Lyapunovap-
proach, from the passivity analysis of the linearized system. Pa-
rameters can be time-varying.

4.2.1. Passivity analysis

The energy of a physical system is a natural candidate Lyapunov
function. For the (dimensionless) Moog filter, it corresponds to
the sum of the energies stored in the four capacitors, given by (7),
which can be rewritten ase=V(x) with

V(x) =
4X

k=1

V (xk), (15)

whereV is the energy of one capacitor

V (x) =
1

2
x2, (16)

(see § 2.3 for the conversion into dimensional physical quantities).
Using the matrix formulationV(x) = 1

2
xT x, (10) leads to

P(x, u)=ω
`
∂xV(x)

´T`
Ax+Bu

´
=ω

`
− eψ(x) + eφ(x, u)Tu

´
where

eψ(x) = −xTAx and eφ(x, u) = Bx = ωx1. (17)

The strict passivity is obtained w.r.t. the outputy = x1, if eψ
is positive definite. This is the case if and only if the symmetric
matrixQ = Qt = − 1

2

`
A+ AT

´
from which eψ(x) = xTQx can

also be defined is positive definite. This condition is equivalent to

∀k ∈ [1, 4]N, det

2
64
Q1,1 . . . Qk,1

...
...

Qk,1 . . . Qk,k

3
75

def
= dk(Q) > 0. (18)

The matrixQ is given by

Q = Qt = −1

2
(A+AT ) =

2
664

1 − 1
2

0 2r
− 1

2
1 − 1

2
0

0 − 1
2

1 − 1
2

2r 0 − 1
2

1

3
775 .

The sub-determinantsdk(Q) are given by

d1(Q) = 1, d2 =
3

4
, d3 =

1

2
and d4 =

5

16
+

1

2
r − 3r2.

They are all strictly positive iffd4 > 0, that is,− 1
4
< r < 5

12
.

4.2.2. Conclusion

The Lyapunov analysis based on the natural energy does not re-
store the maximal stability domainDmax given in (14) but only
the subsetDnatural described by

(ω, r) ∈ Dnatural = R∗
+ × [0,

5

12
[⊂ Dmax. (19)

This result which can appear contradictory at first sight is actu-
ally a quite well-known feature of the Lyapunov stability analysis,
as stated below.

Remark 3. The Lyapunov stability analysis gives a sufficient con-
dition for stability. But, it does not allow to conclude thata system
is unstable if the condition is not fulfilled. Moreover, it does not
guide the user in choosing the Lyapunov function (whether optimal
or not). These difficulties have motivated many works to derive a
candidate Lyapunov function for a given system, witnessed by a
large recent bibliography on this topic. This is precisely why us-
ing the natural energy of physical systems as a Lyapunov function
is usually appreciated. Unfortunately, this function is not optimal
here.
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At this step, it is useless to study the stability of the nonlinear
system and its self-oscillating limit which is precisely known to
be reached atr = 1: a Lyapunov function allowing to restore the
stability domainDmax must be investigated first.

4.3. Recovery of the maximal stability domain

As there is no general constructive method to design adaptedLya-
punov functions, an inductive (but constructive) method isintro-
duced below, which consists in writing the power balance in aba-
sis of eigenvectors so that the dissipativity is straightforwardly re-
lated to the real part of eigenvalues, that is, the poles of the transfer
function.

First, the method which yields a parametrized family of candi-
date Lyapunov functions to test is described. Second, the method
is applied to the Moog system: as for the pole analysis, the ob-
tained result restores the upper bound for time-invariant gainsr.

4.3.1. Description of the proposed method

In this section, parameterr (but notω) is assumed to be time-
invariant. The method is described by the 4 following steps:

Step 1. Write the diagonal version of the system in a basis of
eigenvectorsv1, v1, v2, v2 associated with eigenvaluesΣ =
(σ1, σ1, σ2, σ2) defined in (13), that is,

1

ω

dx⋆

dt
= A⋆ x⋆ +B⋆u

with x⋆ = P−1x, A⋆ =P−1AP = diag(Σ), B⋆ =P−1B
and

P =
ˆ
v1, v1, v2, v2

˜
. (20)

Step 2. Build a power balance from this state equation as follows

xH
⋆ W⋆

“ 1

ω

dx⋆

dt

”
= xH

⋆ (W⋆A⋆)x⋆ + xH
⋆ (W⋆B⋆)u,

whereW⋆ = diag(w⋆) with w⋆ ∈ (R∗
+)4 can be any posi-

tive definite “diagonal weight matrix” (xH
⋆ = x⋆

T denotes
the hermitian, i.e. the transposed conjugate version ofx⋆).

Step 3. The average of the latter equation and its hermitian ver-
sion yields (recalling thatu is real valued)

1

ω

de⋆

dt
= − eψ⋆(x⋆) + eφ⋆(x⋆)

Tu, (21)

wheree⋆ = 1
2
xH

⋆ W⋆x⋆, φ⋆(x⋆) = ℜe(BH
⋆ W⋆ x⋆) and

ψ⋆(x⋆) = xH
⋆ Q⋆ x⋆ withQ⋆ = −ℜe(W⋆A⋆), so that the

two following key points are fulfilled:

(i) e⋆ is a positive definite function ofx⋆ (sinceW⋆ is
positive definite);

(ii) Q⋆ is positive definite if and only if all the eigenval-
uesσ (the poles of the transfer matrix) have a strictly
negative real part.

Step 4. Write these results in the original state basis: (10) is reco-
vered withe⋆ =V(x), 1

ω
P(x, u)=− eψ(x)+ eφ(x)Tu, and

V(x) =
1

2
xtWx with W =WH = P−HW⋆P

−1, (22)

eψ(x) =xtQx with Q=QH = −P−Hℜe(W⋆A⋆)P
−1, (23)

eφ(x) =Lx with L=BT P−HW⋆P
−1 = BT W, (24)

for anyW⋆ = diag(w⋆) > 0 and whereP−H = (P−1)H .

This method builds a family of “candidate” Lyapunov functions
parametrized by a definite positive diagonal weight matrixW⋆ =
diag(w⋆).

Remark 4 (Time-invariant parameterr). The validity of (21) is
conditioned by the fact thatw⋆ does not depend on time and that
of step 4 by the fact thatP does not depends on time. Actually,P
(related toA) depends onr (but notω) so that the method gives
“candidate” Lyapunov functions for time-invariantr and possibly
time-varyingω).

4.3.2. Application

In step 1, the computation of eigenvectors leads to

v1 =
h

4
√
r
3
, +

1 − ι̇

2

√
r, − ι̇

2
4
√
r, −1 + ι̇

4

iT

, for σ = σ1,

v2 =
h

4
√
r
3
, −1 + ι̇

2

√
r, +

ι̇

2
4
√
r, +

1 − ι̇

4

iT

, for σ = σ2,

andP−1 =
ˆ
v1, v1, v2, v2

˜−1
is given by

P−1=

2
64

1 1 + ι̇ ι̇ −1 + ι̇
1 1 − ι̇ −ι̇ −1 − ι̇
1 −1 + ι̇ −ι̇ 1 + ι̇
1 −1 − ι̇ ι̇ 1 − ι̇

3
75

“
diag

ˆ
4 4
√
r
3
, 4

√
r, 2 4

√
r, 2

˜”−1

.

Then, Choosing an uniform weightw⋆ = 4
√
r
3
[1, 1, 1, 1]T , the

results of step 4 leads to (22-24) with

W = diag(w), with w=
ˆ
1, 2

√
r, 4r, 8

√
r
3˜T

,

Q = QT =

2
664

1 −√
r 0 2r

∗ 2
√
r −2r 0

∗ ∗ 4r −4
√
r
3

∗ ∗ ∗ 8
√
r
3

3
775 ,

L = [1, 0, 0, 0].

The sub-determinants (18) are given by

d1(Q) = 1, d2(Q) = (2 − √
r)

√
r,

d3(Q) = 8
√
r
3
(1 − √

r) and d4(Q) = 64r3(1 − √
r)2.

They are all strictly positive forr ∈]0, 1[.
Hence, the maximal domain is restored, except the special case

r = 0. Actually, in this case, the power balance based on eigenvec-
tors is degenerated, since eigenvectors becomes all collinear and,
eventually, do no take account of all capacitors anymore.

4.4. Results summary: Passivity and asymptotic stability of
the linearized Moog filter

The previous studies (§ 4.2-4.3) allow to state the following result.
The linearized version of the Moog Ladder Filter (§ 4.1.1) is

strictly passive and its equilibrium point(x, u) = (0, 0) is asymp-
totically stable under one of the following conditions:

case a: for all time-varying parameters(ω, r) lying in

Dnatural = R∗
+ × [0,

5

12
[.

case b: for all time-varying parameterω and time-invariant pa-
rameterr lying in

Dmax = R∗
+ × [0, 1[.
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Moreover, the dynamics of the system fulfills strictly passive power
balances w.r.t. the outputy = ωeφ(x, u), based on adapted Lya-
punov functions given by, for casesη=a andη=b,

Vη
ℓin(x) = wT

η V ℓin(x) (25)

with V ℓin(x) =
h
Vℓin(x1), . . . , Vℓin(x4)

iT

, andVℓin(xk) =
x2

k

2
,

and (10) with1
ω

Pη(x, u) = − eψη(x) + eφη(x, u)Tu

eψη(x) = xTQηx withQη = −1

2

“
WηA+ ATWη

”

eφη(x, u) = Lηx with Lη = BTWη

and whereeψη is positive definite choosingWη = diag(wη) with

wa =[1, 1, 1, 1]T, wb =
ˆ
1, 2

√
r, 4r, 8

√
r
3˜T
, (if r(t)= r(0)=r).

Remark 5 (Local dissipativity). Although the caseη= b gives a
strong result only for a constant parameterr, the study developed
in § 4.3 allows to state a weaker result, including for time-varying
parameters lying inDmax.
Letr ∈ [0, 1[ be a fixed value. Considerℓ=a if r=0, ℓ∈{a, b} if
0< r< 5/12 and ℓ= b if 5/12 ≤ r < 1. Moreover, denote(ω̃, r̃)
the time-varying parameters which monitor the linearized filter,
lying in Dmax. If r̃(t)=r at a timet, then the power balance (10)
is fulfilled at timet.

5. NONLINEAR SYSTEM ANALYSIS

In this section, the passivity and the Lyapunov stability are exam-
ined for the nonlinear system. The study is based on a storage
function which allows to obtain a formulation similar to that of
the linearized system and to take benefit from the results stated in
section 4. The derivations are presented in three steps. First, a re-
markable identity on the feedback loop is exhibited. Second, the
identity is used to reformulate the state-space equation (8) in a way
similar to (12). Third, the storage function, the passivityand the
Lyapunov analysis are presented.

5.1. Step 1: remarkable identity on the feedback loop

From tanh(a+ b) = tanh a+tanh b
1+tanh a tanh b

, we gettanh(u−4rx4) =

− tanh(4rx4)+

`
(1−tanh2(4rx4)

´
tanh u

1−tanh(4rx4) tanh u
which rewrites

tanh(u− 4rx4) = −4 ρr(x4) tanh(x4) + β(rx4, u) u, (26)

where functionsρr andβ are positive regular functions.
The functionρr : R −→ Ir = ρr〈R〉 is defined by

ρr(x4) =
tanh(4r x4)

4 tanh x4
, if x4 6= 0, andρr(0) = r, (27)

whereI0 = {0}, Ir = [r, 1
4
[ if 0 < r < 1

4
, I 1

4
= { 1

4
} andIr =

] 1
4
, r] otherwise (see Fig. 2 for an illustration). Hence, a property

is that, for allx4 ∈ R, if r ∈ [0, 1[ thenρr(x4) ∈ [0, 1[ as well.
The functionβ : R × R → R is defined by

β(z, u) =
1 − tanh2 z

1 − tanhu tanh z
µ(u), (28)

with µ(u) =
tanhu

u
, if u 6= 0, and µ(0) = 1. (29)
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Figure 2: Functionx4 7→ ρr(x4) for several positive values of
r. This function plays the same role (a feedback gain) asr in the
linearized system, for the nonlinear system. Forr = 1.3, the red
part exceeds the stability limit gain value1.

Note that in (28), the first factor is positive, finite and regular (but
not bounded), and thatµ is positive, finite, regular and lower than1
(see Fig. 3 for an illustration), so that functionβ is well-posed.

−15 −10 −5 0 5 10 15
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0.2

0.4
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0.8

1

µ

u

Figure 3:Functionu 7→ µ(u) defined in (29).

5.2. Step 2: State-space formulation similar to (12)

Using identity (26) in (8) and introducing

Θ(x) = [tanh x1, tanh x2, tanh x3, tanh x4 ]T , (30)

lead to the state-space equation

1

ω

dx

dt
= A Θ(x)+B u (31)

where the matricesA andB are functions of, respectively,ρr(x4)
andβ(rx4, u), which are given by

A=

2
64

−1 0 0 −4ρr(x4)
1 −1 0 0
0 1 −1 0
0 0 1 −1

3
75 and B=

2
64

β(x, u)
0
0
0

3
75. (32)

Remark 6 (Gains). ρr(x4) can be interpreted as a feedback gain
andL(rx4, u) as the input gain.

5.3. Step 3: Storage function, passivity and Lyapunov analysis

Let w ∈ (R∗
+)4, W = diag(w) and consider the storage function

Vnℓ defined as (25) whereVℓin is replaced by (see Fig. 4)

∀xk ∈ R, Vnℓ(xk) = ln cosh(xk). (33)
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Figure 4:Storage functions:Vℓin (- -) defined by (16) is used for
the linearized system analysis andVnℓ (-) (33) for the nonlinear
system analysis.

Remark 7 (FunctionVnℓ). The storage functionVnℓ defined by
(33) does not longer correspond to the energy stored in a capacitor,
except for small signals sinceln cosh x ∼

0

1
2
x2 (see also Fig. 4).

Then, following (31), and asV ′
nℓ(xk) = tanhxk,

1

ω

dVnℓ(x)

dt
=

`
Θ(x)TW

´
f(x, u)

= Θ(x)TW AΘ(x) + Θ(x)TWBu,

so thatPnℓ(x)
ω

= − eψnℓ(x) + eφnℓ(x, u)u where

eψnℓ(x) = Θ(x)TQnℓ(ρr)Θ(x) with Qnℓ = −1

2

`
WA+AW

´
,

eφη(x, u) = Lnℓ(x, u)Θ(x) with Lη = BTW.

As eψnℓ is a quadratic form w.r.t.Θ(x), it is positive definite iff
Qnℓ is a positive definite matrix as well. This property is achieved
as in section 4 forw = wa sinceA is the same matrix asA in
whichr ∈ [0, 5/12[ has been replaced byρr(x4) ∈ [0, 5/12[.

As a consequence, the passivity w.r.ty = ωeφa and the Lya-
punov stability are proved for any time-varying parameter lying in
Dnatural (§ 4.4-caseη = a). Nevertheless, the results of (§ 4.4-
caseη = b) cannot be used here, but only the remark 5, since
ρr(x4) varies withx4 (even for fixedr).

5.3.1. Conclusion

Loosing the result of section 4.4 (caseη = b) for the nonlinear
system appears awkward. In practice, this is compensated bythe
fact that the feedback-loop gainρr (∀r > 0) becomes stabilizing
again for largex4 as soon as it falls under the critical value1 (or
5/12 for Vnℓ with the weightw = [1, 1, 1, 1]), as stated in the
remark below. Finding a constant weightw restoringDmax for the
linear case would solve also the problem for the nonlinear case.

Remark 8 (Stability limit). The stability limit is reached when the
gainρr equals to1, that is, only atx4 = 0 in the case wherer = 1.
But, the morex4 deviates from0, the moreρr(x4) decreases (see
Fig 2) and reinforces the stabilization. In this case,x = 0 is a

limit stable equilibrium point foru = 0. If r ≥ 1, the system
is locally unstable onx4 ∈ {x4 | ρr(x4) > 1} = Ir (see the
red part in Fig. 2), but locally stabilized onR \ Ir· Sincex = 0
is the only equilibrium point foru = 0, the system can become
self-oscillating.

6. NUMERICAL SCHEME AND DISSIPATIVE
BEHAVIOUR

In signal processing, the bilinear transform is an extensively used
numerical scheme. One reason is that it preserves the stability
domain for time-invariant linear filters and usually lead toexpected
behaviours also for some time-varying and nonlinear cases.The
question addressed here is to estimate how this numerical scheme,
used here as in [2, 3], is able to fulfill a power balance close to a
discrete-time (DT) version of (9-11).

For sake of conciseness, the notations used in the following
part aredx

dt
=f(x, u, α) whereα denote the (possibly time-varying)

parametersα=(ω, r) andx(n) denotes the variable at timet=nτ
(rather thanx(nτ )) for the sampling frequencyFs =1/τ .

6.1. Bilinear transform

Applying the bilinear transform to (8) leads to

x(n+1)−x(n) =
τ

2

h
f

`
x(n+1), u(n+1), α(n+1)

´

+f
`
x(n), u(n), α(n)

´i
. (34)

The simulation of the dynamics is processed by computing

x(n+ 1) = x(n) + δ(n), (35)

whereδ(n) is governed by (34) in whichx(n + 1) is replaced
by (35). The computation ofδ(n) is processed either by using a
Newton-Raphson algorithm [14] or by approximating the solution
by that of the first order Taylor expansion (w.r.t.δ(n)) of its gov-
erning equation, that is,

δ(n) =
τ

2

h
I4 − τ

2
∂(xT )f

`
x(n), u(n+1), α(n+1)

´i−1

×
h
f

`
x(n), u(n), α(n)

´
+ f

`
x(n), u(n+1), α(n+1)

´i
. (36)

In practice, the latter solution is accurate if the cutoff frequency is
sufficiently low (ω/(2π) ≪ Fs/2). In this case, the computation
cost can still be reduced without deteriorating the result by replac-

ing the last factor of (36) byf
“
x(n), u(n+1)+u(n)

2
, α(n+1)+α(n)

2

”
.

6.2. Discrete-time power balance and dissipated contribution

The passivity is examined for the storage functiondVnℓ(x)
dt

=

wT dV nℓ(x)

dt
with V nℓ(x) = [Vnℓ(x1), . . . , Vnℓ(x4)]

T. Following

(34-35), a DT version ofdVnℓ(xk)
dt

=V ′
nℓ(xk) dxk

dt
is

Vnℓ

`
xk(n+1)

´
− Vnℓ

`
xk(n)

´

τ
= ∆V

`
xk(n), δk(n)

´ δk(n)

τ
,

∆V
`
ξ, δ

´
=
Vnℓ(ξ+δ) − Vnℓ(ξ)

δ

“
−→
δ→0

V ′
nℓ(ξ) = tanh ξ

”
,

whereδ(n) is computed using (34-35).
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To characterize the dissipativity in the sense of this DT power
balance, the associated functionψd must be identified. This can
be done remarking that, according to (10-11), functionsψ(x,α) =
wTψ(x) andφ(x, u, α) = wTφ(x, u, α) are here formally com-
puted withψk(xk, α) = −V ′

nℓ(xk)f(x, 0, α) andφk(x, u, α) =h
V ′

nℓ(xk)fk(xk, u, α) + ψ(xk, α)
i
/u. The looked-for DT ver-

sions are then given by replacingV ′
nℓ by δV and occurrences off

by their corresponding averages at samplesn andn+1. The DT
dissipated contributionψd computed in this way is given by

ψd
“
x(n), δ(n);α(n), α(n+1)

´
= −∆V

`
x(n), δ(n)

´T ×

diag(w)× f
`
x(n), 0, α(n)

´
+ f

`
x(n)+δ(n), 0, α(n+1)

´

2
. (37)

with ∆V
`
x, δ

´
=

ˆ
∆V (x1, δ1), . . . ,∆V (x4, δ4)

˜T
and makes

sense. It yields a DT Lyapunov principle foru = 0 if ψd ≥ 0:

Vnℓ

`
xk(n+1)

´
− Vnℓ

`
xk(n)

´
=−τ ψd

“
x(n), δ(n);α(n), α(n+1)

´
.

The positivity domain ofψd is not straightforward to exhibit even
for constant parameters(ω, r): in this case,ψ can be written as
a quadratic form w.r.t.θ(n) + θ(n+1) but with a weight matrix
which depends on the time, as stated in the following remark.

Remark 9. For constant parameters,ψ is a quadratic function
w.r.t. T (ξ, δ) =

`
tanh(ξ+ δ) + tanh ξ

´
/2. This is obtained

rewriting ∆V
`
ξ, δ

´
= F (ξ, δ)T (ξ, δ) where the introduced func-

tion F can be interpreted as a correction factor due to the time-
discretization. This factor is proved to be larger than1 and such
thatF (ξ, δ) −→

δ→0
1.

6.3. Simulations and results

Simulations presented below are performed using (36) withFs =
48kHz. The input is a linear sweepu(t)= a sinφ(t) with φ(t)=

2π
`
f−t + f+−f−

2t⋆ t2
´

starting with frequencyf− = 50 Hz and
ending withf+ =2 kHz att⋆ =0.1 s. Three amplitudes are tested:
a=0.01 (very linear limit, except if the resonance is high),a=1
(medium nonlinear dynamics) anda = 5 (highly nonlinear dy-
namics). The cutoff frequency isfc =1 kHz.

For r ≤ 5/12 (low resonance and limit of the proved passiv-
ity for the linear approximation of the filter, see § 4.2.2), the DT
passivity is unconditionally satisfied (ψd ≥ 0) for the indicatorψd

built with the weightw = wa (energy stored in capacitors).
For 5/12 < r < 1, this is no longer the case but the DT

passivity is still mostly fulfilled for the indicatorψd built with the
weightwb(r). The dissipativity violation can be appreciated in
Fig. 5 forr=0.7 (high resonance) andr=1.1 (non asymptotically
stable domain).

Note that, even in the latter case (r > 1), x4 does not diverge.
For the very low amplitude (a = 0.01), a self-oscillation appears,
as for the analog circuit. For larger amplitudes, the filter is driven
by the input so that no self-oscillation appear.

Hence, the bilinear transform has not proved to guarantee the
passivity. However, this numerical study shows its relevance and
its ability to capture some of the characteristic and expected be-
haviours of the Moog filter.

7. CONCLUSIONS AND PERSPECTIVES

In this paper, the passivity analysis of the Moog Ladder Filter cir-
cuit has been examined. Three families of candidate Lyapunov
functions have been proposed for the linearized and the nonlin-
ear versions of the system: in the linear case, the natural energy
stored in capacitors and an adapted weighted sum of the energies
conveyed by eigenvectors and, in the nonlinear case, an adaptation
of elementary storage functions. The first one guarantees the pas-
sivity for any time-varying parameters on a restricted domain. The
second one recovers the optimal stability domain for time-invariant
feedback-loop gains in the linear case. The third one generalizes
these results to the nonlinear case in an exact way for the first one,
but it only gives some clues for the characterization of the optimal
domain. Finally, these results have allowed to derive an dissipa-
tivity indicator for discrete-time simulations based on the bilinear
transform.

The analysis of simulations reveals that the bilinear transform
does not guarantee the dissipativity of the nonlinear filterif gainsr
are larger than5/12 (whether time-varying or not). However, even
in this case, the dissipativity condition stays mostly fulfilled and
simulations show that the bilinear transform generates theknown
characteristic behaviours of the Moog filter.

As a consequence, the main perspective of this study con-
sists in deriving refined storage functions and a specific numerical
scheme that (both) guarantee a dicrete-time passivity. Conserva-
tive schemes (which preserve the energy of conservative systems
and Hamiltonian systems) based on variational approaches have
been developed [15] and are still an active field of research.They
can reveal to be relevant also when they are applied to lossy ver-
sions of originally non-lossy problems (see e.g. [9, Apdx. A1]).
Another perspective is concerned with the derivation of explicit
schemes preserving the passivity. Finally, a deeper study on the
time variation effects of parameterr>5/12 should be carried on.
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ABSTRACT
In this paper, we describe a sound delivery method for footstep
sounds, investigating whether subjects prefer static rendering ver-
sus dynamic. In this case, dynamic means that the sound deli-
very method simulates footsteps following the subject. An expe-
riment was run in order to assess subjects’ preferences regarding
the sound delivery methods. Results show that static rendering is
not significantly preferred to dynamic rendering, but subjects dis-
liked rendering where footstep sounds followed a trajectory differ-
ent from the one they were walking along.

1. INTRODUCTION

Procedural sound synthesis is becoming a successful approach to
simulate interactive sounds in virtual environments and computer
games [1, 2]. One important category of sounds produced by ac-
tion of subjects navigating in an environment is the sound of foot-
steps.

Recently, several algorithms have been proposed to simulate
walking sounds. One of the pioneers in this field is Perry Cook,
who proposed a collection of physically informed stochastic mo-
dels (PhiSM) simulating several everyday sonic events [3]. Among
such algorithms the sounds of people walking on different surfaces
were simulated [4]. A similar algorithm was also proposed in [5],
where physically informed models simulate several stochastic sur-
faces.

Recently, in [6] a solution based on granular synthesis was
proposed. The characteristic events of footstep sounds were repro-
duced by simulating the so-called ground reaction force, i.e., the
reaction force supplied by the ground at every step.

The research just described does not take into consideration
the ability of footstep sounds to be rendered in a 3D space. Sound
rendering for virtual environments has reached a level of sophisti-
cation that it is possible to render in realtime most of the pheno-
mena which appear in the real world [7].

In this study, we are interested in investigating how subjects
react to different kinds of sound rendering algorithms, which fol-
low the user or propose different confusing trajectories.

The results presented in this paper are part of the Natural In-
teractive Walking (NIW) FET-Open project1, whose goal is to pro-
vide closed-loop interaction paradigms enabling the transfer of
skills that have been previously learned in everyday tasks asso-
ciated to walking. In the NIW project, several walking scenarios

∗ This work was supported by the NIW project
1http://www.niwproject.eu/

are simulated in a multimodal context, where especially audition
and haptic play an important role.

2. SYSTEM ARCHITECTURE

The system we adopted for the experiments consists of a a motion
capture system (MoCap)2, a soundcard3, eight loudspeakers, two
sandals with pressure sensors embedded in, and two computers.
Figure 1 shows a schematic representation of the overall architec-
ture developed.

Such system was placed in an acoustically isolated laboratory
which consisted of a control room and a bigger room where the
setup was installed and where the experiments were performed.
The control room was 5.45 m large, 2 m long, and 2.85 m high,
and it was used by the experimenters providing the stimuli and
collecting the experimental results. It hosted two desktop compu-
ters.
The first computer run the motion capture software, while the se-
cond run the footstep sounds synthesis engine (see section 2.1).
The two computers were connected through an ethernet cable and
communicate by means of the UDP protocol. The data relative to
the motion capture system were sent from the first to the second
computer which processed them in order to control the sound en-
gine.

The experiment room was 5.45 m large, 5.55 m long, and 2.85
m high. A transparent glass divided the two rooms, so it was possi-
ble for the experimenters to see the users performing the assigned
task. The two rooms were connected by means of a talkback sys-
tem.

The user locomotion was tracked by an Optitrack motion cap-
ture system4, composed by 16 infrared cameras5. The cameras
were placed in a configuration optimized for the tracking of the
head position. In order to achieve this goal, markers were placed
on the top of the head using a bicycle helmet. The walking area
available to the users for the purposes of the experiments consisted
of a rectangle 2.5 x 2.6 m which corresponded to the area fully
seen by the infrared cameras. The perimeter of such rectangle was
indicated on the floor by means of scotch tape strips (see figure 2)

Users were also tracked by using the pressure sensors embed-
ded in a pair of shoes. Specifically, a pair of light-weight san-

2from Naturalpoint with software Tracking Tools 2.0
3FireFace 800 soundcard:

http://www.rme-audio.de/en_products_fireface_800.php
4http://naturalpoint.com/optitrack/
5OptiTrack FLEX:V100R2
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Figure 1: A block diagram of the architecture.

dals was used (Model Arpenaz-50, Decathlon, Villeneuve d’Ascq,
France). The sole had two FSR pressure sensors6 whose aim was
to detect the pressure force of the feet during the locomotion of a
subject wearing the shoes. The two sensors were placed in corre-
spondence to the heel and toe respectively in each shoe. The ana-
logue values of each of these sensors were digitalized by means
of an Arduino Diecimila board7 and were used to drive the audio
synthesis.

The configuration of the eight loudspeakers is illustrated in
Figure 2. In detail, the loudspeakers8 were placed on the ground at
the vertices and at the middle point of the sides of the rectangular
floor. During the experiments the loudspeakers were hidden from
view using acoustically transparent curtains.

2.1. Footstep sounds synthesis engine

In previous research, we proposed a sound synthesis engine able
to simulate footstep sounds on aggregate and solid surfaces [8].
Such engine is based on physical models which are driven by a
signal, in the audio domain, expressing the ground reaction force
(GRF), i.e., the reaction force supplied by the ground at every step.
In our simulations the GRF corresponds to the amplitude envelope
extracted from an audio signal containing a footstep sound.

The engine can operate both offline and in real-time. The two
approaches differ in the way the input GRF is generated. Concer-
ning the realtime work, various systems for the generation of such
input have been developed and tested [8, 9, 10]. In the proposed
experiments, the footstep sounds synthesis is driven interactively
during the locomotion of the subject wearing the shoes. The de-
scription of the control algorithms based on the analysis of the

6I.E.E. SS-U-N-S-00039
7http://arduino.cc/
8Dynaudio BM5A speakers: http://www.dynaudioacoustics.com/

values of the pressure sensors coming from the shoes can be found
in [11]).
The sound synthesis algorithms were implemented in C++ as ex-
ternal libraries for the Max/MSP9 sound synthesis and multimedia
real-time platform.

2.2. Sound delivery methods

We implemented and tested two different types of approaches for
the delivery of the footstep sounds through the loudspeakers: static
and dynamic diffusion.
For static diffusion we intend that the footstep sound, generated
interactively during the locomotion of the user wearing the shoes,
is diffused simultaneously to the eight loudspeakers, and with the
same amplitude in each loudspeaker.
Conversely, during the dynamic diffusion the user position was
tracked by the MoCap and it was used to diffuse the footsteps
sound according to a sound diffusion algorithm based on ambi-
sonics. Specifically, to achieve the dynamism we used the am-
bisonic tools for Max/MSP10 which allow to move virtual sound
sources along trajectories defined on a tridimensional space [12].
Such algorithm was set in order to place under the user feet the
virtual sound source containing the footstep sounds. In this way
the sound followed the user trajectories during his/her locomotion,
and therefore the eight loudspeakers delivered the footstep sounds
with different amplitudes. As an example, in reference to figure
2, when the user position was near the loudspeakers 1 and 2, the
effect resulting from the dynamic diffusion was that the sound was
mostly delivered through these two loudspeakers while the loud-
speakers 5 and 6, placed on the opposite sides, did not deliver any
sound.

9http://cycling74.com/
10Available at http://www.icst.net/research/projects/ambisonics-tools/
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Figure 2: Loudspeakers configuration used in this study. In dark grey the the perimeter of the rectangle delimiting the walking area
(indicated on the floor by means of scotch tape strips). In light grey the triangular trajectory for the delivery of the distractors during the
dynamic diffusion condition in experiment 1.

In addition to the static and dynamic diffusion, during the ex-
periments we also delivered the sounds using a second type of dy-
namic diffusion where the sound delivery was incoherent with the
user position. In detail, in this configuration we chose to deliver the
sound as coming from the side opposite to the user position. As an
example, in reference to figure 2, when the user position was near
the loudspeakers 1 and 2, the effect resulting from the dynamic
diffusion was that the sound was mostly delivered through loud-
speakers 5 and 6, while the loudspeakers 1 and 2 did not deliver
any sound.

Finally, in presence of the dynamic diffusion, the delay due to
the MoCap was negligible for the purposes of the experiments.

3. DESCRIPTION OF THE EXPERIMENTS

We performed two experiments in order to assess subjects’ reac-
tion to the sound delivery methods. During the experiments par-
ticipants were asked to wear the sandals, and the cycling helmet
mentioned in section 2 and walk in the laboratory according to the
tasks of the two experiments.

3.1. Experiment 1

The task of the first experiment consisted on walking in circular
way along the perimeter of the walking area (i.e. the rectangle in-
dicated on the floor by means of scotch tape strips). During their
walk they produced interactively footstep sounds which were de-
livered through the loudspeakers according to the following six
conditions:

• static diffusion

• coherent dynamic diffusion

• incoherent dynamic diffusion

• static diffusion plus static distractors

• coherent dynamic diffusion plus dynamic distractors

• incoherent dynamic diffusion plus dynamic distractors

The three methods explained in section 2.2 were presented
with and without distractors. Such distractors consisted of footstep
sounds of a virtual person walking in the same room. Specifically,
in presence of static diffusion the distractors were delivered stati-
cally (i.e., with the same volume in all the loudspeakers), while in
the dynamic diffusion condition they were delivered dynamically
following a triangular trajectory (see figure 2).

Participants were exposed to twelve trials, where the six con-
ditions were presented twice in randomized order. Each trial lasted
one minute.
The sound engine was set in order to synthesize footstep sounds
on two different kinds of materials: wood and forest underbrush.
Each condition was presented with both wood and forest under-
brush. The reason for choosing two materials was to assess whether
the surface type affected the quality of the results. In this particular
situation, a solid and an aggregate surface were chosen.

The distractors were presented using the same surface cho-
sen for the participants’ walks. In order to keep the distinction
between distractors and participants’ footstep sounds simple, dis-
tractors were presented with a lower volume, a small change in the
timber, and with a moderately quick gait.

After the presentation of each stimulus participants were re-
quired to evaluate on a seven-point Likert scale the following ques-
tions:

• How well could you localize under your feet the footstep
sounds you produced?

• How well did the sounds of your footsteps follow your po-
sition in the room?
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• How much did your walk in the virtual environment seem
consistent with your walk in the real world?

• How natural did your interaction with the environment seem?

• To what degree did you feel confused or disoriented while
walking?

The goal of this experiment was to compare the proposed dif-
fusion methods. The incoherent dynamic diffusion was included
in the experiment in order to assess if any difference in the partici-
pants evaluations between coherent dynamic and static diffusion,
was not due only to the fact that the source was moving, but that it
was moving coherently with the user position. In order to make a
consistent comparison, the sound synthesis engine was set with ap-
propriate volumes for footstep sounds delivered through the static
and the dynamic diffusion, i.e. there was no big volume difference
between the two sound delivery methods. The distractors were
used to assess if the same differences in the participants evalua-
tions of the three diffusion methods were found both in presence
and in absence of distractors.

Our hypotheses were that the coherent dynamic condition wo-
uld have got better results rather than the others (in particular the
static one), that the incoherent dynamic condition would have been
evaluated as the worst, and that the use of distractors would have
worsen the participants evaluations in comparison with the case in
which the distractors were not presented.

3.2. Experiment 2

Starting from the results of the first experiment we designed a se-
cond experiment in order to investigate in a deeper way the users’
perception of the static and coherent dynamic diffusions. The task
of such experiment consisted on walking freely inside the walking
area. Participants were exposed to fourteen trials, where seven
surface materials were presented in randomized order according
to the two delivery methods (static and coherent dynamic diffu-
sion). The seven surface materials, five aggregate and two solid,
were gravel, sand, snow, dry leaves, forest underbrush, wood and
metal. Each trial lasted one minute. After the presentation of each
stimulus participants were required to evaluate on a seven-point
Likert scale the same questions presented in the first experiment.

The goal of this experiment was to assess whether participants
showed a preference for one of the two proposed methods when
exploring the virtual environment by walking freely (and a with-
out predefined trajectory like in experiment 1). Furthermore we
were interested in assessing whether the type of used surface could
affect the quality of the results.

3.3. Results of experiment 1

The first experiment was performed by thirteen subjects, 10 males
and 3 females, aged between 21 and 38 (mean=24, standard devi-
ation=4.51), who took on average about 17 minutes to complete it.
Results are illustrated in figure 3. Various ANOVA (with and with-
out repeated measures) were performed in order to assess if the dif-
ferences found in the results were significative. All post-hoc ana-
lyses were performed using the least significant difference (LSD)
test with Bonferroni’s correction.
The first noticeable thing is the difference between results of the
two surface materials, wood and forest underbrush, for what con-
cerns the dynamic coherent condition and its comparison with the

static condition, in the case of absence of distractors. Indeed while
for the wood material the differences between such two conditions
are negligible for all the investigated parameters, instead for the
forest underbrush material the differences are noticeable and sig-
nificant (p-value = 0.000064). In presence of distractors such be-
havior is not hold neither for wood nor for forest, and all the diffe-
rences are not significative.

A trend common to the two materials is that always the dy-
namic incoherent condition, both in presence and in absence of
distractors, gave rise to lower evaluations in terms of localization,
following, consistency and naturalness, and higher evaluations for
what concerns the disorientation. In detail, for both materials, sig-
nificance has been found concerning the differences between the
dynamic coherent and dynamic incoherent conditions (for wood:
p-value = 0.000285 and p-value = 0.005136, for forest: p-value <
0.000001 and p-value = 0.043566, for the cases with and without
distractors respectively), and between the static and dynamic in-
coherent conditions (for wood: p-value = 0.004283 and p-value =
0.002424, for forest: p-value < 0.000001 both for the cases with
and without distractors).

For both materials, as regards the parameters localization, fol-
lowing, consistency and naturalness, almost always the evalua-
tions in absence of distractors are higher than when the distractors
are present (the opposite behavior coherently happens for what
concerns the disorientation parameter). This is more evident for
the forest underbrush material, and indeed the difference between
these two conditions is significant (p-value = 0.03817), while for
wood is not.
In particular for both materials the disorientation is higher in pres-
ence of distractors rather than in absence, but significant difference
between these two conditions was found only for the forest under-
brush material (p-value = 0.01923). The condition dynamic inco-
herent with distractors was evaluated as the most disorienting in
both materials; conversely, for the forest underbrush material only,
the dynamic coherent condition was evaluated as the less disori-
enting.

As previously said, at global level the dynamic coherent con-
dition gave rise to significant better results than the static one for
what concerns the forest material in absence of distractors. In ad-
dition a successive analysis for each of the investigated parameters
revealed significant difference between the two conditions only for
the naturalness parameter (p-value = 0.013238).

3.4. Results of experiment 2

The second experiment was performed by ten subjects, 8 males
and 2 females, aged between 19 and 37 (mean=28.8, standard de-
viation=5.63), who took on average about 17 minutes to complete
it.
Results are illustrated in figure 4. As it is possible to notice, par-
ticipants did not show any preference for one of the two methods.
Evaluations of the investigated items of the questionnaire were
very similar between the two methods for all the surfaces (all the
differences are not statistically significant).
However it is possible to notice that the participant answers to the
questionnaire items were not always similar for each surface mate-
rial. In particular it is possible to observe that the metal surface on
average produced the lower scores for the localization, naturalness
and consistency items, and the higher scores for the disorientation
item.
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Figure 3: Results of the first experiment. Conditions are indicated on x-axis: 1- static diffusion, 2- coherent dynamic diffusion, 3- incoherent
dynamic diffusion, 4- static diffusion plus static distractors, 5- coherent dynamic diffusion plus dynamic distractors, 6- incoherent dynamic
diffusion plus dynamic distractors.

4. GENERAL DISCUSSION

The first noticeable element emerging from the results of the first
experiment is the different behavior found for the coherent dy-
namic condition in the two simulated materials, in the case of ab-
sence of distractors. For forest underbrush such condition seems
to play an important role since it got the best evaluations among
all the investigated parameters, while for wood it got evaluations
very similar to those of the static condition. So our hypothesis that
people preferred the dynamic coherent condition to the static one
was only partially confirmed.
Instead the hypothesis that the dynamic incoherent condition wo-
uld have given the worst evaluations was confirmed, and found
statistically significant for both materials and both in presence and
absence of distractors.
It is therefore possible to conclude that users can perceive very
well that their interaction with the virtual environment is not re-
alistic nor natural when the source is not moving coherently with
their position. This is an indication of the success of our simu-
lations. The hypothesis concerning the distractors was confirmed:
for both materials, almost always the evaluations in absence of dis-
tractors are better than when the distractors are present, although
significant differences were found only for forest. In addition, the
evaluations of the disorientation parameter were higher in presence
of distractors (but significant only for forest). This indicates that
the use of distractors, i.e., walking sounds evoking the presence of
another person walking in the same room as the subject, is likely
to influence the perception of footstep sounds associated with the
subject.

Concerning the second experiment, results were clear: parti-
cipants’ evaluations did not differ for the two proposed methods,
and this is an indication that the two methods could both be used
in a virtual environment to deliver interactively generated footsteps
sounds. However, other tests should be conducted in order to con-
firm this and assess more in detail other eventual differences in the
perception of the two methods.

5. CONCLUSION AND FUTURE WORK

In this paper we have described an experiment whose goal was
to assess the importance of surround sound rendering in simula-
ting footstep sounds for virtual environments. Results show that
static delivery method is not significantly preferred to the (co-
herent) dynamic one, and that participants disliked the renderings
where footstep sounds followed a trajectory different from the one
they were walking along.

In future experiments we will investigate in a deeper way the
differences between the static and dynamic diffusion methods, as
well as other parameters related to sound rendering, such as the
role of reverberation and the role of amplitude.

We also plan to integrate the proposed footstep sounds rende-
rings in an audio-haptic-visual environment, to design and evaluate
different multimodal experiences based on walking.
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ABSTRACT

Power amplifiers play an important role in producing of guitar
sound. Therefore, the modeling of guitar amplifiers must also
include a power amplifier. In this paper, a push-pull guitar tube
power amplifier, including an output transformer and influence of a
loudspeaker, is simulated in different levels of complexity in order
to find a simplified model of an amplifier with regards to accuracy
and computational efficiency.

1. INTRODUCTION

Guitar power amplifiers have a big effect for guitar sound. Power
vacuum-tubes have characteristic nonlinear distortion [1]. Further-
more, compared to semiconductor amplifiers, tube power ampli-
fiers have different circuit topology that brings other effects, such
as typical frequency response and signal compression when a large
input signal is supplied [1]. Moreover, output transformers play an
important role in the output signal generation. The output signal
is distorted by nonlinear hysteresis of a transformer core and fre-
quency response of the output transformer [2].

Two types of topologies are used in tube power amplifier con-
struction. Single ended power amplifiers consist mainly of one
power tube, an output transformer, and resistors and capacitors.
They provide asymmetrical limiting of the output signal that cre-
ates foremost even order harmonic components in the output signal
spectrum. Push-pull power amplifiers have more complex topol-
ogy. They consist of a phase splitter, two or four power tubes that
processes opposite half-waves of the signal and output transformer
that sums contributions from opposite power tubes. The push-pull
amplifiers offer a symmetrical transfer function that creates odd
order harmonic components in the output signal spectrum [3].

A single-ended power amplifier is simulated in [4] using wave
digital filters. The model of the power amplifier contains a tri-
ode, a linearized model of the output transformer and a linearized
model of a loudspeaker recomputed to its electrical equivalent.
This model was improved in [5] where the complex nonlinear WDF
model of the output transformer is used. A single-ended power
amplifier with a pentode tube is discussed in [6]. This model also
contains a linearized model of the output transformer but the loud-
speaker is replaced by a constant load. Nevertheless, guitar tube
amplifiers mostly contain a push-pull power amplifiers with two
or four tubes (pentodes EL34 or beam tetrodes 6L6) that work in
class AB or B [2]. However, the circuit topology and the circuit
equations are the same for both classes and they differ only in bias
point. A simulation of a push-pull amplifier is described in [1].
The complete circuit is divided into a phase splitter, a pentode cir-
cuit and a feedback circuit and they are connected using a modified

blockwise method [1]. However, this simulation uses a model of
the ideal output transformer and the constant load.

In this paper, the pentode circuit is simulated in different level
of complexity. At first, the pentode circuit with an ideal trans-
former and a constant load is solved, then the circuit with an ideal
transformer and a linearized model of a loudspeaker. Finally, the
circuit with a nonlinear model of the output transformer is simu-
lated.

2. BASE CIRCUIT AND DEVICE MODELS

A typical pentode push-pull power amplifier contains two or four
pentodes, the output transformer with connected loudspeaker and
some resistors and capacitors (see figure 1). The circuit schematic
also contains input units built by resistors Rg, Rb, capacitors Cg

and bias voltage Vb. The input units are independent from the rest
of the circuit because there is no coupling via the tube’s cathode in
topology with fixed bias. Their simulation is described in [1], and
therefore the simulation of this part is omitted and there is only a
focus on the output part of the amplifier. The typical values for
circuit elements are listed in table 1.

Rs1

Rb1

N1

N2

N1 Rs2

Rg1

Cg1Vinp
Vb

Vinp2

Rg2

Rb2 Cg2

Vps

Rd

Cd

VL

VD

Va1 Va2

Vs1

Vin1

Vs1

Vin2

Figure 1: Circuit schematic of a push-pull tube amplifier.

Table 1: Values for circuit elements from figure 1.

Rs[Ω] Rd[Ω] Cd[µF] N1 N2 Vps[V] Vb[V]
500 500 100 1560 60 500 −50
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2.1. Pentode Model

The Koren’s model of the pentode [7] was chosen as the pentode
model. The pentode plate current is in form Ia(Vak,Vgk1,Vgk2)
where Vak is plate-to-cathode voltage, Vg1k is the grid-to-cathode
voltage and Ug2k is the screen-to-cathode voltage. The screen cur-
rent is given in form Is(Vgk1,Vgk2). The description of functions
Ia and Is is omitted here and is available in [7]. Frequency prop-
erties of the tube (e.g. Miller capacitance) are not considered be-
cause it should be included in the simulation of input unit.

2.2. Output Transformer Model

An ideal output transformer is considered to be an impedance di-
vider that transforms input voltages Vp and currents Ip to output
Vs and Is according to

Vs

Vp
=

N2

N1
=

Ip

Is
(1)

where N1, N2 are numbers of windings of the transformer. How-
ever, a real transformer is far away from the ideal one. For an ac-
curate simulation, losses caused by hysteresis and core saturation
have to be considered. Nonlinear behavior of the real transformer
is described in numerous literature, e.g. [8, 9]. According to Am-
per’s law, the magnetizing force H is

Hlmag = N1Ip − N2Is (2)

where lmag is the length of the induction path. The flux density B
is computed from Farraday’s law

∂B

∂t
=

Vs

N2S
(3)

where S is the transformer-core cross-section. The well-known
nonlinear relation B = µH can be implemented according to the
Frolich equation [9] given by

B =
H

c + b |H| (4)

where c and b are constants derived from material properties. How-
ever, this model simulates only the core saturation. When simulat-
ing hysteresis, one can use e.g. Jiles-Atherton model [10] modified
in [8] in order to remove nonphysical behavior of minor hysteresis
loops. Magnetization of the core is obtained from

∂M

∂H
= δM

Man − M

kδ
+ c

∂Man

∂H
(5)

where Man is anhysteretic curve given by

Man = Ms

(
coth

(
H + αM

a

)
− a

H + αM

)
(6)

and δ = sign(∂H/∂t). Parameters Ms, α, a, c and k are derived
from material properties and their identification can be found e.g.
in [11]. Parameter δM = 0 when the nonphysical minor loop is go-
ing to be generated (anhysteric magnezation has lower value than
the irreversible magnezation) alternatively δM = 1 [8] . Flux den-
sity is then obtained from

B = µ0 (M + H) . (7)

2.3. Loudspeaker Model

Loudspeakers play a very important role in the output signal gen-
eration via its frequency response. When considering linearized
loudspeakers, one can model the frequency response with mea-
sured impulse responses with good results [1]. However, it is im-
portant to simulate the interaction between the tube amplifier and
loudspeaker because the loudspeaker impedance is frequency de-
pendent. The impedance can be modeled using the circuit schematic
in figure 2 [12]. The values are derived from the added mass
method and Thiele/Small parameters of a Celestion Vintage 30
loudspeaker placed in an Engl combo. The transformer leakage
inductance and resistance can be modeled by modifying inductor
Lsp1 and resistor Rsp1 values.

Figure 2: Simplified loudspeaker model – electric equivalent.

The loudspeaker impedance given by voltage VL and current
IL can be expressed as the solution of the set of equations

IL[n] = IL[n − 1] +
VL[n] − IL[n]Rsp1 − V3[n]

Lsp1fs

V3[n] = V3[n − 1] +
V3[n]Gsp2 − IL[n] − IL2[n]

Csp1fs

IL2[n] = IL2[n − 1] +
V3[n]

Lsp2fs

(8)

where IL[n − 1], V3[n − 1], IL2[n − 1] are state variables and
fs is a sampling frequency. The equations were obtained using
nodal analysis of the circuit in figure 2 and then discretized using
Backward Euler formula.

Because the set of equations (8) is linear, it can be simplified
into one linear equation

IL[n] = −c1VL[n] + Itmp (9)

where Itmp is a linear combination of state variables given by

Itmp = −c2IL[n − 1] + c3V3[n − 1] − c4IL2[n − 1]. (10)

The new state variable values are then computed from

V3[n] = −c5V3[n − 1] − c6IL[n] + c7IL2[n − 1] (11)

and
IL2[n] = IL2[n − 1] + c8V3[n]. (12)

Coefficients c1−8 are derived from (8).

3. SIMULATION OF THE AMPLIFIER

In the simplest case, the load is considered to be constant. Using
nodal analysis and discretization by Euler method, one can obtain
the set of circuit equations
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0 = −VL[n]

RL
+

N1

N2
(Ia1 − Ia2)

0 = −Va1[n] + VD[n] − N1

N2
VL[n]

0 = −Va2[n] + VD[n] +
N1

N2
VL[n]

0 = Is1 +
VD[n] − Vs1[n]

Rs1

0 = Is2 +
VD[n] − Vs2[n]

Rs2
,

(13)

where VD is voltage on the power supply, capacitor Cd is from the
circuit schematic in figure 1 and Ia1 = Ia(Vin1[n], Va1[n], Vs1[n]),
Is = Is (Vin1[n], Vs1[n]) and similarly Is2 = Is (Vin2[n], Vs2[n])
and Ia2 = Ia(Vin2[n], Va2[n], Vs2[n]). The equations (13) are
solvable for given value VD and the solution can be implemented
using a static waveshaper. It can be precomputed for different val-
ues of VD voltage and stored in a look-up table. Then, during the
simulation, the proper static waveshaper is chosen according to the
VD voltage. The VD voltage is then actualized using

VD[n] =
−Ia1 − Ia2 − Is1 − Is2 + (VPS−VD[n−1 ])

RD

C1ffs
+ VD[n − 1].

(14)

3.1. Circuit with Loudspeaker Model

If the loudspeaker is connected to the power amplifier, the load
impedance is no longer given explicitly, but it is determined by VL,
IL relation implicitly given by equations (8). In order to exclude
the loudspeaker impedance RL, the first equation from system (13)
is modified to

IL[n] =
N1

N2
(Ia1 − Ia2) (15)

and then solution of the modified equations (13) with (15) is ex-
pressed as a function IL[n] = fIL (Vin1[n], Vin2[n], VD[n], VL[n]).
Finally, the solution of the whole system using (9) is given by

− c1VL[n] + Itmp = fIL (16)

for the unknown variable VL[n] and state variables Itmp and VD[n].

3.2. Circuit with Nonlinear Transformer Model

The simulation of a circuit with a nonlinear transformer model is
based on (2), (3) and the nonlinear core model. The system is
described using

0 = −H(B[n])lmag − (c1VL[n] + Itmp)N2 + fILN2

0 = B[n − 1] − B[n] +
VL

N2Sfs

(17)

where term fILN2 is recomputed current IL to primary winding,
B[n − 1] is the flux density in the previous sampling period and
H(B) is the core model derived from (4) or from (7) if the hys-
teresis is considered.

4. SIMULATION RESULTS

All the simulations from section 3 were implemented in Matlab
environment using Mex files and C language. The Newton method
was used for solving implicit nonlinear equations. The derivation
of function or the Jacobian matrix were obtained using finite differ-
ence formula, the maximal number of iterations was 100 and the
numerical error was chosen as 0.0001. The values for the trans-
former model were chosen experimentally: Ms = 1.11 × 106,
3a = 8.56, α = 8.82×10−5, c = 0.14 and k = 51.65. However,
they can be computed from a measured hysteresis loop data [11].
The parameters for the Frohlich core model were c = 113.38,
b = 0.71 and the dimensions of the transformer were chosen as
S = 0.003 m2 and lmag = 0.2 m.

The transformer-core cross-section S together with the num-
ber of windings determines the low cutoff frequency of the trans-
former. The simulation of the output part of the power amplifier
was appended with a phase splitter, input pentode unit and feed-
back according to [1] and the results were compared to the mea-
sured Engl combo. The data was obtained from a measured voltage
on a parallel loudspeaker output with connected soundcard. The
frequency dependence of the first harmonic content of the volt-
age output signal, obtained using sweep sine signal, is shown in
figure 3. The simulation with a constant load provides the worst
results – there is no resonance around 45 Hz that appears in all
of the other simulations and measured data. The simulation with
hysteresis loop has similar behavior as a measured amplifier in the
area of low frequencies due to the core losses. In the area of mid-
frequencies, the simulation and measured data differ because of
the other resonances and mechanical properties of the loudspeaker
diaphragm, which are not considered in the simulation but can be
included in the simulation by improving the loudspeaker model
like in [13]. The nonlinear distortion was investigated as well. The
output spectrum for an input sinewave signal with an amplitude of
2 V is shown in figures 4. The individual spectra are measured for
the same frequency but they are shifted in the graph. All the algo-
rithms excluding the variant with constant load give very similar
results. The nonlinear distortion caused by transformer hysteresis
manifests very slightly and only at frequencies below cca 150 Hz
and it is very dependent on transformer parameters. The spectro-
gram of simulation using JA-model is shown in figure 5.

The table 2 shows the hypothetical computational complexity
that was determined using measurement of time duration of simu-
lation for input guitar riff signal with a length of 18 s and an am-
plitude of 30 V. The results showed that the algorithm is capable of
working in real-time. Sound examples of all the algorithm variants
and detailed graphs and other spectrograms are available on the
web page www.utko.feec.vutbr.cz/~macak/DAFx11/.

Table 2: Normalized computational complexity.

Constant load Loudspeaker Frohlich J-A model
0.04 % 0.05 % 0.12 % 0.27 %

5. CONCLUSIONS

The simulation of a push-pull tube amplifier was discussed in this
paper. The impact of the loudspeaker and output transformer to
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the amplifier properties was investigated. The loudspeaker was
modeled using simplified electric circuit and Frohlich and Jiles-
Atherton transformer models were used. The results showed that
the output transformer had a minor impact on the simulation re-
sults. It only manifested at very low frequencies while the compu-
tational complexity was increased significantly. Both transformer
models provided very similar simulation results and therefore, the
Frohlich model is more efficient for real-time simulations.
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Figure 3: Frequency dependence of the first harmonic content of
the output signal.
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ABSTRACT 

In this paper, analysis and trans-synthesis of acoustic bowed 
string instrument recordings with new non-negative matrix facto-
rization (NMF) procedure are presented. This work shows that it 
may require more than one template to represent a note according 
to time-varying behavior of timbre, especially played by bowed 
string instruments. The proposed method improves original NMF 
without the knowledge of tone models and the number of re-
quired templates in advance. Resultant NMF information is then 
converted into the synthesis parameters of the sinusoidal synthe-
sis. Bach cello suites recorded by Fournier and Starker are used 
in the experiments. Analysis and trans-synthesis examples of the 
recordings are also provided. 

 

Index Terms—trans-synthesis, non-negative matrix factorization, 
bowed string instrument 

1. INTRODUCTION 

In recent years, trans-synthesis is an interesting topic in musical 
processing [1-2]. Depending on either time-domain or frequency-
domain properties of audio signal processing, the authors attempt 
to overcome the problems when the real audio recordings are 
analyzed, transformed, and re-synthesized. In particular, non-
negative matrix factorization (NMF) is recently well-known to 
factorize spectrum into basis spectra and temporal activation in 
music signal analysis [3]. It is widely used for music transcrip-
tion [4-5], pitch detection and onset detection. To improve origi-
nal NMF, temporal smoothness [6], sparseness [7], and harmo-
nicity/inharmonicity [8] have been considered as primary con-
straints. For accurate piano music transcription proposed in [9], 
trained note templates are obtained in advance.  
[5] indicates that one needs to use enough number of required 
templates to give good results. In [8], 88 templates are used due 
to the pitch rage of piano, and this takes lots of computation and 
memory space. In real case, however, the spectral behavior of 
one note played by an instrument is always time-varying, espe-
cially in the case of bowed string instruments. That means it is 
not reasonable to achieve the NMF task by using only one tem-
plate per note. Fig. 1 shows the spectra of two different frame of 
the note B3 played by pianoUPM project [10]. It is interesting to 
note that spectral contours of two frames (20th frame and 300th 
frame in this case) are apparently in different shapes. 

 
Figure 1: (a) The waveform of the note B3. Two bold lines 
indicated 20th and 300th frame. (b) The spectrum of 20th 
frame. (c) The spectrum of 300th frame. 

 
Moreover, keyboard music is usually employed in the evalua-
tions in previous works. How NMF performs for other types of 
instruments is seldom addressed. In this paper, an iterative pro-
cedure for deciding the appropriate number of templates is pro-
posed for NMF. No trained tone model is required in advance. 
The proposed method is applied to acoustic cello recordings. 
In order to reproduce the results of the proposed NMF procedure, 
appropriate synthesis technique is preferably applied. Spectral 
modeling synthesis (SMS) is proposed to divide music signal into 
deterministic part and stochastic part. This model was then ex-
tended by including transient modeling [11], called sinusoids 
plus transient and noise. In this paper, deterministic part of con-
ventional SMS is applied to re-synthesize polyphonic musical 
signals analyzed by NMF. Sinusoidal synthesis [12] is employed 
here. Sound transformation examples are accomplished and pro-

vided in [13] as well. 
This paper is organized as follows. In section 2, NMF is briefly 
reviewed and its modification is proposed. In section 3, experi-
mental results of NMF analysis and music re-synthesis are given. 
Conclusion is given in section 4. 

2. NMF-BASED MUSIC SIGNAL ANALYSIS 

2.1. Brief review of NMF 

In [3], given an     nonnegative matrix Y, NMF is used to 

factorize Y into an     nonnegative matrix W and an     
nonnegative matrix X such that: 

 Y Y WX   (1) 
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A cost function such as KL divergence shown in equation 2 is 
designed as a measurement to evaluate how well the multiplica-
tion of W and X can approximate Y. 

  | logKL

F

Y
D Y WX Y Y WX

WX

 
    

 
 (2) 

      is the Frobenius norm. ⨂ is element-wise multiplication. 
By iteratively updating W and X, and the cost is minimized. For 
example, the update rules for (2) are shown as follows. 

 
/( )mr mn mn

m
rn rn

vr
v

W Y W X
X X

W







 (3) 

 
/( )rn mn mn

n
mr mr

rk
k

X Y W X
W W

X





  

(4) 

In music analysis, Y is used to represent signal spectrogram. For 
example, the column vector Yj of Y is the spectrum of the jth time 
frame. Frame size and total number of time frames are m and n, 
respectively. Hence, the column vector Wi of W represents the 
template of the ith note contained in the signal, and the element 
Xij of X indicates the intensity of the ith note which appears in the 
jth time frame. 

For NMF, it is important to decide the required number of note 
templates, r, in advance, in order to give good factorization of Y. 
Two methods are usually used to decide r. One uses the number 
of different notes appearing in the signal [5]. The other sets r as 
88 if piano music is analyzed [8]. However, the number of differ-
ent notes is usually unknown and computation complexity is 

huge if      . 

Moreover, it is questionable if a template is enough for a piano 
tone. A sound clip containing 2 different notes obtained from [10] 
is analyzed. r is set as 2 and 88, respectively. NMF in [5] is used. 
The results are shown in Fig. 2. The left-hand-side figures 
represent X, and the right-hand-side represent the corresponding 
W. In Fig. 2(a), the 1st template contains both notes, and the 2nd 
template contains one of the notes. A note appears in both tem-
plates at the same time. It also shows that 2 templates are not 
enough to factorize the signal. In Fig. 2(b), only 4 templates give 
large enough intensity. The 1st note appears in the 33th and 45th 
templates, but with different spectrum envelopes. Similarly, the 
2nd note appears in the 35th and 47th templates. It seems 88 tem-
plates are enough, but the computation time is huge. 

 

 
Figure 2: NMF for piano sound clip: (a) r = 2 (b) r = 88. 

Music signal

Execute NMF with r

templates

Estimate l harmonic 

sets of all Wi

l > r
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For each k,

For each harmonic set, create a 

mask Sk for k-th harmonic set

k kW S W  

Yes

No

lrWW   ,set 
Initial r

 Figure 3: Flow chart of the proposed NMF procedure. 

2.2. New NMF Procedure for Harmonic Music Signals 

The proposed NMF depicted in Fig. 3 is proposed to solve the 
problem stated above without the knowledge of exact number of 
required templates. One first starts with a small r. The audio re-
cording is then analyzed by means of NMF described in [5]. Two 
preliminary non-negative matrices, which stand for intensities 
and spectra of all templates, come out as result. Next, the spec-
trum of each template is evaluated to find if it contains more than 
one harmonic set by using the method in [14].  If so, a mask 
function is used to extract the kth harmonic set. It can be 
represented as 

 
 

,  

(2 ) , ;  ,

k k

k k kp

W S W

S f p p x    

  

    
 (5) 

where f(x) is uniform distribution for the interval [p·μk-σ, p·μk+σ], 

   is the fundamental frequency corresponding to   
  and p is 

partial index.   is set as 3% of the fundamental frequency.  

l represents the number of harmonic sets extracted from r tem-

plates. If    , the loop will be stopped and the eventual matric-
es are obtained. Otherwise, we set r as l, use the temporal matric-
es as initial conditions and NMF process is then executed again. 

After the intensity and spectral information of all note templates 

are obtained, it can be found that FFT spectrum and    in (1) are 
very close to each other (the result is shown in Section 3). There-
fore, such NMF information can be used as parameters of the 
synthesis method stated below. 

3. EXPERIMENTAL RESULTS 

3.1. Results of the proposed NMF procedures. 

Two music passages of Bach‟s cello suites No.1 (BWV1007) 
recorded by Starker [15] and Fournier [16] are analyzed. They 
are both polyphonic. There are 4 different pitches in the first 16 
notes, shown in Fig.4. Cost function in (2) is implemented. 
Frame size is 8192 and hop size is 2048. Initially, the number of 
template, r, is set as 4. Templates are initialized with random 
numbers. 100 iterations are performed for NMF update rules. The 
outer loop in Fig. 3 runs only twice to reach the final results in 
both cases. 

After obtaining the NMF result,   and   are used to obtain syn-
thesis parameters, described in Section 3.2 due to the similarity 

between   and   . The 95th frame of    and    are shown in Fig. 5. 
It shows that the envelopes of two representations are close. 
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Figure 4: Score of first 16 notes. 

 

 

Figure 5: FFT spectrum and    of the 95th frame obtained 

from the Fournier recording. 

 

 

Figure 6: NMF result when the 1st outer loop factoriza-

tion is finished (r=4). [Fournier] 

 

Fig.6 shows the results of conventional NMF procedure of the 

Fournier recording with 4 initial templates (   ). In this case, 
more than one harmonic set exists in 3rd and 4th template such 
that these templates cannot completely represent all notes of the 
recording. One of the intuitive ways is to extend template dimen-
sion and makes these additional harmonic sets be located in new 
templates. 

The final results of the proposed NMF procedure of the Starker 
and Fournier recordings are shown in Fig. 7 and 8 respectively. 

In the figures, each column vector Wi is normalized such that the 
intensity information is solely represented by the corresponding 
row vector Xi of X as 

 
 

 ,  max .
max

i
i i i i

i

W
W X X W

W
    (6) 

The note information is stated as follows. In Fig. 7, pitches of the 
first three templates are G2, the 4th to the 6th ones are D3, the 7th 
and the 8th ones are B3, the 9th one is A3, and the last template 
with no obvious f0 is regarded as noise. In Fig. 8, pitches of the 
first three templates are G2, the 4th and the 5th ones are D3, the 
6th and the 7th ones are B3, the 8th one is A3, and the last template 
with no obvious f0 is also regarded as noise. 

By taking the first three templates of Fig. 7 as examples, both of 
their spectral envelopes and the corresponding intensity functions 
are quite different. The 1st template can be regarded as the attack 
template of G2 notes because it has the largest intensity of three 
and its onset points appear early. Moreover, the duration of the 
2nd template is longer and the onsets of the 3rd template appear 
between those of the 1st and the 2nd ones. It is reasonable to re-
gard them as a sustain template and a decay template respectively. 
It is interesting to note that the number of templates is solely re-
lated to the waveform behavior of the note. It usually depends on 
the physical architecture of the instrument and the gestures of the 
musician while he/she playing that note. Three templates are 
needed to represent G2 notes in this case. The required numbers 
of templates of D3 notes in the two recordings are different (2 
and 3 for the Fournier and Starker recording, respectively). 

Our experiments described above show that to use one template 

for a note may not be enough to sufficiently model a note, espe-
cially when the information is to be used in the re-synthesis 
process. It is interesting to see that when r is set as 10 without 
using the proposed procedure, one can‟t successfully factorize 
the signal from the Starker recording. Due to the harmonic mask 

    , the proposed NMF procedure outperforms in this case. 

Comparing to Fig. 7, the 6th and the 9th templates contain 2 notes 
in Fig. 9. This shows that the proposed method is advantageous 
even when the number of templates is enough. 

3.2. Resynthesis 

Eventually, W and X are converted to parameters of sinusoids. 
The number of partials is set as 50. The original and the synthetic 
signals are compared in Fig.10. The two spectral envelopes are 
close. Sound transformation such as timbre modification can be 
easily accomplished by replacing NMF templates of the corres-
ponding notes. Sound examples are provided in [13]. 

4. CONCLUSION AND DISCUSSION 

Analysis and trans-synthesis of acoustic cello recordings made 
by Fournier and Starker with modified NMF procedure is pre-
sented. It is not required to have pre-trained tone model and to 
know the necessary number of templates in advance for the mod-
ified NMF to give good results. It is also found that more than 
one template can be used to preferably represent a note according 
to its different sounding states. Spectrum and intensity informa-
tion of NMF is then converted into the synthesis parameters of 
the sinusoids. Trans-synthesis sound examples of Bach cello 
suites can be heard in [13]. 

Comparing to other state-of-art methods, this paper puts empha-
sis on the applications of sound reproduction rather than music 

transcription. That means spectral behavior of the timbre is more 
significant than the statistical results like F-measure or mean 
overlap ratio. Without applying any temporal or spectral con-
straints on NMF update rules, the proposed method models each 
note by extending template dimension such that these templates 
can be in charge of different states of one note. According to the 
aspect, the adequate number of templates will be unpredictable if 
one music note is played by various kinds of instruments with 
different gestural representations. It therefore takes amount of 
computation by means of the iteratively procedure of harmonic 
verification and multiple NMF updates. 
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Figure 7: the result of the proposed NMF procedure. 

[Starker] 

Figure 8: the result of the proposed NMF procedure. 

[Fournier] 
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Figure 9: the result of convention NMF procedure (r=10). 

[Starker] 

 

 

Figure 10: FFTs of (a) lower partials and (b) higher par-

tials of 32th original and synthetic frame of the Fournier 

recording. 

 

The modeling of time-varying templates is one of possible im-
provements. The refinement of temporal prior may suit for mod-
eling the sustain and decay parts of the note. The attacks or other 
transient parts are however disfavored. Therefore, the templates 
are considerable to „morph‟ as time goes by when the notes are 
activated. A time-varying multiplicative gradient approach with 
adaptive templates may be investigated on in the future. 
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ABSTRACT 

Sound field simulation is widely used for acoustic design; how-
ever, this simulation needs many computational resources.  On 
the other hand, FPGA becomes major for acceleration.  To take 
advantage of hardware acceleration by FPGA, hardware oriented 
algorithm which consumes small number of gates and memory is 
necessary.  This paper addresses hardware acceleration of sound 
field simulation using FPGA.   Improved Digital Huygens Model 
(DHM) for hardware is implemented and speed up ratio is exam-
ined.  For 2D simulation, the implemented accelerator is 1,170 
times faster than software simulation.  For 3D simulation, it is 
shown that FDTD based method is suitable for hardware imple-
mentation and required hardware resource are estimated. 

1. INTRODUCTION 

Simulation of sound field is useful for acoustic design.   Recently, 
performance of computer system is much improved and many 
researches to simulate sound field numerically are proposed.   
Wave based numerical analyses such as finite element[1], finite 
boundary element[2], finite difference time domain (FDTD) 
method[3-4] are major ways for simulation.  Especially FDTD 
method is one of the best way to analyze sound field because this 
method calculates sound pressure at any place in the simulation 
field directly and it gives good accuracy.   Recently, some of 
physical equivalent methods are also proposed[5-7] to investigate 
acoustical behavior.  These methods are derived from the wave 
equations of sound propagation, and Digital Huygen’s Model 
(DHM) is one of these methods. 

Concept of DHM have been initially proposed by S.A. Van Duy-

ne and J.O. Smith [6-7] and expanded by T. Tsuchiya et al. [8-9]  
DHM is modification of FDTD for hardware implementation. It 
assumes that sound pressure pulse propagates between acoustic 
tubes to neighboring nodes.  When a pulse is given to a node, 
scatters are sent to four adjacent nodes.  Each node takes scatters 
from adjacent nodes and calculates its pressure.  Iterating this 
procedure independently at each node, we can simulate sound 
pressures at all nodes.   However, DHM also requires huge com-
putational resources and it is difficult to simulate in real time.  

On the other hand, recently Field Programmable Gate Array 
(FPGA) becomes popular to make a special purpose machines.   
Internal circuits of FPGA chip can be programmed by users, and 
hundreds percent of logical resources on a chip can be used for 
users’ purpose.   Several implementations using FPGA have been 
proposed[10-12,15-17].  Chuan et al.[10] reported 1.5 to 4 times accel-
eration and Motuk et al.[11] reported 10 to 35 times acceleration. 

Accelerating by GPGPU is another solution and several re-
searches are reported[13-14] but we don’t treat GPGPU in this pa-
per due to the limitation of pages. 

In this research we introduce new implementation of real-time 
sound field simulation system using FPGAs.  Hardware oriented 
two-dimensional DHM implementation and three-dimensional 
FDTD implementation are shown.   Simulation by FPGA gives 
very good performance because all calculation is executed in a 
chip and all computing elements perform calculation simultane-
ously.  Techniques to reduce gate consumption are also devel-
oped.  Our system for 2D simulation is over than a thousand 
times faster than simulation by software.  

Following is structure of this paper.  Section 2 shows hardware 
implementation of a two-dimensional DHM algorithm, including 
algorithm optimization to reduce operations, and evaluation of 
calculation precision and speed.  In section 3, three-dimensional 
FDTD implementation is discussed.  Techniques to reduce circuit 
are introduced and number of chips to simulate a small chamber 
is shown.  Chapter 4 is conclusion of this paper. 

2.  2D DHM FOR HARDWARE IMPLEMENTATION 

2.1. Basic of 2D DHM 

The DHM is sound field simulation method for hardware.  In the 
DHM, sound field is mapped on a grid, and each node of grid 
keeps its pressure. Figure 1 shows idea of the two-dimensional 
DHM. Figure 1 (a) shows that each node adjoins four neighbors 

by acoustic tubes which length is∆𝑙.  Assume that an incident is 
injected to a node. Then, sound pressure at the node is scattered 
through acoustic tubes as shown in figure 1(b). To make discus-
sion easy, four adjacent tubes called as E, W, N, S, shown in fig-
ure 1 (c).  
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Figure 1: Concept of 2D Digital Huygen’s Model.  (a) shows 
mapping on a grid and unit length of an acoustic tube, (b) 
shows scattering at a node, and (c) shows direction definition. 

 

A pressure at node (i,j) at time step n is denoted as 𝜙𝑛(𝑖, 𝑗), the 
incident will be transmitted to four neighboring nodes. Scattered 

pulse   
𝑛 (𝑖, 𝑗)  from line 𝑚  * , , ,  + at the time step n at 

location (𝑖, 𝑗) and sound pressure 𝜙𝑛(𝑖, 𝑗) are calculated by the 
following equations.  

 

[
 
 
 
  
𝑛(𝑖, 𝑗)

  
𝑛 (𝑖, 𝑗)

  
𝑛(𝑖, 𝑗)

  
𝑛(𝑖, 𝑗)]

 
 
 

= 𝜙𝑛(𝑖, 𝑗) −

[
 
 
 
𝑃 
𝑛(𝑖, 𝑗)

𝑃 
𝑛 (𝑖, 𝑗)

𝑃 
𝑛(𝑖, 𝑗)

𝑃 
𝑛(𝑖, 𝑗)]

 
 
 

                                        (1) 

𝜙𝑛(𝑖, 𝑗) =  
1

2
(𝑃 
𝑛(𝑖, 𝑗) + 𝑃 

𝑛 (𝑖, 𝑗) + 𝑃 
𝑛(𝑖, 𝑗) + 𝑃 

𝑛(𝑖, 𝑗))  (2) 

where 𝑃 
𝑛(𝑖, 𝑗) are incident pulses.   A scatter on each line be-

comes an incidence to the neighboring nodes.  Thus, incidents at 
the next time step n+1 are calculated by following equation. 

[
 
 
 
 
𝑃 
𝑛  (𝑖, 𝑗)

𝑃 
𝑛  (𝑖, 𝑗)

𝑃 
𝑛  (𝑖, 𝑗)

𝑃 
𝑛  (𝑖, 𝑗)]

 
 
 
 

=

[
 
 
 
  
𝑛(𝑖 − 1, 𝑗)

  
𝑛 (𝑖 + 1, 𝑗)

  
𝑛(𝑖, 𝑗 − 1)

  
𝑛(𝑖, 𝑗 + 1)]

 
 
 

                                                (3) 

Through equations (1) to (3), scatters and pressure of all nodes 

can be calculated at every time step whose interval is ∆𝑙/𝑐 where  
c is sound speed. 

2.2. Hardware Resources to Implement 2D DHM 

From point of view of implementation of this algorithm on a 
hardware circuit, you can see that only calculation of equations 
(1) and (2) are necessary.  Equation (3) is implemented by varia-
ble renaming or wire connection and no operation is required.  
Four subtractors are needed to calculate equation (1), three ad-
ders and one right shifter are needed to calculate equation (2), 
and the right shifter to calculate 1/2 in equation (2). 

Each node must keep four incidences, four scatters and one 
sound pressure.  However, either incidences or scatters are neces-
sary because incidences are calculated by scatters of the neigh-
boring nodes. Thus five temporary values must be kept at each 
node. 

2.3. Hardware Oriented 2D DHM 

Equations (1) and (2) are given by the original DHM algorithm.  
However, we can reduce number of operations of this algorithm. 

We eliminate incident 𝑃 
𝑛(𝑖, 𝑗) by inserting equations (1) and (3) 

into equation (2) and obtain a following equation. 

𝜙𝑛(𝑖, 𝑗) =  
1

2
(𝜙𝑛− (𝑖 − 1, 𝑗) + 𝜙𝑛− (𝑖 + 1, 𝑗)

+ 𝜙𝑛− (𝑖, 𝑗 − 1) + 𝜙𝑛− (𝑖, 𝑗 + 1)

+∑  
𝑛− (𝑖, 𝑗)

 

)                                    (4) 

 

Figure 2: Photograph of the hardware accelerator using 

FPGAs. 

 

Figure 3: Structure of hardware accelerator.  Sound 

pressure at each acoustic node is calculated by a compu-

ting cell synthesized on a FPGA chip. 

 

 

Since scattering matrix is symmetrical, we can assume: 

∑  
𝑛 (𝑖, 𝑗)

 

= ∑𝑃 
𝑛(𝑖, 𝑗)

 

                                                        (5) 

Using this relation, equation (4) can be written as 

𝜙𝑛(𝑖, 𝑗) =  
1

2
(𝜙𝑛− (𝑖 − 1, 𝑗) + 𝜙𝑛− (𝑖 + 1, 𝑗) 

           +𝜙𝑛− (𝑖, 𝑗 − 1) + 𝜙𝑛− (𝑖, 𝑗 + 1)) − 𝜙𝑛− (𝑖, 𝑗)      (6) 

Equation (6) shows that we need only three adders, one subtrac-
tor and one right-shifter.   From point of view of memory, each 
node must keep two sound pressure (32bit) at each time steps. 

2.4. Hardware Implementation of 2D DHM 

Figure 2 shows the photograph of the hardware accelerator based 
on the 2D DHM.  The system is SPP3000 provided by Tokyo 
Electron Device Ltd. and consists of several FPGAs and one 
CPU board to control system and program FPGAs.  Each FPGA 
chip keeps a lot of calculation cells based on equation (6).  In the 
figure, two inserted boards on the left side are FPGA boards and 
each board has two Xilinx XC5LVX330T-FF1738 FPGA chips 
and 512Mbit SRAM.   This FPGA chip contains 51,840 Configu-  

rigid wall

node (i, j)

X

Y

? l

? l
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Figure 4: Sample of simulation result.  Hardware simu-

lated result is three-cycles delayed but both result are 

completely equal if software result puts off three cycles. 

 

rable Logic Blocks (CLBs) and 11,664Kbit Block RAM.   A 
board on the right is a CPU board which has single 1.4GHz Intel 
Pentium-M processor with 504MB memory.  FPGA boards and 
host PC are connected by the compact PCI bus.   Calculation for 
simulation is operated on the FPGA boards and host PC is used 
only for program and input/output data. 

 

Figure 3 shows outline of our implementation.  As shown in the 
left half of the figure, a sound field is mapped to a grid and each 
node on the grid calculates equation (6).  Each node has actually 
implemented as calculation cell shown in right half of the figure.   
Calculation cell has a set of adders and registers.   As shown in 
the schematic, one 4-inputs adder, one 3-inputs adder, and two 
32-bit registers are used.   A 4-inputs adder is actually imple-
mented as three 2-inputs adders.   

2.5. Precision Evaluation 

To examine precision of the hardware simulation, we compared 
simulation result of hardware with software.  Improved 2D DHM 
is programmed by C++ and executed by a software using an 
AMD Phenom 9500 1.8GHz Quad-core processor with 4GB 
memory.  The simulation space is 32x32 and sampling rate is 16.   
Same algorithm is implemented on a FPGA system. 

Incident point of signal is node (0,0) and simulation result is tak-
en from node (6,15).  In this evaluation, a single-shot sine wave 
and Gaussian wave are used and magnitude of them is 108 Pa. 
Both results of hardware and result of software are completely 
same.  Figure 4 shows a sample of simulation result.  Hardware 
result is delayed three clocks due to circuit initialization. 

2.6. Evaluation of Simulation Speed 

Table 1 shows comparison of simulation speed while 20,000 time 
steps.  We examined three software simulation and a hardware 
simulation.   In the table, “original DHM” shows time of simula-
tion of DHM by software using equations (1) and (2).  “Updated 
DHM” uses new DHM algorithm based on the equation (6) and 
its simulation time is almost half of original one.  FDTD indi-
cates the time of simulation using FDTD method.   Hardware 
solution shows time of simulation based on equation (6) using 
FPGA.  Hardware simulate system consist of two stages.  One is 
calculation stage and another one is input/output (I/O) stage. This 
shows that calculation stage takes only 0.2ms and this speed is 

Table 1: Comparison of simulation time for 2D simulation. 

Nodes 
Time 

steps 

software solution 
hardware 
solution 

original 

DHM 
updated 

DHM FDTD 

updated 
DHM 

10 x 10 20000 31ms 30ms 109ms 
0.2ms 

 (50ms) 

25 x 25 20000 234ms 124ms 266ms 
0.2ms 

(50ms) 

32 x 32 20000 328ms 234ms 406ms 
0.2ms 

(50ms) 
 
almost 1,170 times faster than software simulation using same 
method.  I/O stage takes much longer and time for simulation 
with I/O takes almost 50ms. Since I/O is only needed at initiali-
zation and finalization of a simulation, time for I/O can be ig-
nored if the simulated time steps are much longer. 

3. 3D FDTD FOR HARDWARE IMPLEMENTATION 

3.1. 3D Hardware Acceleration of Sound Field Simulation 

Although hardware implemented 2D-DHM is over a thousand 
times faster than software implementation, this scheme doesn’t 
efficient at 3D.  Division by 2 in equation (2) can be implement-
ed as a 1-bit right-shifter and it is very simple circuit, however, 
division by three is needed for 3D and there is no simple way to 
implement this circuit. Thus, we use different scheme based on 
FDTD for 3D to eliminate division by three. 

3.2. Basic Scheme of FDTD 

Finite-difference time-domain (FDTD)[3-4] method is another 
basic way to simulate sound field.  In this section we introduce 
efficient architecture to implement FDTD on hardware system. 
Governing equations for linear sound propagation are 

 𝜙

  
= −𝜌𝑐 (

 𝑢𝑥
 𝑥
+
 𝑢𝑦

 𝑦
+
 𝑢𝑧
 𝑧
)                                       (7) 

 𝑢𝑥
  
= −

1

𝜌

 𝑝

 𝑥
,   
 𝑢𝑦

  
= −

1

𝜌

 𝑝

 𝑦
,    
 𝑢𝑧
  
= −

1

𝜌

 𝑝

 𝑧
            (8) 

where 𝜙 is sound pressure, t is time, 𝜌 is medium density and c is 
sound speed.  Since discretized FDTD is well known, we intro-

duce a hardware oriented FDTD as follows.   Sound pressure 𝜙 
at (i,j,k) at time step n is given by: 

𝜙𝑛(𝑖, 𝑗, 𝑘) = 𝜙𝑛− (𝑖, 𝑗, 𝑘) 

                   −𝜒 {�̅�𝑥
𝑛−
 
 (𝑖 +

1

2
, 𝑗, 𝑘) − �̅�𝑥

𝑛−
 
 (𝑖 −

1

2
, 𝑗, 𝑘) 

                      + �̅�𝑦
𝑛−
 
 (𝑖, 𝑗 +

1

2
, 𝑘) − �̅�𝑦

𝑛−
 
 (𝑖, 𝑗 −

1

2
, 𝑘) 

                      + �̅�𝑧
𝑛−
 
 (𝑖, 𝑗, 𝑘 +

1

2
) − �̅�𝑧

𝑛−
 
 (𝑖, 𝑗, 𝑘 −

1

2
)}      (9) 

�̅� =
𝜌𝑐

𝜒
𝑢                                                                                      (10) 

∆𝑥 = ∆𝑦 = ∆𝑧 = ∆𝑙, χ =
𝑐∆ 

∆𝑙
=
𝑐

∆𝑙𝑓
≤
1

√3
               (11) 

where ∆  is the unit time, ∆𝑥, ∆𝑦, ∆𝑧 are the unit length. 

�̅�𝑥
𝑛 
 
 (𝑖 +

1

2
, 𝑗, 𝑘) = �̅�𝑥

𝑛−
 
 (𝑖 +

1

2
, 𝑗, 𝑘) 

                                  −{𝜙𝑛(𝑖 + 1, 𝑗, 𝑘) −𝜙𝑛(𝑖, 𝑗, 𝑘)}           (12) 

�̅�𝑦
𝑛 
1

2 and �̅�𝑧
𝑛 
1

2 are also calculated as well as equation (12). 
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3.3. Assumption for Hardware Implementation 

When we assume  χ =
 

√3
, this is usually the most general as-

sumption, solving equation (9) requires division by 3.  However, 
from point of view of hardware implementation, a divider takes 
many clock cycles and large amount of gates, and spoils efficien-
cy of acceleration.  

Assume χ is 1/2 instead of 
 

√3
, and this assumption satisfies con-

dition (11).  The coefficient in equation (9) is changed to 1/4. On 
hardware system, a divider by four is easily implemented by a 2-
bit right-shifter. 

3.4. Estimation of Required Hardware resources 

We estimate exact value of  χ, ∆𝑙, 𝑎𝑛𝑑 ∆ .   Sound speed c is 
340m/s.  In this implementation, maximum frequency to be simu-
lated is 3KHz and we use 5 times over sampling to avoid error. 

Thus, ∆  is 
 

3𝐾𝐻𝑧×5
= 66.7𝜇𝑠. In case of  χ =

 

√3
,  ∆𝑙 is 39.3mm 

and ∆𝑙 is 45.3mm when  χ =
 

 
. 

 
Now, we estimate the number of sound nodes to simulate a 

chamber which size is 2𝑚 × 2𝑚 × 4𝑚.  264k nodes are required 

when ∆𝑙 = 39.3mm, and 172k nodes are required when ∆𝑙 =
45.3mm, respectively.   Our proposed assumption also reduces 
the number of sound nodes. 
From viewpoint of memory consumption, each node keeps four 

variables: 𝑝𝑛(𝑖, 𝑗, 𝑘), �̅�𝑥
𝑛 
1

2, �̅�𝑦
𝑛 
1

2, and �̅�𝑧
𝑛 
1

2 .  Since each variable 

takes 32 bits, totally 256bits is needed for a node.  Since 
XC5VLX330T has 11,664Kbit block RAM, one FPGA chip can 
accommodate 45.6K nodes in a chip.  To simulate a chamber de-

scribed above, 6 FPGA chips are needed if χ =
 

√3
,  and 4 chips 

are needed if χ =
 

 
. 

4. CONCLUSIONS 

In this paper we proposed an implementation of hardware accel-
erated sound field simulator based on Digital Huygen’s Model 
(DHM) for two-dimensional sound spaces.  Improved DHM 
scheme requires very simple circuit and needs only four integer 
adders and a shifter.  The proposed algorithm was implemented 
on a FPGA system and it was shown that hardware accelerated 
system is one thousand times faster than software simulation ex-
cluding I/O. 
To simulate 3D, FDTD based implementation is better than 
DHM because FDTD based scheme can avoid synthesis of divid-
er.   From point of view of memory, it was shown that 45.6K 
nodes are accommodated in one FPGA chip. 
To implement 3D simulator based on FDTD is our future work. 
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ABSTRACT

In this paper we evaluate some of the alternative methods com-
monly applied in the first stages of the signal processing chain of
automatic melody extraction systems. Namely, the first two stages
are studied – the extraction of sinusoidal components and the com-
putation of a time-pitch salience function, with the goal of deter-
mining the benefits and caveats of each approach under the spe-
cific context of predominant melody estimation. The approaches
are evaluated on a data-set of polyphonic music containing several
musical genres with different singing/playing styles, using metrics
specifically designed for measuring the usefulness of each step for
melody extraction. The results suggest that equal loudness filter-
ing and frequency/amplitude correction methods provide signifi-
cant improvements, whilst using a multi-resolution spectral trans-
form results in only a marginal improvement compared to the stan-
dard STFT. The effect of key parameters in the computation of the
salience function is also studied and discussed.

1. INTRODUCTION

To date, various different methods and systems for automatic melody
extraction from polyphonic music have been proposed, as evident
by the many submissions to the MIREX automatic melody extrac-
tion evaluation campaign1. In [1], a basic processing structure
underlying melody extraction systems was described comprising
three main steps – multi-pitch extraction, melody identification
and post-processing. Whilst alternative designs have been pro-
posed [2], it is still the predominant architecture in most current
systems [3, 4, 5, 6]. In this paper we focus on the first stage of this
architecture, i.e. the multi-pitch extraction. In most cases this stage
can be broken down into two main steps – the extraction of sinu-
soidal components, and the use of these components to compute a
representation of pitch salience over time, commonly known as a
Salience Function. The salience function is then used by each sys-
tem to determine the pitch of the main melody in different ways.

Whilst this overall architecture is common to most systems,
they use quite different approaches to extract the sinusoidal com-
ponents and then compute the salience function. For extracting si-
nusoidal components, some systems use the standard Short-Time
Fourier Transform (STFT), whilst others use a multi-resolution
transform in an attempt to overcome the time-frequency resolu-
tion trade-off inherent to the FFT [7, 8, 9]. Some systems apply
filters to the audio signal in attempt to enhance the spectrum of the

∗ This research was funded by the Programa de Formación del Profe-
sorado Universitario of the Ministerio de Educación de España, COFLA
(P09-TIC-4840-JA) and DRIMS (TIN2009-14247-C02-01-MICINN).

1http://www.music-ir.org/mirex/wiki/MIREX_HOME

melody before performing spectral analysis, such as bandpass [7]
or equal loudness filtering [6]. Others apply spectral whitening to
make the analysis robust against changes in timbre [3]. Finally,
given the spectrum, different approaches exist for estimating the
peak frequency and amplitude of each spectral component.

Once the spectral components are extracted, different meth-
ods have been proposed for computing the time-frequency salience
function. Of these, perhaps the most common type is based on
harmonic summation [3, 4, 5, 6]. Within this group various ap-
proaches can be found, differing primarily in the weighting of
harmonic peaks in the summation and the number of harmonics
considered. Some systems also include a filtering step before the
summation to exclude some spectral components based on energy
and sinusoidality criteria [8] or spectral noise suppression [10].

Whilst the aforementioned systems have been compared in
terms of melody extraction performance (c.f. MIREX), their over-
all complexity makes it hard to determine the effect of the first
steps in each system on the final result. In this paper we aim
to evaluate the first two processing steps (sinusoid extraction and
salience function) alone, with the goal of understanding the bene-
fits and caveats of the alternative approaches and how they might
affect the rest of the system. Whilst some of these approaches have
been compared in isolation before [9], our goal is to evaluate them
under the specific context of melody extraction. For this purpose, a
special evaluation framework, data-sets and metrics have been de-
veloped. In section 2 we described the different methods compared
for extracting sinusoidal components, and in section 3 we describe
the design of the salience function and the parameters affecting its
computation. In section 4 we explain the evaluation framework
used to evaluate both the sinusoid extraction and salience function
design, together with the ground truth and metrics used. Finally,
in section 5 we provide and discuss the results of the evaluation,
summarised in the conclusions of section 6.

2. METHODS FOR SINUSOID EXTRACTION

The first step of many systems involves obtaining spectral compo-
nents (peaks) from the audio signal, also referred to as the front end
[7]. As mentioned earlier, different methods have been proposed to
obtain the spectral peaks, usually with two common goals in mind
– firstly, extracting the spectral peaks as accurately as possible in
terms of their frequency and amplitude. Secondly, some systems
attempt to enhance the amplitude of melody peaks whilst suppress-
ing that of background peaks by applying some pre-filtering. For
the purpose of our evaluation we have divided this process into
three main steps, in each of which we consider two or three al-
ternative approaches proposed in the literature. The alternatives
considered at each step are summarised in Table 1.
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Table 1: Analysis alternatives for sinusoid extraction.

Filtering Spectral Frequency/Amplitude
Transform Correction

none STFT none

Equal Loudness MRFFT Parabolic Interpolation
Phase Vocoder

2.1. Filtering

As a first step, some systems filter the time signal in attempt to
enhance parts of the spectrum more likely to pertain to the main
melody, for example band-pass filtering [7]. For this evaluation
we consider the more perceptually motivated equal loudness filter-
ing. The equal loudness curves [11] describe the human perception
of loudness as dependent on frequency. The equal loudness filter
takes a representative average of these curves, and filters the signal
by its inverse. In this way frequencies we are perceptually more
sensitive to are enhanced in the signal, and frequencies we are less
sensitive to are attenuated.

Further details about the implementation of the filter can be
found here2. It is worth noting that in the low frequency range the
filter acts as a high pass filter with a high pass frequency of 150Hz.
In our evaluation two alternatives are considered – equal loudness
filtering, and no filtering3.

2.2. Spectral Transform

As previously mentioned, a potential problem with the STFT is
that it has a fixed time and frequency resolution. When analysing
an audio signal for melody extraction, it might be beneficial to
have greater frequency resolution in the low frequencies where
peaks are bunched closer together and are relatively stationary over
time, and higher time resolution for the high frequencies where we
can expect peaks to modulate rapidly over time (e.g. the harmonics
of singing voice with a deep vibrato). In order to evaluate whether
the use of a single versus multi-resolution transform is significant,
two alternative transforms were implemented, as detailed below.

2.2.1. Short-Time Fourier Transform (Single Resolution)

The STFT can be defined as follows:

Xl(k) =

M−1X
n=0

w(n) · x(n+ lH)e−j
2π
N
kn, (1)

l = 0, 1, . . . and k = 0, 1, . . . , N − 1

where x(n) is the time signal, w(n) the windowing function, l the
frame number,M the window length,N the FFT length andH the
hop size. We use the Hann windowing function with a window size
of 46.4ms, a hop size of 2.9ms and a ×4 zero padding factor. The
evaluation data is sampled at fS = 44.1kHz, giving M = 2048,
N = 8192 and H = 128.

Given the FFT of a single frame X(k), peaks are selected by
finding all the local maxima km of the normalised magnitude spec-
trum Xm(k):

2http://replaygain.hydrogenaudio.org/equal_loudness.html
3Spectral whitening/noise suppression is left for future work.

Xm(k) = 2
|X(k)|PM−1
n=0 w(n)

. (2)

Peaks with a magnitude more than 80dB below the highest
spectral peak in an excerpt are not considered.

2.2.2. Multi-Resolution FFT

We implemented the multi-resolution FFT (MRFFT) proposed in
[8]. The MRFFT is an efficient algorithm for simultaneously com-
puting the spectrum of a frame using different window sizes, thus
allowing us to choose which window size to use depending on
whether we require high frequency resolution (larger window size)
or high time resolution (smaller window size). The algorithm is
based on splitting the summations in the FFT into smaller sums
which can be combined in different ways to form frames of vary-
ing sizes, and performing the windowing in the frequency domain
by convolution. The resulting spectra all have the same FFT length
N (i.e. smaller windows are zero padded) and use the Hann win-
dowing function. For further details about the algorithm the reader
is referred to [8].

In our implementation we setN = 8192 andH = 128 as with
the STFT so that they are comparable. We compute four spectra
X256(k), X512(k), X1024(k) and X2048(k) with respective win-
dow sizes of M = 256, 512, 1024 and 2048 samples (all windows
are centered on the same sample). Then, local maxima (peaks) are
found in each magnitude spectrum within a set frequency range
as in [8], using the largest window (2048 samples) for the first six
critical bands of the Bark scale (0-630Hz), the next window for the
following five bands (630-1480Hz), the next one for the following
five bands (1480-3150Hz) and the smallest window (256 samples)
for the remaining bands (3150-22050Hz). The peaks from the dif-
ferent windows are combined to give a single set of peaks at po-
sitions km, and (as with the STFT) peaks with a magnitude more
than 80dB below the highest peak in an excerpt are not considered.

2.3. Frequency and Amplitude Correction

Given the set of local maxima (peaks) km, the simplest approach
for calculating the frequency and amplitude of each peak is to di-
rectly use its spectral bin and FFT magnitude (as detailed in equa-
tions 3 and 4 further down). This approach is limited by the fre-
quency resolution of the FFT. For this reason various correction
methods have been developed to achieve a higher frequency preci-
sion, and a better amplitude estimation as a result. In [12] a survey
of these methods is provided for artificial, monophonic stationary
sounds. Our goal is to perform a similar evaluation for real-world,
polyphonic, quasi-stationary sounds (as is the case in melody ex-
traction). For our evaluation we consider three of the methods
discussed in [12], which represent three different underlying ap-
proaches:

2.3.1. Plain FFT with No Post-processing

Given a peak at bin km, its sine frequency and amplitude are cal-
culated as follows:

f̂ = km
fS
N

(3)

â = Xm(km) (4)
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Note that the frequency resolution is limited by the size of the
FFT, in our case the frequency values are limited to multiples of
fS/N = 5.38Hz. This also results in errors in the amplitude esti-
mation as it is quite likely for the true peak location to fall between
two FFT bins, meaning the detected peak is actually lower (in mag-
nitude) than the true magnitude of the sinusoidal component.

2.3.2. Parabolic Interpolation

This method improves the frequency and amplitude estimation of
a peak by taking advantage of the fact that in the magnitude spec-
trum of most analysis windows (including the Hann window), the
shape of the main lobe resembles a parabola in the dB scale. Thus,
we can use the bin value and magnitude of the peak together with
that of its neighbouring bins to estimate the position (in frequency)
and amplitude of the true maximum of the main lobe, by fitting
them to a parabola and finding its maximum. Given a peak at bin
km, we define:

A1 = XdB(km−1), A2 = XdB(km), A3 = XdB(km+1), (5)

where XdB(k) = 20 log10(Xm(k)). The frequency difference in
FFT bins between km and the true peak of the parabola is given
by:

d = 0.5
A1 −A3

A1 − 2A2 +A3
. (6)

The corrected peak frequency and amplitude (this time in dB)
are thus given by:

f̂ = (km + d)
fS
N

(7)

â = A2 − d

4
(A1 −A3) (8)

Note that following the results of [12], the amplitude is not es-
timated using equation 8 above, but rather with equation 11 below,
using the value of d as the bin offset κ(km).

2.3.3. Instantaneous Frequency using Phase Vocoder

This approach uses the phase spectrum φ(k) to calculate the peak’s
instantaneous frequency (IF) and amplitude, which serve as a more
accurate estimation of its true frequency and amplitude. The IF is
computed from the phase difference ∆φ(k) of successive phase
spectra using the phase vocoder method [13] as follows:

f̂ = (km + κ(km))
fS
N
, (9)

where the bin offset κ(k) is calculated as:

κ(k) =
N

2πH
Ψ

„
φl(k)− φl−1(k)− 2πH

N
k

«
, (10)

where Ψ is the principal argument function which maps the phase
to the ±π range.

The instantaneous magnitude is calculated using the peak’s
spectral magnitude Xm(km) and the bin offset κ(km) as follows:

â =
1

2

Xm(km)

WHann

`
M
N
κ(km)

´ , (11)

where WHann is the Hann window kernel:

WHann(κ) =
1

2

sinc(κ)

1− κ2
, (12)

and sinc is the normalised sinc function. To achieve the best phase-
based correction we useH = 1, by computing at each hop (of 128
samples) the spectrum of the current frame and of a frame shifted
back by one sample, and using the phase difference between the
two.

3. SALIENCE FUNCTION DESIGN

Once the spectral peaks are extracted, they are used to construct
a salience function - a representation of frequency salience over
time. For this study we use a common approach for salience com-
putation based on harmonic summation, which was used as part of
a complete melody extraction system in [6]. Basically, the salience
of a given frequency is computed as the sum of the weighted en-
ergy of the spectral peaks found at integer multiples (harmonics)
of the given frequency. As such, the important factors affecting the
salience computation are the number of harmonics considered Nh
and the weighting scheme used. In addition, we can add a relative
magnitude filter, only considering for the summation peaks whose
magnitude is no less than a certain threshold γ (in dB) below the
magnitude of the highest peak in the frame. Note that the pro-
posed salience function was designed as part of a system which
handles octave errors and the selection of the melody pitch at a
later stage, hence whilst the salience function is designed to best
enhance melody salience compared to other pitched sources, these
issues are not addressed directly by the salience function itself.

Our salience function covers a pitch range of nearly five oc-
taves from 55Hz to 1.76kHz, quantized into n = 1 . . . 600 bins
on a cent scale (10 cents per bin). Given a frequency fi in Hz, its
corresponding bin b(fi) is calculated as:

b(fi) =

66641200
“

log2( fi
13.75

)− 0.25
”
− 2100

10
+ 1

7775 . (13)

At each frame the salience function S(n) is constructed using
the spectral peaks pi (with frequencies fi and linear magnitudes
mi) found in the frame during the previous analysis step. The
salience function is defined as:

S(n) =

NhX
h=1

X
pi

e(mi) · g(n, h, fi) · (mi)
β , (14)

where β is a parameter of the algorithm, e(mi) is a magnitude fil-
ter function, and g(n, fi, h) is the function that defines the weight-
ing scheme. The magnitude filter function is defined as:

e(mi) =


1 if 20 log10(mM/mi) < γ,
0 otherwise, (15)

where mM is the magnitude of the highest peak in the frame. The
weighting function g(n, fi, h) defines the weight given to peak pi,
when it is considered as the hth harmonic of bin n:

g(n, h, fi) =


cos2(δ · π

2
) · αh−1 if |δ| ≤ 1,

0 if |δ| > 1,
(16)
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where δ = |b(fi/h)− n|/10 is the distance in semitones between
the harmonic frequency fi/h and the centre frequency of bin n
and α is the harmonic weighting parameter. The threshold for δ
means that each peak contributes not just to a single bin of the
salience function but also to the bins around it (with cos2 weight-
ing). This avoids potential problems that could arise due to the
quantization of the salience function into bins, and also accounts
for inharmonicities.

In sections 4 and 5 we will examine the effect of each of the
aforementioned parameters on the salience function, in attempt to
select a parameter combination most suitable for a salience func-
tion targeted at melody extraction. The parameters studied are the
weighting parameters α and β, the magnitude threshold γ and the
number of harmonics Nh used in the summation.

4. EVALUATION

The evaluation is split into two parts. First, we evaluate the differ-
ent analysis approaches for extracting sinusoids in a similar way to
[12]. The combination of different approaches at each step (filter-
ing, transform, correction) gives rise to 12 possible analysis con-
figurations, summarised in Table 2. In the second part, we eval-
uate the sinusoid extraction combined with the salience function
computed using different parameter configurations. In the follow-
ing sections we describe the experimental setup, ground truth and
metrics used for each part of the evaluation.

Table 2: Analysis Configurations.

Conf. Filtering Spectral Frequency/Amplitude
Transform Correction

1

none

STFT
none

2 Parabolic
3 Phase
4

MRFFT
none

5 Parabolic
6 Phase
7

Eq. Loudness

STFT
none

8 Parabolic
9 Phase

10
MRFFT

none
11 Parabolic
12 Phase

4.1. Sinusoid Extraction

4.1.1. Ground Truth

Starting with a multi-track recording, the ground truth is generated
by analysing the melody track on its own as in [14] to produce
a per-frame list of f0 + harmonics (up to the Nyquist frequency)
with frequency and amplitude values. The output of the analysis is
then re-synthesised using additive synthesis with linear frequency
interpolation and mixed together with the rest of the tracks in the
recording. The resulting mix is used for evaluating the different
analysis configurations by extracting spectral peaks at every frame
and comparing them to the ground truth. In this way we obtain
a melody ground truth that corresponds perfectly to the melody

in the mixture, whilst being able to use real music as opposed to
artificial mixtures.

As we are interested in the melody, only voiced frames are
used for the evaluation (i.e. frames where the melody is present).
Furthermore, some of the melody peaks will be masked in the mix
by the spectrum of the accompaniment, where the degree of mask-
ing depends on the analysis configuration used. Peaks detected
at frequencies where the melody is masked by the background de-
pend on the background spectrum and hence should not be counted
as successfully detected melody peaks. To account for this, we
compute the spectra of the melody track and the background sep-
arately, using the analysis configuration being evaluated. We then
check for each peak extracted from the mix by the analysis whether
the melody spectrum is masked by the background spectrum at the
peak frequency (a peak is considered to be masked if the spectral
magnitude of the background is greater than that of the melody for
the corresponding bin), and if so the peak is discarded.

The evaluation material is composed of excerpts from real-
world recordings in various genres, summarised in Table 3.

Table 3: Ground Truth Material.

Genre Excerpts Tot. Melody Tot. Ground
Frames Truth Peaks

Opera 5 15,660 401,817
Pop/Rock 3 11,760 769,193

Instrumental Jazz 4 16,403 587,312
Bossa Nova 2 7,160 383,291

4.1.2. Metrics

We base our metrics on the ones used in [12], with some adjust-
ments to account for the fact that we are only interested in the
spectral peaks of the melody within a polyphonic mixture.

At each frame, we start by checking which peaks found by the
algorithm correspond to peaks in the ground truth (melody peaks).
A peak is considered a match if it is within 21.5Hz (equivalent to 1
FFT bin without zero padding) from the ground truth. If more than
one match is found, we select the peak closest in amplitude to the
ground truth. Once the matching peaks in all frames are identified,
we compute the metrics Rp and Re as detailed in Table 4.

Table 4: Metrics for sinusoid extraction.

Rp

Peak recall. The total number of melody peaks found
by the algorithm in all frames divided by the total
number of peaks in the ground truth.

Re

Energy recall. The sum of the energy of all melody
peaks found by the algorithm divided by the total en-
ergy of the peaks in the ground truth.

∆adB
Mean amplitude error (in dB) of all detected melody
peaks.

∆fc
Mean frequency error (in cents) of all detected
melody peaks.

∆fw
Mean frequency error (in cents) of all detected
melody peaks weighted by the normalised peak en-
ergy.
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Given the matching melody peaks, we can compute the fre-
quency estimation error ∆fc and the amplitude estimation error
∆adB of each peak4. The errors are measured in cents and dBs
respectively, and averaged over all peaks of all frames to give ∆fc
and ∆adB . A potential problem with ∆fc is that the mean may
be dominated by peaks with very little energy (especially at high
frequencies), even though their effect on the harmonic summation
later on will be insignificant. For this reason we define a third mea-
sure ∆fw, which is the mean frequency error in cents where each
peak’s contribution is weighted by its energy, normalised by the
energy of the highest peak in the ground truth in the same frame.
The normalisation ensures the weighting is independent of the vol-
ume of each excerpt5. The metrics are summarised above in Table
4.

4.2. Salience Function Design

In the second part of the evaluation we take the spectral peaks pro-
duced by each one of the 12 analysis configurations and use them
to compute the salience function with different parameter config-
urations. The salience function is then evaluated in terms of its
usefulness for melody extraction using the ground truth and met-
rics detailed below.

4.2.1. Ground Truth

We use the same evaluation material as in the previous part of the
evaluation. The first spectral peak in every row of the ground truth
represents the melody f0, and is used to evaluate the frequency
accuracy of the salience function as explained below.

4.2.2. Metrics

We evaluate the salience function in terms of two aspects – fre-
quency accuracy and melody salience, where melody salience should
reflect the predominance of the melody compared to the other pitched
elements appearing in the salience function. Four metrics have
been devised for this purpose, computed on a per-frame basis and
finally averaged over all frames.

We start by selecting the peaks of the salience function. The
salience peak closest in frequency to the ground truth f0 is con-
sidered the melody salience peak. We can then calculate the fre-
quency error of the salience function ∆fm as the difference in
cents between the frequency of the melody salience peak and the
ground truth f0.

To evaluate the predominance of the melody three metrics are
computed. The first is the rank Rm of the melody salience peak
amongst all salience peaks in the frame, which ideally should be 1.
Rather than report the rank directly we compute the reciprocal rank
RRm = 1/Rm which is less sensitive to outliers when computing
the mean over all frames. The second is the relative salience S1 of
the melody peak, computed by dividing the salience of the melody
peak by that of the highest peak in the frame. The third metric,
S3, is the same as the previous one only this time we divide the
salience of the melody peak by the mean salience of the top 3
peaks of the salience function. In this way we can measure not only

4As we are using polyphonic material the amplitude error may not re-
flect the accuracy of the method being evaluated, and is included for com-
pleteness.

5Other weighting schemes were tested and shown to produce very sim-
ilar results.

whether the melody salience peak is the highest, but also whether
it stands out from the other peaks of the salience function and by
how much. The metrics are summarised in Table 5.

Table 5: Metrics for evaluating Salience Function Design.
∆fm Melody frequency error.

RRm
Reciprocal Rank of the melody salience peak
amongst all peaks of the salience function.

S1 Melody salience compared to top peak.
S3 Melody salience compared to top 3 peaks.

5. RESULTS

The results are presented in two stages. First we present the results
for the sinusoid extraction, and then the results for the salience
function design. In both sections, each metric is evaluated for each
of the 12 possible analysis configurations summarised in Table 2.

5.1. Sinusoid Extraction

We start by examining the results obtained when averaging over
all genres, provided in Table 6. The best result in each column is
highlighted in bold. Recall that Rp and Re should be maximised
whilst ∆adB , ∆fc and ∆fw should be minimised.

Table 6: Sinusoid extraction results for all genres.
Conf. Rp Re ∆adB ∆fc ∆fw

1 0.62 0.88 3.03 3.17 8.77
2 0.62 0.88 3.02 2.89 7.20
3 0.62 0.88 3.02 2.88 6.91
4 0.29 0.84 1.43 5.21 9.60
5 0.29 0.84 1.43 4.75 7.99
6 0.31 0.85 1.46 4.35 7.40
7 0.55 0.88 2.79 3.47 8.10
8 0.55 0.88 2.78 3.16 6.69
9 0.54 0.88 2.78 3.13 6.45

10 0.27 0.83 1.41 5.63 9.04
11 0.27 0.83 1.41 5.13 7.58
12 0.27 0.84 1.45 4.84 7.03

We see that regardless of the filtering and transform used, both
parabolic and phase based correction provide an improvement in
frequency accuracy (i.e. lower ∆fc values), with the phase based
method providing just slightly better results. The benefit of us-
ing frequency correction is further accentuated when considering
∆fw. As expected, there is no significant difference between the
amplitude error ∆adB when correction is applied and when it is
not, as the error is dominated by the spectrum of the background.

When considering the difference between using the STFT and
MRFFT, we first note that there is no significant improvement in
frequency accuracy (i.e. smaller frequency error) when using the
MRFFT (for all correction options), as indicated by both ∆fc and
∆fw. This suggests that whilst the MRFFT might be advantageous
for certain types of data (c.f. results for opera in Table 7), when
averaged over all genres the method does not provide a significant
improvement in frequency accuracy.
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When we turn to examine the peak and energy recall, we see
that the STFT analysis finds more melody peaks, however, inter-
estingly both transforms obtain a similar degree of energy recall.
This implies that the MRFFT, which generally finds less peaks
(due to masking caused by wider peak lobes), still finds the most
important melody peaks. Whether this is significant or not for
melody extraction should become clearer in the second part of the
evaluation when examining the salience function.

Next, we observe the effect of applying the equal loudness
filter. We see that peak recall is significantly reduced, but that
energy recall is maintained. This implies that the filter does not
attenuate the most important melody peaks. If, in addition, the
filter attenuates some background peaks, the overall effect would
be that of enhancing the melody. As with the spectral transform,
the significance of this step will become clearer when evaluating
the salience function.

Finally, we provide the results obtained for each genre sepa-
rately in Table 7 (for brevity only configurations which obtain the
best result for at least one of the metrics are included). We can
see that the above observations hold for the individual genres as
well. The only interesting difference is that for the opera genre
the MRFFT gives slightly better overall results compared to the
STFT. This can be explained by the greater pitch range and deep
vibrato which often characterise the singing in this genre. The
MRFFT’s increased time resolution at higher frequencies means it
is better at estimating the rapidly changing harmonics present in
opera singing.

Table 7: Sinusoid extraction results per genre.
Genre Conf. Rp Re ∆adB ∆fc ∆fw

Opera
2 0.73 0.83 3.74 3.97 7.48
6 0.59 0.93 1.15 3.66 6.50
11 0.53 0.92 1.08 3.88 5.91

Jazz
3 0.57 0.96 2.20 2.33 6.23
9 0.56 0.96 2.18 2.36 5.75
10 0.20 0.84 1.57 7.88 10.95

Pop/Rock

2 0.54 0.84 3.08 3.05 7.71
3 0.54 0.83 3.08 3.05 7.43
9 0.46 0.84 2.89 3.37 6.83
11 0.17 0.73 1.86 6.73 8.97

Bossa Nova

2 0.76 0.91 3.17 1.95 5.75
8 0.56 0.92 2.74 2.32 5.48
9 0.56 0.92 2.74 2.36 5.30
10 0.29 0.86 1.33 4.19 8.00

5.2. Salience Function Design

As explained in section 3, in addition to the analysis configuration
used, the salience function is determined by four main parameters
– the weighting parameters α and β, the energy threshold γ and
the number of harmonics Nh. To find the best parameter combi-
nation for each analysis configuration and to study the interaction
between the parameters, we performed a grid search of these four
parameters using several representative values for each parameter:
α = 1, 0.9, 0.8, 0.6, β = 1, 2, γ = ∞, 60dB, 40dB, 20dB, and
Nh = 4, 8, 12, 20. This results in 128 possible parameter combi-
nations which were used to compute the salience function metrics
for each of the 12 analysis configurations.

We started by plotting a graph for each metric with a data point
for each of the 128 parameter combinations, for the 12 analysis

configurations6. At first glance it was evident that for all analysis
and parameter configurations the results were consistently better
when β = 1, thus only the 64 parameter configurations in which
β = 1 shall be considered henceforth.

5.2.1. Analysis Configuration

We start by examining the effect of the analysis configuration on
the salience function. In Figure 1 we plot the results obtained for
each metric by each configuration. For comparability the salience
function is computed using the same (optimal) parameter values
(α = 0.8, β = 1, γ = 40dB, Nh = 20) for all analysis con-
figurations (the parameter values are discussed in section 5.2.2).
Configurations that only differ in the filtering step are plotted side
by side. Metrics ∆fm,RRm, S1 and S3 are displayed in plots (a),
(b), (c) and (d) of Figure 1 respectively.
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Figure 1: Salience function design, overall results. Each bar rep-
resents an analysis configuration, where white bars are configura-
tions which apply equal loudness filtering. Recall that ∆fm should
be minimised whilst RRm, S1 and S3 should be maximised.

The first thing we see is that for all metrics, results are always
improved when equal loudness filtering is applied. This confirms
our previous stipulation that the filter enhances the melody by at-
tenuating non-melody spectral peaks. It can be explained by the
filter’s enhancement of the mid-band frequencies which is where
the melody is usually present, and the attenuation of low-band fre-
quencies where we expect to find low pitched instruments such as
the bass.

Next we examine the frequency error ∆fm in Figure 1 plot
(a). We see that there is a (significant) decrease in the error when
either of the two correction methods (parabolic interpolation or
phase vocoder) are applied, as evident by comparing configura-
tions 1, 7, 4, 10 (no correction) to the others. Though the error

6For brevity these plots are not reproduced in the article but can be
found at: http://mtg.upf.edu/node/2023.
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using phase based correction is slightly lower, the difference be-
tween the two correction methods was not significant. Following
these observations, we can conclude that both equal loudness filter-
ing and frequency correction are beneficial for melody extraction.

Finally we consider the difference between the spectral trans-
forms. Interestingly, the MRFFT now results in just a slightly
lower frequency error than the STFT. Whilst determining the ex-
act cause is beyond the scope of this study, a possible explana-
tion could be that whilst the overall frequency accuracy for melody
spectral peaks is not improved by the MRFFT, the improved esti-
mation at high frequencies is beneficial when we do the harmonic
summation (the harmonics are better aligned). Another possible
cause is the greater masking of spectral peaks, which could re-
move non-melody peaks interfering with the summation. When
considering the remaining metrics, the STFT gives slightly bet-
ter results for S1, whilst there is no statistically significant differ-
ence between the transforms for RRm and S3. All in all, we see
that using a multi-resolution transform provides only a marginal
improvement (less than 0.5 cents) in terms of melody frequency
accuracy, suggesting it might not necessarily provide significantly
better results in a complete melody extraction system.

5.2.2. Salience Function Parameter Configuration

We now turn to evaluate the effect of the parameters of the salience
function. In the previous section we saw that equal loudness filter-
ing and frequency correction are important, whilst the type of cor-
rection and transform used do not affect the results significantly.
Thus, in this section we will focus on configuration 9, which ap-
plies equal loudness filtering and uses the STFT transform with
phase vocoder frequency correction 7.

In Figure 2 we plot the results obtained for the four metrics
using configuration 9 with each of the 64 possible parameter con-
figurations (β = 1 in all cases) for the salience function. The first
16 datapoints represent configurations where α = 1, the next 16
where α = 0.9 and so on. Within each group of 16, the first 4 have
Nh = 4, the next 4 haveNh = 8 etc. Finally within each group of
4, each dapatpoint has a different γ value from∞ down to 20dB.

We first examine the effect of the peak energy threshold γ, by
comparing individual datapoints within every group of 4 (e.g. com-
paring peaks 1-4, 29-32 etc.). We see that (for all metrics) there
is no significant difference for the different values of the threshold
except for when it is set to 20dB for which the results degrade.
That is, unless the filtering is too strict, filtering relatively weak
spectral peaks seems to neither improve nor degrade the results.

Next we examine the effect of Nh, by comparing different
groups of 4 data points within every group of 16 (e.g. 17-20 vs
25-28). With the exception of the configurations where α = 1
(1-16), for all other configurations all metrics are improved the
more harmonics we consider. As the melody in our evaluation
material is primarily human voice (which tends to have many har-
monic partials), this makes sense. We can explain the decrease for
configurations 1-16 by the lack of harmonic weighting (α = 1)
which results in a great number of fake peaks with high salience at
integer/sub-integer multiples of the true f0.

Finally, we examine the effect of the harmonic weighting pa-
rameter α. Though it has a slight effect on the frequency error,
we are primarily interested in its effect on melody salience as in-
dicated by RRm, S1 and S3. For all three metrics, no weighting
(i.e. α = 1) never produces the best results. For RRm and S1 we

7Configurations 8, 11 and 12 result in similar graphs.
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Figure 2: Salience function design, results by parameter configu-
ration.

get best performance when α is between 0.9 and 0.8. Interestingly,
S3 increases continually as we decrease α. This implies that even
with weighting, fake peaks at integer/sub-integer multiples (which
are strongly affected by α) are present. This means that regardless
of the configuration used, systems which use salience functions
based on harmonic summation should include a post-processing
step to detect and discard octave errors.

In Figure 3 we plot the metrics as a function of the parame-
ter configuration once more, this time for each genre (using anal-
ysis configuration 9). Interestingly, opera, jazz and bossa nova
behave quite similarly to each other and to the overall results. For
pop/rock however we generally get slightly lower results, and there
is greater sensitivity to the parameter values. This is most likely
due to the fact that the accompaniment is more predominant in
this genre, making it harder for the melody to stand out. In this
case we can expect to find more predominant peaks in the salience
function which represent background instruments rather than oc-
tave errors of the melody. Consequently, S3 no longer favours the
lowest harmonic weighting and, like RRm and S1, gives best re-
sults for α = 0.8 or 0.9.

Following the above analysis, we can identify the combination
of salience function parameters that gives the best overall results
across all four metrics as α = 0.8 or 0.9, β = 1, Nh = 20 and
γ = 40dB or higher.

6. CONCLUSIONS

In this paper the first two steps common to a large group of melody
extraction systems were studied - sinusoid extraction and salience
function design. Several analysis methods were compared for si-
nusoid extraction and it was shown that accuracy is improved when
frequency/amplitude correction is applied. Two spectral transforms
(single and multi-resolution) were compared and shown to perform
similarly in terms of melody energy recall and frequency accuracy.
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Figure 3: Per genre results by parameter configuration. Genres are labeled by their first letter – Opera, Jazz, Pop/Rock and Bossa Nova.

A salience function based on harmonic summation was intro-
duced alongside its key parameters. The different analysis config-
urations were all evaluated in terms of the salience function they
produce, and the effects of the parameters on the salience func-
tion were studied. It was shown that equal loudness and frequency
correction both result in significant improvements to the salience
function, whilst the difference between the alternative frequency
correction methods or the single/multi-resolution transforms was
marginal. The effect of the different parameters on the salience
function was studied and an overall optimal analysis and parame-
ter configuration for melody extraction using the proposed salience
function was identified.
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ABSTRACT

Research into sparse atomic models has recently intensified in the
image and audio processing communities. While other reviews
exist, we believe this paper provides a good starting point for the
uninitiated reader as it concisely summarizes the state-of-the-art,
and presents most of the major topics in an accessible manner. We
discuss several approaches to the sparse approximation problem
including various greedy algorithms, iteratively re-weighted least
squares, iterative shrinkage, and Bayesian methods. We provide
pseudo-code for several of the algorithms, and have released soft-
ware which includes fast dictionaries and reference implementa-
tions for many of the algorithms. We discuss the relevance of the
different approaches for audio applications, and include numeri-
cal comparisons. We also illustrate several audio applications of
sparse atomic modeling.

1. INTRODUCTION

Many natural signals can be sparsely represented (or sparsely ap-
proximated) if an appropriate basis can be found. For example,
a short block of samples from a quasi-periodic sound will have a
sparse Fourier transform if the block size is a multiple of the pitch
period. We often seek sparse representations, or sparse models,
because they lead to a clear interpretation. If we compare several
models that summarize a data set equally well, we usually prefer
the sparser models, since each variable tends to be more meaning-
ful1. This is especially true if we are interested in audio effects,
since we desire a meaningful mapping between the control param-
eters and the perceived outcome.

In this paper we limit ourselves to the following model:

y = Φx + ε (1)

where y ∈ RM is a sampled sound, Φ ∈ CM×N is a dictio-
nary of (possibly) complex atoms, and ε is additive noise. We call
supp(x) = {i|xi �= 0} the support of x, and define the sparsity of
x as �x�0 = |supp(x)|, which is the cardinality of the support. We
say that y is synthesis-sparse in the dictionary Φ if �x�0 �M . In
this paper we focus primarily on synthesis sparsity, however, it is
worth noting that several recent works consider signals which are
analysis-sparse: that is, signals for which �Ωx�0 � M (where Ω
is an analysis operator) [1, 2].

Although, real sound signals may not be truly sparse in any
basis, they are often compressible. We say that y is compressible
in Φ if the sorted magnitudes of x decay according to a power-law.

�Sound Processing and Control Laboratory
†Centre for Interdisciplinary Research in Music Media and Technology

1This principle is often referred to as Occam’s razor.

This means that we may discard many of the small coefficients in
x without a huge sacrifice in the perceived quality.

The formulation in (1) is quite common in audio processing
since we may consider the wavelet transform, the modified discrete
cosine transform (MDCT), and the short time Fourier transform
(STFT) as instances of this model (if we choose Φ appropriately
and set ε to 0).

In this paper we focus on the case where N > M , which
means that the dictionary contains a redundant set of waveforms.
This situation arises quite naturally in audio processing. For ex-
ample, the STFT is often oversampled so that i) smoother analysis
windows may be used, and ii) to make the transform more invari-
ant to shifts in the input signal. Both of these considerations lead
to a redundant dictionary. Furthermore, it is often useful to build
hybrid dictionaries from the union of several different dictionar-
ies. This allows us to match the dictionary waveforms to the type
of features we expect to encounter in the signal. As described in
§10.1 this fact can be used to build multilayer signal expansions.

In the first part of this paper we examine several state-of-the-
art approaches for estimating a sparse x given a redundant dic-
tionary Φ. We discuss most of the major approaches and their
variants. Along the way we point out which algorithms have the
potential to work with the large data sets common in audio applica-
tions. In the second part of this paper we perform some numerical
comparisons of these algorithms, and review some important audio
applications that can benefit from sparse atomic modeling.

2. THE METHOD OF FRAMES

We first consider the case without an explicit noise term, i.e., y =
Φx. There are many possible solutions that satisfy this equation
when N > M since Φ has a null space (and adding an element
from the null space does not change the solution). One possible
solution is:

x = ΦHS−1y (2)

where S = ΦΦH is called the frame operator, and ΦH denotes
the conjugate transpose. The frame operator is invertible if its min-
imum eigenvalue is greater than zero and its maximum eigenvalue
is finite. In the finite dimensional case (which is the only case we
consider in this paper), the latter condition is always satisfied, and
the former condition is satisfied whenever Φ has rank M (which
is to say the columns of Φ span M dimensional space). In the lit-
erature (2) is known as the method of frames (MOF) [3]. A very
comprehensive review on frames can be found in [4].

The MOF solution is unique in the sense that x is orthogonal
to the null space of Φ and hence has the minimum 2-norm out
of all possible solutions. As such the MOF can be viewed as the
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solution to the following problem:

arg min
x

1

2
�x�22 subject to y = Φx (3)

As noted by several authors the MOF solution is usually not sparse
due to the fact that the 2-norm places a very high penalty on large
coefficients (and thus there tend to be many small yet significant
coefficients) [5].

3. SPARSE APPROXIMATIONS

As noted in the introduction the �0 pseudo norm, �x�0, is a direct
measure of sparsity. In light of the MOF formulation in (3) this
leads us to question if we can solve the following problem:

arg min
x
�x�0 subject to �y −Φx�22 ≤ T (4)

where T is proportional to the noise variance (or 0 in the noise-
less case). Unfortunately, the solution to this problem involves the
enumeration of all possible subsets of columns from Φ, which is
a combinatorial problem [6]. This problem is also unstable in the
noiseless case, since a small perturbation of y can dramatically
effect �x�0.

There are two main strategies that have been explored in the
literature to recover sparse solutions. The first tactic is to use
greedy algorithms, which build up a solution by selecting one co-
efficient in x per iteration. By stopping a greedy algorithm early,
a sparse approximation is guaranteed. The second strategy is to
rephrase (4) using a cost function that can be tractably minimized.
We refer to this approach as relaxation. Although both of these tac-
tics often lead to suboptimal solutions, there are certain conditions
under which the optimal solution may be recovered [7, 8].

In the following sections we explore these two approaches and
discuss algorithms for their solutions. We then provide some nu-
merical results to compare the different algorithms, and discuss
their suitability for audio applications.

4. GREEDY APPROACHES

4.1. Matching Pursuit

The matching pursuit (MP) algorithm is one of the most well known
greedy algorithms for sparse approximation [9]. In MP we start
with an empty solution x(0) = 0, and adjust one coefficient in x
at each iteration. This coefficient is chosen so as to minimize the
residual error at each iteration. For example, on the nth iteration
we define x(n) = x(n−1) + αδ, where α is a scalar and δ is a
unit vector with one non-zero component that indicates which el-
ement of x should be updated. The residual can then be written
as r(n) = y − Φx(n) = r(n−1) − αφ, where the atom φ is the
column of Φ identified by δ. At each iteration we seek an atom φ
and scalar α that minimize the current residual:

arg min
α∈C,φ∈Φ

1

2
�r(n−1) − αφ�22 (5)

Solving for α we find

α =
φHr(n−1)

φHφ
(6)

where φHr(n−1) =
�

k φ∗[k]r(n−1)[k]. We often normalize the
dictionary atoms so that φHφ = 1 (we will assume this is the

case from here on out). Plugging this value of α back into (5) it is
straightforward to show that the atom which decreases the residual
error most is given by

arg max
φ∈Φ

|φHr(n−1)| (7)

Algorithm 1 summarizes the steps in MP.

Algorithm 1 Matching Pursuit

1: init: n = 0,x(n) = 0, r(n) = y
2: repeat
3: in = arg maxi |φH

i r(n)|
4: αn = φH

in
r(n)

5: x(n+1) = x(n) + αnδin

6: r(n+1) = r(n) − αnφin

7: n = n + 1
8: until stopping condition

The stopping condition is usually based on a combination of
the desired signal to residual ratio (SRR), and maximum number
of iterations allowed.

After k iterations the signal approximation is

ŷ =

k−1�

n=0

αnφin
(8)

We can avoid explicit computation of the residual in algorithm
1 if we multiply both sides of line 6 by φH

j . This gives

φH
j r(n+1) = φH

j r(n) − αnG[in, j] (9)

where G = ΦHΦ is the Gram matrix, and φH
j r(n) was already

calculated in the previous iteration. In practice the Gram matrix is
often too big to be stored, however, in many cases it will have a
sparse structure so an update of this form can still be useful. For
example, when local dictionaries are used the majority of entries
in the Gram matrix are zero, so many of the inner products do not
need to be updated [10].

Equation (9) reveals that the inner products at iteration n + 1
depend on the atom selected at iteration n (via the Gram matrix).
When the atoms are correlated (as they will be in a redundant dic-
tionary) this dependence can lead to the algorithm making subop-
timal choices. Nonetheless, the residual is guaranteed to converge
to zero in norm as the number of iterations tends to infinity [9].

4.2. Variants and Extensions

It should be noted that in MP we may select atoms at each itera-
tion based on criteria other than minimizing the residual energy.
For example, if we have some a priori knowledge about the signal
we can modify the selection criteria to include this information. To
illustrate, in [11] a psychoacoustic weighting was applied before
minimizing the residual, and in [12] an MP-variant was introduced
that avoids selecting atoms which might lead to pre-echo artifacts.
Likewise, we might also restrict the search region for atoms at each
iteration. For example, in [13] the search region was restricted so
that only overlapping chains of atoms (similar to partials) were ex-
tracted by the algorithm. This flexibility in the selection of atoms
is a great advantage of MP over some of the other algorithms in-
troduced later.
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With MP we can also refine the atom parameters at each itera-
tion using Newton’s method [9]. This allows one to find a contin-
uous estimate for the atom parameters even when using a discrete
dictionary. Also, in [14] a method known as cyclic matching pur-
suit was introduced that allows one to find a continuous estimate of
the amplitude and frequency parameters when using a dictionary
of complex sinusoids.

4.3. Orthogonalization

There are several variants of MP which use orthogonalization to
improve the performance (i.e., achieve a higher SRR with fewer
atoms). For example, we can update the coefficient vector x by
orthogonal projection every k iterations. This process is known as
backprojection. If we let ∆k � supp(x(k)), and denote x∆k �
{xi|i ∈ ∆k} and Φ∆k � ∪i∈∆kφi, then we can write backpro-
jection as:

x̂∆k = arg min
supp(x)=∆k

1

2
�y −Φ∆kx�22 (10)

The solution to this equation is given by x̂∆k = Φ+
∆k

y, where
Φ+

∆k
indicates the pseudo-inverse.

If we carry backprojection to its logical extreme, and update
the coefficients after every iteration we arrive at an MP-variant
known as orthogonal matching pursuit (OMP) [15]. OMP tends to
be very computationally expensive, since it requires computation
and inversion of the partial Gram matrix at every iteration. How-
ever, since the residual remains orthogonal to the selected atoms
at every iteration, OMP will never select the same atom twice (this
is not the case for MP), and is guaranteed to converge in M (or
fewer) iterations.

There are also several variants of OMP that have been dis-
cussed in the literature. For example, in optimized OMP (OOMP)
[16] the atom selection metric is adjusted in order to improve the
residual decay, and in stagewise OMP (StOMP) [17] several atoms
are selected and orthogonalized at each iteration.

In [18] several fast algorithms were introduced which approx-
imate OMP using gradient and conjugate gradient information.
Further, in [10] a fast approximate OMP algorithm was proposed
for use with local dictionaries. This algorithm exploits the fact that
many dictionaries of practical interest are local in the sense that
the majority of atoms are orthogonal to one another (since they
are supported on disjoints sets). This allows one to work with a
much smaller partial Gram matrix, and dramatically speeds up the
algorithm in practice. As such these algorithms hold considerable
promise for audio applications.

4.4. Conjugate Subspaces

In standard MP we select just one atom at each iteration. When
working with complex atoms and a real signal it can be useful to
select a conjugate subspace at each iteration. This can be done by
replacing α by [α α∗]T and φ by [φ φ∗] in (5) which leads to
the solution outlined in [5].

Using complex atoms with conjugate subspaces leads to two
important advantages when working with audio. Firstly, using
complex atoms allows one to estimate the phase without explic-
itly parameterizing this value. Second, when selecting low or high
frequency atoms the inner products can be biased by spectral leak-
age from the negative frequency spectrum. Since this approach

selects a subspace consisting of one positive and one negative fre-
quency atom, it is resilient to this possible bias (further details can
be found in [19]).

4.5. Weak Matching Pursuit

A modification to MP known as weak matching pursuit (WMP)
can be practically useful when dealing with very large dictionar-
ies, where the computation of inner products would ordinarily be
prohibitive [9, 20]. At each iteration of WMP we select an atom
from a subset of the full dictionary:

Φ
(n)
Λ =

�
φi

�����
���φH

i r(n)
��� ≥ βmax

j

���φH
j r(n)

���
�

(11)

where β ∈ (0, 1] is a relaxation factor. It has been shown that the
WMP will converge even if β changes from iteration to iteration
[21]. In [22] and [23] this strategy was used to prune the dictio-
nary around local maxima, leading to a significant computational
savings.

5. RELAXED APPROACHES

As mentioned in §3 the second major class of algorithms for sparse
approximation are based on relaxation. In essence, we relax the
hard �0 pseudo norm problem by replacing it with a cost function
that can be tractably minimized.

In order to proceed let us replace the �0 pseudo norm in (4) by
a function f(x) that measures the sparsity of x:

x̂ = arg min
x

f(x) subject to �y −Φx�22 ≤ T (12)

This equation can also be written in an equivalent unconstrained
form:

x̂ = arg min
x

1

2
�y −Φx�22 + λf(x) (13)

We refer to f(x) as a regularization term, and note that the
scalar λ controls the degree of regularization (i.e., trades off our
desire for a sparse solution with our wish for a low approximation
error).

There are many regularizers that promote sparsity. For exam-
ple, the �p-norms, 0 ≤ p ≤ 1 are well-known to promote sparsity:

f(x) = �x�pp =
�

i

|xi|p (14)

We can begin to see why the �p-norms, 0 ≤ p ≤ 1, promote spar-
sity by visualizing the shape of �p-balls in two dimensions. In fig.
1 the feasible set of solutions for a hypothetical problem is indi-
cated by a dashed line. The minimum �p-norm solution is found
by expanding the �p-ball until it intersects the solution space. As
can be seen for p ≤ 1 the �p-ball intersects the solution space
along one of the coordinate axes, leading to a solution with only
one non-zero component. Notice that when p > 1 the solution
contains two non-zero components. The solution for p = 2 corre-
sponds to the minimum energy solution (which is calculated using
the method of frames). Geometrically the �p-balls, 0 ≤ p ≤ 1, are
sharply pointed and aligned with the coordinate axes, which tends
to induce sparse solutions.
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Figure 1: Illustration of the shape of �p-balls in 2-dimensions. The dashed line represents the set of feasible solutions for a hypothetical problem. Note that
for p > 1 the minimum �p-norm solution contains 2 non-zero components, whereas for p ≤ 1, the solution contains only 1 non-zero component. Also note
that p = 2 is the minimum energy solution (it is the vector normal to the solution space).

Other sparsity measures are also possible, for example, the
Shannon and Rényi entropies are known to act as good sparsity
measures2 [24, 25].

5.1. Basis Pursuit

The fact that �1 minimization often leads to sparse solutions has
been known for sometime [26]. In the signal processing literature
minimization of (12) with an �1-norm regularization term is known
as basis pursuit (BP) when T = 0 and basis pursuit denoising
(BPDN) when T �= 0 [27]. In the statistics literature a very similar
formulation was presented under the name least absolute shrinkage
and selection operator (LASSO) [28].

Using the �1-norm is attractive since i) it promotes sparsity,
and ii) it is convex (and thus this problem can be tackled using the
large body of techniques developed for convex optimization [29]).

In [27] the BP problem was solved using linear programming
(LP), however, as pointed out in [30], LP cannot be used with
complex coefficients. In this case a second-order cone program
(SOCP) may be used instead.

In [30] it was noted that we can downsample a sparse signal
using random projections (using results from compressed sensing
(CS) theory [31]). This strategy was used in [30] to downsample
the input signal before applying a SOCP. This significantly reduces
the problem size and hence the computational cost (which is very
interesting to note for audio applications).

In the following sections we discuss algorithms for the solu-
tion to the unconstrained problem (13).

5.2. Iteratively Re-weighted Least Squares

Iteratively re-weighted least squares (IRLS) is an algorithm that
can be used to solve the sparse approximation problem with both
convex and non-convex regularization terms. The premise of IRLS
stems from the following fact: if we define a diagonal weight ma-
trix as:

Wp = diag(|xi|p−2) (15)

then we can write the �p-norm of x in quadratic form as follows:

�x�pp = xHWpx =
�

i

x2
i |xi|p−2 =

�

i

|xi|p (16)

This allows us to write (13) as:

x̂ = arg min
x

1

2
�y −Φx�22 + λxHWpx (17)

2In fact, the Rényi entropies can be interpreted as logarithmic versions
of the �p-norms.

The least squares solution to this equation is:

x̂ = (ΦHΦ + 2λWp)−1ΦHy (18)

However, since Wp = diag(|xi|p−2) is a function of x, we must
solve this equation in an iterative fashion. The pseudocode in algo-
rithm 2 demonstrates the basic IRLS algorithm. To avoid division
by zero, we initialize x with all ones. In practice many of the co-
efficients of x will shrink, but never reach zero. A variation on
this algorithm could include the identification of an active set of
coefficients from x. Small coefficients from x (and the associated
columns from Φ) could then be pruned from the active set.

Algorithm 2 IRLS

1: init: n = 0,x(n) = 1
2: repeat
3: W

(n)
p = diag(|x(n)

i |p−2)

4: x(n+1) = (ΦHΦ + 2λW
(n)
p )−1ΦHy

5: n = n + 1
6: until stopping condition

In [32] a slightly different procedure is described, whereby a
solution is sought in the noiseless case. This algorithm has the
same form as algorithm 2, except that at each iteration the updates
proceed according to

x(n+1) = (W (n))−1ΦH(Φ(W (n))−1ΦH)−1y (19)

This variant of IRLS is referred to as the focal underdetermined
system solver (FOCUSS) in the literature [33]. A detailed exami-
nation of IRLS and its convergence properties is provided in [34].

There are several points that should be noted regarding the
IRLS algorithm. Firstly, the algorithm is sensitive to the initial-
ization point when p < 1, which means a local minimum could
be returned. In many applications we may be able to find a suit-
able initialization point using other algorithms (e.g., we could use
the pseudo-inverse as an initialization point). Second, the algo-
rithm requires a matrix inversion. It can be practical to perform
the matrix inversion using Cholesky or QR factorization for small
dictionaries. However, when working with audio, these factoriza-
tions are usually not practical due to their computational complex-
ity, and because we often can’t explicitly store the dictionary in
memory. In this case we can perform the matrix inversion us-
ing conjugate gradient descent with appropriate preconditioning
as suggested in [35]. As noted in [36] when Φ is an orthonormal
basis the matrix inverse is trivial. Furthermore, if Φ is a union of
orthonormal bases, we can invert one basis at a time in an iterative
fashion using block coordinate relaxation (BCR) [37].
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Figure 2: The shrinkage curve xi = ψ(φH
i y) for the �1-norm function.

5.3. Iterative Shrinkage

In [38] a method known as shrinkage was introduced to solve (13)
for the case when Φ is an orthonormal basis. To understand shrink-
age, we start by re-writing the objective function from (13) as:

x̂ = arg min
x

1

2
�Φ(Φ−1y − x)�22 + λf(x) (20)

when Φ is an orthonormal basis, this simplifies to3:

x̂ = arg min
x

1

2
�ΦHy − x�22 + λf(x) (21)

= arg min
x

�

i

1

2
(φH

i y − xi)
2 + λf(xi) (22)

In this form the joint optimization problem has been factored into
a sum of scalar optimization problems which can be solved indi-
vidually.

The solution to the ith scalar optimization problem is given
by:

xi + λf �(xi) = φH
i y (23)

Solving for xi we get:

xi = ψ(φH
i y) (24)

where
ψ−1(u) = u + λf �(u) (25)

When f is the �1-norm we find that ψ−1(u) = u + λsign(u),
which leads to:

ψ(u) = sgn(u) max(0, |u|− λ) (26)

The curve of the �1 shrinkage function, ψ, is graphed in figure
2. Filtering the transform coefficients according to this graph is
known as shrinkage or soft thresholding. It was shown in [39]
that shrinkage can be performed with complex coefficients by sim-
ply shrinking the modulus of φH

i y and leaving the argument un-
changed. We also note that different regularization terms will lead
to different shrinkage curves4. For example, in the limit as p→ 0
we obtain a variant known as hard thresholding [40].

We now discuss how to perform shrinkage with an overcom-
plete dictionary. In this case an iterative shrinkage (IS) algorithm
is required, whereby a series of simple shrinkage operations are
performed until convergence [41, 42, 43, 44, 40]. Here we outline
the approach discussed in [43].

3by Parseval’s theorem ||Φz|| = ||z||, and the fact that Φ−1 = ΦH

4Not all shrinkage functions can be calculated analytically. In such a
case a look-up table can be used.

In this approach we again decouple the optimization problem
and solve a series of 1-D problems. Assume we are given the
transform coefficients at the nth iteration, x(n). Now assume all
entries in x(n) are fixed, except for the ith entry, which we wish to
refine. We can write the objective function as:

arg min
w

1

2
�y − (Φx(n) − φix

(n)
i + φiw)�22 + λf(w) (27)

In essence this removes the contribution of the ith atom from the
model, and allows us to replace it with a new estimate, w. Taking
the derivative with respect to w and setting the result to zero we
get (assuming unit norm atoms):

w + λf �(w) = x
(n)
i + φH

i (y −Φx(n)) (28)

which is in the same form as (23), and so can be solved using a
shrinkage operator. The pseudocode for iterative shrinkage (IS)
listed in algorithm 3:

Algorithm 3 Iterative Shrinkage (IS)

1: init: n = 0,x(n) = 0
2: repeat
3: x(n+1) = x(n)

4: for i = 0 to N − 1 do
5: x

(n+1)
i = ψ(x

(n)
i + φH

i (y −Φx(n+1)))
6: end for
7: n = n + 1
8: until stopping condition

In [43], empirical results are presented comparing IS to IRLS.
Although IRLS has much faster convergence, it also requires a
matrix inversion, which can be prohibitive for large dictionaries.
Iterative shrinkage on the other hand, converges more slowly, but
it is computationally much simpler (and does not require a matrix
inversion), so it can easily be used with large overcomplete dictio-
naries.

It is important to note that IS tends to underestimate the mag-
nitude of the synthesis coefficients. We can correct for this bias
after running IS by taking the orthogonal projection of y onto the
support identified by the algorithm. In practice there may be some
coefficients that are very small (but non-zero). These coefficients
can be eliminated by hard thresholding prior to the debiasing step.

The particular version of shrinkage in algorithm 3 is somewhat
slow because it requires each xi to be updated sequentially in the
inner loop. In [43] a simple modification of this algorithm was
introduced that allows all of the coefficients in x to be updated in
parallel. This leads to a significant speed up in the algorithm. We
note that the IS algorithm developed in [42] also uses a parallel
update.

There have also been several recent papers introducing fast IS
techniques [45, 46]. These algorithms use information from the
two previous iterates to update the current solution, and can be up
to an order of magnitude faster. These fast shrinkage algorithms
would likely be quite useful for audio applications.

5.4. Bayesian Methods

In a probabilistic setting we assume the signal is constructed ac-
cording to:

y = Φx + ε (29)
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where x and ε are random variables representing the signal and
noise, respectively5. We will assume that ε is white Gaussian noise
with covariance matrix Σ = σ2I in order to simplify calculations
(however more general noise models are certainly possible).

The negative log-likelihood of x is given by

L(x) = − log p(y|x) =
1

2σ2
�y −Φx�22 + C (30)

where C is a constant independent of x. As discussed in §2 when
Φ is overcomplete there are multiple values of x such that y =
Φx, which means the maximum likelihood solution is ill-defined.

In order to find sparse solutions we can instead find the max-
imum a priori (MAP) estimate which incorporates a prior on the
transform coefficients. The MAP estimate is found by application
of Baye’s rule:

x̂MAP = arg max
x

p(x|y) = arg max
x

p(y|x)p(x)

p(y)
(31)

It is usually mathematically simpler to minimize the negative log-
likelihood which is:

x̂MAP = arg min
x
− log p(y|x)− log p(x) + log p(y) (32)

Let us denote the negative log-probability of x as f(x) = − log p(x).
Then (32) becomes

x̂MAP = arg min
x

1

2σ2
�y −Φx�22 + f(x) + C (33)

where C is a constant independent of x. Notice that (33) is essen-
tially the same problem as (13). It is interesting to note that when
p(x) is an independent and identically distributed (i.i.d.) Lapla-
cian prior:

p(x) =
�

i

p(xi) =
�

i

λ

2
exp(−λ|xi|) (34)

then
f(x) = − log p(x) = λ�x�1 + C (35)

In other words, MAP estimation with a Laplacian prior is equiv-
alent to �1 regularization. The Laplacian distribution is sharply
peaked at zero with heavy tails as illustrated in fig. 3. This den-
sity thus encourages many small coefficients, yet does not place a
heavy penalty on large coefficients, which tends to promote sparse
solutions. This new viewpoint helps to illustrate why the �1-norm
acts as a good sparsity measure. It should be noted that this is
just one possible interpretation, and that other interpretations are
certainly possible as suggested in the recent paper [48].

Since we are free to investigate priors other than the Lapla-
cian, and also because we can use alternative noise models, the
Bayesian approach is quite flexible. For example, in [49], a piece-
wise continuous prior was used, which is even more peaked around
zero than the Laplacian prior. In [50], a design methodology is dis-
cussed outlining some of the necessary conditions for a prior to be
sparsity inducing.

It should be noted that in the above formulation the synthesis
coefficients were assumed to be i.i.d.. In reality this may not be a
good assumption, since we expect some structure in the synthesis
coefficients (for example chains of coefficients that form partials).
In fact, all of the algorithms discussed up to this point ignore this
important factor. We discuss methods for sparse and structured
decompositions in §6.

5In some cases Φ can also be considered a random matrix, for example,
if we wish to perform dictionary learning [47].
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Figure 3: Illustration of Gaussian densities (left) and Laplacian densities
(right).

5.4.1. Bayesian Variants and Extensions

There are several variations that can be applied within the Bayesian
framework. For example, in [51] [52] [53] each transform coeffi-
cient is modeled by a zero-mean Gaussian prior. A hyper-prior is
then placed on the variance, in order to express the belief that, for
the majority of coefficients, the variance should be near zero [53].
As illustrated in fig. 3, as the variance of a Gaussian tends to zero,
the distribution becomes infinitely peaked at zero. An expectation
maximization (EM) procedure can be used to find MAP solutions
for these models. A conceptually similar approach is discussed in
[54].

Another variant known as sparse linear regression was intro-
duced in [55] and [56]. In this formulation the atomic model is
augmented to include a binary indicator variable γi ∈ {0, 1}:

y =

N−1�

i=0

γixiφi + ε (36)

The vector γ = [γ0, . . . γN−1]
T indicates the presence or absence

of each coefficient in the model. If we could somehow determine
a sparse indicator vector, then we could find the optimal trans-
form coefficients via orthogonal projection. This problem setup is
known in the literature as Bayesian variable selection [57].

Using the indicator variables we can form a mixed prior for
each transform coefficient:

p(xi|γi,σi) = (1− γi)δ(xi) + γiN (xi|0,σ2
i ) (37)

where N (·|0,σ2) indicates a zero-mean Gaussian density with
variance σ2, and δ(·) is a dirac distribution. This spike + slab
distribution enforces sparsity conditionally on γ. We then seek a
MAP solution of the form

(x̂, γ̂) = arg max
x,γ

p(x,γ|y) (38)

where the density p(x,γ|y) can be found by marginalizing the
complete posterior. The type of prior we place on γ, strongly ef-
fects the type of solutions that will be found. For example, an
independent Bernoulli prior could be used if we don’t expect any
dependancies between coefficients. In [58] the indicator variables
are given time-frequency dependencies by modeling the joint dis-
tribution of γ as a Markov chain. In general the density p(x,γ|y)
cannot be found analytically. In this case, a solution can be found
using Monte Carlo inference (e.g., Gibbs sampling).

6. STRUCTURED APPROXIMATIONS

The majority of techniques discussed to this point simply aim at
recovering a sparse solution to (1). In addition to sparsity, we of-
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ten have other a priori information regarding the content of our
signals. In audio signals we expect strong time-frequency depen-
dencies between different transform coefficients. For example, we
expect some time-continuity between active coefficients in tonal
sounds, and some frequency-continuity in transient sounds. Fur-
thermore, we expect spatial dependencies in multichannel record-
ings [59].

There are several ways of structuring the information in a de-
composition. We can impose structure directly using the atoms
themselves (for example, by using harmonic atoms). Likewise,
we can impose structure by preferentially selecting coherent atoms
in the decomposition (for example, by only selecting overlapping
chains of atoms). Finally, we can impose structure as a post-
processing step, by clustering atoms according to their similarity.
All of these approaches have been used in the literature. We briefly
review the most prominent techniques.

Sparse linear regression, which was addressed in the previ-
ous section, uses binary indicator variables to indicate the absence
or presence of each transform coefficient in the model. The type
of joint prior placed on the set of indicator variables can be used
to model dependencies between the transform coefficients, as was
done in [55][58].

An algorithm known as molecular matching pursuit (MMP) is
described in [60]. MMP is an iterative greedy algorithm that esti-
mates and subtracts a tonal or transient molecule from the residual
at each stage. Tonal molecules are defined as overlapping chains
of MDCT atoms with the same frequency (± 1 bin). Transient
molecules are sets of wavelet coefficients forming a connected
tree. A similar algorithm is described in [13] which uses a multi-
scale Gabor dictionary. These algorithms segment the signal into
transient and tonal objects, which could be useful for selective pro-
cessing and filtering of audio signals. There are strong similarities
between MMP and partial tracking algorithms [61, 62], especially
when an overlap-add (OLA) synthesis model is used. However, the
advantage of MMP and its variants over traditional partial track-
ing techniques is that multi-scale features can be captured by the
algorithm, since larger, more general dictionaries can be used.

An algorithm known as harmonic matching pursuit (HMP)
was suggested in [23]. This algorithm uses a dictionary of har-
monic atoms6. At each stage in the pursuit the signal is projected
onto a harmonic subspace. In order to manage the complexity of
the algorithm the search for best harmonic atom is limited to a
subset of the dictionary using a weak approximate MP. The same
authors also developed stereo atoms for two channel recordings
[59].

The authors in [63] also discussed an approach inspired by
both harmonic matching pursuit and molecular matching pursuit.
Their mid-level representation was shown to be useful for several
tasks including solo and polyphonic instrument recognition.

In [64] a post-processing technique known as agglomerative
clustering (AC) was introduced to impose structure on the syn-
thesis coefficients. AC works by traversing an adjacency matrix,
which measures the similarity between atoms. If two atoms are
present in the decomposition, and significantly close in the adja-
cency matrix, then they are grouped together. This process is then
repeated to form large clusters of coherent atoms.

In [65] a technique using iterative shrinkage (see §5.3) was
developed to find sparse and structured decompositions when used

6a harmonic atom is defined as a weighted sum of Gabor atoms with
integer frequency ratios.

Package M
P

O
M

P
IR

L
S

IS B
P

Languages URL

SparseLab �� � �� Matlab [66]
Sparsify �� - - - Matlab [67]

MPTK � - - - - C++7 [68]
GabLab �� � � - Matlab [69]

Table 1: Software packages for sparse approximation.

with time-frequency dictionaries. This technique relies on a mixed-
norm regularization term which tends to induce structure in the
decomposition (for details see [65] and the references therein).

7. SOFTWARE TOOLS

Table 1 lists several software packages for sparse approximation
that are freely available. This list is by no means exhaustive, but it
does include some of the more well-known choices that are avail-
able.

In practice not all packages are well-suited for audio analysis.
For example, many of the solvers in SparseLab require explicit ac-
cess to the columns or rows of the dictionary. This is problematic
for audio analysis, since we often work with huge amounts of data
and dictionaries that aren’t explicitly stored.

In practice MPTK is very fast, and contains many optimiza-
tions that make it suitable for use with audio and very large shift-
invariant dictionaries.

The Gablab software [69] (which has been released in con-
junction with this paper) was written with audio analysis in mind.
GabLab comes bundled with functions for creating fast Gabor dic-
tionaries, and unions of Gabor frames8. The computation of inner
products in GabLab is performed using the fast Fourier transform.
Furthermore, all of the algorithms in GabLab work with complex
atoms.

In the following sections we compare the four main algorithms
discussed in this paper (MP, OMP, IS and IRLS) according to sev-
eral different criteria. We then discuss several audio applications
that could benefit from sparse atomic modeling. All of the numer-
ical experiments were performed using GabLab.

8. COMPUTATIONAL COMPLEXITY

A detailed analysis of the computational complexity of MP and
OMP for general and fast local dictionaries can be found in [10].
We note that MP and IS are each dominated by the calculation of
inner products, and thus have a similar computational complexity.
However, when local dictionaries are used the inner product update
can be performed faster in the MP algorithm (since fewer inner
products need to be calculated for each iteration).

OMP and IRLS are both dominated by the calculation and in-
version of the (partial) Gram matrix at each iteration. In GabLab
this matrix inversion is performed using conjugate gradient de-
scent.

7Matlab bindings are bundled with the MPTK distribution.
8A Gabor frame can be viewed as a generalization of an oversampled

STFT matrix.
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The difference in speed between these algorithms depends to a
large degree on the number of iterations required for convergence.
In the following section we provide empirical results which illus-
trate how many iterations of each algorithm are required in specific
test cases.

9. COMPARISON

In this section we compare the performance of MP, OMP, IS (p=1),
and the IRLS (p=1) algorithm using some simple synthetic test
signals. In the following tests we used a 3-scale complex Gabor
dictionary constructed from Hann windows of length 2048, 512,
and 64 samples with 50% overlap. The sampling rate used was
44.1kHz.

9.1. Example: a compressible signal

For the first test we used a quadratic chirp swept between 100 Hz
and 15 kHz. As can be seen from the spectrogram in fig. 4, this
signal is compressible in the Fourier domain, i.e., many of the co-
efficients are small. Furthermore, since the bandwidth of the chirp
evolves over time, a multi-scale dictionary (such as the one pro-
posed above), should posses the capability to model both the nar-
rowband and wideband parts of the chirp respectively.
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Figure 4: Spectrogram of quadratic chirp test signal. Spectrogram param-
eters: Hann window of length 512, with 50% overlap.
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Figure 5: SRR vs. Number of significant atoms for quadratic chirp decom-
position.

Figure 5 shows the signal to residual ratio (SRR) vs. the num-
ber of significant atoms in the decomposition for each algorithm.
An atom was deemed significant if its magnitude exceeded 10−4.
For IS and IRLS the data points were generated by running the
algorithms until convergence for different values of λ. It should
be noted that this process can be accelerated significantly using
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MP 131 260 8.0 354 678 21.4 844 1521 51.1
IS 92 292 6.6 151 618 10.6 230 1127 16.5
OMP 122 242 116.0 282 560 381.2 484 960 1224.6
IRLS 73 315 89.0 69 733 127.2 67 1406 206.5

Table 2: Summary of quadratic chirp decomposition results.

‘warm starts’, i.e., initializing the next run of the algorithm using
the previous value at convergence. This works in practice because
a small change in λ usually causes a small change in the solution.
It should also be noted that after IS and IRLS converged the coef-
ficient vector was thresholded (with threshold 10−4) and debiased
as explained in section §5.3.

Examining the curves in fig. 5, we see that OMP provides the
best SRR vs. number of atoms. MP, IS, and IRLS perform sim-
ilarly, although beyond 800 atoms, IS and IRLS both maintain a
higher SRR than MP. Table 2 summarizes the data in this graph
and adds two new pieces of information: i) the number of itera-
tions required for convergence and, ii) the amount of CPU time
used by each of the algorithms (for reference, all of the algorithms
were run in MATLAB R�on the same 2.6 GHz dual core Mac Pro).
Of course, the speed of these algorithm is implementation depen-
dent. However, combined with the number of iterations required
for convergence these numbers do reveal interesting differences
between the various algorithms.

As described in §8, IS and MP have approximately the same
complexity per iteration, however, as seen in table 2, IS requires
fewer iterations to converge than MP, and hence uses less CPU
time. The difference is more dramatic for high SRRs and, although
not shown in table 2, for very low SRRs MP is indeed faster.

9.2. Example: a sparse signal plus noise

For this example, we generated a random sparse signal using the
3-scale Gabor dictionary introduced in the previous section. This
signal was generated by first drawing 500 indices from a uniform
distribution to make up the support vector. The real and imaginary
coefficients were then drawn from a normal distribution with unit
mean and variance 0.1. Conjugate atoms were also added to make
the signal real. The test signal was 0.5s in duration and contained
984 non-zero coefficients9. We then added white Gaussian noise to
the signal so that the SNR was 5dB and compared the performance
of MP, OMP, IS and IRLS at denoising the signal.

Figure 6 displays the output SNR vs. number of atoms for each
of the algorithms. Near the true sparsity level (984 atoms), OMP
offers the best reconstruction in terms of output SNR. MP has its
peak located in a similar location, although the SNR is lower10.
Both IS and IRLS require more atoms to reach their peak SNR,

9There are slightly less than 1000 non-zero coefficients because re-
peated coefficients were discarded, and some coefficients were DC atoms
(so no conjugate was added).

10Stopping the algorithm here and running backprojection would prob-
ably result in a better performance.

DAFX-8

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-88



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

0 500 1000 1500 2000 2500
0

5

10

15

20

Number of significant atoms

O
ut

pu
t S

N
R

 (d
B)

 

 

MP
IS (p=1)
OMP
IRLS (p=1)

Figure 6: Results for de-noising a random sparse signal corrupted by white
Gaussian noise (input SNR = 5dB).

although IS achieves its peak with fewer significant atoms than
IRLS.

In order to compare how well the true support was recovered
we also measure the Type I and II errors which are defined as fol-
lows. If we let ∆ represent the true support and ∆̂ represent the
estimated support:

Type I error � 1− |∆ ∩ ∆̂|
|∆| (39)

Type II error � 1− |∆ ∩ ∆̂|
|∆̂|

(40)

Figure 7 illustrates the Type I and Type II errors vs. the num-
ber of atoms for each of the algorithms. MP, OMP, and IS all have
very low errors near 984 atoms (the true sparsity level), which sug-
gests that these algorithms do a good job recovering the correct
support. IRLS on the other hand, has a harder time recovering the
true support. It is interesting to note the differences between IS
and IRLS since both algorithms attempt to minimize the same cost
function. We must remember however, that this cost function is
not strictly convex, which means there could be multiple solutions
with the same cost.
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Figure 7: Error in support estimation. Top: Type I error. Bottom: Type II
error.

10. AUDIO APPLICATIONS

In this section we highlight some audio applications that can ben-
efit from sparse atomic modeling.

10.1. Multilayer Expansions

Multilayer expansions are often very useful for audio processing
and effects. For example, the tonal + transient + noise expansion
segments the signal into important perceptual units.

To find a multilayered expansion we start by defining the dic-
tionary as Φ = ∪I

i=1Φi, where each Φi is a frame adapted to
a certain signal feature. For example, for I = 2, we might take
Φ1 to be a Gabor frame with a short duration window and Φ2

to be a Gabor frame with a long duration window. These frames
are well suited for the analysis of transient and tonal structures,
respectively.

Now, if we solve the system y = Φx = [Φ1Φ2][x1x2]
T with

a sparsity constraint, it follows that the transient components will
be encapsulated by x1 and tonal components will be encapsulated
by x2

11.
For example, fig. 8 shows the multilayer analysis of a 5s long

glockenspiel excerpt, which was chosen because it has rather dis-
tinct tonal and transient parts. The analysis was performed with
a 2-scale Gabor dictionary with Hann windows of length 2048
and 32 samples with 50% overlap. The sampling rate used was
44.1kHz. The particular analysis shown was performed using IS,
however, all of the algorithms discussed lead to fairly similar re-
sults. The interested reader can listen to the multilayer expansions
found using MP, IS, and IRLS on the companion website [69].

10.2. Denoising

As shown in the example presented in §9.2, prior knowledge of
sparsity or compressibility is often useful for signal denoising.
Further, as discussed in §5.4, regularization with a sparse prior
can be interpreted as a MAP estimate in certain situations. An
additional denoising example using the glockenspiel excerpt from
the previous section can be found on the companion website [69].

10.3. Time-Frequency Modification

In this paper we have primarily focused on the use of Gabor frames
and sparsity of the synthesis coefficients. This point-of-view is
useful for time-frequency modifications, since the synthesis coef-
ficients of a Gabor frame can be used to control the time-frequency
content of the signal. For example, on our companion website
[69] we include an example of a major-to-minor transposition of
an acoustic guitar chord. This effect was achieved using the fol-
lowing steps:

1. A tonal + transient expansion was performed as described
in §10.1.

2. The tonal atoms were then classified based on whether or
not they belonged to the major third note in the chord (this
requires an multiple f0 estimation).

3. The major third atoms were then synthesized and flattened
by 100 cents to produce a minor third note.

4. The original signal was then re-synthesized without the ma-
jor third atoms and added to the minor third signal to pro-
duce a minor chord.

11Provided Φ1 and Φ2 are incoherent with one another.
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Figure 8: Multilayered expansion of a glockenspiel excerpt. Top: original
spectrogram. Middle: tonal layer. Bottom: transient layer. In this example
the total SRR was 32 dB and 2% of the synthesis coefficients were non-
zero.

As can be heard on the website [69] the result is relatively con-
vincing despite the naïvety of this approach. We also provide a
similar example of time-stretching with transient preservation on
the website [69].

We can also selectively process atoms by type. For example
short duration atoms could be attenuated or amplified to smooth or
accentuate an attack.

10.4. Granular Synthesis

As discussed in [70] the sparse synthesis model can be used to
achieve many standard granular effects. For example, we can:

1. Apply time and frequency jitter to the atom parameters.
2. Change the atom envelopes.
3. Change the atom durations (bleed).
4. Change the density of atoms per unit time.

We provide several audio examples of these effects on the com-
panion website [69].

10.5. Inverse-problems

In some cases we may not be able to directly observe the true sig-
nal. For example, we may be forced to work with limited data due
to hardware requirements or assumptions regarding stationarity. In
other cases we may only have access to a noisy or reverberant sig-
nal. Likewise, the signal might be downsampled, have small gaps,

or be corrupted with clicks. We can often describe these types of
degradations as:

z = Ψy + ε (41)

where z is the observed signal, Ψ is a (known) linear degradation
operator, y is the true signal, and ε is additive noise. If y has a
sparse representation y = Φx then we can re-write (41) as

z = Dx + ε (42)

where D = ΨΦ. Armed with the knowledge that x is sparse,
we can attempt to estimate x̂ using the dictionary D and any of
the techniques discussed in this paper. We can then generate an
estimate of the true signal as ŷ = Φx̂. Under certain conditions
regarding D and the sparsity of x, it is possible to exactly recover
y [71]. This premise was recently applied in [72] for audio restora-
tion.

It has also been shown that when Ψ is a random matrix, y can
be recovered (with high probability) if the number of rows in Ψ is
large enough. This is the basis of compressed sensing (CS) [31].

11. CONCLUSION

In this paper we reviewed sparse atomic models for audio and dis-
cussed several algorithms that can be used to estimate the model
parameters. This included an exploration of greedy, relaxed, and
Bayesian approaches to the sparse approximation problem, as well
as a brief look at structured approximations. Further, we provided
a few numerical comparisons that serve to illustrate some of the
practical differences between the algorithms discussed. Lastly we
included a discussion of several interesting audio applications that
can benefit from sparse atomic modeling. We remind the reader
that many of the examples in this paper along with sound files and
MATLAB R�code can be found online [69].

We are currently working on MATLAB R�implementations of
local OMP [10], and fast IS [46], which will be added to a future
release of GabLab. We also plan to implement several structured
decomposition techniques and to expand upon the comparisons
performed in this paper.
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ABSTRACT

An efficient and perfectly invertible signal transform featuring a
constant-Q frequency resolution is presented. The proposed ap-
proach is based on the idea of the recently introduced nonstation-
ary Gabor frames. Exploiting the properties of the operatorcorre-
sponding to a family of analysis atoms, this approach overcomes
the problems of the classical implementations of constant-Q trans-
forms, in particular, computational intensity and lack of invertibil-
ity. Perfect reconstruction is guaranteed by using an easy to calcu-
late dual system in the synthesis step and computation time is kept
low by applying FFT-based processing. The proposed method is
applied to real-life signals and evaluated in comparison toa related
approach, recently introduced specifically for audio signals.

1. INTRODUCTION

Many traditional signal transforms impose a regular spacing of fre-
quency bins. In particular, Fourier transform based methods such
as theshort-time Fourier transform(STFT) lead to a frequency
resolution that does not depend on frequency, but is constant over
the whole frequency range. In contrast, the constant-Q transform
(CQT), originally introduced by J. Brown [1, 2], features a fre-
quency resolution dependent on the center frequencies of the win-
dows used for each bin and the center frequencies of the frequency
bins are not linearly, but geometrically spaced. In this sense, the
principal idea of CQT is reminiscent of wavelet transforms,com-
pare [3]: the Q-factor, i.e. the ratio of the center frequency to
bandwidth is constant over all bins and thus the frequency resolu-
tion is better for low frequencies whereas time resolution improves
with increasing frequency. However, the transform proposed in the
original paper [1] is not invertible and does not rely on any concept
of (orthonormal) bases. In fact, the number of bins used per octave
is much higher than most traditional wavelet techniques would al-
low for. Furthermore, the computational efficiency of the original
transform and its improved versions, [4], may be insufficient.

CQTs rely on perception-based considerations, which is one
of the reasons for their importance in the processing of speech and
music signals. In these fields, the lack of invertibility of existing
CQTs has become an important issue: for important applications
such as masking of certain signal components or transposition of

This work was supported by the Vienna Science, Research and Tech-
nology Fund (WWTF) project Audio-Miner (MA09-024) and Austrian
Science Fund (FWF) projects LOCATIF(T384-N13) and SISE(S10602-
N13).

an entire signal or, again, some isolated signal components, the
unbiased reconstruction from analysis coefficients is crucial. An
interesting and promising approach to music processing with CQT
was recently suggested in [5], also cf. references therein.

In the present contribution, we take a different point of view
and consider both the implementation and inversion of a constant-
Q transform in the context of thenonstationary Gabor transform
(NSGT). Classical Gabor transform [6, 7] may be understood as
a sampled STFT or sliding window transform. The generalization
to NSGT was introduced in [8, 9] and allows for windows with
flexible, adaptive bandwidths. Figure 1 shows examples of spec-
trograms of the same signal obtained from the classical sampled
STFT (Gabor transform) and the proposedconstant-Q nonstation-
ary Gabor transform(CQ-NSGT).

If the analysis windows are chosen appropriately, both analy-
sis and reconstruction is realized efficiently with FFT-based meth-
ods. The original motivation for the introduction of NSGT was
the desire to adapt both window size and sampling density in time,
in order to resolve transient signal components more accurately.
Here, we apply the same idea in frequency: we use windows with
adaptive, compact bandwidth and choose the time-shift parameters
dependent on the bandwidth of each window. The constructionof
the atoms, i.e. the shifted versions of the basic window functions
used in the transform, is done directly in the frequency domain,
see Sections 2.2 and 3.1. This approach allows for efficient imple-
mentation using the FFT, as explained in Section 2.3. To exploit
the efficiency of FFT, the signal of interest must be transformed
into the frequency domain. For long real-life signals (e.g.signals
longer than10 seconds at a sampling rate of44100Hz), process-
ing is therefore done on consecutive time-slices, which is anatural
processing step in real-time signal analysis1. The resolution of the
proposed CQ-NSGT is identical to that of the CQT and perfect re-
construction is assured by relying on concepts from frame theory,
which will be discussed next.

2. NONSTATIONARY GABOR FRAMES

Frames were first mentioned in [10], also see [11, 12]. Framesare
a generalization of (orthonormal) bases and allow for redundancy
and thus for much more flexibility in design of the signal repre-
sentation. Thus, frames may be tailored to a specific application

1If the time-slicing is done using smooth windows with a judiciously
chosen amount of zero-padding, no undesired artifacts after modification
of the analysis coefficients have to be expected. Mathematical details and
error estimates will be given elsewhere.
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Figure 1: Representations of a musical piece for violin and piano
using the classical sampled STFT (Gabor transform) and the CQ-
NSGT, respectively. A Hann window of length 1024 samples with
a hop-size of 512 samples was used for the Gabor transform, while
a minimum frequency ofξmin = 50 Hz at 48 bins per octave was
used for the CQ-NSGT.

or certain requirements such as a constant-Q frequency resolution.
Loosely speaking, we wish to expand, or represent, a given sig-
nal of interest as a linear combination of some building blocks or
atomsϕn,k, with (n, k) ∈ Z × Z, which are the members of our
frame:

f =
∑

n,k

cn,kϕn,k (1)

for some coefficientscn,k. The double indexes(n, k) allude to the
fact that each atom has a certain location and concentrationin time
and frequency, compare Figure 2. Frame theory now allows us to
determine, under which conditions an expansion (1) is possible
and how coefficients leading to stable, perfect reconstruction may
be determined.

We introduce the concept of frames for a Hilbert spaceH. In
a continuous setting, one may think ofH = L2(R), whereas we

will chooseH = CL, L being the signal length, for describing
the implementation.

2.1. Frames

Consider a collection of atomsϕn,k ∈ H with (n, k) ∈ Z × Z.
Here,nmay be thought of as a time index andk as an index related
to frequency. We then define the frame operatorS by

Sf =
∑

n,k

〈f, ϕn,k〉ϕn,k,

for all f ∈ H. Note that, if the set of functions{ϕn,k, (n, k) ∈
Z × Z} is an orthonormal basis, thenS is the identity operator. If
S is invertible onH, then the collection{ϕn,k}, (n, k) ∈ Z × Z
is a frame. In this case, we may define adual frameby

γn,k = S−1ϕn,k.

Then, reconstruction from the coefficientscn,k = 〈f, ϕn,k〉 is pos-
sible:

f = S−1Sf =
∑

n,k

〈f, ϕn,k〉S−1ϕn,k =
∑

n,k

cn,kγn,k.

2.2. The Case of Painless Nonstationarity

In a general setting, the inversion of the operatorS poses a prob-
lem in numerical realization of frame analysis. However, itwas
shown in [13], that under certain conditions, usually fulfilled in
practical applications,S is diagonal. This situation ofpainless
non-orthogonal expansionscan now be generalized to allowing
for adaptive resolution. Adaptive time-resolution was described
in [8, 9], and here we turn toadaptivity in frequencyin the same
manner.

In the sequel, letTx denote a time-shift byx, Mω denote a
frequency shift (or modulation) byω and Ff = f̂ the Fourier
transform off . Let ϕk, k ∈ Z, be band-limited windows, well-
localized in time, whose Fourier transformsψk = ϕ̂k are cen-
tered around possibly irregularly (or, e.g. geometrically) spaced
frequency pointsξk.

Then, we choose frequency dependent time-shift parameters
(hop-sizes)ak as follows: if the support of̂ϕk is contained in an
interval of length|Ik|, then we chooseak such that

ak ≤ 1

|Ik| for all k.

In other words, the time-sampling points have to be chosen dense
enough to guarantee this condition. Finally, we obtain the frame
members by setting

ϕn,k = Tnakϕk.

Under these conditions on the windowsϕk and the hop-sizesak,
the frame operator is diagonal in the Fourier domain: since,by uni-
tarity of the Fourier transform [14] and the Walnut representation
of the frame operator [15], we have

〈Sf, f〉 =
∑

n,k

|〈f,Tnakϕk〉|2 =
∑

n,k

|〈f̂ ,M−nak ϕ̂k〉|2

=

〈 ∑

k

1

ak
|ϕ̂k|2f̂ , f̂

〉
,
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the frame operator assumes the following form:

Sf = F−1

( ∑

k

1

ak
|ϕ̂k|2f̂

)
. (2)

See [16, 13, 17] for detailed proofs of the diagonality of theframe
operator in the described setting. From (2), it follows immediately
that the frame operator is invertible whenever there exist real num-
bers numbersA andB such that the inequalities

0 < A ≤
∑

k

1

ak
|ϕ̂k|2 ≤ B < ∞ (3)

hold almost everywhere. In this case, the dual frame is givenby
the elements

γn,k = Tnak

[
F−1

(
ϕ̂k

/ ∑

l

1

al
|ϕ̂l|2

)]
.

2.3. Realization in the Frequency domain

Based on the implementation of nonstationary Gabor frames per-
forming adaptivity in the time domain [9], the above framework
permits a fast realization by considering the Fourier transform of
the input signal. The transform coefficients cn,k = 〈f, ϕn,k〉 take
the form

cn,k = 〈f,Tnakϕk〉 = 〈f̂ ,M−nak ϕ̂k〉,

and can be calculated, for eachk, with an inverse FFT (IFFT)
of length determined by the support ofψk = ϕ̂k. Similarly,
reconstruction is realized by applying the dual windowŝγk =
ϕ̂k

/ ∑
l

1
al

|ϕ̂l|2 in a simple overlap-add process:

f̂ =
∑

n,k

〈f̂ ,M−nak ϕ̂k〉M−nak γ̂k. (4)

3. THE CQ-NSGT PARAMETERS: WINDOWS AND
LATTICES

We will now describe in detail the parameters involved in thede-
sign of a nonstationary Gabor transform with constant-Q frequency
resolution.

The CQT in [1] depends on the following parameters: the win-
dow functions, the number of frequency bins per octave, the mini-
mum and maximum frequencies. These parameters determine the
Q-factor, which is, as mentioned before, the ratio of the center
frequency to the bandwidth. Here, the Q-factor is desired tobe
constant for all the relevant bins.

Let B andξmin denote the number of frequency bins per oc-
tave and the desired minimum frequency, respectively. For the
proposed CQ-NSGT, we consider band-limited window functions
ϕk ∈ CL, k = 1, . . . ,K, with center frequenciesξk (in Hz) sat-

isfying ξk = ξmin2
k−1

B , as in the classical CQT. The maximum
frequencyξmax is restricted to be less than the Nyquist frequency
ξs/2, whereξs denotes the sampling frequency. Further, we re-
quire the existence of an indexK such thatξmax ≤ ξK < ξs/2.
We may setK = ⌈B log2(ξmax/ξmin) + 1⌉, with ⌈z⌉ denoting the
smallest integer greater than or equal toz.

Note that in the CQT, since the frequency spacing in the CQT
is geometric, no 0-frequency is present and some high frequency
content might not be represented. In the CQ-NSGT, however, there

is freedom to use additional center frequencies, at negligible com-
putational cost, to guarantee perfect reconstruction.

In our current implementation, tailored to (real) audio signals,
we consider some symmetry in the frequency domain, and take the
following values for the frequency-centersξk:

ξk =





0, k = 0

ξmin2
k−1

B , k = 1, . . . ,K

ξs/2, k = K + 1

ξs − ξ2K+2−k, k = K + 2, . . . , 2K + 1.

The bandwidthΩk (the support of the window in frequency)
of ϕk is set to beΩk = ξk+1 − ξk−1, for k = 2, . . . ,K − 1,
which leads to a constant Q-factorQ = (2

1
B − 2− 1

B ). To obtain
the same Q-factor on the relevant frequency bins,Ω1 andΩK are
therefore set to beξ1/Q andξK/Q, respectively. Finally, we let
Ω0 = 2ξ1 = 2ξmin andΩK+1 = ξs − 2ξK . In summary, we have
the following values forΩk:

Ωk =





2ξmin, k = 0

ξk/Q, k = 1, . . . ,K

ξs − 2ξK , k = K + 1

ξ2K+2−k/Q, k = K + 2, . . . , 2K + 1.

3.1. Window Choice: Satisfying the Frame Conditions

We now give the details on the windowsϕk to be used such that
(3) and hence the frame property is fulfilled.

We use a Hann windoŵh that is zero outside[−1/2, 1/2],
i.e. a standard Hann window centered at0 with support of length
1. We obtain the atomsϕk by translation and dilation of̂h: ϕ̂k[j] =

ĥ((jξs/L − ξk)/Ωk), k = 1, . . . ,K, K + 2, . . . , 2K + 1, j =
0 . . . , L− 1.

For the windows corresponding to the0 and Nyquist frequen-
cies, we use a plateau-like function̂g, e.g. a Tukey window. We
obtainϕ0 andϕK+1 by settingϕ̂k[j] = ĝ((jξs/L − ξk)/Ωk),
k = 0, K + 1.

Now, for the collection of time-shifts of the constructed win-
dowsak, we requireak ≤ ξs/Ωk in order to satisfy (3). Theϕn,k

are then given by their Fourier transforms as:

ϕ̂n,k = M−nak ϕ̂k, n = 0, . . . , ⌈ L
ak

⌉ − 1.

Figure 2 illustrates the time-frequency sampling grid of the set-up
with the sampling points taken geometrically over frequency and
linearly over time. Given these parameters, the coefficients of the
CQ-NSGT are of the formcn,k = 〈f, ϕn,k〉 = 〈f̂ , ϕ̂n,k〉, f ∈
CL. We note that the time-shift parameters can also be fixed to
have the same valuea = mink{ak} and the coefficients obtained
from the CQ-NSGT can be put in a matrix of size⌈L

a
⌉×2(K+1).

From the given support condition, the system{ϕ̂k}k has an
overlap factor of around1/2. This implies that for the case where
ak = ξs/Ωk, the redundancy of the system is approximately2.

By construction, the sum
∑2K+1

m=0
L
ak

∣∣ϕ̂k

∣∣2 is finite and
bounded away from 0. From Sections 2.2 and 2.3, the frame opera-
tor is invertible and perfect reconstruction of the signal is obtained
from the coefficientscn,k by applying (4).
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Figure 2: Exemplary sampling grid of the time-frequency plane
for a nonstationary Gabor system with resolution evolving over
frequency.

signal length CQT mean time CQ-NSGT mean time
L ± variance (in seconds) ± variance (in seconds)

262144 2.41 ± 0.03 0.64 ± 0.00
280789 2.42 ± 0.06 0.68 ± 0.06
579889 3.09 ± 0.06 1.28 ± 0.06
6005692 3.13 ± 0.04 1.75 ± 0.04
805686 3.57 ± 0.09 1.51 ± 0.08

Table 1: Comparison of computation time between CQTs and CQ-
NSGTs for signals of various lengths over 50 iterations. Parame-
ters for all transforms wereB = 48 andξmin = 50 Hz.

4. SIMULATIONS

We now present some experiments comparing the original CQT
with the CQ-NSGT in terms of reconstruction error, computation
time and (visual) representation of sound signals.

Technical framework: All simulations were done in MATLAB
R2009b on a 2 Gigahertz Intel Core 2 Duo machine with 2 Giga-
bytes of RAM running Kubuntu 9.04. The CQTs were computed
using the code published with [5], available for free download at
http://www.elec.qmul.ac.uk/people/anssik/cqt/.
The CQ-NSGT algorithms are available athttp://univie.
ac.at/nonstatgab/cqt/.

For all experiments,ξmax is taken to beξK = ξmin2
K−1

B ,
whereK is the largest integer such that2ξK < ξs.

4.1. Reconstruction Errors

The theoretical results, stating that the CQ-NSGT allows for per-
fect reconstruction, are confirmed by our experiments. For five test
signals and various transform parameters, the relative reconstruc-

2Since the proposed method relies on an initial FFT of lengthL, a prime
valued signal length may give a longer computation time.

Bins per CQT mean time CQ-NSGT mean time
octaveB ± variance (in seconds) ± variance (in seconds)

12 0.95 ± 0.01 0.36 ± 0.00
24 1.44 ± 0.02 0.44 ± 0.00
48 2.42 ± 0.03 0.65 ± 0.00
96 4.50 ± 0.23 1.09 ± 0.15

Table 2: Comparison of computation time between CQTs and CQ-
NSGTs of the Glockenspiel signals, varying the number of bins per
octave. Values were obtained over 50 iterations. The minimum
frequencyξmin was chosen at50 Hz.

tion error

erec =

√√√√
∑L−1

j=0 |f [j] − frec[j]|2
∑L−1

j=0 |f [j]|2

was calculated. Withξmin between10 Hz and130 Hz andB from
12 to 192, the largest reconstruction error of the CQ-NSGT algo-
rithm was slightly smaller than1.6 · 10−15, perfect reconstruction
up to numerical precision. For comparison, it was shown in [5]
that a CQT with reasonable amounts of redundancy and bins per
octave can be inverted with a relative error of10−3. This might
not be enough for high-quality applications.

4.2. Computation Time and Computational Complexity

The required time for construction of the transform atoms and
computation of the corresponding coefficients was measuredfor
audio signals of roughly 6 to 18 seconds length, at a samplingrate
of 44.1 kHz. Each experiment was repeated 50 times, the results
are listed in Table 1. We note that for all signals, the CQ-NSGT is
faster than the CQT implementation proposed in [5] by a consid-
erable factor.

Our approach is still of complexityO(L logL), though, and
the advantage over the CQT decreases for longer signals. Each
frequency channel’s time samples are acquired by means of sam-
pled IFFT from the Fourier transform of the input signal, multi-
plied with the corresponding window. Therefore, a preliminary
full length FFT is necessary.

More explicitly, we assumêϕk to have support of lengthMk

and we denote byNk the corresponding IFFT length. LetN =
maxk {Nk}, i.e. the maximum IFFT-length, and we haveMk ≤
Nk ≤ N , since we only consider the painless case. Consequently,
the number of operations is as follows:

1. FFT:O (L · log (L)).

2. Windowing:Mk operations for thek-th window.

3. IFFT:O (Nk · log (Nk)) for thek-th window.

The number of frequency channels2K + 2 is independent of
L, since it is determined directly from the transform parameters.
Thus,Mk andNk areL-dependent and the computational com-
plexity of the discrete CQ-NSGT isO(L logL).

In applications, the dual windows are constructed directlyon
the frequency side and the painless case construction involves mul-
tiplication of the window functions by the inverse of a diagonal
matrix, resulting inO(2

∑2K+1
k=0 Mk) = O(L) operations. Fi-

nally, the inverse CQ-NSGT has numerical complexity
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O (L · log (L)), since it entails computing for the FFT of each co-
efficient vector, multiplying with the corresponding dual windows
and, after evaluating the sum, computing a lengthL IFFT.

We note that linear computation time may be achieved by pro-
cessing the signal in a suitable piecewise manner. Some experi-
ments on that matter have been conducted, but the details of this
procedure exceed the scope of this paper and are intended to be
part of a future contribution.

In a second experiment, CQT and CQ-NSGT coefficients of
the shortest sample, a Glockenspiel signal, were computed for sev-
eral numbers of bins per octave. We note that the complexity of
the algorithm for the CQ-NSGT is linear inB. The results, listed
in Table 2, illustrate that the advantage of the CQ-NSGT algorithm
increases for large numbers of bins.

4.3. Visual Representation of Sound Signals

The spectral representation provided by CQT has several desirable
properties, e.g. the logarithmic frequency scale resolvesmusical
intervals in a similar way, independent of absolute frequencies.
These properties are still present in the CQ-NSGT, in fact, its vi-
sual representation is practically identical to that of classical CQT
as illustrated by Figure 3 for the exemplary case of the Glock-
enspiel signal. Figure 4 shows the CQ-NSGT of two additional
music signals, further illustrating that even highly complex signals
are nicely resolved by the proposed transform, similar to CQT.

5. EXPERIMENTS ON APPLICATIONS

Our experiments show applications of the CQ-NSGT in musical
contexts, where the property of a logarithmic frequency scale ren-
ders the method often superior to the traditional STFT. Corre-
sponding sound examples can be found athttp://univie.
ac.at/nonstatgab/cqt/.

5.1. Transposition

A useful property of continuous constant-Q decompositionsis the
fact that the transposition of a harmonic structure, like a note in-
cluding overtones, corresponds to a simple translation of the log-
arithmically scaled spectrum. Approximately, this is alsothe case
for the finite, discrete CQ-NSGT. In this experiment, we trans-
posed a piano chord simply by shifting the inner frequency bins
accordingly. By inner frequency bins, we refer to all bins with
constant Q-factor. This excludes the0-frequency and Nyquist fre-
quency bins. The onset portion of the signal has been damped,
since inharmonic components, such as transients, produce audible
artifacts when handled in this way. In Figure 5, we show spectro-
grams of the original and modified chords, shifted by20 bins. This
corresponds to an upwards transposition by5 semitones.

5.2. Masking

In the masking experiment, we show that the perfect reconstruction
property of CQ-NSGT can be used to cut out components from a
signal by directly modifying the time-frequency coefficients. The
advantage of considerably higher spectral resolution at low fre-
quencies (with a chosen application-specific temporal resolution at
higher frequencies) compared to the STFT, makes the CQ-NSGTa
very powerful, novel tool for masking or isolating time-frequency
components of musical signals. Our example shows in Figure 6
a mask for extracting – or inversely, suppressing – a note from
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Figure 3: Representations of the Glockenspiel signal usingthe
CQ-NSGT and the original CQT. The transform parameters were
B = 48 andξmin = 200 Hz.

the Glockenspiel signal depicted in Figure 3. The mask was cre-
ated as a gray-scale bitmap using an ordinary image manipulation
program and then resampled in order to conform to the irregular
time-frequency grid of the CQ-NSGT. Figure 6 shows the mask
spectrogram, along with the spectrograms of the synthesized, pro-
cessed signal and remainder.

6. SUMMARY AND PERSPECTIVES

We presented a constant-Q transform, based on nonstationary Ga-
bor frames, that is computationally efficient and allows forperfect
reconstruction. The described framework can easily be adapted
to other perceptive frequency scales (e.g. mel or Bark scale) by
choosing appropriate dictionaries.

The possibility of overcoming the difficulties that stem from
dependence of the proposed transform on the signal length, e.g.
by piecewise processing, is currently under investigation. This will
further reduce computational effort and enable the use of a single
family of frame elements for signals of arbitrary length.
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Figure 4: Representations of a pipe organ and piano solo record-
ings, respectively, using the CQ-NSGT. The transform parameters
wereB = 48 andξmin = 50 Hz.
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Figure 5: Piano chord signal and upwards transposition by 5 semi-
tones, corresponding to a circular shift of the inner bins by20. The
transform parameters wereB = 48 andξmin = 100 Hz.
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Figure 6: Note extraction from the Glockenspiel signal by mask-
ing. The CQ-NSGT coefficients of the Glockenspiel signal were
weighted with the mask shown on top. The remaining signal and
extracted component are depicted in the middle and bottom respec-
tively. The transform parameters wereB = 24 andξmin = 50 Hz.
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ABSTRACT

This paper presents an extension to the dual-window-length
Real-Time Iterative Spectrogram Inversion phase estima-
tion algorithm (RTISI). Instead of a transient detection in
advance, the phase estimator itself determines the correct
window length when the phase information for all window
lengths have already been estimated. This way, we get sig-
nificant improvements compared with the previous method.
Additionally, we extend this estimator to configurations with
three or more window lengths.

1. INTRODUCTION

The reconstruction of missing phase information is an impor-
tant step to get an audio signal from a magnitude short-time
Fourier transform (STFT) spectrogram and enables audio
effects to work just on the spectrogram magnitude. However,
the quality of this approach suffers from the time/frequency
resolution tradeoff, similarly to other spectrogram-based au-
dio manipulation methods. In audio coding, window switch-
ing is a well-known method to improve this tradeoff. In a
previous paper, [1], we already presented an implementation
of a phase estimator using window switching between two
analysis windows.

Lukin and Todd [2] proposed a different method to per-
form arbitrary spectrogram-based audio effects with different
spectrogram lengths: They process audio frame-wise in par-
allel with different window length and decide afterwards,
frame by frame, which process has performed best. However,
this approach needs the knowledge of the phase information.
This paper proposes a method to estimate it.

Dual-resolution phase estimation with window switching
has some problems which do not occur with the Lukin/ Todd
approach:

• Errors in transient detection lead to a sub-optimal time/
frequency resolution for the recent audio frame. The
decision which resolution is correct is not trivial.

• Algorithms which modify the resulting spectrum do
not get the whole spectrogram for processing. Instead,

they get only the frames the transient detector has allo-
cated to them. This can be a disadvantage, e. g. when
they need complete statistics for correct processing.

• It is not guaranteed that an optimal decision before
the spectrum modification remains optimal during the
modification.

This motivates us to create a multi-window-length STFT
phase estimator not based on window switching, but on paral-
lel processing, similar to the Lukin/Todd processing scheme.
One important difference: In the original paper [2], a co-
efficient mixing is proposed to determine the final signal.
Since such a mixing can lead to phase cancellations, we per-
form a strong decision for every frame which time-frequency
resolution is most appropriate.

As phase estimation algorithm, we use the Real-Time
Iterative Spectrogram Inversion (RTISI) [3], with the im-
provements from [4]. To our knowledge, there are no other
phase estimators available that could handle multi-window-
length spectrograms. RTISI itself is a localized variation of
the classic Griffin/Lim algorithm [5]. An alternative would
be the phase estimator of Le Roux et al [6]. Unfortunately,
unlike RTISI, this phase estimator operates only in frequency
domain, while we need the time-domain representation of in-
termediate signals to synchronize the buffers (see below for
details). Unlike in [1], this synchronization must happen after
every committed frame to avoid drifting phase estimations.

This paper is organized as follows. Section 2 gives an
overview over the whole processing scheme. Section 3 in-
troduces the phase estimation and synchronization scheme.
Section 4 shows how the best estimation is selected. Section
5 generalizes the scheme to more window lengths than two.
Section 6 contains the experiments and results. Here, the new
method is also compared with [1]. The paper finishes with
the conclusions.

2. PROCESSING OVERVIEW

Figure 1 shows how the overall processing is performed.
From the original waveform s[n], we generate two magnitude
spectrograms with different window lengths L1 and L2 and
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the same overlap (typically 75%) using the STFT. We call
the resulting hop lengths S1 and S2. The ratio L1/L2 must
be a power of two. As window function, we use the scaled
Hamming window from [5].

STFT1
(long frames)

STFT2
(short frames)

Waveform

Modification Modification

Phase Estimation
1 frame

Phase Estimation
S1
S2

frames

Overlap-Add
Re-Windowing

Decision Evaluation

Inverse STFT

Processed
waveform

Figure 1: General overview. The evaluation step compares
all phase estimations frame-wise with all spectrograms and
decides with a minimax principle.

Those magnitude spectrograms can be modified in an ar-
bitrary way. After that, two RTISI algorithms [3] re-estimate
the phase spectra. As explained in Section 3, one RTISI
buffer is used for each window length, respectively. For each
frame of length L1 except the first one, S1

S2
frames of length

L2 are estimated, so that the number of estimated samples is
the same.

The result of the short-window-length phase estimation
is re-windowed such that it is implicitly windowed with the
long window. When the estimated samples are available
for both window lengths, we rate them using the procedure
explained in Section 4 to get the best estimation. The best
estimated frame is committed, so that a final overlap-add
procedure can collect the committed frames to construct the
final modified audio signal.

To ensure that the initialization data of the RTISI buffers
are the same, the data of the chosen RTISI buffer must be
copied to the other one every time when a frame is committed.
Finally, the buffers are set to the next frame. Thus, the next
long-window frame, and the next S1

S2
short-window-frames

are processed, and so on.

3. PHASE ESTIMATION

Central data structure for our phase estimator is a combi-
nation of two two-dimensional buffers longB and shortB, one
for each window length. The buffers are basically illustrated
in Figure 3 with two modifications: The number of rows in
the long-window-length RTISI buffer is actually 7, with the
commit frame in the center. Additionally, each buffer row
stores the target magnitude spectrum.

Mathematically, we can interpret these buffers as two-
dimensional arrays (not matrices) (BMN), which are illus-
trated in Figure 2. On each buffer B, we define the following
operations. To help understanding, operations returning a
complete row are overlined, whereas operations returning
only a vector of the window size are marked with a degree
symbol. The symbol i denotes a row index, a denotes an
external vector.

• Addition, Subtraction, Multiplication, Division are de-
fined element-wise.

• B. ˚CROP(i, a): Shortens the row vector (a1, · · · ,aN) to
(al , · · · ,ar), with l := iS and r := l +L.

• B.GET(i): Returns the row vector (Bi1, · · · ,BiN).

• B. ˚GET(i) := B. ˚CROP(i, B.GET(i))

• B. ˚SET(i, a): Sets the row vector (Bil , · · · ,Bir) to
B. ˚CROP(i,a), with l and r defined as for the ˚CROP
operation.

• B.SET(i, a): Sets the row vector (Bi1, · · · ,BiN) to a.

• B.SUM: Calculates the sum of the matrix rows as a
row vector

(
∑M

i=1 Bi1, · · · ,∑M
i=1 BiN

)
.

• B. ˚SUM(i) := B. ˚CROP(i, B.SUM(i))

For convenience, we also associate following functions
with the buffer which return additional data:

• B.MAG(i): Returns the target magnitude spectrum of
row i.

• B.W: Returns the discrete window function the mag-
nitude spectra are inherently calculated with.

RTISI, introduced in [3], is an online-capable algorithm,
which works on a frame-after-frame basis. The phase esti-
mation consists of two steps: an initialization and several
iterations of an (improving) update rule.

The initialization depends on the window length: The
short-window buffer is always initialized with zeros. The
long-window buffer is initialized with a propagated phase of
the previous frames, as proposed in [4], to exploit the phase
continuity of steady-state signals.

The update rule is the same on both buffers. It is pro-
cessed on a buffer row and works as follows:
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0 0 0 0 0 0
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Commit frame 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Previous frames

Signal (windows)

Lookahead frames

Buffer sum

Figure 2: Single phase estimation buffer. Every sketched
cell contains S elements, whereas S denotes the hop length
between adjacent frames.

• Calculate the sum frequency spectrum for the current
row i by taking the according part of the buffer sum, re-
windowing this part and applying an Discrete Fourier
Transform.

• Project all coefficients of this spectrum onto the unit
circle. The result is equivalent to the phase. Multiply
this result with the target magnitude (M-Constrained
transform).

• Transform the result of this combination into the time
domain, window it, and store it back into the current
row.

In short:

B. ˚SET(i,B.W ·
(

IDFT

(
B.MAG(i) · DFT(B. ˚SUM(i))

|DFT(B. ˚SUM(i))|

))
),

(1)
where DFT denotes the Discrete Fourier Transform, and
IDFT its inverse.

The order of the buffer row updates is determined by the
energy of the rows — first the loudest row is updated, then
the second loudest, and so on, until all rows between the last
and the commit row have been processed [4]. After a certain
number of iterations, the frame is committed, and the buffer
is synchronized to the next audio frame.

After each commit of the long-window buffer and S1
S2

commits of the short-window buffer, we must decide which
configuration is better (see Section 4). After that, the result is
copied from the “winning” buffer srcB to the “losing” buffer
tgtB as follows:

• Calculate the buffer sum.

• Divide the buffer sum by the sum of the squared win-
dow functions for all rows so that the buffer sum is
implicitly windowed with a rectangle window.

Long-window-
length RTISI

buffer

Short-window-
length RTISI
buffer

Buffer sum

Buffer sum with window sum error compensation

Figure 3: Two RTISI buffers with different window lengths
without target magnitude spectra and without look-ahead
frames. To transport audio data between the buffers, the
algorithm calculates the buffer sum, compensates the window
sum error, and windows the result for each target buffer row.
The dotted lines denote the window function the audio data
in the buffer are implicitly multiplied with.

• For each target buffer row, window the according part
of the buffer sum. Copy the windowed buffer sum part
into the target row.

To express this mathematically, we consider the RTISI
buffers longW and shortW which are filled with the squared
windows such that longW. ˚GET(i) = longB.W2 for all i, and
shortW. ˚GET(i) = shortB.W2 for all i. We denote the “window
buffers” with the source and target window length as srcW
and tgtW, respectively. Then the synchronization becomes

tgtB. ˚SET(i,
(

tgtW. ˚GET(i) ·tgt B. ˚CROP(i,
srcB.SUM
srcW.SUM

)

)
)

(2)
for all i.
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4. DETERMINING THE OPTIMAL WINDOW SIZE

To find the optimal window size, we have to compare the
phase estimation for each window length with the magnitude
spectrograms, also for each window length. Let M̃ be the
position index of the commit frame. As comparison criterion,
we use the signal-to-error ratio (in dB) in the magnitude
spectrogram domain:

SER = 10log10

M̃+ξ
∑

m=M̃−ξ

(
L−1
∑

k=0
|X [mS,k]|2

)

M̃+ξ
∑

m=M̃−ξ

(
L−1
∑

k=0
(|X [mS,k]|− |X ′[mS,k]|)2

) (3)

From the RTISI buffer with the window length Lu to
evaluate, we calculate the actual magnitude spectrogram X ′

from the buffer sum on the commit frame ±ξ additional
rows; see Section 6.2 why a choice n = 2 can be considered
optimal. For this spectrogram calculation, we use the window
length Lv of the target spectrogram to compare. We denote
this SER as SERu,v which means: “Calculate the signal-to-
error ratio of the spectrogram of the phase estimation with the
length Lu, but use length Lv for the spectrogram calculation
and thus set S= Lv/4 for 75% overlap. Compare the resulting
spectrogram with the target magnitude stored in the RTISI
buffer of the length Lv.”

The four signal-to-error ratios SERu,v for one long and
one short window can be summarized in a matrix:

(
SER1,1 SER1,2
SER2,1 SER2,2

)
(4)

To get a final decision from these four SER values, we
derive a minimax approach comparable to the Haussdorff
distance [7] as follows: Low SER values for a short refer-
ence window length Lv correspond to artifacts manifesting
in the time domain, usually time-domain smearing. These
artifacts are audible especially in transient regions. On the
other hand, low SER values for a long reference window
length correspond to errors in the frequency domain, e. g.
modulation effects. They are usually audible at steady-state
signals, especially at low frequencies. Since our goal is the
reduction of audible artifacts, we dump the estimation with
the worst SER and favor the time-domain signal estimation
which does not produce this worst SER.

As the SER is also the optimization criterion for RTISI,
the SERs on the main diagonal of the matrix are optimized,
so they are always better than other SER values. For that
reason, the worst SER is either SER1,2 or SER2, 1. Thus,
we can simply decide: If SER1,2 > SER2,1, we choose L1,
otherwise L2.

5. GENERALIZATION TO MORE WINDOW
LENGTHS

The extension of this approach to multiple window lengths is
now straightforward. For every used window length except
the longest one, we employ one separate RTISI buffer and
treat it as a short-window case. The longest-window-length
buffer is treated as the long-window-length buffer in the
previous sections.

To determine the correct window length after estimation,
we also generalize the avoid-the-worst-SER approach. For
every window length, we compare the phase estimation result
with each reference spectrogram and find the worst SER. We
choose the window length where the worst SER is best:

U = argmax
u

(
min

v
(SERLu,Lv)

)
(5)

6. EXPERIMENTS AND RESULTS

In order to evaluate these improvements, we use a test set
based on the Sound Quality Assessment Material (SQAM)
from the EBU [8]. Our test set consists of 70 files contain-
ing speech, singing vocals, and instruments. The sampling
frequency is 48 kHz. For spectrogram generation and phase
estimation, we use the scaled Hamming window from [5]
with L = 4S, yielding an overlap of 75%. For phase estima-
tion, we use RTISI with three look-ahead frames (see also
the remarks to Fig. 3). As evaluation measure, we use the
mean signal-to-error ratio (in dB) of the magnitude spectro-
grams of the phase-reestimated signal versus the original,
respectively, as defined in Equation (3).

Like in Section 4, this SER measure operates on STFT
magnitudes and thus depends on its own window length.
Also, this SER window length determines the operating point
of the measured time-frequency resolution tradeoff. To ana-
lyze the phase estimation performance over the whole range
of time/frequency resolutions, the SER values are plotted
against this window length. A high-quality phase reestima-
tion should achieve high SER values for all window lengths
to show that it avoids artifacts in both time and frequency
domain.

6.1. General Results

Figure 4 shows the SER results of a single-resolution RTISI
phase reestimation with the window lengths 512, 1024, and
2048 samples, respectively. Note the peaks at the window
lengths; here the evaluation criterion is identical to the op-
timization criterion. Additionally, this figure shows the re-
sults of dual-length phase estimation with transient detection
and with post-estimation decision. As a transient detection
measure, we use the maximal energy compaction principle
described in [2]. We see that our post-estimation decision
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Figure 4: Average SER for different phase estimation meth-
ods on the standard EBU set against the measure window
length. The crosses on the solid (red) line denote the measure
points. The peaks marked with black-filled balls result from
the fact that, on this window length, the evaluation criterion
matches the optimization criterion.

outperforms the transient detection approach except on very
large windows. It delivers also better results than each of
the single-resolution estimations, even when evaluation and
estimation window length match. The outlier peaks here are
smaller than in the single-resolution case; an obvious reason
is that the optimization result is a compromise between two
window lengths.

6.2. Number of frames to analyze in a buffer

Figure 5 shows which number of frames ξ to analyze in the
buffer should be chosen. As a general rule we can follow,
the higher the number of frames, the better the estimation.
An interesting exception arises when we choose the com-
plete buffer (seven frames, e. g. commit frame ±3 frames).
Here the results are worse compared with the five-frames
evaluation.

To explain this decline, we recall that all magnitude spec-
tra are implicitly windowed with w[n]. In the state of con-
vergence, the M-constrained transform does not change any-
thing, so due to the following windowing step the data in the
buffer are implicitly windowed with w2[n]. This window is
compensated in the rectification step.

If the state of convergence is not achieved, the M-con-
strained transform does perform changes and tends to neu-
tralize the previous windowing step. As a result, after the
following windowing step, the data in the buffer are implic-
itly windowed with something between w[n] and w2[n]. The
rectification over-compensates this windowing step, thus dis-

128 256 512 1024 2048 4096 8192
SER Window Length

4
6
8

10
12
14
16
18
20
22
24
26
28
30

SE
R

[d
B

]

Only Commit Frame
Commit frame ±1 frame

Complete Buffer

Commit frame ±2 frames

Figure 5: Average SER with respect to the number of long-
size buffer frames to take into account for minimax evalua-
tion.

torting the buffer sum especially at the edges. When this
edge is also considered for determining the correct window
size, this error leads in some cases to wrong decisions and
finally to lower SER values than possible.

6.3. Distance between Window Lengths

Figure 6 shows the influence of the difference between the
window lengths. One window length – 2048 samples – is
fixed, the other one varies between 256 and 2048 samples. As
we can expect, the temporal resolution becomes better with
increasing difference. On the other hand, in this case the SER
values above a window length of 2048 become worse. We
can conclude that the time/frequency resolution tradeoff in a
certain way also holds for multi-resolution phase estimation.

6.4. Extension to multiple window lengths

The results of using more than two window lengths are pre-
sented in Figure 7 and 8. Generally, it makes sense to com-
pare the 512/2048 dual-resolution curve with the 512/1024/
2048 triple-resolution curve, and the 256/4096 dual-resolu-
tion curve with the 5-resolution curve. In both cases, the
SER for the reference window lenghts between L1 and L2
are better when more than two resolutions are considered.
On the other hand, the SER at very long windows becomes
smaller. A comparison between the 5-resolution and dual-
resolution 256/2048 samples (green, solid curve) shows that
the SER gain for the 5-resolution for long window lengths is
also limited; for short window lengths the dual-resolution is
even better.
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Figure 6: SER for dual window length with one window
length (2048 samples) kept fixed.
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Figure 7: Average SER for triple resolution.

7. CONCLUSIONS

We have generalized the method of [1] to a signal process-
ing scheme that allows switching between different window
lengths without relying on a (better or worse) transient de-
tector. Additionally this scheme allows the usage of more
than two window lengths. Applications for this technique are
all algorithms which operate on magnitude-spectrums only,
like time/pitch modification or source separation. While the
new approach performs significantly better than the previous
method [1], the results for three or more window lengths
indicate that in this case the window length decision method
gives room for additional research.

128 256 512 1024 2048 4096 8192
SER Window Length

14
16
18
20
22
24
26
28
30
32

SE
R

[d
B

]

Dual-Res. 256/2048

Dual-Res. 256/4096

5-Res. 256/512/1024/2048/4096

Figure 8: Average SER for 5 different window lengths com-
pared with 256/2048 and 256/4096 dual-window length.
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ABSTRACT

We present an algorithm for sound analysis and resynthesis with
local automatic adaptation of time-frequency resolution.There ex-
ists several algorithms allowing to adapt the analysis window de-
pending on its time or frequency location; in what follows wepro-
pose a method which select the optimal resolution dependingon
both time and frequency. We consider an approach that we denote
asanalysis-weighting, from the point of view of Gabor frame the-
ory. We analyze in particular the case of different adaptivetime-
varying resolutions within two complementary frequency bands;
this is a typical case where perfect signal reconstruction cannot in
general be achieved with fast algorithms, causing a certainerror
to be minimized. We provide examples of adaptive analyses ofa
music sound, and outline several possibilities that this work opens.

1. INTRODUCTION

Traditional analysis methods based on single sets of atomicfunc-
tions offer limited possibilities concerning the variation of the res-
olution. Moreover, the optimal analysis parameters are often set
depending on an a-priori knowledge of the signal characteristics.
Analyses with a non-optimal resolution result in a blurringor some-
times even a loss of information about the original signal, which
affects every kind of later treatment: visual representation, fea-
tures extraction and processing among others. This motivates the
research for adaptive methods, conducted at present in boththe
signal processing and the applied mathematics communities: they
lead to the possibility of analyses whose resolution locally change
according to the signal features.

We present an algorithm with local automatic adaptation of
time-frequency resolution. In particular, we usenonstationary Ga-
bor frames[1] of windows with compact time supports, being able
to adapt the analysis window depending on its time or frequency
location. For compactly supported windows fast reconstruction al-
gorithms are possible, see [1, 2, 3]: all along the paper we will in-

∗ This work was supported by grants from region Ile de France
† This work was partially supported by by the WWTF project MULAC

(’Frame Multipliers: Theory and Application in Acoustics;MA07-025)

dicate asfasta class of algorithms whose principal computational
cost is due to the Fourier transform of the signal.

In the present paper we want to go a step beyond and adapt
the window in timeand frequency. This case has been detailed
in [4] among others. This can be possible, and frame theory [5]
would help in providing perfect reconstruction synthesis methods
(if no information is lost). However, this is a typical case where the
calculation of the dual frame for the signal reconstructioncannot
in general be achieved with a fast algorithm: thus a choice must be
done between a slow analysis/re-synthesis method guaranteeing
perfect reconstruction and a fast one giving an approximation with
a certain error. There are, at least, two interesting approaches to
obtain fast algorithms:

• filter bank : the signal is first filtered with an invertible bank
of P pass band filters, to obtainP different band limited
signals; for each of these bands a different nonstationary
Gabor frame{gp

k,l} of windows with compact time support
is used, withgp

k the time-dependent window function. The
other members of the frame are time-frequency shifts ofgp

k,

gp
k,l = gp

k(t − ap
k)e2πib

p
k

lt , (1)

wherek, l ∈ Z andap
k, bp

k are the time location and fre-
quency step associated to thep-th frame at the time index
k. We will write NGF to indicate a nonstationary Gabor
frame in the time case, and we will always assume to be in
the painless case [6]. Each band-limited signal is perfectly
reconstructed with an expansion of the analysis coefficients
in the dual frame{g̃k,l

p}. Note that by this notation we
denote the dual frame for a fixedp. By appropriately com-
bining the reconstructed bands we obtain a perfect recon-
struction of the original signal. An important remark is that
the reconstruction at every time location is perfect as long
as all the frequency coefficients within all theP analyses
are used. On the other hand, for every analysis we are inter-
ested in considering only the frequency coefficients corre-
sponding to the considered band, thus introducing a recon-
struction error.
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• analysis - weighting: the signal is first analyzed withP
NGFs{gp

k,l} of windows with compact time support . Each
analysis is associated to a certain frequency band, and its
coefficients are weighted to match this association. We look
for a reconstruction formula to minimize the reconstruction
error when expanding the weighted coefficients within the
union of theP individual dual frames∪P

p=1{g̃k,l
p}.

We focus here on the second approach, in the basic case of two
bands; so we split the frequency dimension into high and low fre-
quencies, withP = 2. We provide the algorithm for an automatic
adaptation routine: in each frequency band, the best resolution is
defined through the optimization of a sparsity measure deduced
from the class ofRényi entropies[7]. As for the filter bank ap-
proach, the results detailed in [8] indicate a useful solution: they
give an exact upper bound of the reconstruction error when recon-
structing a compactly supported and essentially band-limited sig-
nal from a certain subset of its analysis coefficients withina Gabor
frame.

In the first section, the analysis-weighting method is treated
with an extension of the weighted Gabor frames approach [9],
which will give us a closed reconstruction formula. The second
section is dedicated to the sparsity measures we use for the au-
tomatic adaptation, with an insight on how weighting techniques
of the analysis coefficients can lead to measures with specific fea-
tures. We then close the paper with some examples and an overview
on the perspectives of our research.

2. RECONSTRUCTION FROM WEIGHTED FRAMES

Let P ∈ N and{gp
k,l} be different NGFs,p = 1, . . . , P , where

k andl are the time and frequency location, respectively. We will
consider weight functions0 ≤ wp(ν) ≤ ∞: for everyp, they only
depend on the frequency location. The idea is to smoothly setto
zero the coefficients not belonging to the frequency portionwhich
thep-th analysis has been assigned to; in this way, every analysis
will just contribute to the reconstruction of the signal portion of its
pertinence, so high or low frequencies respectively whenP = 2.
For each NGF{gp

k,l} we writecp
k,l = wp(bp

kl)〈f, gp
k,l〉 to indicate

the weighted analysis coefficients, and we consider the following
reconstruction formula:

f̃ = F−1


 1

p(ν)
F




P∑

p=1

∑

k,l

r(p, k, l)





 , (2)

wherep(ν) = ♯{p : wp(ν) ≥ ǫ} and for everyǫ > 0, r(p, k, l) is
0 if wp(bp

kl) < ǫ, else

r(p, k, l) =
(
wp(bp

kl)〈f, gp
k,l〉

) 1

wp(bp
kl)

g̃k,l
p . (3)

We see that non-zero weights cancel each other: this recon-
struction formula still makes sense, as the goal is exactly to find a
reconstruction as an expansion of thecp

k,l.

We give now an interpretation of the introduced formula. If
wp is a semi-normalized sequence for eachp, that is there exist
constantsmp andnp such that0 < mp ≤ wp(bp

kl) ≤ np and
ǫ ≤ mp ∀p, thenp(ν) = p and the equation (2) becomes

f̃ =
1

P

P∑

p=1

∑

k,l

(
wp(bp

kl)〈f, gp
k,l〉

) 1

wp(bp
kl)

g̃k,l
p = f . (4)

This is related to the concept of weighted frames detailed in[9], as
in the hypothesis of semi-normalization the sequencewp(bp

kl)gp
k,l

is a frame with 1
wp(b

p
k

l)
g̃k,l

p as one of its dual. For weights which

are not bounded from below, but still non-zero, the reconstruction
still works: the sequenceswp(bp

kl) · gp
k,l are not frames anymore

(for eachp), but complete Bessel sequences (also known as upper
semi-frames [10]). This reconstruction can be unstable, though.

In our case, these hypotheses are not verified, as we need to
set to zero a certain subset of the coefficients within both ofthe
analyses; thus the equation (2) will in general give an approxima-
tion of f . In section 4.2 we give an example of reconstruction
following this approach, evaluating the reconstruction error; fur-
ther theoretical and numerical examinations should be realized, as
we are interested to find an upper bound for the error depending
on:

• the signal spectral features at frequenciesν wherep(ν) >
1 ;

• the features of thewp sequences and thep(ν) function.

A first natural choice for the weightswp is a binary mask;
first because this is the worst case in terms of reconstruction error,
as we are multiplying in the frequency domain with a rectangu-
lar window before performing an inverse Fourier transform.Thus
the analysis of the error with a binary masking establish a bound
to the error obtained with a smoother mask. Moreover, with a bi-
nary mask the reconstruction formula takes the very simple form
detailed in equation (6), allowing a direct implementationderived
from the general full band algorithm. So we considerP = 2 and
ωc a certain cut value, then

w1(ν) =

{
1 if ν ≤ ωc

0 if ν > ωc
(5)

andw2(ν) = 1−w1(ν). In this casep(ν) = 1 for every frequency
ν and the equation (2) becomes

f̃ =
∑

b
p
k

l≤ωc

〈f, g1
k,l〉g̃k,l

1 +
∑

b
p
k

l>ωc

〈f, g2
k,l〉g̃k,l

2 . (6)

The reconstruction error in this case will in general be large at fre-
quencies corresponding to coefficients close to the cut value ωc;
we envisage that a way to reduce this error is to allow thewp

weights to have a smooth overlap; this results in more coefficients
form different analyses contributing to the reconstruction of a same
portion of signal, thus weakening their interpretation.

3. RÉNYI ENTROPY EVALUATION OF WEIGHTED
SPECTROGRAMS

The representation we take into account is the spectrogram of a
signal f : it is the squared modulus of the Short-Time Fourier
Transform (STFT) off with window g, which is defined by

Vgf (u, ξ) =

∫
f(t)g(t − u)e−2πiξtdt , (7)

and so the spectrogram isPSf (t, ω) = |Vgf(t, ω)|2. Given a Ga-
bor frame{gk,l} we obtain a sampling of the spectrogram coeffi-
cients consideringzk,l = |〈f, gk,l〉|2. With an appropriate normal-
ization, both the continuous and sampled spectrogram can bein-
terpreted as probability densities. The idea to use Rényi entropies
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as sparsity measures for time-frequency distributions hasbeen in-
troduced in [7]: minimizing the complexity or information of a
set of time-frequency representations of a same signal is equiva-
lent to maximizing the concentration, peakiness, and therefore the
sparsity of the analysis. Thus we will consider asbestanalysis the
sparsest one, according to the minimal entropy evaluation.

Given a signalf and its spectrogramPSf , theRényi entropy
of order α > 0, α 6= 1 of PSf is defined as follows

HR
α (PSf ) =

1

1 − α
log2

∫∫

R

(
PSf (t, ω)∫∫

R
PSf (t′, ω′)dt′dω′

)α

dtdω ,

(8)
whereR ⊆ R2 and we omit its indication if equality holds. Given
a discrete spectrogram obtained through the Gabor frame{gk,l},
we considerR as a rectangle of the time-frequency planeR =
[t1, t2] × [ν1, ν2] ⊆ R2. It identifies a sequence of pointsG on
the sampling grid defined by the frame. As a discretization ofthe
original continuous spectrogram, every sample|zk,l|2 is related to
a time-frequency region of areaab, wherea andb are respectively
the time and frequency steps; we thus obtain the discrete Rényi
entropy measure directly from (8),

HG
α [PSf ] =

1

1 − α
log2

∑

k,l∈G

(
zk,l∑

[k′,l′]∈G zk′,l′

)α

+log2(ab) .

(9)
We consider now another weight function0 ≤ w(k, l) ≤ ∞;

instead of weighting the STFT coefficients〈f, gk,l〉 as we did in
Section 2, we weight here the discrete spectrogram obtaining a
new distributionz∗

k,l = w(k, l)zk,l which is not necessarily the
spectrogram of a signal: nevertheless, by the definition ofw(k, l),
its Rényi entropy can still be evaluated from (9). This valuegives
an information of the concentration of the distribution within the
time-frequency area emphasized by the specific weight function:
as we show in section 4.1, this can be useful for the customization
of the adaptation procedure.

We will focus on discretized spectrograms with a finite num-
ber of coefficients, as dealing with digital signal processing re-
quires to work with finite sampled signals and distributions. As
α tends to one this measure converges to the Shannon entropy,
which is therefore included in this larger class. General properties
of Rényi entropies can be found in [11], [12] and [13]; in par-
ticular, givenP a probability density,Hα(P ) is a non increasing
function ofα, soα1 < α2 ⇒ Hα1(P ) ≥ Hα2(P ) . Moreover, for
every orderα the Rényi entropyHα is maximum whenP is uni-
formly distributed, while it is minimum and equal to zero when P
has a single non-zero value. As we are working with finite discrete
densities we can also consider the caseα = 0 which is simply
the logarithm of the number of elements inp; as a consequence
H0[p] ≥ Hα[p] for every admissible orderα. As long as we can
give an interpretation to theα parameter, this class of measures of-
fers a largely more detailed information about the time-frequency
representation of the signal.

3.1. Adaptive procedure

We choose a finite setS of admissible scaling factors, and realize
different scaled version of a windowg,

gs(t) =
1√
s

g

(
t

s

)
, (10)

so that the discretized temporal support of the scaled windows gs

still remains insideG for anys ∈ S. In our case,G is a rectangle
with the time segment analyzed as horizontal dimension and the
whole frequency lattice as vertical: at each step of our algorithm,
this rectangle is shifted forward in time with a certain overlap with
the previous position. By fixing anα, the sparsest local analysis is
defined to be the one with minimum Rényi entropy: thus the opti-
mization is performed on the scaling factors, and the best window
is defined consequently, with a similar approach to the one devel-
oped in [14]. With the weight functions introduced above, weare
also able to limit the frequency range of the rectangleG at each
time location: adaptation is thus obtained over the time dimension
for each weighted spectrogram, so in our case for each frequency
band enhanced. An interpolation is performed over the overlap-
ping zones to avoid abrupt discontinuities in the tradeoff of the res-
olutions: in the examples given in section 4, the spectrogram seg-
ment for the entropy evaluation includes four spectrogram frames
of the largest window, and the overlapping zone correspondsto
three frames of the largest window. The temporal sizes of theseg-
ment and the overlap are deduced accordingly.
The time-frequency adapted analysis of the global signal isfinally
realized by opportunely assembling the slices of local sparsest
analyses obtained with the selected windows.

3.2. Biasing spectral coefficients through theα parameter

Theα parameter in equation (8) introduces a biasing on the spec-
tral coefficients; to have a qualitative description of thisbiasing,
we first consider a collection of simple spectrograms composed
by a variable amount of large and small coefficients. We realize a
vectorD of lengthN = 100 generating numbers between 0 and
1 with a normal random distribution; then we consider the vectors
DM , 1 ≤ M ≤ N such that

DM [k] =

{
D[k] if k ≤ M
D[k]
20

if k > M
(11)

and then normalize to obtain a unitary sum. We then apply Rényi
entropy measures withα varying between 0 and 3: these are the
values that we use to adopt for music signals. As we see from fig-
ure 1, there is a relation between the number of large coefficients
M and the slope of the entropy curves for the different values of
α. Forα = 0, H0[DM ] is the logarithm of the number of non-zero
coefficients and it is therefore constant; whenα increases, we see
that densities with a small amount of large coefficients gradually
decrease their entropy, faster than the almost flat vectors corre-
sponding to larger values ofM . This means that by increasingα
we emphasize the difference between the entropy values of a peaky
distribution and that of a nearly flat one. The sparsity measure, we
consider, selects as best analysis the one with minimal entropy,
so reducingα rises the probability of less peaky distributions to be
chosen as sparsest: in principle, this is desirable as weaker compo-
nents of the signal, such as partials, have to be taken into account
in the sparsity evaluation.

The second example we consider shows that the just men-
tioned principle should be applied with care, as a small coefficient
in a spectrogram could be determined by a partial as well as by
a noise component; with an extremely smallα, the best window
selected could vary without a reliable relation with spectral con-
centration, depending on the noise level within the sound. We il-
lustrate how noise has to be taken in account when tuning theα
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Figure 1: Rényi entropy evaluations of theDM vectors with vary-
ing α; the distribution becomes flatter asM increases. Therefore
increasingα favors a sparse representation (see text).

parameter by means of another model of spectrogram: taking the
same vectorD considered previously, and two integers1 ≤ Npart,
1 ≤ Rpart, we defineDL like follows:

DL[k] =





1 if k = 1

D[k]
Rpart

if 1 < k ≤ Npart

D[k]
Rnoise

if k > Npart .

(12)

whereRnoise =
Rpart

L
, L ∈ [ 1

16
, 1]; then we normalize to obtain

a unitary sum. This vectors are a simplified model of the spectro-
grams of a signal whose coefficients correspond to one main peak,
Npart partials with amplitude reduced byRpart and some noise
whose amplitude varies, proportionally to theL parameter, from a
negligible level to the one of the partials. Applying Rényi entropy
measures withα varying between 0 and 3, we obtain the figure
2, which shows the impact of the noise levelL on the evaluations
with different values ofα.
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Figure 2: Rényi entropy evaluations of theDL vectors with vary-
ing α, Npart = 5 andRpart = 2; the entropy values rise differ-
ently asL increases, depending onα: this shows that the impact
of the noise level on the entropy evaluation depends on the entropy
order (see text).

The increment ofL corresponds to a strengthening of the noise

coefficients, causing the rise of the entropy values for anyα. The
key point is the observation of how they rise, depending on the α
value: the convexity of the surface in figure 2 increases asα be-
comes larger, and it describes the impact of the noise level on the
evaluation; the stronger convexity whenα is around 3 denotes an
higher robustness, as the noise level needs to be high to determine
a significant entropy variation. Our tests show that, as a draw-
back, in this way we lower the sensitivity of the evaluation to the
partials, and the measure keeps almost the same profile for every
Rpart > 1.
On the other hand, whenα tends to 0 the entropy growth is almost
linear inL, showing the significant impact of noise on the evalua-
tion, as well as a finer response to the variation of the partials am-
plitude. As a consequence, the tuning of theα parameter has to be
performed according to the desired tradeoff between the sensitiv-
ity of the measure to the weak signal components to be observed,
and the robustness to noise. In our experimental experience, the
value of 0.7 is appropriate for both speech and music signals.

4. ALGORITHMS AND EXAMPLES

We give here two examples of the methods described above: the
first shows an application of two different weights on the spec-
trogram of a given sound, which determines two different choices
for the optimal resolutions; the second is a reconstructionwith the
algorithm detailed in Section 2.

4.1. Adaptation with Different Masks

We can privilege a certain subset of the analysis coefficients to
drive the adaptation routine, instead of considering them all with
the same importance. For example, the adaptation within thep-th
band could be determined from the coefficients laying at a certain
small distance from the band central frequency.

Figures 3 and 4 are realized with an improved version of the
algorithm described in [15], which allows for a weighting ofthe
analysis coefficients which concerns only the adaptation routine,
and not the analysis and re-synthesis. Thus, we obtain different
adapted analyses depending on the frequency area we wish to priv-
ilege, still preserving perfect reconstruction: the soundwe analyze
is a music signal with a bass guitar, a drum set and a female singing
voice starting from second 1.54. We use two different complemen-
tary binary masks, the first setting to zero the spectrogram coeffi-
cients corresponding to frequencies higher than 300Hz, thesecond
doing the opposite. As we can see in Figure 3, with the first mask
we obtain an analysis where the largest window is privileged; this
is the best frequency resolution for the bass guitar sound, which is
prominent in the considered band. The only points where shorter
windows are chosen correspond to strong transients, as bassor
voice attacks, where the time precision is enhanced.
With the second mask, low frequencies are ignored in the adapta-
tion step, and as a consequence we obtain a different optimalanal-
ysis: the smallest window is generally selected, yielding an higher
time resolution which is best adapted to the percussive sounds;
moreover, we see that the largest window is chosen correspond-
ing to the presence of the singing voice, whose higher harmonics
belong to the considered band and determine a better frequency
resolution to be privileged.
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Figure 3: Adaptive analysis with a mask privileging frequencies
below 300Hz, on a music signal with a bass guitar, a drum set
and a female singing voice starting from second 1.54: on top,best
window size chosen as a function of time; at the bottom, adapted
spectrogram of the analyzed sound file.

In both cases we calculate the difference between the signalre-
constructed and the original one; we use a 16 bit audio file, whose
amplitude is represented in the range[−1, 1] with double preci-
sion: the maximum absolute value of the differences betweencor-
responding time samples, as well as the root mean square error
over the entire signal, are both of order10−16.

4.2. Analysis-Weighting Example

We show here an example of the approximation of a signal apply-
ing the formula (6), within the analysis-weighting approach using
a binary mask: as detailed in Sections 2 and 3, we analyze a sig-
nal with different stationary Gabor frames; the sound we consider
is the same of the section 4.1, and the binary mask is still ob-
tained with a cut frequency of 300Hz, while the sampling rateis
44.1kHz. We modify the coefficients of all these analyses with the
maskw1(ν), and build the NGF{g1

k,l} with resolutions adapted to
the low frequencies optimizing the entropy of the masked analyses.
Then we repeat this step with the maskw2(ν) and build the NGF
{g2

k,l}. We finally calculate the duals of the two NGFs, which can
be done in these cases with fast algorithms, and re-synthesize the
two signal bands: for these examples, the reconstruction isper-
formed with the SuperVP phase vocoder by Axel Röbel [16].
Figure 5 shows the spectrogram of the lower signal band, recon-
structed with the low-frequencies adapted analysis. This spectro-
gram is computed with a fixed window, which is the largest one
within the set considered; the choice of the best window is given
as well, to give information about how the reconstruction isper-
formed at each time. Figure 6 is obtained in the same way, con-
sidering the upper band reconstruction. The approximationof the
original sound is then given by the sum of the two bands.

The reconstruction error we obtain is higher than the one in the
previous examples: the maximum absolute value of the samples
differences is 0.0568, while the root mean square error is 0.0099.
With the choice of a binary mask, the only way to reduce the error
is to set the cut frequency in a range where the signal energy is

Figure 4: Adaptive analysis with a mask privileging frequencies
above 300Hz, on a music signal with a bass guitar, a drum set
and a female singing voice starting from second 1.54: on top,best
window size chosen as a function of time; at the bottom, adapted
spectrogram of the analyzed sound file.

low: unfortunately, music signals generally do not have large low-
energy bands; moreover, the interest of our method relies inthe
possibility for the cut frequency to be variable, in order tofreely
select the adaptation criterium.
Figure 7 shows the spectrogram of the difference between theorig-
inal sound and the reconstructed one, and we see that the spectral
content of the error is concentrated at the cut frequency. The al-
teration introduced has negligible perceptual effects, sothat the
original signal and the reconstruction are hard to be distinguished:
this aspect needs to be quantified; when dealing with the approxi-
mation of music signals, the objective error measures do notgive
any information about the perceptual meaning of the error. The ac-
curacy of a method has thus to be evaluated by means of measures
taking into account the human auditory system as well as listening
tests.

Another element to consider is the overlap between the weight
functions introduced in section 2: if we allow them for an over-
lap over a sufficiently large frequency band, we envisage that the
error would be reduced. The sense of this point can be clari-
fied considering the causes of the reconstruction error: windows
with compact time support cannot have a compactly supported
Fourier transform; from the analysis point of view, this means that
a spectrogram coefficient affects the signal reconstruction among
the whole frequency dimension. We can limit such an influence
with a choice of well-localized time-frequency atoms: evenif their
frequency support is not compact, they have a fast decay outside a
certain region. If we cut with a binary mask outside a certainband,
the reconstruction error comes mainly from the fact that we are
setting to zero the contribution of atoms whose Fourier transforms
spread into the band of interest: if the atoms are well-localized,
only a few of them actually have an impact.
Formula (2) gives an ideal reference: if the overlap is the entire
frequency dimension, weights are non-zero, thus we have a per-
fect reconstruction from the weighted coefficients. When some
weights are zero and weight functions do overlap, the normaliza-
tion factor in the formula (2) is greater than one in the overlapping
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Figure 5: Low-frequencies reconstruction from the masked
adapted analysis of a music signal with a bass guitar, a drum set
and a female singing voice starting from second 1.54: on top,best
window size chosen as a function of time. At the bottom, spectro-
gram of the analyzed band with a 4096 samples Hamming window,
3072 samples overlap and 4096 frequency points; the frequency
axis is bounded to 2kHz to focus on the reconstructed region.

frequency interval. This reduces the impact of the errors coming
from individual re-syntheses: on the other hand, the fact ofsum-
ming them all imposes a limit to the achievable global error reduc-
tion.
A further improvement of this formula is to put different weights at
the denominator in (4), with an effective amplification or reduction
of the contributions coming from individual coefficients. To keep
the perfect reconstruction valid in the case of semi-normalized
norms, a possibility is to obtain the different weights as a func-
tion of the analysis weights depending also on the overlap.

5. CONCLUSIONS AND PERSPECTIVES

We have sketched the first steps of a promising research project
about the local automatic adaptation of time-frequency sound rep-
resentations: a first question which arises is how to displaya rep-
resentation of the signal such the one described; there are two pos-
sibilities involving weighted means of the coefficients at acertain
time-frequency location:

• dk,l = 1∑
p wp · ∑

p

cp
k,l, displaying|dk,l|, or

• d
(A)
k,l = 1∑

p wp ·
√

∑
p

∣∣∣cp
k,l

∣∣∣
2

.

In a previously proposed method [15] the algorithm keeps theorig-
inal coefficients in memory; with this approach, we can use the
reconstruction scheme mentioned in (13). A further new ques-
tion would be how to reconstruct the signal from an expansionof
thedk,l or d

(A)
k,l coefficients. Straightforward numerical examples

could give some numerical insights.
If d

(A)
k,l is used, we also have to address the problem of the

phase. This approach is useful when dealing with spectrogram
transformations where the phase information is lost, as with reas-
signed spectrogram or spectral cepstrum. We could either use an
iterative approach, like the one described in [17] adapted to frame

Figure 6: High-frequencies reconstruction from the masked
adapted analysis of a music signal with a bass guitar, a drum set
and a female singing voice starting from second 1.54: on top,best
window size chosen as a function of time; at the bottom, spectro-
gram of the analyzed band with a 4096 samples Hamming window,
3072 samples overlap and 4096 frequency points.

Figure 7: Spectrogram of the reconstruction error given by the
described method on a music signal with a bass guitar, a drum set
and a female singing voice starting from second 1.54; spectrogram
obtained with a 4096 samples Hamming window, 3072 samples
overlap and 4096 frequency points.
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theory, or use a system with a high redundancy (see [18]).

From a computational point of view, we are interested in lim-
iting the size of the signal for the direct and inverse Fourier trans-
forms in (2), as this will largely improve the efficiency of the algo-
rithm. A different form of the formula (2) in this sense is

f̃ =
∑

p,k,l

cp
k,lF

−1

(
1

p(ν)
F

(
g̃k,l

p

wp(bp
kl)

))
(13)

whose properties have to be further investigated.
Later we would also investigate the properties of time-variant

filters by multiplying these new sets of coefficients, resulting in
new kinds of frame multipliers [19]. Using an optimized way to
analyze acoustical signal, will, therefore, also lead to a better con-
trol of such adaptive filters.
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ABSTRACT 

Cross modulation or Exponential FM is a sound synthesis tech-

nique associated with modular analog subtractive synthesizers. It 

differs from the more well-known linear FM synthesis technique 

in that the modulation is an exponential function of the control 

voltage. Its spectrum shape is more complex, thus giving it a lar-

ger bandwidth with respect to the modulation depth. Thus, the 

prevention of aliasing distortion requires different conditions 

than Carson’s rule as used with linear FM. A suitable equation 

will be presented in this paper.  

 

1. INTRODUCTION 

Research into virtual implementations of the structures of analog 

subtractive synthesizers has been a popular topic for the last few 

years. There have been a number of algorithms proposed to cre-

ate bandlimited versions of the classic analog oscillators [1]. 

Alongside this, there have been a number of papers that derive 

models for the Voltage controlled filters associated with particu-

lar analog synthesizers. The designs for these have been based on 

an explicit circuit analysis, [2] for example, or those that create a 

version of the original using standard digital filter elements [3]. 

However, other elements of subtractive synthesis systems have 

not received such in-depth treatment such as the Attack-Decay-

Sustain-Release (ADSR) envelope generators, Filter FM effects, 

and other oscillator modulation configurations. Although on 

modern analog synthesizers linear Frequency modulation (FM) 

between oscillators is sometimes a feature this was not always 

that case. In fact, Linear Frequency Modulation is really associ-

ated with digital synthesis and was viewed as the synthesis tech-

nology that overtook subtractive synthesis in the 1980s [4]. Lin-

ear Frequency modulation was unavailable in early modular sub-

tractive synthesis systems for two primary reasons: Firstly, it was 

difficult to implement because of the Volts/Octave control volt-

age concept on which the elements of these synthesizers were 

interconnected. This system creates a non-linear relationship be-

tween any change in signal voltage and the pitch [5]. Thus, to 

force it to behave in a linear manner was difficult. Secondly, the 

tuning instabilities associated with early analog synthesizers be-

cause of component drift and ambient temperature fluctuations 

would have resulted in inconsistent generation of stable linear 

FM signals [6]. This is particular important in the case when the 

linear FM signal is desired to be harmonic; to achieve this, the 

frequencies of the carrier and modulator signals must strictly be 

in an integer relationship. Any deviation from this can seriously 

affect the perception of the sound.  

The nonlinear Volts/Octave control voltage relationship of these 

analog synthesizers meant that modulation of one oscillator by 

another actually produced an Exponential FM waveform. One 

notable feature of this technique was that when the modulation 

depth was varied dynamically, a pitch shifting of the sound was 

perceived. This issue meant that for musicians Exponential FM 

was most often used to produce special effect sounds that were 

clangorous rather than for melodic lines. An excellent treatment 

of the theory of Exponential FM was written by [7]. This paper 

provided a description of the signal and its spectrum for sine-

wave modulators. It also offered a configuration of analog mod-

ules that introduced a pitch correction factor that could be used 

to produce a harmonic version of Exponential FM. However, the 

work in [7] was written for implementation on an analog synthe-

sizer system and thus assumed an infinite output bandwidth. This 

is not the case for digital implementations and algorithm design-

ers always have to be aware of limitations on signal bandwidth 

imposed by the sampling frequency so as to minimise aliasing 

distortion. Therefore, this paper will examine the implementation 

of Exponential FM from a digital perspective. It will examine the 

spectra produced by the Exponential FM system in an effort to 

produce a guideline for its digital implementation. Section 2 will 

introduce the theory behind Exponential FM and will provide the 

spectral bandwidth analysis. Section 3 will contain the conclu-

sions. 

2. THEORY OF EXPONENTIAL FM 

First of all, the Volts/Octave control signal representation in ana-

log synthesizers means that the pitch of a note doubles as the 

control voltage doubles [5]. Thus, the relationship can be ex-

pressed  

 
V

f 2∝     (1) 

 

where f is the note pitch and V is the control voltage. 

 
For example, if 2 volts produces a pitch of 110Hz, then 3 volts 

will produce a note an octave higher of 220Hz. 

Next, although the well-known equation for linear FM 

synthesis is actually phase modulation, on a modular synthesizer 

system Exponential FM is implemented as a true frequency 

modulation. The modulator signal voltage is interpreted as fre-
quency variation that is used to define the control voltage associ-

ated with frequency of the carrier. The modulator is thus an in-

stantaneous frequency signal that for exponential FM is defined 

as in [7] to be 
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 ( ) ( )tV

cft 2=θ&  (2) 

 

where fc and fm are the Carrier and Modulation frequencies in 
hertz respectively, and V(t) represents the modulating signal. 

Note that the dot on the term on the left hand side indicates that 

it is a differential (of the phase). 

The Modulating signal can be written as the combina-

tion of a DC term, V0 and a time-varying quantity, assumed to be 

a cosine here, of amplitude Vm,, which can also be termed as the 
Modulation Depth [7], 

 ( ) ( )tfVVtV mm π+= 2cos0
 (3) 

 

Substituting (3) into (2) and using logarithms to write the power 

term 

 

 ( ) ( )( ) ( )2ln2cos0 tfVV

c
mmeft

π+=θ&  (4) 

 

which can be rewritten 

 

 ( ) ( )( ) ( )2ln2cos tfV

ce
mmeft

π=θ&  (5) 

with 

 ( )2ln0V

cce eff =  (6) 

 

To convert the instantaneous frequency signal into a phase the 

exponential term in (5) must be integrated 

 

 ( ) ( )∫θ=θ tt &  (7) 

However, it is not possible to integrate the exponential term in 

(5) directly and instead it must be expanded as set of Modified 

Bessel functions [7] 

 

( ) ( ) ( )( ) ( )( ) ( )∑
∞

=

π π+=
1

0

2ln2cos
2cos2ln22ln

k

mmkm

tfV
tkfVIVIe mm  (8) 

 

Substituting (8) back into (5) 

 

( ) ( )( ) ( )( ) ( ) c

k

mmkcem ftkfVIfVIt 







π+=θ ∑

∞

=1

0 2cos2ln22ln&  (9) 

 

Integrating to obtain the phase as shown by (7) and assuming a 

sinusoidal carrier will produce the time domain signal [7] 

 

( ) ( )( ) ( )( ) ( )( ) ( ) 

















π+π=θ= ∑

∞

=1

0 2sin2ln
2

2ln2sinsin
k

mmk

m

c

cem
tkfVI

kf

f
tfVItty

  (10) 

The carrier frequency of (11) can be written as 

 

 ( )( ) cemE fVIf 2ln0=  (11) 

 

and the frequency deviation of each term is 

 

 ( )( )2ln
2

mk

m

c

k VI
kf

f
D =  (12) 

 

The expression in (10) is a multi-component complex FM signal.  

2.1. Carrier Frequency Analysis 

From (6) and (10) it can be seen that the final carrier frequency 

of the Exponential FM signal is a function of the exponent of the 

DC term V0  and the value of the zeroth modified Bessel function 

that has the Modulation Depth in its argument. This is different 

to the linear FM case where the carrier frequency is independent 

of the modulation. This relationship should be taken into account 

for the digital version of Exponential FM. For example, assum-

ing for convenience that the DC term V0 is zero it is possible to 

show graphically how the carrier frequency increases with in-

creasing modulation amplitude. This is illustrated in Figure 1 

where the input carrier frequency fc is plotted along the x-axis, 

the Modulation Depth Vm on the y-axis, and the actual carrier 

frequency given by (11) on the z-axis. The maximum possible 

value of the input carrier was assumed to be 8372Hz, corre-

sponding to midi-note #120. 

 

   

Figure 1: The relationship between the input carrier fre-

quency, the modulation depth and the actual carrier fre-

quency. 

From Figure 1 it can be seen the actual carrier frequency in-

creases quite rapidly as the Modulation Depth Vm reaches values 

of 8 or more. This illustrates the difference between linear FM 

and Exponential FM well. It also hints at the problems that can 

occur with the digital implementation of Exponential FM and 

warns that care must be taken when setting a sampling frequency 

for any implementation so that it is commensurate with the width 

of the Modulation Depth control. Lastly, looking at (11) it can be 

seen that including a DC term (V0) in the modulating signal adds 

further complications in that it can raise the carrier frequency 

significantly. For example, for V0=5 the carrier frequency will be 

scaled by a factor of 7.17.  

2.2. Computing the Spectrum of Exponential FM 

To obtain the spectrum of the Exponential FM signal in (10) 

there are a number of possible approaches. These can be numeri-

cal, analytical, or a hybrid of the two. Note though what is more 

useful here is the spectrum envelope rather than the actual spec-

trum itself. When attempting to compute the bandwidth it is 

much easier to work with the envelope because any gaps that ex-

ist between the partials in the signal that can disrupt an auto-
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mated spectral analysis process to find a significant low energy 

spectral region.  

The most obvious numerical technique to use is the 

Fast Fourier Transform (FFT). This is readily available in most 

software environments. However, this does not produce the enve-

lope itself and further processing is required for this. Methods to 

achieve this include autoregressive analysis or Cepstral tech-

niques. 

Another approach is to employ the semi-analytic 

method of [8] that expresses the frequency modulation itself as a 

piecewise linear function. The total spectrum of the modulated 

output is the summation of the spectra for each piecewise-linear 

modulated part of the entire waveform. In essence this models 

the modulated waveform as a succession of linear Chirp signals, 

and thus the spectrum is the combination of the spectra for these 

chirps. In [8] it is proposed that the spectrum of the chirp signal 

is obtained using a numerical evaluation of the Fresnel equations.  

A faster estimate can be obtained using a Stationary Phase Ap-

proximation (SPA) and it also does not have any associated nu-

merical integration issues [9]. However, efforts to apply this 

technique were not successful. It resulted in an approximate 

spectrum that had a blocky appearance which was not a particu-

larly good match to the FFT based spectrum. It neither captured 

the true height of the various spectral components or the com-

plete width of the spectrum. 

Aside from the quasi-static approach for spectral ap-

proximation that is allowable under very particular conditions 

[10], the most general analytical approach is to expand the modu-

lation term of (10) using Bessel functions [10]. Rewriting (10) by 

substituting (11) and (12) 

 

 
( ) ( ) 
















π+π= ∑

∞

=1

2sin2sin
k

mkE
tkfDtfty

 (13) 

 

It can be expanded as [10] 
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  (14) 

An example of using (14) to produce the magnitude spectrum is 

given in Figure 2 for fc=440Hz and fm=44Hz and Vm=2. In the 

figure the reflection of the negative frequencies back into the 

positive frequency region was not carried out as these always in-

troduce spectral zeros for this particular signal case, while what 

is required is a smooth spectral envelope. It can be seen in Figure 

2 that the envelope has a number of resonant peaks that become 

wider with respect to increasing frequency. The most significant 

component is below about half the carrier frequency. Although 

the higher frequency components are smaller than the carrier the 

spectrum does not have a true lowpass shape, but rather curves 

upwards at the last resonant peak. 
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Figure 2: Magnitude spectrum of an Exponential FM signal us-

ing a Bessel Function Analysis. 

 

There are two difficulties with the Bessel function based spectral 

analysis. Firstly, given that (14) is a complicated expression in-

volving product terms, it is only possible to evaluate it numeri-

cally. This means that it cannot provide an intuitive compact ex-

pression. Secondly, the complexity of the evaluation of the equa-

tion grows exponentially with each additional sinusoidal term in 

the modulation signal. Some savings can be made by eliminating 

the evaluation of low amplitude Bessel function terms from the 

computation, and using programming optimisations to avoid the 

nested loop implementation.  

2.3. Spectral Bandwidth Evaluation 

The spectral bandwidth such that aliasing components would be 

of sufficiently low magnitude was defined to be point at which 

the spectrum was 80dB below the peak value. This was a rea-

sonably strict criteria and much stronger than Carson’s rule [10]. 

The intention was to express the Bandwidth as a function of the 

carrier frequency and the Modulation Depth.  

First, using (14) the spectra of Exponential FM signals 

were computed for different values of carrier frequency and with 

fixed values for the modulation frequency and modulation depth. 

It was found that under these conditions the spectra were simply 

translated in relation to the carrier meaning shape invariant to the 

carrier frequency. 

Next, spectra were again generated with the modulation 

frequency was expressed as a ratio of the carrier frequency from 

0.1 up to 1 for a fixed value of Modulation Depth, and the band-

width measured by an automated analysis in each case. This was 

repeated for other values of Modulation Depth. Figure 3 shows a 

plot of the results for values of Modulation Depth Vm,=1, 2 and 3. 

The Bandwidth relative to the carrier frequency is shown on the 

y-axis as a multiple of the carrier frequency. From the plot it can 

be seen that the relationship between the Modulation frequency 

and relative Bandwidth is almost linear for all values of Vm,. 

Thus, a simple linear fit can be made to characterize the relation-

ship. 
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Figure 3: Spectral Bandwidth shown as a function of the Modu-

lation frequency expressed as a ratio of the carrier frequency for 

three different values of Modulation Depth. 

 

For the three different values of Vm in the figure the coefficients 

calculated are given in Table 1 

 

Vm p0 p1 

1 2.771 4.3030 

2 5.168 6.4606 

3 9.3841 9.2485 

 

Table 1: Coefficients linear fit to data in Figure 4 for different 

values of Modulation Depth. 

 

The equation for the relative Bandwidth (to be multiplied by fc 

for the value in Hz) was  

 

 ( ) ( )cmmmc ffppVffBW 10,, +=  (15) 

 

To create a more general expression that also includes Vm on the 

right hand side of (15) the values in Table I can be examined.  It 

can be seen that as Vm increases the value for p1 increases ap-

proximately by a factor Vm. Similarly, the value for p0 increases 

by about Vm -1 to the power of 2. Incorporating this along with 

possible scaling of fc by the DC term V0, (15) gives the final ex-

pression for the -80dB bandwidth in Hertz 

 

 ( ) ( ) ( ) mm

VV

cmcdBHz fVppefffBW m ++= −
− 1101

12ln

80 2, 0  (16) 

 

where 771.201 =p  and 3030.411 =p . 

Two examples are given in Figure 4 to illustrate the validity of 
this expression. These are shown in Figure 4. In the upper panel 

the values to generate the Exponential FM signal were fc=100Hz 

and fm=250Hz, V0=1 and Vm=4. Its actual spectrum was com-

puted using a Hanning windowed FFT and is displayed using a 

dB scale. The equation in (16) was used to find the bandwidth in 

Hz. This is plotted using the dashed vertical line in the figure. It 
clearly marks a point close to -80dB in front of the primary spec-

tral region. In the lower panel the values were fc=10Hz and 

fm=40Hz, V0=0 and Vm=7. Again, the dB magnitude FFT was 

found and the bandwidth was plotted using a dashed vertical line. 

In this case it actually estimates the -80dB to be at a greater loca-

tion in frequency. However, this error is acceptable as it is an 
overestimation rather than an underestimation. 
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Figure 4: Example plots of FFT spectra of Exponential FM 

signals with the -80dB Bandwidth in Hz highlighted using 

a dashed line in both panels. Upper panel parameters 

were fc=100Hz and fm=250Hz, V0=1 and Vm=4 and for the 

lower panel were fc=10Hz and fm=40Hz, V0=0 and Vm=7. 

3. CONCLUSIONS 

This paper has presented an expression to evaluate the -80dB 

bandwidth of a cosine modulated Exponential FM signal. Exam-

ples were given to demonstrate its effectiveness. It should be a 

useful formula for low-aliasing digital implementations of Expo-

nential FM. Future work aims to produce an exact analytical ex-
pression for the spectrum of the Exponential FM signal. It will 

also investigate bandwidth criteria for cases when the modulation 

is not sinusoidal, such as for sawtooth and square waves. 

4. REFERENCES 

[1] Välimäki, V., and A. Huovilainen 2007, ‘Antialiasing oscil-

lators in subtractive synthesis,’ IEEE Signal Processing 

Magazine, 24(2): 116–125. 

[2] M. Civolani and F. Fontana, 'A nonlinear digital model of 

the EMS VCS3 voltage controlled filter', Proc. Dafx 2008, 

Espoo, Finland, Sept. 2008. 

[3] V. Välimäki and A. Huovilainen, ‘Oscillator and filter algo-

rithms for virtual analog synthesis’ Computer Music Jour-

nal, vol. 30, no. 2, pp. 19-31, 2006. 

[4] J. Chowning and D. Bristow, FM theory and applications – 

By Musicians for musicians, Yamaha, Tokyo, Japan, 1986. 

[5] H. Chamberlain, H., Musical Applications of Microproces-

sors, Hayden Books, Indianapolis, Indiana, USA, 1987. 

[6] M. Russ, Sound synthesis and sampling, Focal press, El-

sevier, Oxford, UK, 2009. 

[7] B. Hutchins, ‘The frequency modulation spectrum of an ex-

ponential voltage-controlled oscillator,’ Jnl. Of Audio Eng. 

Soc., Vol. 23(3), April 1975, pp. 200-206. 

[8] J. Martin, A. Holt and G. Salkeld, ‘Novel analytic technique 

for obtaining the spectrum associated with piecewise linear 

FM,’ Proc. IEE, Vol. 122(7), Jul. 1975, pp. 710-712.   

[9] E. Chassande-motin and P. Flandrin, 'On the stationary 

phase approximation of chirp spectra', Proc. IEEE TFTS 

1998, Pittsburg, PA, USA, Oct. 1998. 

[10] H. Rowe, Signals and noise in communications systems, 

Van Nostrand, NJ, USA, 1965. 

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-118



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

TOWARDS ONTOLOGICAL REPRESENTATIONS OF DIGITAL AUDIO EFFECTS

Thomas Wilmering, György Fazekas and Mark B. Sandler

Centre for Digital Music
Department of Electronic Engineering

Queen Mary, University of London
Mile End Road, London E1 4NS, UK

{thomas.wilmering, gyorgy.fazekas, mark.sandler}@eecs.qmul.ac.uk

ABSTRACT

In this paper we discuss the development of ontological represen-
tations of digital audio effects and provide a framework for the de-
scription of digital audio effects and audio effect transformations.
After a brief account on our current research in the field of high-
level semantics for music production using Semantic Web tech-
nologies, we detail how an Audio Effects Ontology can be used
within the context of intelligent music production tools, as well
as for musicological purposes. Furthermore, we discuss problems
in the design of such an ontology arising from discipline-specific
classifications, such as the need for encoding different taxonomi-
cal systems based on, for instance, implementation techniques or
perceptual attributes of audio effects. Finally, we show how in-
formation about audio effect transformations is represented using
Semantic Web technologies, the Resource Description framework
(RDF) and retrieved using the SPARQL query language.

1. INTRODUCTION

Research in musical applications of metadata have produced a rich
literature in recent years. This includes use cases for creative mu-
sic production as well as information retrieval. Brazil [1] for exam-
ple exploits cue points or markers, which can be found in modern
audio file formats, for browsing music collections. Gomez [2] in-
troduces the use of metadata for content-based audio processing,
while Pampalk [3] uses metadata for organising sample libraries.
The use of content-derived information for creating adaptive au-
dio effects was described by Verfaille et al. [4]. Previously, the
authors also exploited metadata in creative applications including
navigation of recording projects using segmentation [5], and more
recently we introduced a new class of audio effects where the use
of standardised metadata is deeply embedded into the process of
applying audio effects [6].

This system enables the prediction of changes in metadata
when simple effects are applied to an audio signal, and also pro-
vides means for tracking the application of audio effects in the mu-
sic production workflow. During the development of this system
we identified the need for closely linked information describing
data flow in different system components, and the need for a com-
mon way of representing information about audio features, as well
as the characteristics and parameters of audio effects. These re-
quirements point to the need for using a common knowledge rep-
resentation framework for inter-disciplinary classification of au-
dio effects. While such a classification has been proposed pre-
viously [7], standardised schema were not employed to represent
this knowledge.

We opt for adopting Semantic Web [8] technologies for our
purposes, in recognition that they provide a uniform way of encod-
ing and linking information, governed by shared ontology schema,
as well as support high-level logical reasoning based on Descrip-
tion Logics [9]. In particular, we use Semantic Web ontologies
which provide for an explicit specification of a conceptualisation
[10]. Data expressed using our ontologies support a wide range
of use cases in creative music production, as well as exchanging
accurate production data between tools, and sharing data for exam-
ple with an artist community on the Semantic Web. In our research
we exploit previous work on developing such ontologies and appli-
cations (see [11] for details) and develop an ontology based repre-
sentation of audio effects within a common ontological framework
for representing music related information and in particular studio
production. This distinguishes our work from previous research
where the use of metadata was only considered in isolation.

In the rest of this paper, after a brief review of Semantic Web
technologies, we give an overview of the Music [12] and Studio
Ontologies1. We discuss different approaches of developing an
audio effects ontology, and demonstrate a use case of retrieving
detailed information using metadata describing a musical mixture.

2. SEMANTIC WEB TECHNOLOGIES

Semantic Web Technologies refer to a set of web standards for cre-
ating a "Web of Data". The purpose of the Semantic Web, as an ex-
tension to the World Wide Web, is to allow for the development of
applications that are capable of exploiting the meaning of knowl-
edge represented in Web pages. At its core, Uniform Resource
Identifiers (URI) are assigned to each resource including ontolog-
ical concepts and relationships, while the Resource Description
Framework (RDF) defines the standard for the formal description
of these resources. The RDF data model expresses statements
about resources as sets of triples in the form of subject, predicate,
object. The model can be seen as directed graphs, where nodes
represent the subjects and objects of statements while, arcs corre-
spond to predicates2. Graph nodes may either be named by URIs,
literals (e.g. strings or numbers), or blank nodes3. The example
in listing 1 shows how an audio effect implementation is described
in RDF. The triple :rdfx_delay fx:implementation_of
fx:Echo identifies the subject as an implementation of an echo
effect.4 The following lines describe further attributes of the im-

1Available from: http://motools.sourceforge.net/
2Predicate describes relationships between subjects and objects
3Nodes may remain unlabelled for brevity.
4Namespace prefixes such as fx correspond to ontologies.
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plementation, such as plugin type, name, and rights-related data
using DCMI Metadata Terms5. This representation makes use of
the RDF Schema Language (RDFS) for describing properties and
classes of RDF resources, and our ontology developed in the Web
Ontology Language (OWL)6 for further refinements providing un-
ambiguous representation of data and data relationships.

:rdfx_delay fx:implementation_of fx:Echo;
fx:plugin_type fx:Rdfx;
dc:description "Feedback Delay";
dc:rights "Copyright (c) 2010-2011 QMUL";
dc:title "RDFx_Delay_1";
foaf:maker [ a foaf:Agent ;

foaf:name "Thomas Wilmering" ] .

Listing 1: RDF data describing an audio effect implementation.

3. THE MUSIC AND STUDIO ONTOLOGY
FRAMEWORKS

Semantic Web technologies play an increasingly large role in in-
formation management for multimedia applications. Detailed on-
tologies dealing with various aspects of music related information
have already been published for music information retrieval (MIR)
use cases. The Music Ontology in particular defines concepts
and relationships for this domain, on top of two fundamental on-
tologies: Event7 and Timeline8 for expressing time-based events.
This can be used to represent concepts such as a recording ses-
sion, but also, with further ontological support, concepts such as
note onsets, or the extent of a key segment in an audio file [11].
Our research extends this modular framework with ontologies for
metadata-generation and usage in the music production environ-
ment.

The Studio Ontology (STUDIO) describes recording studio
concepts and provides a framework for collecting metadata in au-
dio production. It provides extensions containing specialised terms,
including an ontology of multitrack recording9, which enables link-
ing elements of multitrack production tools, for example audio
clips and tracks, to more general Music Ontology data [13]. The
Audio Effects Ontology (FXO) is developed within this frame-
work. The application of audio effects is an integral part of con-
temporary music production, therefore it was included in the core
Studio Ontology. However, the need for accommodating differ-
ent view points in audio effect classification gave rise to its mod-
ularisation. For example, classification based on implementation
techniques or perceptual attributes require different ontology mod-
ules. The problems arising when attempting to unify these differ-
ent approaches have been discussed in [7], and an interdisciplinary
classification system was proposed. We show that Semantic Web
ontologies, as opposed to classic taxonomies, provide a way to de-
scribe audio effects not only for classification purposes, but also
for the creation and retrieval of detailed metadata about a music
production.

4. THE AUDIO EFFECTS ONTOLOGY

This section deals with metadata requirements for audio effects
and the development of the Audio Effects Ontology consisting of

5http://dublincore.org/documents/dcmi-terms/
6OWL Referenece: http://www.w3.org/TR/owl-ref/
7http://purl.org/NET/c4dm/event.owl/
8http://purl.org/NET/c4dm/timeline.owl/
9The Multitrack Ontology http://purl.org/ontology/studio/multitrack

three parts, one describing effect transformations, another provid-
ing a DAFX taxonomy and a third defining provenance terms. The
motivation behind the development of the Audio Effects Ontology
is to describe the domain of audio effects taking into account dif-
ferent view points. A first step towards this is the development
of several ontologies each covering the perspective of a particular
discipline, such as composition, post-production/audio engineer-
ing or effects development. In this chapter we focus on classifica-
tion strategies for audio effects in ontological representations.

4.1. Effect Classification

As mentioned in §3 there are different schemata by which audio ef-
fects can be classified. For instance, we can group audio effects by
the perceptual attributes that are mainly modified by their applica-
tion. This classification system may be the most natural for a com-
poser, who is primarily interested in the aesthetics of a particular
sound transformation. Table 1 shows a selection of effects and the
modified perceptual attributes [14][4][7]. For each effect main at-
tributes are identified and additionally one or more other attributes
that are modified by to a lesser extent. The perceptual attributes
comprise of loudness, duration and rhythm, pitch and harmony,
timbre and quality, and space. Listing 2 shows the echo effect class
definition in the Audio Effects Ontology. The ontology contains a
class fx:Fx representing the superclass for effect classification.
Subclasses, such as fx:SpatialFx and fx:LoudnessFx ,
are linked to the main perceptual attributes with a restriction on the
predicate fx:main_attribute. Subclasses of these classes in
turn inherit these attributes, hence we only directly link the effect
to secondary perceptual attributes using restrictions on the predi-
cate fx:other_attribute. The perceptual attributes are de-
fined as individuals of the class fx:PerceptualAttribute.

DAFx Name Perceptual Attribute
Main Other

Distance Change S L,T
Directivity S P,T
Echo S L
Granular Delay S L,D,P,T
Panning S
Reverberation S L,D,T
Rotary Speaker S P,T
Filter T L
Comb Filter T L,P
Equaliser T L
Ring Modulation P,T
Robotisation P,T L
Spectral Tremolo L,T D
Spectral Warping T,P L
Time Shuffling L,D,P,T
Vibrato L,P T,D

Table 1: Selection of digital audio effects and affected perceptual
attributes (L: loudness, D: duration and rhythm, P: pitch and har-
mony, T: timbre and quality, S: space)[7][14].

A technical classification based on implementation techniques
on the other hand is not as straight-forward. However, such a tax-
onomy would be helpful for the developer interested in the rela-
tionships of effects based on underlying digital signal processing
(DSP) algorithms. Verfaille et al. [7] proposed a technical classi-
fication based on [15]:
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• filters

• delays (resampling)

• modulators and demodulators

• nonlinear processing

• spatial effects

• time-segment processing

• time-frequency processing

• source-filter processing

• spectral processing

• time and frequency warping

fx:SpatialFx a owl:Class ;
rdfs:subClassOf fx:Fx ,

[ rdf:type owl:Restriction ;
owl:onProperty fx:main_attribute ;
owl:hasValue fx:Spatial

] .

fx:Echo a owl:Class ;
rdfs:subClassOf fx:SpatialFx ,

[ rdf:type owl:Restriction ;
owl:onProperty fx:other_attribute ;
owl:hasValue fx:Loudness

] .

Listing 2: Description of the echo effect in the Audio Effects On-
tology (perceptual).

Naturally, this type of classification has limits; some audio ef-
fects, e.g. pitch shifting, can be implemented by different tech-
niques, thus some ambiguity is inherent in this system. Further-
more, one can argue that spatial effect is not an implementation
technique as such, as it relates primarily to a modified perceptual
attribute. In order to provide a detailed ontology for the techni-
cal description of audio effects a DSP ontology is desirable, and
constitutes future work in this field of research.

In addition to the classification systems described above, we
propose the development of a taxonomy from an audio engineer-
ing point of view. Here, it is important to clearly define the mean-
ing of the term "audio effect". While in our research we mostly
use the term in its general sense, equating the terms audio effect
and sound transformation, from an audio engineer’s point of view
often a distinction is made between effects and processors. Such a
classification system could be seen as lying in between a percep-
tual and technical system, based on the audio effects’ roles in the
production workflow. In audio engineering effects are more artis-
tic in nature, altering the sound in a dramatic way, for instance a
tapped delay or a flanger. Audio processors on the other hand are
transformations aimed at the enhancement of sound mostly in post-
production and mastering. Equalisers and certain compressors fall
into this category. The online database for DAFx plugins by KVR
Audio10 lists Mastering as a separate category, containing mostly
non-linear effects, such as enhancers and compressors designed to
be applied on a musical mixture. A future direction of this research
is a system unifying the audio effect ontologies of different disci-
plines, thus enabling and improving communication between de-
velopers, composers and audio engineers, providing a basis for the
development of software agents processing audio effects related
information to assist interdisciplinary work. Although we want to

10http://www.kvraudio.com/get.php

describe digital audio effects, we consider an effect as such as an
acoustical phenomenon (e.g. an Echo is a series of reflections of a
sound) which can then be linked to an implementation with its re-
spective algorithm as its physical manifestation in order to describe
audio effects software or transformations. This approach also dis-
tinguishes the ontology from the LV2 (Linux Audio Developers
Simple Plugin API version 2) specification11, which, although also
written in RDF and containing a classification scheme, is limited to
the description of effects implemented in LV2, without discerning
implementations and audio effects as physical phenomena.

4.2. Effect Transformations

The Audio Effects Ontology also defines concepts for describing
the application of effects to a signal. The class fx:Transform
is used here, comparable to the way the Vamp Ontology12 de-
fines concepts for the application of feature extraction plugins.
An fx:Transform may be linked to an effect implementation
using fx:Implementation. This implementation class may
also act as the connection to the taxonomy by linking it to fx:Fx
with the property fx:implementation_of (an inverse prop-
erty linking an effect type to an implementation is also given by
fx:implementation). Using this system we are able to as-
sociate events on the audio signal timeline as defined by the Mu-
sic Ontology to a particular transform, which in turn is associated
to information about the implementation, the effect type, and the
modified perceptual attributes. Moreover, we may also describe an
adaptive effect implementation that processes metadata in the form
of RDF data, e.g. note onsets described with concepts from the Au-
dio Features Ontology13[7][6]. We may describe the parameters of
a sound effect implementation, both, to describe the settings at a
particular transform, and to describe the available parameters for
a given effect implementation. A set of standard parameters, such
as the dry/wet mix, feedback amount and gain are defined in the
ontology as well, which may be linked from an implementation
parameter. In summary, the FXO is capable of describing audio
effects in taxonomical systems adapted to different disciplines, ef-
fect implementations (e.g. plugins and hardware devices), and the
application of audio transformations to audio signals.

5. QUERYING METADATA

Semantic metadata in RDF makes it possible to perform complex
queries over the data using a query language such as SPARQL14,
assuming the metadata is accurately accumulated during the pro-
duction process. Listing 3 shows RDF data describing an onset
event on a signal timeline created by the application of an echo
effect, in this case "RDFx_Delay_1". The description includes
the parameter settings of the effect, as well as provenance data
about the origin of the audio event in the multitrack project during
production. Running the SPARQL query from listing 4 over the
metadata associated with the resulting mixture returns all events
created by audio effects modulating loudness as "other" percep-
tual attribute as shown in table 1. We may also query for addi-
tional information, such as plugin name or developer. The exam-
ple shows that with this system we can retrieve information from a
musical mixture otherwise lost during the mixing process, or only

11http://lv2plug.in/ns/lv2core
12http://www.omras2.org/VampOntology/
13http://motools.sourceforge.net/doc/audio_features.html/
14http://www.w3.org/TR/rdf-sparql-query/
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:transform_0 a fx:Transform;
fx:parameter_set [ fx:identifier "dryWetMix" ;

fx:value "50"̂ x̂sd:float ] ,
[ fx:identifier "delayTime" ;
fx:value "0.297"̂ ^ xsd:float ] ,

[ fx:identifier "feedback";
fx:value "0"̂ x̂sd:float ] ;

fx:transform :rdfx_delay.

:event_0 a af:Onset ;
event:time [ a tl:Instant ;
tl:at "PT1.897007S"̂ x̂sd:duration ;
tl:onTimeLine :signal_timeline_0 ] ;
fx:created_by_fx :transform_0 ;
fx:track_origin :GuitarTrack .

:example_multitrack a mt:MultitrackProject ;
mt:track :DrumTrack, :GuitarTrack .

Listing 3: RDF data describing an onset event on a signal timeline
created by the application of the effect "RDFx_Delay_1".

retrievable by means of feature extraction from source-separated
signals. However, tracking metadata throughout the production
process makes source separation redundant in this context. More-
over, feature extraction from noisy audio material may pose prob-
lems concerning accuracy (this has been shown for the case of re-
verberation) [16].

SELECT ?time ?track WHERE {
?a event:time ?b ;
fx:created_by_fx ?c ;
fx:track_origin ?track.

?b tl:at ?time .
?c fx:transform ?d .
?d fx:implementation_of ?e .
?e fx:other_attribute fx:Loudness .
}

Listing 4: SPARQL query retrieving all events created by a trans-
formation modulating loudness as the secondary perceptual at-
tribute. Track represents the original audio track in the multitrack
production prior to the mixdown.

By integrating a query engine in an audio production system
processing metadata according to the proposed ontology, the user
is not only capable to select audio effects by semantic descriptors
of different domains, but is also able to retrieve detailed metadata
about workflows and techniques concerning audio productions.

6. CONCLUSIONS

In this paper we presented an ontology defining concepts for the
application and classification of digital audio effects. We showed
how this novel ontology fits in to existing Semantic Web ontolo-
gies, particularly the Music Ontology and the Studio Ontology
extension. We showed that RDF metadata accumulated during
the production process using the Studio Ontology Framework al-
lows for the retrieval of detailed information about a music piece.
The information may be used for musicological purposes revealing
production workflows and the origin of individual audio events, or
for further processing by passing it to content-based (adaptive) au-
dio effects or feature extractors.

Our investigation of audio effects with respect to classification
and ontology design showed that it is necessary to create multiple
ontologies covering the different disciplines concerned (e.g. clas-
sifications based on implementation for developers or on percep-
tual attributes for composers). The presented work reveals the need
for more specialised ontologies for our music information manage-
ment framework, such as a dedicated signal processing ontology.
Future work includes the development of such ontologies and fur-
ther development and integration of the developed tools in music
production applications.
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ABSTRACT

Gabor Multipliers are signals operator which are diagonal in a
time-frequency representation of signals and can be viewed as time-
frequency transfer function. If we estimate a Gabor mask between
a note played by two instruments, then we have a time-frequency
representation of the difference of timbre between these two notes.
By averaging the energy contained in the Gabor mask, we obtain
a measure of this difference. In this context, our goal is to auto-
matically localize the time-frequency regions responsible for such
a timbre dissimilarity. This problem is addressed as a feature se-
lection problem over the time-frequency coefficients of a labelled
data set of sounds.

1. INTRODUCTION

Given a pair of sound signals, our approach yields an estimate of
a time-frequency transfer function to go from one sound to an-
other. Our goal, in the present paper, is to further analyze this
time-frequency transfer function. In particular we want to iden-
tify the regions in the time-frequency domain which carry most
discriminant information, in the context of sounds categorization.

The approach proposed in [1] for the analysis and catego-
rization of families of sound signals, exploits the transformation
between signals in the family. In this method, the signals are
supposed to be similar enough in the time-frequency domain so
that these transformations can be modeled as Gabor multipliers,
i.e. linear diagonal operator in a Gabor representation (subsam-
pled version of Short Time Fourier Transform). Gabor multipliers
are characterized by a time-frequency transfer function, hereafter
called Gabor mask. Gabor Multipliers estimation have been stud-
ied in [2], [3], in the context of sounds transformation. In [1],
Gabor masks were used to categorize sounds, by means of a cor-
responding complexity measure, on the basis of pairwise compar-
isons. Such estimated transfer functions can be viewed as a vector
of features characterizing the differences between two signals. We
have shown in [1] that a well chosen average the values of these
features could yield sensible classifications within controlled mu-
sical signal families.

The timbre [4] is a relative notion defined as the difference be-
tween two sounds with same pitch, duration and loudness. We
aim to automatically identify the time-frequency regions which
have been responsible for a given timbre difference and propose a
method for this task. In the context of harmonic sounds of musical
instruments, it is well known [5] that the timbre can be character-
ized by time and spectral descriptors (such as attack time, spectral
centroid, spectral flow,...). These sounds descriptors are implicitly

captured in the time-frequency representation of a signal and so
their differences are carried by the Gabor masks.

In the context of sounds synthesis, such a time-frequency sig-
nificance map can be useful, as it gives up the time-frequency rep-
resentation regions of interest for synthesizing a sound into an-
other, as the authors in [6] who explain the importance of the con-
trol of the signals descriptors in the context of sounds morphing.

In Section 2, we present the general setting and describe the
basic concepts of signal representation and time-frequency anal-
ysis we shall be working with. The feature selection problem is
investigated in Section 3. Some examples of transfer functions be-
tween notes and the estimated time-frequency regions are given in
Section 4 from three different instrument families.

2. GABOR FRAMES AND GABOR MULTIPLIERS

In the finite-dimensional situation CL, the Short Time Fourier Trans-
form of the signal can be seen as the analysis map of a Gabor
frame representation of the signal, as explained in [7]. A Gabor
frame is an overcomplete family of time-frequency atoms gener-
ated by translation and modulation on a discrete lattice of a mother
window, denoted by g ∈ CL. These atoms can be written as

πmng[l] = gmn[l] = e2iπmb(l−na)g[l − na] , (1)

where a and b are two positive integers, such that L is multiple of
both a and b and (a, b) generates a time-frequency lattice. πmn
is a time-frequency shift operator. Here, all operations have to be
understood modulo L. We set M = L/b and N = L/a.

The time-frequency representations of signal x is given by

X[m,n] = 〈x, gmn〉

In particular there are situations (called tight) where the in-
version takes a particularly simple form, the analysis and syn-
thesis windows are the same and the reconstruction is given by
x =

P
m,nX[m,n]gmn. Gabor transforms give a frame frame-

work to the time-frequency representations. In this context, a sig-
nal transformation can be constructed by pointwise multiplication
between the analysis coefficients and a transfer function, followed
by the reconstruction with the synthesis window. Such transforma-
tions are generically called multipliers. Denoting by m the trans-
fer function, we shall denote by Mm the corresponding multiplier
such that

Mmx =
X
m,n

m[m,n]X[m,n]gmn . (2)
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Let xi and xj denote the input and output signals, respectively.
We assume the following model

xj = Mmxi + ε ,

where ε represent perturbations, modeled as additive gaussian noises,
and m is an unknown Gabor mask, which we want to estimate. A
possible solution is obviously m = Xj/Xi, where X denote the
Gabor transform of x, but such a solution is not bounded in gen-
eral. We prefer to turn to a regularized least squares solution. More
precisely, we seek m ∈ CM×N which minimizes the expression

Φ[m] = ‖xj −Mmxi‖2 + µ r[m], (3)

where r[m] is a regularization term, whose influence on the solu-
tion is controlled by the parameter µ.

The formulation (3) involves a non diagonal matrix, where the
non diagonal terms arise from the correlations between the atoms
of the representation. A first approach is to formulate the problem
directly in the transform domain, or equivalently to a reduction of
the problem (3) to its diagonal.

Φ̃[m] = ‖Xj −Xim‖2 + µ r(m), (4)

Such an approximation has the advantage to admit a closed form
expression for its unique minimizer. For example, we can choose
r(m) = ‖m−mt‖2F , where mt is a given target time-frequency
function that will help to design the estimated Gabor mask m. The
time-frequency function mt can be useful in the context of sound
morphing, where we aim to “interpolate” between two sound sig-
nals. Given mt, we obviously obtain a regularized solution for m
which reads

m̃ =
XiXj + µmt

|Xi|2 + µ
,

3. TIME-FREQUENCY CHARACTERIZATION OF A
SOUNDS CATEGORIZATION

3.1. A divergence between two spectra

The Itakura Saito divergence is often used to compare two audio
spectra in the context of speech processing [8]. This measure is
expressed as

dIS(|Xj |, |Xi|) =
X
l

|Xj |[l]
|Xi|[l]

− log
|Xj |[l]
|Xi|[l]

− 1

where |Xi| and |Xj | are the magnitude of signals spectrum or sig-
nals time-frequency spectrum and l denotes a frequency or a time-
frequency bin. The Itakura Saito divergence is not symmetric and
a symmetrized version [9] can be derived as

dSIS(|Xj |, |Xi|) =
dIS(|Xj |, |Xi|) + dIS(|Xi|, |Xj |)

2
(5)

We first denote that Equation (5) is not bounded in general and a
way to avoid such a problem is to regularize it. If we denoted by
mij the Gabor mask obtained by a diagonal approximation regu-
larized with r(m) = ‖|m| − 1‖22 between signals xi and xj , then
dSIS(|m|, 1) is a natural choice two compare two spectra as the
masks are more stable than the quotient of two spectra.

The choice of the regularization term r was motivated by the
desire of maintain m = 1 as reference, corresponding to “no trans-
formation”. However, given that Gabor transforms of real valued

signals are complex valued, and that the phase of the Gabor trans-
form is generally difficult to handle precisely, the reference choice
may be |m| = 1 rather than m = 1. This suggests the use of a
regularization term of the form r(m) = ‖|m| − 1‖2. This leads
to an explicit expression for the Gabor mask given by

|mij | = |XiXj |+ µ

|Xi|2 + µ
.

Then, the phase of the Gabor mask is given by the phase difference
between Xj and Xi.

3.2. A time-frequency map of the information responsible for
the categorization

First, the Itakura Saito divergence is separable and if we define

dij [m,n] =
1

2
(|mij [m,n]| − log|mij [m,n]| − 1 (6)

+ |mji[m,n]| − log|mji[m,n]| − 1)(7)

then the symmetrized Itakura Saito divergence reads

dSIS(|mij |, 1) =
1

MN

X
m,n

dij [m,n] (8)

The dissimilarity matrix d[m,n] represents the ability of a time-
frequency bin to discriminate two given classes and gives us a dis-
similarity measure between two sounds for each time-frequency
bin. We see in Equation (8) that the information carried by dSIS(|m|, 1)
is drastically reduced, as we just consider the sum over all the time-
frequency coefficients. We also propose to use a weighted Itakura
Saito divergence as

dαSIS(|m|, 1) =
X
m,n

αmnd[m,n] (9)

where the α are the weights, which indicate the relevance of each
time-frequency bin and are are to be estimated from data. These
weights are supposed to emphasize one subset of time-frequency
bins over the others. Then, we impose the following properties :
αmn > 0 and

P
mn αmn = 1, so that the Equation (8) can be

viewed as an uniform version of the Equation (9).
We propose to model our problem in the spirit of the Relief

algorithm [10], a feature weighting algorithm that iteratively se-
lects feature over a training data set. We suppose that we have a
training data set of labelled signals {xi, i = 1..N} composed by
two different classes of signals, where the first class contains N1

signals, and the second contains N2 signals. We denote by Ci the
set of indices of the signals which are in the class of the signal
xi. We want to define a distance that discriminates the 2 classes
as clearly as possible. We can formally model this problem as the
maximization of a margin, where the margin is given by:

ρ(α) =
X
mn

αmn

0@X
i

X
j /∈Ci

dij [mn]−
X
i

X
j∈Ci

dij [mn]

1A
In other words, the margin is considered as measure of the ability
of a set of weights to discriminate two classes of signals.

For the sake of clarity, let us define

zmn =

0@X
i

X
j /∈Ci

dij [mn]−
X
i

X
j∈Ci

dij [mn]

1A
=

`
〈D−, d[m,n]〉 − 〈D+, d[m,n]〉

´
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The matrices D+ and D− are in {0, 1}N×N and are used to
represent the repartition of the data in two different classes. D+

ij =

1 if i and j are in the same class and 0 otherwise, whereasD−ij = 0
if i and j are in the same class and 1 otherwise. The maximization
of the margin emphasize the data which are in the same class. Now,
the problem takes the form of a minimization under constraints

maxα αT z s.t. ‖α‖22 = 1 and α > 0 (10)

The solution to this problem is given by : α = z+

‖z+‖2 , where
z+ = [max(zmn, 0)]mn

This problem implicitly contains sparsity constraints as it re-
duces the time-frequency information, by remonving the negative
values of z. The removed time-frequency bins can also be viewed
as irrelevant for the given classification task. The α values also
give us the importance of a given time-frequency coefficient in our
given task. Other algorithms performs such a feature selection and
we refer to [11] for a review.

4. EXPERIMENTS

The time-frequency maps given by the coefficients {αmn : m,n}
allows to identify the time-frequency information responsible for
a classification task. They provide an average map of the differ-
ences between each class, with less variability compared to the
gabor masks obtained between individual pairs of sounds. This is
also a generic way to automatically enlighten the time-frequency
differences of timbre between two classes of harmonic sounds, as
we suppose no signal model and no descriptors choices. Here,
we argue that these time-frequency maps generalize the informa-
tion contained in the Gabor Masks by pairwise comparison of two
classes of sounds, which can be more useful in the context of
sounds morphing, as they can be used to transform a sound from
one class to another. As we will see below, the time-frequency
differences will depend on the sounds classes we are comparing.

Some experiments are shown here. We used three classes of
musical instrument sounds playing the same note, with fundamen-
tal frequency f0 =196 Hz (G3) : 16 clarinets, 15 saxophones (8
alto and 10 tenors) and 13 trumpets. Prior to mask estimation, the
signals are adjusted so that their onset coincide, as the onset time is
not relevant in our task. Now, all the sounds are supposed to have
a good time-frequency alignment, so that the Gabor mask capture
a pertinent information. In each experiment, a data set contains
the sounds of two different classes. We considered three different
data sets : the clarinets and the saxophones, the clarinets and the
trumpets, the trumpets and the saxophones. The spectrograms of
one sound of each class are shown in Figure 1, obtained using a
Hanning mother window and parameter values M = 512, a = 64
and displayed in a logarithmic amplitude scale.

The time-frequency maps for the three data sets are computed
as explained in Section 3.2 and shown in Figure 2. As expected,
we can see that the three instruments classes present some time-
frequency differences at different locations and these differences
can be interpreted physically. All time-frequency maps exhibit a
harmonic structure supply by a formantic structure, which is coher-
ent with our understanding of the acoustic of these musical instru-
ments. Each map emphasize the differences between two classes
of sounds. For example, the even harmonics (which are known to
be a relevant clue for identifying the clarinets) appear strongly in
the clarinets/saxophones and clarinets/trumpets maps. However,
their importance in the classification process differs sightly when

the clarinets are compared to trumpets or saxophones. The maps
also reveal how the frequency content during the attack differs ac-
cording to the two classes we are observing. This information can
be particularly useful in practice to distinguish the trumpets from
the clarinets and saxophones classes.

5. CONCLUSIONS AND PERSPECTIVES

We have described in this paper a method for better exploiting
the information contained in time-frequency masks estimated from
families of sound. Namely, the proposed approach is able to re-
trieve the sub-domains in the time-frequency plane that permit
discrimination of two instrument sounds playing the same note,
in other words the time-frequency information carrying the timbre
differences. This goal is achieved by coupling mask estimation
with using a feature selection method on a labelled class of sounds.

Further developments of this work will involve the construc-
tion of smoother versions of the time-frequency map, and applica-
tions in a context of sounds morphing.
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Figure 1: Three spectrograms of our sounds data set
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ABSTRACT
In this paper we investigate the problem of singer identification on
acapella recordings of isolated notes. Most of studies on singer
identification describe the content of signals of singing voice with
features related to the timbre (such as MFCC or LPC). These fea-
tures aim to describe the behavior of frequencies at a given in-
stant of time (local features). In this paper, we propose to de-
scribe sung tone with the temporal variations of the fundamental
frequency (and its harmonics) of the note. The periodic and con-
tinuous variations of the frequency trajectories are analyzed on the
whole note and the features obtained reflect expressive and intona-
tive elements of singing such as vibrato, tremolo and portamento.
The experiments, conducted on two distinct data-sets (lyric and
pop-rock singers), prove that the new set of features capture a part
of the singer identity. However, these features are less accurate
than timbre-based features. We propose to increase the recognition
rate of singer identification by combining information conveyed by
local and global description of notes. The proposed method, that
shows good results, can be adapted for classification problem in-
volving a large number of classes, or to combine classifications
with different levels of performance.

1. INTRODUCTION

The goal of classification is to assign unlabeled patterns into a
number of known categories. A system of classification is based
on an appropriate description of the patterns (features) and on a
statistical algorithm (classifier) trained to learn the specificities of
each pattern for the given problem. To evaluate the performance of
a system, a new set of data is given to the classifier and the portion
of patterns assigned to their correct class is given as an indicator
of its global performance. However, each system of classification
has its own limitation. To increase the classification accuracy it is
necessary to introduce and combine complementary information
on the problem (either new representations of the patterns or new
specifications of the classes).

Classification of speech and musical signals has been largely
investigated this last decade and all sort of features (temporal and
spectral) and classifiers have been tested. A special attention has
been given to features related to the timbre. Timbre is a perceptual
attribute of the sounds that seems to be multi-dimensional. How-
ever, research has shown that timbre can be partly transcribed by
the spectral envelope of sounds. In speech processing area, the
source-filter model [1] clearly justify the use of spectral envelope
for speech recognition problem. Researches on instruments recog-
nition have also proved that spectral envelope was a good element
to discriminate musical instruments. The singing voice is a mu-
sical instrument that has much in common with speech. For this

reason, most of works carried out on the topic of singer identifica-
tion have based the description of sung signals on features derived
from the spectral envelope. They have obtained satisfying results
with this approach but to improve the identification performance
it is necessary to extract additional information on the signals of
singing voice.

In this study we suggest to describe signals of singing voice
with intonative and expressive elements characteristic of singing.
We propose a new set of features derived from the analysis of the
trajectory of the fundamental frequency (and its harmonics). In
a previous work [2] we have demonstrate that elements such as
vibrato, tremolo and portamento were efficient to detect the pres-
ence of singing voice within a song. We propose now to evaluate
if these features can be used to discriminate singers between them.
More precisely, we evaluate if intonative features can be combined
with timbre-based features to improve the performance of singer
identification.

The combination of information is not a straightforward prob-
lem. In our case, the patterns to be classified are notes sung acapella.
For each note, we extract timbre-based and intonative features.
Timbre-based features are computed on short frames (local fea-
tures) whereas information on intonation is obtained when con-
sidering the note globally (global features). As a result, the two
descriptions have different sizes and cannot be compacted into a
single feature-set without adding redundancy or deleting important
information. The only solution is then to train two classifiers on
each set of features separately and to combine their decisions after-
wards. Working with only two decisions, simple voting methods
cannot be applied. In addition we know from preliminary experi-
ments, that timbre-based features provide much better results than
intonative features. In general it is ticklish to improve a good per-
formance by combining information less accurate. The proposed
combination method is based on the class set reduction approach.
It starts with the feature set leading to the best performance. The
output of the classifier for this feature set is analyzed to deduce a
restricted set of possible classes. The deduction is done by regard-
ing the membership value (pseudo-posterior probability) for all the
classes. The second set of feature is then used to perform the clas-
sification within the reduced set of classes. The membership val-
ues, for the remaining classes, returned by the two classifiers are
then analyzed to take the final decision.

The paper is organized as follow: In section 2, we present
some related works on singer identification and on combination of
information. We present in section 3 the different elements of our
method: the features, the classifiers and the combination method.
The method is evaluated in section 4 on two data-sets composed
of accapella recording of notes. Finally, section 5 summarizes the
main results of the paper and offer some conducting remarks.
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2. RELATED WORKS

2.1. On singer identification

Numerous researches have been carried out on the topic of singer
identification (SID) because the voice is for many listeners the el-
ement that focuses the most their attention. Most of the methods
propose to describe and recognize the content of audio signals with
spectral features such as MFCC ([3], [9], [6]), LPC and their vari-
ants ([4],[5]). The features are given as input to classifier to con-
struct a model per singer present in the data-set. To retrieve the
singer of a query song, the features extracted from this song are
compared to the models obtained in the previous step and the song
is assigned to the class whose model is the most likely. In previous
researches SVM [3], GMM [4] [5] [6] [7] [8] ANN [3] [9] have
been tested for the task of SID. We consider that models obtained
using features extracted from audio mixtures (i.e. voice + instru-
ments) represent the identity of the artist (or music band) instead
of the singer. To get models more representative of the singer it
has been suggested in [9] and [4] to perform the classification us-
ing the segments of the song where the voice is present only (i.e
they discard the purely instrumental portions of the song from the
analysis). These methods still rely on features extracted from au-
dio mixtures and it is therefore not possible to examine how much
the results obtained are corrupted by the presence of instrumental
background. To obtain information directly related to the voice on
mixtures it has been proposed in [7], [8] to deduce a solo-singer
model from a model obtained on purely instrumental parts of the
song and a model obtained on the vocals (voice+instruments) por-
tions. In most of these studies, they do not find any improvement
by treating separately instrumental and vocal parts of the song. We
can suppose that in some cases, the performances of systems based
on spectral features obtained on mixtures directly are strongly af-
fected by the “album" or “produced effect" [10] (all songs from
the same album/producer share overall spectral characteristics). It
has also been suggested to perform the classification on isolated
vocals: in [5] the voice is isolated by reducing the instrumental
accompaniment, in [6] the voice is re-synthesized using the com-
ponents harmonically related to the fundamental frequency of the
sung melody. Some studies ([6] or [11]) have compared results
obtained on acapella recordings with results obtained on voice iso-
lated from mixtures (where the mixtures were created using the
same acapella recordings mixed with other instrumental tracks).
They usually reported that the performances obtained on isolated
vocals is much lower than the performances obtained on acapella
recordings and suggest that the loss is due to the artifacts created
when isolating the voice.

In this study we work in the ideal case of acapella record-
ings and suggest performing identification by combining local and
global descriptions of the voice. So, before presenting the details
of our method (features and combination rules) we review in the
next paragraph some of the basic points of the information combi-
nation theory for classification problem.

2.2. On combination of decisions

Each system of classification (features+classifier) has its own lim-
itation. To improve classification accuracy it has been proposed to
combine complementary information on the same problem. The
best way to obtain complementary information on a problem is
probably to describe the patterns with different approaches. In
some ideal cases the feature-sets given by the different descrip-

tions can be directly combined to form a unique feature-set (early
fusion). In many cases, when the features have different types,
ranges of values, size or different physical meanings, grouping all
the features together can completely degrade the information con-
veyed by the features when considered independently. For this
reason, it has been proposed to combine the decisions of the sys-
tems of classification instead (late fusion). In this case, each clas-
sification system works with its own feature-set. Combination of
decisions can be grouped into two categories according to their
architecture: parallel and sequential.

In parallel combination all systems involved in the combina-
tion have to classify the same data-set into the same known cat-
egories. Then, the final decision is taken by applying predefined
rules on the decisions of all the classifiers. A classifier can re-
turn: a single class, a list of classes ordered in term of preference
or a membership value for each class [12]. From the membership
values we can deduce the ranked list of classes, from the list we
can deduce the most likely class. An overview of methods de-
veloped for each type of outputs is presented in [13]. The more
complete outputs, the more difficult to combine. Theoretically, it
is not feasible to combine membership measurements obtained us-
ing different feature spaces or different type of classifiers because
their respective values may not have different significations as ex-
plained in [14]. However, the methods of transformation presented
in [15] can be applied to normalize the outputs.

The goal of the combination is to reach a higher accuracy than
each of the individual classifications. In practice, when all classifi-
cations have equivalent accuracies, most of the basic combination
rules (as majority voting or sum-rule) can reach this goal as long
as the classification are not too correlated. However, when the
systems to be combined show different levels of performance it
is necessary to introduce knowledge on the relative performances
into the combination rule. An easy way to realize such a combina-
tion is to consider the classifiers outputs as a new features and to
train the combination rule (or a meta-classifier). Methods based on
trained combiners generally show good results, but to avoid a lack
of generalization, a very large amount of training data is necessary.
Indeed, if the combiner is trained on the data-set used to learn the
specificities of classes there is a large risk of over-fitting. To avoid
this, the data set should be divided into three parts. The models
should be learned on the first part and evaluated with the second
part of the data. The results obtained should then be used to train
the combiner. The global performance should be evaluated on the
remaining part.

In sequential combination the classification systems are ap-
plied one after another using the output of the previous classifier
to define a new problem for the next classifier. The final decision
is generally given by the last classification (the decision-making
process can be viewed as a decision tree). From these sequential
methods, we retain:
• The hierarchical methods [16] that can be applied when the data
has a taxonomy,
• the cascade methods [17] where a pattern is processed by a new
classifier until it is classified with a certain degree of confidence
• and the multi-stage methods [18] that attempt to reduce the num-
ber of possible classes at each stage until one class remain possible.
Sequential methods are shown to be specially adapted to solve
problem involving a large number of classes and are particularly
suitable for the recognition of rare event (i.e when the classes of
the data set are not well balanced). With sequential classification,
there is no possible backwards analysis. If the decision taken at
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one step is wrong the full process will be affected.

3. DETAILS OF THE PROPOSED METHOD

We first introduce our local and global features used to describe the
sound samples, then we briefly present the classifiers used next in
the evaluation. Finally, we present the combination rule developed
to combine the different type of features.

3.1. Sound description

Any sound can be considered as a pattern varying along two di-
mensions: the time and the frequency axis (as shown by the com-
mon representation of sound: the spectrogram). To obtain an ac-
curate description of a sound we suggest to describe sounds over
these two dimensions: (1) describe behavior of the frequencies at
a given time (on one frame of few ms) and (2) describe the tempo-
ral variations of one frequency (or one band of frequencies) on a
interval of time (segment of few sec). Features extracted at a given
time of the signal and repeated along the signal will be referred as
local features and features extracted on a longer interval of time
will be referred as global features. Local features have focussed
the most attention in all audio classification problems. The rela-
tive amplitude of frequencies, represented by the overall shape of
the spectrum (the spectral envelope), has been proved to be effi-
cient to describe and discriminate sounds in tasks of speaker and
musical instruments recognition. In this study we work on clas-
sification of sung signals. Singing voice differs from speech in
his musical intention and also in its production. One of the ma-
jor difference is that sung sounds are most of the time voiced and
sustained to allow intelligibility of the lyrics. On these sustained
voiced sound, many characteristics can be obtained by analyzing
the temporal variations of one frequency band on a given interval
of time. These variations, intentional or not, enhance the singing
voice in two points: first, these variations add expression but also
they help the voice to stand out of the instrumental background.
In the next paragraph we present the features used to describe the
spectral envelope on this study. Next, we present the features ex-
tracted on the frequency trajectories.

3.1.1. Timbre: Local description of sound

Information related to the timbre is supposed to be conveyed by the
spectral envelope. This idea comes from the description of speech
sound using the source filter model by Fant [1] . In this model
we suppose that the source is a periodic train of pulses (where the
pitch of the produced sound is given by the distance between the
pulses) modified by a filter: the vocal tract. The goal is to deccor-
relate the filter from the source to obtain an approximation of the
transfer function of the vocal tract. The vocal tract enhances some
frequencies (phenomene of extra resonnance) . The response of
the filter is given by the global shape of the spectrum: the spectral
envelope.

Many methods, with different theoretical backgrounds, have
been developed to estimate and encode the spectral envelope. In
our evaluation, we use three different representations of the spec-
tral envelope: the coefficients derived from the Linear Predictive
Analysis (LPC), the Mel Frequency Cepstral Coefficients (MFCC)
and the Cepstral Coefficients derived from the True Envelope (TECC).

LPC and MFCC have been already used for the task of singer
recognition and for we refer the reader to the works presented in

2.1 for a detailed description of these coefficients. The true enve-
lope, introduced in [19], has been mostly used in the speech pro-
cessing area. As shown in [20], this envelope estimation is more
robust (especially for high pitched signals) than many other en-
velope estimation methods. Like the MFCC, the true envelope is
estimated in the cepstral domain. This domain offers the possibil-
ity to transform the convolution of two signals into the addition of
their spectra. So that, the cepstrum of a speech signal is the addi-
tion of the cepstrum of the vocal tract response and the cepstrum of
the excitation signal. The real cepstrum of a discrete signal x(n)
is defined as the inverse Fourier transform of the log-amplitude
spectrum of x(n). If X(k) designates the kth point of the discrete
Fourier transform (DFT) of x(n) (with K the total number of point
of the DFT), the cepstrum C(m) of x(n) is given by:

C(m) =

K−1X
k=0

log(|X(k)|)e 2iπkm
K (1)

True envelope estimation is based on iterative cepstral smooth-
ing of the log-amplitude spectrum. We denote Ci(k) the cepstral
representation of the envelope at the ith iteration for the bin k of
the DFT (1). The algorithm iteratively updates the smoothed in-
put spectrum Ai(k) using the maximum of the original spectrum
|X(k)| and the current spectral representation.

Ai(k) = max(log(|X(k)|), Ci−1(k)) (2)

The cepstral smoothing is then applied to Ai(k) to obtain Ci(k).
The iterative algorithm stops if for all bin k and a fixed threshold
τ the relation Ai(k) < Ci(k) + τ is satisfied.

At the end of this operation, the true envelope has the same
size than the cepstrum. To concentrate the information conveyed
by this envelop into a smaller number of coefficients, the Discret
Cosine Transform (DCT) is computed on the envelop and the firsts
coefficients are retained. (This method is similar to the method
applied to obtained the MFCC). We named in the following, the
coefficients obtained TECC.

The goal of any envelope estimation is to retain from the sig-
nal the contribution of the filter by discarding information of the
pitch. For high pitched signals this estimation can be problematic
since the envelope can start following the peaks related to the pitch
instead of the global shape. In general, if the order of the model
is low (small number of coefficients) this problem is avoided but
a too low order is not be sufficient to preserve the global shape.
Finding the optimal order is not straightforward. Experimentally
we chose: 25 TECC, 20 MFCC and 15 LPC to model the envelope
on pseudo-stationary sung signals.

3.1.2. Intonation: Global description of a note

As explained above, the singing voice differs from the speech in
its musical intention and its production. Most of the sung sounds
are voiced and sustained. Because of the mode of production of
voice two kinds of variations appear on sustained tones:

Vibrato refers to a periodic modulation of frequency. It is a
natural effect of singing voice that can be voluntary enhanced by
the singer but exists naturally due to the mechanism of the singing
production. When a sung tone is emitted with a vibrato, a range
of frequencies (centered on the note frequency) is browsed by the
vocal tract. Because of its shape, the vocal tract enhances the reso-
nance of some frequencies. So that, depending on the morphology

DAFX-3

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-129



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

of the singer, a frequency modulation is accompanied with a mod-
ulation of amplitude. The latter is referred as tremolo in music.
In addition, when two distinct (and distant) notes are sung in the
same breath, the singers pass from one to another by a continu-
ous variation of the frequency. If the interval between the notes
is small (smaller than a 3rd) the smooth transition is referred to
as legato. When the gap is higher, the transition is named porta-
mento. Portamento is a singing specific term, when string instru-
ments glides continuously from one pitch to another the transition
is named glissando.

To obtained information related to periodic and continuous
(resp. vibrato and portamento) of a given note, we propose to pa-
rameterize the fundamental frequency of a note with the following
model:

f(t) = f̄ · (df (t) + x(t)) + ε(t) (3)
Where f̄ is the mean of f(t) representing the perceived pitch, x(t)
is a periodic modulation of frequency representing the vibrato, and
df (t) is a continuous variation of the pitch representing the porta-
mento.

The parameters can be computed as follow:
• First, f̄ is given by the mean of f(t). In order to get equiv-

alent values for two partials with frequencies harmonically
related (fp(t) = k.fq(t), k ∈ Q), the other parameters of
(3) are computed on a normalized version of the frequency
trajectory: f(t)/f̄ .

• The quantity f(t)/f̄ is low-pass filtered with a cutoff fre-
quency fc = 4Hz. The result of the filtering process is a
curve representing the relative frequency variation df (t)
parameterized with a third-order polynom Pdf .

• The periodic component x(t) is obtained by subtracting
the relative frequency deviation df (t) from the relative fre-
quency: x(t) = f(t)/f̄ − df(t).

The vibrato term x(n) can be written as a periodic modula-
tion characterized by an amplitude (or extent) E, a frequency of
modulation (or rate) r and a phase at the origin φ0:

x(t) = E · cos(2πrt+ φ0) (4)

The vibrato parameters (only E and r are of interest) are es-
timated using classical methods for sinusoidal parameters estima-
tion.

As mentioned earlier, in singing the presence of vibrato im-
plies the presence of an amplitude modulation (tremolo) and we
suppose the relation between the two modulation singer-specific.
The AM’s parameters (amplitude and rate) are estimated using
equations (3) and (4) applied on the function of amplitude a(t).

a(t) = ā.(da(t) + x(t)) + ε(t) (5)

In this case, the term ā is related to the global loudness (or
the dynamic {p,mf, f, . . . }). The low variation da(t) transcribes a
possible variation of dynamic (crescendo for example). The sinu-
soidal part x(t) represents the amplitude modulation itself.

In practice, the sinusoidal components (partials) are tracked
along the studied sound and the analysis is performed on each par-
tial.

3.1.3. Duality of descriptions

We can resume the features obtained on one note, using these two
complementary descriptions as presented in Table 1.

Feature
type

Local (see sec.3.1.1) Global (sec.3.1.2)

Nature of
the descrip-
tion:

Local variations
(High frequencies)

Overall structural in-
formation (Low fre-
quencies)

Analyze
performed
on:

p stationary portions
of the signal (frames)

the whole note

Size of the
description:

1 feature matrix
per note X =
[~x1, . . . , ~xp] where
~xi (with n coeff )
is the feature vector
obtained on frame i

1 feature vector per
trajectory of fre-
quency analyzed: ~x,
either the fundamen-
tal f0 or p’ partials
analyzed

Dimension n× pframe p′partiels × n′
Table 1: Global and local features extracted on a sung tone

3.2. Learning the specificities of classes

It exists numerous statistical algorithms for pattern recognition.
We present in table 2 three classes of algorithm that differ in their
approach. All of them perform supervised classification. Next, in
the evaluation, we used one algorithm (the one given in example)
from each class.

Type Generative Discriminative Instance-based

General
Idea
Principle Build one

model per
class

Learn the
boundaries
between the
classes

Compare items

Example Gaussian Mix-
ture Model

Support Vector
Machine

k-Nearest
Neighbors

GMM SVM kNN
Classify
new
pattern

Likelihood for
each class

Affinity to the
margins

Distance to the
closest neigh-
bors

Output Posterior prob-
ability

Distance Distance

Table 2: Different approaches to classify patterns

As shown on the last row of table 2 the outputs of classifiers
can have different type and range in different intervals. We can
consider, without lost of generality, that all the outputs have values
in the interval [0, 1] and represent a (pseudo) posterior probability
that an item belong to one class. The transformation of classifier
outputs into pseudo-posterior probability can be done using the
softmax method proposed in [21].

Using the features and the classifier presented above we sug-
gest to identify singer by the two types of information. In the next
section we detail the method use for the combination.
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3.3. Combination method

The proposed approach is a multi-stage classification method that
reduces at each step the set of possible classes until a reduced set
of classes remains possible. Then the membership measurements
of all classifiers for each remaining class are analyzed to take a
final decision.

The approach proposed here is especially adapted to:
•Combine classifications with different levels of performance.
• Solve problems involving a large number of class with no hi-

erarchical organization of the data.
• Combine a low number of representations (when a cascade

classification can not be processed until only a single class remain
possible)

We first introduce the notation and then present the framework
and discuss the choice of the parameters of the method that will
later be applied to combine local and global features.

3.3.1. Notations

• Each pattern z (in our case one note) is assigned to one of
the N possible classes: Ω = {ω1 . . . ωN} .

• Each pattern can be described using different set of features,
the set of available descriptions Di is denoted by D =
{D1 . . . DL} .

• The set of classifiers is denoted by C = {C1 . . . CM} .

• A system of classification is composed of one description
and one classifier: S(k) =

“
D(k), C(k)

”
where D(k) ∈

D and C(k) ∈ C .

• In our problem, the first part of the combination is done
using a sequential scheme. For a given pattern z, at each
step of the classification, the number of possible classes
is reduced. So that, each system works with a specific
Ω(k)(z). If S(k)(z) is performed before S(k+1)(z), thus
Ω(k+1)(z) ⊂ Ω(k)(z) ⊂ Ω(0) = Ω.

• For a given classification task, all systems of classification
are trained using the same data set. Since the pattern rep-
resentation D(k) of this data-set changes for each k, the
training set associated with S(k) is denoted by T (k). Fi-
nally, we denote by T (k)

↓ (z) the training-set reduced to
patterns with labels in Ω(k)(z).

• In the rest of this section we work with classifiers return-
ing a membership measurement for each class of the prob-
lem. The output of such a classifier is denoted C(k)(z) =

M (k)(z) =
h
m

(k)
1 (z), . . . ,m

(k)
N (z)

i
• Working on the combination of classifier outputs we store

the decision of the K classifiers for the N given classes in
a decision profile matrix (of size N ×K) denoted by M

3.3.2. General framework

The idea behind our method is the following: The probability to
retrieve the correct class of an unknown pattern increases when the
number of possible classes of a given classifier decreases. So that,
a classification system with a relative low accuracy can enhances
the performance of a system with higher accuracy if the problem

given to the weaker system is simplified by the more accurate sys-
tem. By “simplified problem” we mean a problem with a smaller
number of classes.

The general framework can be summarized as follow:
The algorithm starts with a set of N class Ω(0) = Ω, two de-
scriptions of the same data set T (1) and T (2) and two classifiers
C(1) and C(2). For each pattern z, system S(1) returns a measure-
ment vector M (1)(z). The N (1) most likely classes are retained
to form a new class-set Ω(1) ⊂ Ω(0). The training-set used by
the second system S(2) is reduced to patterns with classes in Ω(1).
The training-set derived from T (2) is denoted T (2)

↓ . Then, the sec-

ond classification system S(2) trained on T (2)
↓ is applied to the

unknown pattern z. The process can be iterated as long as:

• The last classifier does not return a single class.

• Another system (either a new description of a new classi-
fier) is still available.

If the method is iterated until only one class remain possible
(N (K) = 1) then the method works as a decision tree. If the
process is stopped when N (K) > 1 classes remain possible, then
the rule for parallel combination can be applied on the output of
the classifiers for theN (K) remaining classes. In opposition, if the
class-set is not reduced at each step (N (K) = N), then the method
is equivalent to a classical parallel scheme of combination.

The method is illustrated in Figure 1.

T(1) :
training-set  

Ts(1)

z

T(2)

Ts(2)

z

System 1
S(1) = (D(1) ,C(1))
D(1) = [Ts(1), T(1)]

C(1)

T(2)
↓

C(2)

Ω0={ω1,...,ωN}

Ω(1) ⊂ Ω(0) 

Ω1

Ω(2) ⊂ Ω(1) 

System 2
S(2) = (D(2) ,C(2))
D(2) = [Ts(2), T(2)]

T(K)

Ts(K)

z

T(K)
↓

C(K)

Ω(K-1)

System K
S(K) = (D(K) ,C(K))
D(K) = [Ts(K), T(K)]

...

M1 = [m11, ..., m1
N] M2 = [m21,..., m2

M] MK = [mK1,..., mK
L] M=[MK;...;MK] 

ω

Figure 1: Scheme of the proposed method to combine K systems

We know discuss the choice of the different parameters of the
method.

3.3.3. Choice of parameters

Choice of Ω(k): The number can be simply defined by a re-
lation of type: N (k) = N(k−1)

c(k)
where c(k) are defined before-

hand. Dynamic rules, as Bayesian information criterion or elbow
method, applied on the measurements m(k)

n , can be used to define
the number of class selected at each step.

Choice of feature space and classifier: There is no restriction
on the choice of the descriptions D(k) and the classifiers S(k).
Thus for i 6= j, the combination system can be set up with D(i) =
Dj or Ci = Cj . From our experiments the proposed method is
still accurate if Si = Sj .

Combination rule: At the end of the sequential stage N (K)

classes remain possible. TheK vectors of measurementsM (k)(z)

are reduced to values of classes in Ω(K) before being combined
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into a decision profile matrix M . We suggest to first normalize
each column of M on the N (K) remaining classes, and then to
apply a sum-rule for the reasons explained in [14].

Sequential organization of the S(k): If knowledge on the
performances of the K systems is available, we recommend to put
the best systems at the top of the iterative process. If all systems
have equivalent performances, or if the relative performances can-
not be estimated, the systems that require the lowest number of
computation should be place at the end of the process to reduce
the cost.

4. EVALUATION OF THE PROPOSED METHOD ON A
TASK OF SINGER IDENTIFICATION

We evaluate the proposed method on two distinct sets of data. Both
sets are made of isolated notes and we report for each configuration
tested the percentage of note assigned to their correct singer. The
task is referred to as “closed-set identification” problem (i.e each
note belong to one and only one singer of the set).

4.1. Data-set

The two sets are chosen for their complementarities.
The first data set, LYR, is composed of recordings made by 17

lyric female singers in laboratory conditions. The full description
of this set is given in [22]. For each singer, the same set of tones
is available (3 pitches: A5, D5, G4 sung with 3 levels of intensity:
p, mf, f and each couple [pitch, intensity] is repeated 3 times). On
this set, the task is referred as “closed-set, note-dependent identi-
fication” (as text dependent identification).

The second data set, POP, has been created by segmenting
the vocal track of “pop-rock” songs into sustained notes. For each
singer, we work with notes extracted from 3 songs. The task there
is referred to as “close-set, note-independent” identification be-
cause each singer has a set of notes related to its tessitura. In this
set, male and female singers are present.

The two data-sets can be summarized as shown in table 3.

Data-set Name LYR POP
Type of voice Lyric female

singers
Rock-Pop singers

Nb of singer 17 (females: F ) 18 (8 Males / 10 F)
Nb of sample per
singer

27 notes per
singer

3 songs per singer
segmented into ≈
50 notes each

Nb of sample per
set

27 × 17 = 459
notes

2492 notes

Recordings Laboratory con-
dition

Personal recording
system

Nature Isolated notes Notes extracted
from songs (in
context)

Task Note-dependent Note-independent
Table 3: Description of the two data-sets used for the evaluation

4.1.1. Composition of training and testing set

The evaluation is done using supervised machine learning method.
Both data-sets are divided into three folds: the training phase is
done on the data of 2 folds and the validation is conducted on the

remaining data. Evaluation is done using a 3 folds cross-validation
obtained by rotating folds, and for each experiments we report the
average accuracy of the 3 experiences.

On LYR,the set of sample available for one singer can be sum-
marized as shown in table 4. To cover the variability of one singer

LYR p mf f
A5 1 2 3 1 2 3 1 2 3
D5 1 2 3 1 2 3 1 2 3
G4 1 2 3 1 2 3 1 2 3

Table 4: Data available for one singer in LYR

and build more general models, we put into one fold data with all
available pitches and intensities. To avoid having too similar data
in the training and testing data-set all repetitions of the same note
(pitch, intensity) are putted into the same fold. We illustrate in
table 4 the repartition of the samples from singer into the 3 folds
(where each color represent one fold).

On the POP data-set, each singer uses its own system of record-
ings and sometimes this system changes from one song to another.
To ensure that the identification is performed on the singer identity
and not on the song (album effect) we chose to put in one fold all
notes extracted from one song. Thus, for each fold evaluation, the
singer identity is learned using the notes obtained on two songs and
the model obtained is tested on the notes of the remaining song.

4.2. Application of the proposed method

We now evaluate how the singer of a given note is retrieved when
using local and global features independently and how the identi-
fication is enhanced when local and global features are combined
with the method presented in 3.

The combination method is applied for K=2 systems of clas-
sification where the first system is based on local features and the
second one on global features. We thus have:
• Systems: S(1) =

“
D(1), C(1)

”
and S(2) =

“
D(2), C(2)

”
• Descriptions: D = {D1, . . . , D4} with Di for i = 1 . . . 3 are
representations of the data based on local features:
(D1 ← TECC, D2 ←MFCC and D3 ← LPC ) and
D4 is based on global features ( D4 ← INTO ). Thus we have

D(1) = Di with i = {1, 2, 3} and D(2) = D4

. Experimentally we use 25 TECC, 20 MFCC, and 15 LPC.
•Classifiers: The available set of classifier is denoted by C where
C = {C1, C2, C3} = {SVM,GMM,SVM}. All possible
configurations are tested for the combination:

∀j , C(j) = Ci with i = 1, 2, 3

• Class-set reduction rule: The number of classes remaining at
the end of the first stage is defined dynamically. The membership
values are normalized such that their sum is equal to one. The
classes that explain 80% of the posterior probabilities are retained
to form the new subset of classes of size N (1).
• Combination rule: Once the membership measurements for the
N (1) remaining classes have been normalized and concatenated to
form a decision profile matrix, we apply a “sum-rule” to take the
final decision for the reasons explained in [14].
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Feature I TECC MFCC LPC
Feature IIC1              C2 SVM 84.97 kNN 83.22 GMM 77.56 SVM 73.42 kNN 72.55 GMM 65.36 SVM 80.61 kNN 77.78 GMM 69.06

SVM   (40.74) 85.84 82.79 81.92 79.09 78.43 75.16 86.06 81.05 77.34

Into GMM  (39.22) 85.19 83.01 81.05 79.3 78.65 75.38 83.66 80.83 78.21

Harmo kNN   (43.57) 87.15 86.93 82.14 78.65 76.91 76.03 85.19 85.19 78.43

SVM   (42.48) 88.24 87.58 84.31 78.88 80.39 77.34 85.84 83.66 80.17

Into GMM  (42.70) 86.49 85.84 84.75 79.3 79.96 76.03 85.4 83.44 79.96

InharmokNN   (39.22) 86.06 86.27 83.66 76.69 75.82 77.56 84.1 83.01 79.52

Feature I TECC MFCC LPC
Feature II SVM (84.97) kNN (83.22) GMM (77.56) SVM (73.42) kNN (72.55) GMM (65.36) SVM (80.61) kNN (77.78) GMM (69.06)

SVM (42.48) 89.11 87.8 84.97 79.3 78.21 76.69 86.93 84.97 79.3

Into GMM (42.70) 86.93 86.27 84.97 79.52 80.39 76.69 86.93 83.88 79.74

kNN (39.22) 87.58 87.8 81.7 78.21 77.12 73.86 84.97 83.88 74.29

LYR

Feature I TECC MFCC LPC
Feature II SVM (73.57) kNN (69.02) GMM (69.60) SVM (64.66) kNN (59.26) GMM (56.21) SVM (69.10) kNN (63.81) GMM (56.17)

SVM (50.12) 78.97 72.92 74.07 0.71 0.68 0.56 74.85 69.60 66.05
Into GMM (46.91) 70.72 68.29 72.80 0.65 0.61 0.60 69.92 66.74 61.23

kNN (43.25) 73.92 69.80 71.99 0.67 0.64 0.62 70.41 65.97 64.37

POP

Table 5: Results of combination method for singer lyric singer identification (LYR)

Feature I TECC MFCC LPC
Feature IIC1              C2 SVM 84.97 kNN 83.22 GMM 77.56 SVM 73.42 kNN 72.55 GMM 65.36 SVM 80.61 kNN 77.78 GMM 69.06

SVM   (40.74) 85.84 82.79 81.92 79.09 78.43 75.16 86.06 81.05 77.34

Into GMM  (39.22) 85.19 83.01 81.05 79.3 78.65 75.38 83.66 80.83 78.21

Harmo kNN   (43.57) 87.15 86.93 82.14 78.65 76.91 76.03 85.19 85.19 78.43

SVM   (42.48) 88.24 87.58 84.31 78.88 80.39 77.34 85.84 83.66 80.17

Into GMM  (42.70) 86.49 85.84 84.75 79.3 79.96 76.03 85.4 83.44 79.96

InharmokNN   (39.22) 86.06 86.27 83.66 76.69 75.82 77.56 84.1 83.01 79.52

Feature I TECC MFCC LPC
Feature II SVM (84.97) kNN (83.22) GMM (77.56) SVM (73.42) kNN (72.55) GMM (65.36) SVM (80.61) kNN (77.78) GMM (69.06)

SVM (42.48) 89.11 87.8 84.97 79.3 78.21 76.69 86.93 84.97 79.3

Into GMM (42.70) 86.93 86.27 84.97 79.52 80.39 76.69 86.93 83.88 79.74

kNN (39.22) 87.58 87.8 81.7 78.21 77.12 73.86 84.97 83.88 74.29

LYR

Feature I TECC MFCC LPC
Feature II SVM (73.57) kNN (69.02) GMM (69.60) SVM (64.66) kNN (59.26) GMM (56.21) SVM (69.10) kNN (63.81) GMM (56.17)

SVM (50.12) 78.97 72.92 74.07 71.37 67.94 56.05 74.85 69.60 66.05
Into GMM (46.91) 70.72 68.29 72.80 64.97 61.00 60.03 69.92 66.74 61.23

kNN (43.25) 73.92 69.80 71.99 67.01 63.70 61.81 70.41 65.97 64.37

POP
Table 6: Results of combination method for singer pop-rock singer identification (POP)

4.3. Results

We present in table 5 the results obtained in the LYR data-set and
in table 6 the results obtained on POP data-set.

For both tables, the different configurations of S(1) are pre-
sented in the first row and the configurations of S(2) in the first
column. The number into bracket placed beside the name of each
classifier indicates the accuracy of the system when a single clas-
sification is applied. Finally, the accuracies of the combined clas-
sifications are reported at the intersection of the two systems used.

The task evaluated here is challenging since only a short seg-
ment (a note of few seconds length) is used to recognize the singer.
We comment first results with a single type of feature and then
comment the results obtained with the combination.

4.3.1. Results on single classification

Single classification with timbre-based features
From the results obtained with TECC, MFCC and LPC (first row
of each table) we can deduce that timbre-based features are rather
appropriate to describe voice on acapella recordings. However, we
remark that results obtained on LYR are much better than results
obtained with POP. In LYR, all samples have been recorded in
the same ideal conditions (same mic, room) so that we can ensure
that the spectral envelopes of these sounds are clearly conveying
information on the vocal tract of singers. Probably the results on
POP are affected by the “album-effect". We have also evaluated
the performance of classification on POP when the singer models
are learned on 2 thirds of each song and the validation is done on
the remaining data. With a 3 folds cross-validation the average
accuracy obtained is equal to 96%.

For all experiments, the TECC outperform the MFCC and
LPC. In both cases, the best result is obtained when working with
TECC and SVM. SVM seems to perform better than other classi-
fiers. Even if it is not possible to ensure that each system has been
optimized (transformation of the feature space, choice of the clas-
sifier parameters, etc.) we see from all these experiments that it is
not possible to retrieve the singer with these features even when
the task is done on acapella recordings.

Single classification with intonation-based features
Intonative features have not been yet used to singer or instrument
recognition. These features can somehow find an equivalent in the
prosodic features used in speaker identification. On both data-sets
the classifications obtained with INTO features show a relatively
good accuracy. We remind that a random classification would

have an accuracy ≈ 5% when working with 17 or 18 singers.
The better results obtained on POP can be easily explained. All
singers in LYR have a pretty similar technique, and all their vi-
bratos look and sound pretty similar. We do not have any infor-
mation on the technique of the singers in POP but by comparing
the spectrograms (and the partials) of POP singers we can see that
the variety in vibrato technique is much larger. The vibrato of
lyric singers generally has a large extent and it very regular but
the vibrato is definitely present in pop-rock type of voices. From
this experiments, we can conclude that expressive elements such
as vibrato, tremolo and portamento are singer-specific. Contrary
to timbre-based features, intonative features should not affected
by the “album-effect". Theoretically, the correlation between the
amplitude and the frequency modulation should remain constant
across the different songs of the singer. According to the analysis
done on vibrato rate we can also ensure that the rate of singers’ vi-
brato does not vary much between different songs of a singer (even
if the songs have different tempo or mood).

The capacity to discriminate the classes of each feature com-
posing INTO have been studied using the IRMSFP algorithm pro-
posed in [16]. On the two data-sets the vibrato rate, the tremolo
rate and the vibrato extent are the most discriminative features.
In POP, the coefficients of the polynomial, representing the porta-
mento, are also of importance. This is mainly due to the fact that
the notes composing POP have been extracted from full song,and
in many cases the segment analyzed contain note transition.

4.3.2. Results of the combination

In most of cases, combining local and global features with the
proposed approach increases the identification accuracy. In av-
erage (over all experiments per data-set), a gain of 6.23% and
4.48% is obtained on LYR and POP respectively. In practice,
the higher the accuracy of one system is, the more difficult will
be to improve the performance by combining a system with a
lower accuracy. The gap between the different systems perfor-
mance is greatly reduced with the double classification. For ex-
ample, if we consider the results on LYR obtained with a sin-
gle classification based on LPC (S(1), D(1) = LPC), the vari-
ance of the results obtained with any classifiers is equal to 15
(∀Ci, σ(Acc(S(1))) = 15). When the classifications based on
LPC are combined with INTO features, the variance of the results
is reduced to 3.44 ∀S(2), σ(Acc(S(1) ∩ S(2))) = 3.44.

This method of combination has been developed because no
one of the traditional methods provides an amelioration of the per-
formance already obtained with timbre-based features.
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5. CONCLUSION

In this paper we have proposed a new method to identify singer
using isolated notes. In the proposed method, the notes to be clas-
sified are described using local and global features representing
respectively the spectral envelope and some expressive attributes
specific to singing. Local descriptors such as MFCC and LPC have
been previously used for this kind of experiment but we suggest to
transcribe the spectral envelope with a new set of coefficients de-
rived from the true envelope. This new set of coefficients (TECC)
show better performances than coefficients traditionally used to
transcribe timbre, at least for this task. In general, especially in
very clean signals of singing, they perform good classification. In
the case studied especially when the classes are learned with SVM.
In addition, the set of global features (INTO), previously used to
detect the presence of voice within songs, have been proved to be
useful to characterize singer identity. They do not obtained results
as good as results of timbre-based features but they have the real
advantage of being completely orthogonal to the latter. In prac-
tice, it is not straightforward to find improve a good classification
by introducing information yielding to a poorer classification per-
formance. We have proposed a methods based on the idea that a
system of classification with a relative low accuracy can be em-
ployed to enhance the classification returned by a stronger system
if the problem given to the weaker system is simplified by the best
of the two systems. In other words, for a given note, the best sys-
tem is asked to deduce a subset of possible classes (as small as
possible and which still contains the true class) then the second
system is asked to perform the classification on the reduced set of
classes. Finally, the membership measurements of the reduced set
of classes returned by the two classifiers are analyzed to take the
final decision. This combination method appear to be efficient for
this task since the results obtained by this combination are always
better than the results obtained using a single classification.
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ABSTRACT

We present two new beat tracking algorithms based on the auto-
correlation analysis, which showed state-of-the-art performance in
the MIREX 2010 beat tracking contest. Unlike the traditional ap-
proach of processing a list of onsets, we propose to use a bidirec-
tional Long Short-Term Memory recurrent neural network to per-
form a frame by frame beat classification of the signal. As inputs
to the network the spectral features of the audio signal and their
relative differences are used. The network transforms the signal
directly into a beat activation function. An autocorrelation func-
tion is then used to determine the predominant tempo to eliminate
the erroneously detected - or complement the missing - beats. The
first algorithm is tuned for music with constant tempo, whereas
the second algorithm is further capable to follow changes in tempo
and time signature.

1. INTRODUCTION

For humans, tracking the beat is an almost natural task. We tap
our foot or nod our head to the beat of the music. Even if the beat
changes, humans can follow it almost instantaneously. Nonethe-
less, for machines the task of beat tracking is much harder, espe-
cially when dealing with varying tempi, as the numerous publica-
tions by different authors on this subject suggest.

Locating the beats precisely opens new possibilities for a wide
range of music applications, such as automatic manipulation of
rhythm, time-stretching of audio loops, beat accurate automatic DJ
mixing or self-adapting digital audio effects. Beats are also crucial
for analyzing the rhythmic structure, and the genre of songs. In
addition they help identifying cover songs or estimating the simi-
larity of music pieces.

The remainder of this paper is structured as follows: Section 2
gives a short overview over existing methods for beat tracking.
Section 3 briefly introduces the concept and different types of neu-
ral networks with a special emphasis on bidirectional Long Short-
Term Memory recurrent neural networks, which are used in the
proposed algorithms. Section 4 details all aspects of the newly pro-
posed beat tracking algorithms. Results and discussion are given in
Section 5 and the final section presents conclusions and an outlook
to further works.

2. RELATED WORK

Most methods for beat tracking of audio signals have a working
scheme like the one shown in Figure 1. After extracting features
from the audio signal, they try to determine the periodicity of the
signal (the tempo) and the phase of the periodic signal (the beat

locations). The features can be for example onsets, chord changes,
amplitude envelopes, or spectral features. The choice of a par-
ticular feature mostly depends on the subsequent periodicity es-
timation and phase detection stages. For periodicity estimation,
autocorrelation, comb filter, histogram, and multiple agent based
induction methods are widely used. Some methods also produce
phase information during periodicity estimation, and therefore do
not need a phase detection stage to determine the exact position of
the beat pulses. [1] gives a good overview on the subject.

Periodicity 
estimation

Phase
detectionSignal BeatsFeature 

extraction

Tempo

Figure 1: Basic workflow of traditional beat tracking methods.

Most of todays top performing beat tracking algorithms rely
on onsets as features [2, 3, 4]. Since music signals contain much
more onsets than beats, additional processing is needed to locate
the beats within the onsets. By transferring this determination
of beats into a neural network, less complex post-processing is
needed to achieve comparable or better results.

3. NEURAL NETWORKS

Neural networks have been around for decades and are success-
fully used for all kind of machine learning tasks.

The most basic approach is the multilayer perceptron (MLP)
forming a feed forward neural network (FNN). It has a minimum
of three layers where the input values are fed through one or more
hidden layers consisting of neurons with non-linear activation func-
tions. The output values of the last hidden layer are finally gath-
ered in the output nodes. This type of network is a strictly causal
one, where the output is calculated directly from the input values.

If cyclic connections in the hidden layers are allowed recurrent
neural networks (RNN) are formed. They are theoretically able to
remember any past value. In practice however, RNNs suffer from
the vanishing gradient problem, i.e. input values decay or blow up
exponentially over time.

In [5] a new method called Long Short-Term Memory (LSTM)
is introduced to overcome this problem. Each LSTM block (de-
picted in Figure 2) has a recurrent connection with weight 1.0
which enables the block to act as a memory cell. Input, output,
and forget gates control the content of the memory cell through
multiplicative units and are connected to other neurons as usual.
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If LSTM blocks are used, the network has access to all previous
input values.

Forget
Gate

Output
Gate

Input

Input
Gate•

•

•

1.0

Output

Memory
Cell

Figure 2: LSTM block with memory cell

If not only the past, but also the future context of the input is
necessary to determine the output, a number of different strategies
can be applied. One is to add a fixed time window to the input,
another solution is to add a delay between the input values and the
output targets. Both measures have their downsides as they either
increase the input vector size considerably or the input values and
output targets are displaced from each other.

Bidirectional recurrent neural networks (BRNN) offer a more
elegant solution to the problem by doubling the number of hidden
layers. The input values to the newly created set of hidden layers
are presented to the network in reverse temporal order. This offers
the advantage that the network not only has access to past input
values but can also ’look into the future’.

If bidirectional recurrent networks are used in conjunction with
LSTM neurons, a bidirectional Long Short-Term Memory (BLSTM)
recurrent neural network is build. It has the ability to model any
temporal context around a given input value. BLSTM networks
performed very well in areas like phoneme and handwriting recog-
nition and are described more detailed in [6].

4. ALGORITHM DESCRIPTION

This section describes our algorithm for beat detection in audio
signals. It is based on bidirectional Long Short-Term Memory
(BLSTM) recurrent neural networks. Due to their ability to model
the temporal context of the input data [6], they perfectly fit into the
domain of beat detection. Inspired by the good results for musical
onset detection [7], the approach of this work is used as a basis and
extended to suit the needs for audio beat detection by modifying
the input representation and adding an advanced peak detection
stage.

Figure 3 shows the basic signal flow of the proposed system.
The audio data is transformed to the frequency domain via three
parallel Short Time Fourier Transforms (STFT) with different win-
dow lengths. The obtained magnitude spectra and their first order
differences are used as inputs to the BLSTM network, which pro-
duces a beat activation function. In the peak detection stage, first
the periodicity within this activation function is detected with the
autocorrelation function to determine the most dominant tempo.

The beats are then aligned according to the previously computed
beat interval. We propose two different peak detection algorithms,
one tuned for music with constant tempo and beats (BeatDetec-
tor) and a second one which is able to track tempo changes (Beat-
Tracker). The individual blocks are described in more detail in the
following sections.

STFT & 
Difference

STFT & 
Difference

BLSTM 
Network

Peak
detectionSignal Beats

STFT & 
Difference

Figure 3: Basic signal flow of the presented beat detector / tracker

4.1. Feature Extraction

As input, the raw pulse code modulated (PCM) audio signal with
a sampling rate of fs = 44.1 kHz is used. To reduce the com-
putational complexity, stereo signals are converted to a monaural
signal by averaging both channels. The discrete input audio signal
x(n) is segmented into overlapping frames of W samples length.
The windows with lengths of 23.2 ms, 46.4 ms, and 92.8 ms (1024,
2048, and 4096 samples respectively) are sampled every 10 ms, re-
sulting in a frame rate fr = 100 fps. A standard Hamming win-
dow w(l) of the same length is applied to the frames before the
STFT is used to compute the complex spectrogram X(n, k)

X(n, k) =

W
2
−1∑

l=−W
2

w(l) · x(l + nh) · e−2πjlk/W (1)

with n being the frame index, k the frequency bin index, and h
the hop size or time shift in samples between adjacent frames.
The complex spectrogram is converted to the power spectrogram
S(n, k) by omitting the phase portion of the spectrogram by:

S(n, k) = |X(n, k)|2 (2)

Psychoacoustic knowledge is used to reduce the dimensionality of
the resulting magnitude spectra. To this end, a filterbank with 20
triangular filters located equidistantly on the Mel scale is used to
transform the spectrogram S(n, k) to the Mel spectrogramM(n,m).
To better match the human perception of loudness, a logarithmic
representation is chosen (cf. Figure 4(a)):

M(n,m) = log
(
S(n, k) · F (m, k)T + 1.0

)
(3)

If large window lengths are used for the STFT, the raise of the
magnitude values in the spectrogram occurs early compared to the
actual beat location (cf. Figure 4(b)). Instead of calculating the
simple positive first order difference as in [7], a more advanced
method is used to overcome this displacement of the actual beat
locations compared to the positive first order difference. First a
median spectrogram Mmedian(n,m) is obtained according to
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Mmedian(n,m) = median{M(n− l∗,m), . . . ,M(n,m)} (4)

with l∗ being the length for which the median is calculated. This
length depends on the used window size W for the STFT, and is
computed as: l∗ = bW/100c. Both the use of the median and the
length of the window were empirically determined during prelimi-
nary studies. The positive first order median difference D+(n,m)
is then calculated as

D+(n,m) = H (M(n,m)−Mmedian(n,m)) (5)

with H(x) being the half-wave rectifier function H(x) = x+|x|
2

(cf. Figure 4(c)). Using only the positive differences as additional
inputs to the neural network gave better performance than omitting
the differences at all or including both the positive and negative
values.

4.2. Neural Network

For the neural network stage, a bidirectional recurrent neural net-
work with LSTM units is used. As inputs to the neural network
three logarithmic Mel-spectrograms M23(n,m), M46(n,m) and
M93(n,m) (computed with window sizes of 23.2 ms, 46.4 ms, and
92.8 ms, respectively) and their corresponding positive first order
median differences D+

23(n,m), D+
46(n,m), and D+

93(n,m) are
used, resulting in 120 input units. The fully connected network
has three hidden layers in each direction, with 25 LSTM units each
(6 layers with 150 units in total). The output layer has two units,
representing the two classes ‘beat’ and ‘no beat’. Thus the net-
work can be trained as a classifier with the cross entropy error
function. The outputs use the softmax activation function, i.e., the
output of each unit is mapped to the range [0, 1] and their sum is
always 1. The output nodes thus represent the probabilities for the
two classes.

4.2.1. Network Training

The network is trained as a classifier with supervised learning and
early stopping. The used training set consists of 88 audio excerpts
taken from the ISMIR 2004 tempo induction contest1 (also known
as the "Ballroom set") with lengths of 10 seconds each, the 26
training and bonus files from the MIREX 2006 beat tracking con-
test2 with lengths of 30 seconds, and 6 musical pieces of the set in-
troduced by Bello in [8] with lengths from 3 to 15 seconds. Each
musical piece is manually beat annotated, marking every quarter
note in case of time signature with a denominator of four (i.e., 2/4,
3/4, and 4/4), and the eighth note for all pieces (or parts of pieces)
with a time signature of 5/8 or 7/8. The 120 files have a total length
of 28.5 minutes and 3,595 annotated beats.

Each audio sequence is preprocessed as described above and
presented to the network for learning. The network weights are
initialized with random values following a Gaussian distribution
with mean 0 and standard deviation 0.1. Standard gradient descent
with backpropagation of the errors is used to train the network. To
prevent over-fitting, the performance is evaluated after each train-
ing iteration on a separate validation set (a 15% randomly chosen
disjoint part of the training set). If no improvement is observed for

1http://mtg.upf.edu/ismir2004/contest/tempoContest/node5.html
2http://www.music-ir.org/mirex/wiki/2006:Audio_Beat_Tracking

20 epochs, the training is stopped and the network state with the
best performance on the validation set is used onwards.

4.2.2. Network Testing

Since the network weights were initialized randomly, five differ-
ent networks were trained on different sets of the training data.
The beat activation functions of the ’beat’ output nodes are then
averaged and used as input to the following stage (cf. Figure 4(d)).
For the evaluation the preprocessed music excerpts are presented
to these five previously trained networks.

4.3. Peak Detection

The averaged beat activation function (cf. Figure 4(d)) gives the
probability of a beat at each frame. Similar to [7], the function
could be used directly to determine the beats by applying a simple
threshold. However, a more sophisticated algorithm for peak pick-
ing is applied here. It is able to reduce the relatively high number
of false positives and negatives even further. This method yields
an F-measure value of 0.88 for a 5-fold cross validation on the
complete training set, compared to 0.81 achieved using a simple
threshold.

If constant tempo is assumed for (a part of) the musical piece,
the predominant tempo can be used to eliminate false positive
beats, or complement missing false negative ones. The two dif-
ferent proposed peak detection techniques differ only in the length
for which a constant tempo is assumed. The BeatDetector assumes
a constant tempo throughout the whole musical piece, whereas the
BeatTracker considers only a moving window which covers the
next 6 seconds. This modification enables the BeatTracker to fol-
low tempo changes.

4.3.1. Autocorrelation Function

Both proposed algorithms first determine the tempo for the musi-
cal piece. The BeatDetector uses the entire input signal for calcu-
lation, whereas the BeatTracker only uses the next 6 seconds rel-
ative to the actual starting point. The most dominant beat interval
of this segment is used to estimate the tempo. The autocorrelation
function (ACF) is calculated on the beat activation function ab(n)
as follows:

A(τ) =
∑

n

ab(n+ τ) · ab(n) (6)

The algorithm constrains the possible tempo range of the audio
signal from Tmin = 40 to Tmax = 220 given in beats per minute.
Thus only values of A(τ) corresponding to the range from
τmin = 273ms to τmax = 1.5 s are used for calculation. Since
music tends to slightly vary in tempo and beats sometimes oc-
cur early or late relative to the absolute position of the dominant
tempo, the resulting inter beat intervals vary as well. Therefore a
smoothing function s is applied to the result of the autocorrelation
function A(τ). A Hamming window with a size of τt = 150ms
is used. The size of this window is not crucial, as long as it is
wide enough to cover all possible interval fluctuations and remains
shorter than the smallest delay τmin used for the autocorrelation.
This results in the smoothed autocorrelation function A∗(τ):

A∗(τ) = A(τ) ? s (τt) (7)
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(a) Logarithmic Mel spectrogram with an STFT window of 92.8 ms

0 50 100 150 200 250 300 350 400
Time [frames]

0

5

10

15

20

M
e
l 
fr

e
q
u
e
n
cy

 b
a
n
d

(b) Positive first order difference to the preceding frame
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(c) Positive first order difference to the median of the last 0.41 s

(d) Beat activation function (output of the neural network stage)

Figure 4: Evolution of the signal through the processing steps
of the algorithm. It shows a 4 s excerpt from ‘Basement Jaxx -
Rendez-Vu’. Beat positions are marked with dashed/dotted verti-
cal lines.

4.3.2. Beat Phase Detection

The dominant tempo T corresponds to the highest peak in the
smoothed autocorrelation function A∗(τ) at index τ∗. This de-
lay τ∗ is used as the beat interval i. The phase of the beat p∗ is
computed as the highest value of the beat activation function’s sum
at the possible beat positions for the given interval i:

p∗ = max
p=0...i

∑

k

ab(p+ k · i) (8)

4.3.3. Peak Picking

Finally, the beats are represented by the local maxima of the beat
activation function. Thus, we use a standard peak search around
the locations given by nk = p∗+k·i calculated with the previously
determined p∗. To allow for small timing fluctuations, a deviation
factor d = 0.1 · i is introduced and the final beat function b(n) is
given by:

b(n) =

{
1 for ab(nk − d) ≤ ab(nk) ≥ ab(nk + d)

0 otherwise
(9)

The BeatDetector determines all beats in this manner. The Beat-
Tracker only detects the next beat and moves the beginning of the
lookahead window to that beat. Then the dominant tempo esti-
mation and all consecutive steps (Section 4.3.1 to 4.3.3) are per-
formed on the new section of the beat activation function.

5. EVALUATION

Beat tracking performance was evaluated during the MIREX 2010
beat tracking contest with two different datasets3. The first set,
the McKinney collection (MCK set), has rather stable tempo. The
second collection (MAZ set) consists of Chopin Mazurkas, which
are in 3/4 time signature and contain tempo changes.

Both described algorithms outperformed all other contribu-
tions on the MCK set. The BeatDetector shows a small overall
advantage over the BeatTracker. Depending on the used perfor-
mance measure the relative performance gain compared to the next
best algorithm is up to 5.7% (F-measure with a detection window
of ±70ms), 6.9% (Cemgil: accuracy based on a Gaussian error
function with 40 ms std. dev.), 8.2% (Goto: binary decision based
on statistical properties of a beat error sequence), and 4.7 (PScore:
McKinney’s impulse train cross-correlation method). Table 1 sum-
marizes the results and also includes the best result ever achieved
in the MIREX competition by any algorithm as a reference to the
state-of-the-art. It can be seen that our BeatTracker algorithm per-
forms better or close to it (depending on the used performance
measure). This shows the future potential of this approach com-
pared to other signal based ones, given the fact that the actual peak
picking algorithm is a rather simple one.

The tempo changes of the MAZ set are the main reason for the
BeatDetector not performing better (see Table 2), as it assumes
a constant tempo throughout the whole musical piece. Nonethe-
less the algorithm performs still reasonably well. As expected, the
more flexible BeatTracker performs better and ranks second ac-
cording to F-measure and first according to Cemgil’s performance

3Evaluation measures described at http://www.music-
ir.org/mirex/wiki/2010:Audio_Beat_Tracking#Evaluation_Procedures
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MCK Set [%] F-measure Cemgil Goto PScore
BeatTracker 54.50 41.30 8.87 59.19
BeatDetector 53.16 40.28 22.64 57.73

GP3 50.27 37.21 20.92 56.54
LGG2 49.97 37.68 17.93 54.96
TL2 41.97 29.86 2.50 50.59
NW1 35.56 25.83 5.75 45.67

MRVCC1 25.70 18.34 0.14 38.36
ZTC1 24.64 18.61 0.41 26.07

GP1 (2009) 54.80 41.00 22.20 59.00

Table 1: Results for the MIREX 2010 beat tracking evaluation
(MCK set). Only the best performing algorithm of other partic-
ipants are shown; GP1 & GP3: Peeters, LGG2: Oliveira et. al.,
TL2: Lee, NW1: Wack et. al., MRVCC1: Campos et. al., ZTC1:
Zhu et. al.

measure. However, the most mentionable aspect is that the neural
networks were trained solely on ballroom dance and other kinds
of western pop music. Neither a classical piece nor piano music
was used for training. Furthermore, only one training example
actually contained tempo changes. This suggest that even better
performance can be expected when trained on music which has
properties similar to the MAZ data set.

MAZ Set [%] F-measure Cemgil Goto PScore
TL2 68.46 40.42 0.00 72.21

BeatTracker 58.74 51.81 0.00 57.92
MRVCC2 49.26 39.55 0.31 51.22

GP4 48.27 36.72 0.31 50.06
BeatDetector 47.30 38.20 0.00 45.92

LGG2 41.48 30.65 0.00 43.51
NW1 27.59 19.82 0.00 31.35
ZTC1 1.16 0.94 0.00 0.94

Table 2: Results for the MIREX 2010 beat tracking evaluation
(MAZ set). Only the best performing algorithm of other partic-
ipants are shown; TL2: Lee, MRVCC2: Campos et. al., GP4:
Peeters, LGG2: Oliveira et. al., NW1: Wack et. al., ZTC1: Zhu
et. al.

6. CONCLUSIONS AND FUTURE WORK

This paper presented two novel beat tracking algorithms which
perform state-of-the-art although they use a relatively simple and
straight forward approach. The BeatTracker outperformed all other
algorithms in the MIREX 2010 beat tracking contest for the McK-
inney dataset. Although no classical music was used for training
and the training set had less then 3.5 minutes of material with a
time signature of 3/4 the new BeatTracker performed still reason-
ably well on the Mazurka test set (all excerpts are in 3/4 time sig-
nature). This shows the aptitude of the BLSTM neural network for
correctly modeling the temporal context and directly classifying
beats. Since the BeatTracker shows superior performance over the
more simple BeatDetector even for musical excerpts with constant
tempo, future development will concentrate on this algorithm.

Besides training with a more comprehensive training set, fu-
ture work should also investigate a possible performance boost by
implementing some more advanced beat tracking algorithms in the
peak detection stage. Kalman filters [9], particle filters [10], a mul-
tiple agents architecture [11] and dynamic programming [2] seem
promising choices. Another possibility is the inclusion of other
input features which haven proven to be effective for identifying
beats [12].
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ABSTRACT

This paper is about the use of perceptual principles for melody
estimation. The melody stream is understood as generated by the
most dominant source. Since the source with the strongest energy
may not be perceptually the most dominant one, it is proposed to
study the perceptual properties for melody estimation: loudness,
masking effect and timbre similarity. The related criteria are inte-
grated into a melody estimation system and their respective contri-
butions are evaluated. The effectiveness of these perceptual criteria
is confirmed by the evaluation results using more than one hundred
excerpts of music recordings.

1. INTRODUCTION

Auditory scene analysis of music signals is an ongoing active re-
search in recent years as encouraging results continue to explore
various applications in the field of digital audio effects (DAFx)
and music information retrieval (MIR) [1]. Among the harmonic
sources present in the music scene, the “melody” source usually
forms perceptually and musically the most dominant stream [2] [3]
[4]. The problem of melody estimation is difficult because it re-
quires not only low-level information about sound signals but also
high-level information about perception of music. In this article,
we define the melody estimation problem as the estimation of the
fundamental frequency (F0) of the most dominant source stream.
Since the source with the strongest energy may not be perceptu-
ally the most dominant one, our study will make use of perceptual
properties and evaluate their effectiveness.

In addition to the perceptual grouping cues of harmonic sounds
in auditory scene analysis [5], many of the existing methods for
melody estimation further make use of other perceptual proper-
ties such as loudness [6] [7], masking [8], timbre similarity [6] [9]
[10] and auditory filters [3] [11] [12]. If one looks at the evalu-
ation results of the MIREX (Music Information Retrieval Evalua-
tion eXchange) campaign for the “Audio Melody Estimation” task,
the systems that make use of these perceptual properties seem to
show certain advantages in performance. In fact, the perceptually-
motivated system proposed by Dressler [13, 14, 9, 15] always ranks
the top [16]. Although important details of perceptual criteria are
missing in her descriptions, it is nevertheless reasonable to assume
that the key problem of melody estimation is related to percep-
tual criteria. In this study, we propose to evaluate the follow-
ing perceptual criteria: loudness, masking, and timbre similarity
within the proposed melody estimation system. The auditory fil-
ters and other multi-resolution analysis methods are not explored
here because we believe that the melody source stream is usually
significantly present in the mid-frequency range and a fixed resolu-
tion of STFT(short-time Fourier transform) can thus be sufficiently
adapted.

The proposed system consists mainly of two parts: candidate
selection and tracking. As the salience of an F0 candidate is de-
rived from the the dominant peaks that are harmonically matched,
we propose to compare perceptually-motivated criteria with low-
level signal features for dominant peak selection. Similarly, candi-
date scoring based on perceptual criteria is also evaluated to reveal
how a correct candidate can be more favored than others. Based
on the algorithm previously proposed in [17], a tracking algorithm
dedicated to melody estimation is developed to determine the co-
herent source stream with an optimal trade-off among candidate
score, smoothness of frequency trajectory and spectral envelope
similarity.

The paper is organized as follows: In Section 2, we present
the methods for dominant peak selection and candidate scoring. In
Section 3, the components of the tracking system is detailed. In
Section 4, the effectiveness of the perceptual criteria are evaluated
and the performance of the proposed system is compared to the
state-of-the-art systems. Finally, conclusions are drawn and future
works are proposed.

2. CANDIDATE EXTRACTION

Extraction of compact F0 candidates from polyphonic signals is
not an easy task because concurrent sources interfere with each
other and spectral components from different sources may form
reasonable F0 hypotheses [18]. Although a proper multiple-F0 es-
timation allows proper treatment of overlapping partials, a simpler
scheme shall meet our needs for melody estimation.

Under the assumption that the melody stream is generated by
the most dominant source, the interference from other sources has
less impact on its spectral components. The remaining problem is
then to avoid extracting subharmonic F0 candidates that are sup-
ported by the combination of spectral components from different
sources. They appear to be very competitive to the correct F0 and
are very likely to cause octave errors. Since the target source is as-
sumed to be dominant, its harmonic components should be present
as dominant spectral peaks. By means of selecting the dominant
peaks, we can avoid excessive spurious candidates and efficiently
establish a compact set of F0 hypotheses with reliable salience.

2.1. Peak Selection

We propose four peak selection methods. The first two are based
on loudness weighting and masking effects respectively to select
perceptually dominant peaks, and the other two are based on cep-
stral envelope and noise envelope respectively to select energy
dominant peaks.
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Select by Loudness

It is known that the relative energy of the spectral components
one measures is very different from the relative loudness one per-
ceives [19]. Since calculating the loudness for complex sound is
not straightforward, a common approach is to apply proper spec-
tral weighting by a selected equal-loudness contour to imitate the
perceptual dominance of spectral components. Accordingly, we
weight the spectrumX with a frequency dependent equal-loudness
curve L to obtain the loudness spectrumXL:

XL(k) =
X(k)

L(k)
; (1)

where k is the frequency bin. We choose the equal-loudness curve
proposed by Fletcher and Munson [20] measuring at 0dB SPL
(sound pressure level) for L:

20 log10 L(k) =3.64 · f−0.8
k − 6.5 · e−0.6·(fk−3.3)2

+ (10−3) · f4
k

(2)

where the frequency fk in “kHz” is converted from the respective
frequency bin k. Then, we select the peaks that are not smaller
than δLdB of the maximum of XL (see Fig. 1(a)).

Select by Masking Curve

The masking effect depicts how a tone can mask its neighboring
components across critical bands, which can be represented by the
spreading function (on dB scale) [21]

Sf (i, j) =15.81 + 7.5((i − j) + 0.474)

− 17.5(1 + ((i − j) + 0.474)2)0.5
(3)

where i is the bark frequency of the masking signal, and j is
the bark frequency of the masked signal. The formula of convert-
ing frequency fk from “kHz” to the bark scale is [22]:

B(fk) = 13 · arctan(0.76 · fk) + 3.5 · arctan(
fk

7.5
)2 (4)

The strength of masking of a peak is not only determined by
the magnitude of the peak, but also related to its being tonal or
noisy. We follow the MPEG’s standard to classify a peak [23]: If
a peak is 7dB higher than its neighboring component, it is con-
sidered tonal. Otherwise, it is considered noisy. Accordingly, the
mask contributed by a peak is thus (on dB scale):

M(i, j) =Sf (i, j) − (14.5 + i) · α − 5.5 · (1 − α)

(tonal : α = 1, noisy : α = 0)
(5)

By means of selecting the maximal mask overlaying at each
bin, the masking curveXm is constructed:

20 log10 Xm(k) = max{M(i, B(fk))}, ∀i ∈ I (6)

where I is the set of all peaks. The peaks which are larger than the
masking curve are selected (see Fig. 1(b)).
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Figure 1: Dominant peak selection by (a) loudness spectrum, (b)
masking curve, (c) cesptral envelope, and (d) noise envelope. The
original spectrum is plotted as thin solid line and the selected peaks
are marked by crosses. The y-axis is the log-amplitude in dB.

Select by Cepstral Envelope

The cepstral envelope is an approximation of the expected log-
amplitude of the spectrum [24]. That is, it is a frequency-dependent
curve that passes through the mean log-amplitudes at respective
frequencies. Accordingly, it is reasonable to assume that the spec-
tral peaks of the most dominant source lie above the cepstral en-
velope (see Fig. 1(c)). An optional raise of δC dB can be used to
prevent selection of noise peaks.

Select by Noise Envelope

For the case of polyphonic signals, the cepstral envelope may not
give reasonable estimation due to dense distribution of sinusoidal
peaks. Besides, it allows some noise peaks to be selected because
it passes through the mean of the noise peaks. A solution to these
problems is the use of the noise envelope which is the raise of the
mean noise level [18]. The proposed noise level estimation makes
use of the Rayleigh distribution to model the spectral magnitude
distribution of noise and is adaptive in frequency [25]. We raise the
mean noise level by δNdB as the noise envelope to select dominant
peaks (see Fig. 1(d)).

2.2. Candidate Generation and Scoring

Harris suggested locating all groups of pitch harmonics by means
of identifying equally spaced spectral peaks on which the salience
of a group is built [26]. This method belongs to the spectral in-
terval type F0 estimators [27]. For polyphonic signals, however,
partials belonging to different sources may form a group of har-
monics which results in subharmonic F0s. One way to avoid gen-
erating subharmonic F0 candidates is to cast further constraints
on the spectral location of each partial. Similar to the inter-peak
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beating method proposed in [18], we present a method for gener-
ating F0 candidates from the selected dominant peaks. First, the
F0 hypotheses are generated by collecting the spectral intervals
between any pair of dominant peaks in the spectrum. Then, the
spectral location principle is applied: If the generated hypothesis
is not harmonically related to the peaks that support its spectral
interval, it is not considered a reasonable candidate. Due to the
overlapping partials, frequencies of the peaks are not sufficiently
precise. Thus, a semitone tolerance is allowed for the harmonic
matching.

In order to reflect the perceptual dominance of a candidate, we
propose to score F0 candidates based on the loudness spectrumXL

(eq. 1): the score of a candidate is the summation of the firstH =
10 partials in the loudness spectrum. The contribution of a partial
is determined by the harmonically matched peak with the largest
loudness nearby. The partials not selected as dominant peaks will
not contribute to the score.

3. TRACKING BY DYNAMIC PROGRAMMING

Given a sequence of candidates extracted from the spectrogram,
we adapt the tracking algorithm proposed in [17] to decode the
melody stream. Since the melody stream may not be always the
most dominant source at each short-time instant, decoding with
the maximal score will not yield the optimal result. Therefore,
we propose to integrate an additional criterion, spectral envelope
similarity, into the dynamic programming scheme. Following [17],
we describe the problem using the hidden Markov model (HMM):

• Hidden state: true melody F0
• Observation: loudness spectrogram
• Emission probability: normalized candidate score
• Transition probability

– trajectory smoothness: the frequency difference be-
tween two connected F0 candidates

– spectral envelope similarity: the spectral envelope dif-
ference between two connected candidates

Compared with the previous method, two novelties are intro-
duced in the transition probability. One is the probability distri-
bution of the melody F0 difference between frames for evaluat-
ing the trajectory smoothness. Learned from the ADC04 training
database, the distribution is approximated by the Laplace distri-
bution (see Fig. 2). The trajectory smoothness is then modeled
by

F (cn, cm) =
1

2b
exp(− |fcn − fcm |

b · fcm

), b = 0.0077889 (7)

where cn, cm represent the two candidates with frequencies fcn , fcm .
Notice that cn, cm may be located at different analysis frames and
the distance allowed for connection is three frames.

The other novelty is the integration of the spectral envelope
similarity in the transition probability. This is intended to favor
candidate connection with similar timbre such that the decoded
stream is locked to the same source even when it becomes less
dominant (smaller score).

A(cn, cm) = 1−
∑H

h=0 |XL(tn, hfcn ) − XL(tm, hfcm)|2
∑H

h=0 XL(tm, hfcm)2
(8)

−5 0 5
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

(a)
−5 0 5

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

(b)

Figure 2: (a) The probability distribution of frequency deviation
from ADC04 database (b) The probability density function mod-
eled by the Laplace distribution. The x-axis is the frequency devi-
ation in percentage.

where tn, tm denotes the frames where cn, cm are extracted. The
transition probability is thus given by

T (cn, cm) = F (cn, cm)A(cn, cm)γ (9)

where γ is a compression parameter which should reflect the im-
portance of the envelope similarity measure. In order to obtain the
optimal trade-off between the emission probability (score) and the
transition probability, we further apply a compression factor β on
the emission probability.

The connection weight between two nodes is defined by the
product of the emission probability and the transition probability,
from which the forward propagated weights can be accumulated.
The optimal path (melody stream) is then decoded by backward
tracking through the nodes of locally maximal weights.

4. EVALUATION

In this section, we present the evaluation of the effectiveness of the
perceptual criteria. Firstly, the different peak selection methods
are evaluated. Then, the system with/without perceptual criteria
is evaluated. Finally, the performance is compared with that of
MIREX participants. The databases used are listed below:

• ADC04: 20 excerpts of about 20s including MIDI, Jazz,
Pop and Opera music as well as audio pieces with a synthe-
sized voice. It is used for our training database [28].

• MIREX05: 25 excerpts of 10-40s from the following gen-
res: Rock, R&B, Pop, Jazz, Solo classical piano [29]. Only
13 excerpts are made publicly available.

• RWC: 100 excerpts, 80 from Japanese hit charts in the 1990s
and 20 from American hit charts in the 1980s [30]. This
large database is rarely used in existing publications on melody
estimation.

Peak selection

To evaluate the performance of different peak selection methods,
we use two metrics: recall rate and mean rank. Recall rate is the
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percentage of the correct melody F0 being extracted in the candi-
date set. A good peak selection method shall not exclude too many
peaks that support the correct F0. Mean rank is the average score
ranking of the correct melody F0 in the candidate set. As long as
the dominant partials of the correct F0 are selected, the resulting
score shall be high and the ranking of the correct F0 be on top.
For the methods implying thresholds, several values are tested in
search of the best configuration. The result is shown in Fig. 3. A
good configuration shall result in a point located more to the top-
right corner in the figure. The reasonable results obtained seem to
locate in the region of which recall rate varies from 0.85 to 0.9 and
mean rank varies from 2 to 1. In general, the perceptual criteria
seem to be more effective than the spectral envelopes in favoring
the correct F0s.
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Figure 3: Evaluation results of different peak selection methods.
The parameters tested are δL:(48,36,24,12), δC :(18,12,6,0) and
δN :(12,9,6,3,0). The masking curve method does not involve any
parameter and is shown as a single point.

System configurations

To understand the contribution of each component in the system,
we propose to evaluate the system with different configurations.
Since our current system does not detect if the melody is present
(voiced) or not (unvoiced), we choose the following evaluation
metrics [4]

Raw Pitch Accuracy =
number of correct estimates
number of ground truth

(10)

which is defined as the proportion of the voiced frames in which
the estimated F0 is within one semitone of the ground truth.

The baseline configuration does not take into account any per-
ceptual properties. The peak selection simply picks the first 20
largest peaks and the tracking does not use the envelope similarity
measure (γ = 0). The perceptual configuration uses the loudness
spectrum for peak selection, the envelope similarity compression
factor γ = 2.4 and the emission probability compression factor
β = 0.1. These parameters are trained from the data set ADC04.
For each configuration, we further evaluate how the tracking mech-
anism improves the average raw pitch accuracy. The results with-
out tracking simply reports the best candidate at each frame. The
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Figure 4: Raw pitch accuracy comparisons: (a) The MIREX par-
ticipant results for ADC04 database (b) The MIREX participant
results for MIREX05 database. The indices corresponding to
MIREX participant IDs are: the first five for MIREX 2010 (HJ1,
TOOS1, JJY2, JJY1, SG1) and the remaining twelve for MIREX
2009 (CL1, CL2, DR1, DR2, HJC1, HJC2, JJY, KD, MW, PC, RR,
TOOS). Please refer to MIREX website for the respective systems
[16]. The horizontal line shows the results of the proposed system.

comparison is shown in Table 1. It is found that the perceptual
configuration performs better than the baseline configuration by
about 3 to 4%. The tracking mechanism slightly improve about
1 to 2%. Further investigation is ongoing to improve the tracking
algorithm.

best candidate candidates + tracking
Baseline config. 73.16% 74.03%

Perceptual config. 76.92% 78.10%

Table 1: Average raw pitch accuracy for baseline configura-
tion(without perceptual properties) and perceptual configuration.
For each configuration, the frame-based estimation (reporting the
best candidate) is evaluated against the tracking system.

Comparison with the state-of-the-art system

Thanks to the MIREX campaign, the performance of the start-of-
the-art systems are publicly evaluated (see Fig. 4). Although the
MIREX database is only partially available for our evaluation, the
results (see Table 2) still demonstrate its competitive performance
among the top-ranked systems.

ADC04 MIREX05 RWC
81.53% 79.00% 74.49%

Table 2: Average raw pitch accuracy of proposed system evaluated
on three databases.
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5. CONCLUSION

The effectiveness of perceptual properties in the context of melody
estimation has been studied. For the proposed melody estimation
system, the accuracy is improved by more than 3% while taking
into account perceptual properties. The use of either loudness or
masking curve demonstrates advantages over the proposed spec-
tral envelope features. The envelope similarity is found to slightly
improve the accuracy, too. The proposed system is evaluated on
more than one hundred excerpts of music recordings and demon-
strates its competitive performance to the state-of-the-art systems.
Future work will be the improvement of the tracking algorithm and
the development of the voicing detection algorithm.
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Keynote 2 - Recent developments in signal processing editing and visualization - David Zicarreli

Over the past several decades, interactive domain-specific languages that permit the development of signal processing
algorithms visually have become commonplace. I describe the advantages and disadvantages of working on algorithms in
a visual way, considering factors such as cognition, performance, and reusability. Finally, I will present our recent work
in visual editing of generalized synchronous DSP graphs, domain-specific graphs, visual performance monitoring, and filter
design.

David Zicarelli is the founder of Cycling 74, developers of Max/MSP/Jitter, and has been working on the Max environment
since 1988. Over the past 25 years he has done audio software development and research at CCRMA, IRCAM, Opcode
Systems, Intelligent Music, AT&T, and Gibson Guitar.
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ABSTRACT
Digital systems dedicated to audio and speech processing usually
require sample rate conversion units in order to adapt the sam-
ple rate from different signal flows: for instance 8 and 16 kHz
for speech, 32 kHz for the broadcast rate, 44.1 kHz for CDs and
48 kHz for studio work. The designer chooses the sample rate con-
version (SRC) technology based on objective criteria, such as fig-
ures of complexity, development or integration cycle and of course
performance characterization. For linear time-invariant (LTI) sys-
tems, the transfer function contains most information necessary
for the system characterization. However, being not LTI, the SRC
characterization also requires aliasing characterization. When the
system under study is available only through input excitations and
output observations (i.e. in black box conditions), aliasing charac-
terization obtained for instance through distortion measurements
is difficult to evaluate properly. Furthermore, aliasing measure-
ments can be messed up with weakly nonlinear artifacts, such as
those due to internal rounding errors. Consider now the fractional
SRC system as a linear periodically time-varying (LPTV) system
whose characteristics describe simultaneously the aliasing and the
in-band (so-called linear) behaviour from the SRC. An interesting
and new compound system made of multiple instances of the same
SRC system builds a LTI system. The linear features from this
compound system fully characterizes the SRC (i.e. its linear and
aliasing rejection behaviour) whereas weakly nonlinear features
obtained from distortion measurements are only due to internal
rounding errors. The SRC system can be analyzed in a black box
condition, either in batch processing or real-time processing. Ex-
amples illustrate the capability of the method to fully recover char-
acteristics from a multistage SRC system and to separate quanti-
zation effect and rounding noise in actual SRC implementations.

1. INTRODUCTION

Evaluating a digital fractional SRC system with tools designed
for the evaluation of analog-to-digital convertors (ADC) is an at-
tractive solution. For instance, the instant power measured at the
output of the system excited by a swept-sine would assess the li-
near performance of the system whereas a distortion measurement
would evaluate the performance of the aliasing rejection [1].

However aliasing effects are a linear effect from a polyphase
system [2]. Linear multirate (MRS) [3] and linear periodically
time-varying (LPTV) [4, 5] contexts are better suited for discussing
fractional SRC systems. The SRC system can be equally repre-
sented by a lowpass filter H whose polyphase components form
the time varying impulse response of the system. The ideal SRC
is fully characterized by the conversion ratio R/P and its lowpass
filter H , in particular:

• its passband characteristics (responsable for the resampled
signal coloration),

• its stopband characteristics (responsable for the attenuan-
tion of the aliased and mirrored spectral images),

• the don’t care bandwidth (which defines the bandwidth lim-
itations for incoming signals).

This ideal SRC model is exposed in Section 2. Finite word-length
representation causes internal rounding errors and undesired devi-
ations from the ideal model. The method presented in this paper
aims at separating the impact of rounding errors from the ideal
characteristics in a black box methodology condition. The de-
velopments from this paper are limited to the single input single
output (SISO) case. The interest follows:

• to provide a common framework for comparing the perfor-
mances of different SRC algorithms,

• to assess the performances of proprietary SRC algorithms
where internals are not available,

• to assess the global performance of complicated multi-stage
SRC algorithms.

Section 3 details a compound system based on multiple instances
of the SRC system that is LTI. The merits of this LTI compound
system for the characterization of sample rate conversion system
are discussed in section 3.2. This characterization method is com-
pared to the bispectrum method, used in [6, 7, 2, 8, 9] in order
to assess the performances of LPTV systems. Finally, section 4
shows on different examples how traditional black box LTI charac-
terization methods can be used in order to assess the performances
of a SRC system.

2. IDEAL MODELS AND NOTATIONS

2.1. Decimation, Expansion and SRC

The building blocks for multirate systems are the delay operator,
the decimation operator and the expansion operator [3]. Consider
the following real (or complex) scalar signals: x, y, u and v. The
expansion operator ↑R associates u to x (see Fig. 1) in an opera-
tion sometimes refered as upsampling:

∀n ∈ Z, u(n) =

(
x
“ n
R

”
if n = kR

0 else.
(1)

The decimation operator ↓ P associates y to v (see Fig. 2) in an
operation sometimes refered as downsampling:

∀n ∈ Z, y(n) = v(nP ). (2)
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↑ R
ux

Figure 1: R-fold expansion operator model.

↓ P
v y

Figure 2: P -fold decimation operator model

The previous definitions respectively for expansion and decima-
tion can be recast in the z-transform domain. The result of the
R-fold expansion (see Fig. 1 and equation (1)) verifies in the z-
domain:

U(z) = X(zR). (3)

The signal y obtained as the P -fold decimation from the signal
v (see Fig. 2 and equation (2)) verifies in the z-domain, with ωP
being a P th root of unity:

Y (zP ) =
1

P

P−1X
m=0

V (ωmP z). (4)

The multirate system shown in Fig. 3 can be used as an ideal
model for a sample rate convertor with a fractional ratio ×R/P
as in [5], with R and P chosen coprime. This multirate system
consists of a R-fold expansion, a LTI system H refered to as the
kernel of the multirate system and a P -fold decimation. The signal
v is the result of the filtering of u, i.e. v(z) = H(z) · u(z). Thus,
from Eq. (3) and (4), one obtains the modulation equation for the
ideal ×R/P sample rate conversion system:

Y (zP ) =
1

P

P−1X
m=0

H(ωmP z) ·X(ωRmP zR). (5)

2.2. LPTV systems

A discrete-time linear system is defined as (L2, L1)-LPTV if a
shift of the input by L1 samples results in a shift of the output
by L2 samples, for any input signal [2]. Given this definition, the
ideal ×R/P sample rate conversion system appears as a (P,R )-
LPTV system. Reciprocally, any (P,R )-LPTV system with R
and P chosen as two relatively prime integers verifies equation (5)
and can be characterized by a kernel H .

2.3. Polyphase type-1 decomposition

TheR-polyphase type-1 components1, x k
R

, are associated to a sig-
nal x in such a way that interleaving those components regenerates
the original signal x. In the z-domain, it results:

X(z) =

R−1X
l=0

z−lX l
R

(zR). (6)

1Polyphase type-2, type-3 and type-4 are alternate definitions for the
polyphase decomposition, cf. [2].

H↑ R ↓ P
vu yx

Figure 3: ×R/P sample rate conversion model.

P
Q

R
 =

 p
R

P
Q

R
 =

 r
P

z

z

z
z−1

z−1

↓ r ↑↓ R/P ↑ p

↓ r ↑↓ R/P ↑ p

↓ r ↑↓ R/P ↑ p

y 0
p

x 0
r

y k
p

x k
r

y pR−1
p

x rP−1
r

z−1

x y

Figure 4: LTI context for a fractional resampler.

This relationship can be inverted [3] and for any k:

∀k ∈ Z, X k
R

(zR) =
zk

R

R−1X
n=0

ωnkR X(ωnRz). (7)

3. LTI CONTEXT FOR SRC SYSTEM

3.1. Principles

Consider the compound system described on Fig. 4 where the boxes
↑↓ R/P represent the whole system given in Fig. 3. Consider Q a
positive integer and r and p such as:

r = RQ, p = PQ, R/P = r/p.

The input signal x is considered as the combination of PQR in-
terleaved channels x k

r
. The SRC operator ×R/P is applied sepa-

rately on every channel. The resulting y k
p

are interleaved and form
a new signal y. The left (resp. right) part of the diagram is re-
lated to the QR-polyphase analysis network (resp. PQ-polyphase
synthesis network) in [7]. Note that this compound system is not
causal because of the usage of the advance operator z. The follow-
ing result applies:

Theorem 1. The compound system described in Fig. 4 where the
ideal ×R/P sample rate conversion system defined by H(z), the
z-transform from its kernel, is applied on PQR channels, and
which input x (resp. output y) is obtained by interleaving every
channel x k

r
(resp. y k

p
), is LTI.

Furthermore, y is obtained by filtering x through the expanded
kernel of the sample rate conversion system:

Y (z) = H(zQ) ·X(z).
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An important aspect for the proof given in the appendix is the
constraint that P and R are relatively prime. In the case of a SRC
system, it is always possible to chose P and R relatively prime
since only the ratio R/P matters. However, the result from Theo-
rem 1 can not apply to any (L1, L2)-LPTV system.

3.2. Discussion

The compound system from Fig. 4 with Q = 1 provides a simple
methodology for assessing the performance of a SRC system. The
kernel H of the SRC system is supposed to have a finite impulse
response (FIR) of length L. The typical filter bandwidth is about
π/R radians and the typical filter length L is about several times
R (depending of the stiffness of the lowpass filter)

• Choose one test vector x from a set of possibly several test
vectors.

• De-interleave the test vector x and form the PR channel
test vectors x k

R
. Zero padding can prove to be useful in

order to force the SRC system to process the signal until it
has returned at rest to a steady-state.

• Apply the SRC system to each different channel vector and
obtain the response channel vector y k

P
. The system un-

der study being supposed to be FIR, the response channel
vectors return to 0 after a maximum of dL/Re input zero-
padding samples.

• Interleave the PR response channel vectors y k
P

and form
the response vector y.

• Store the response vector y and repeat the process for every
available test vector x.

In short, the SRC system is fed with signals in different phase sit-
uations obtained by deinterleaving a given test vector x and the
output vectors are interleaved together. The analysis of the SRC
system proceeds as if the test vectors x were processed by a regu-
lar LTI system. There are different subcases of interest for the test
vectors.

Periodic signals are one type of interesting test vectors [7].
Once steady state is achieved (i.e after L samples on the test vec-
tor), a single output period is extracted, stored and analyzed. Note
that if N = nPR, the channel input vectors (resp. channel re-
sponse vectors) from the compound system are nP -periodic (resp.
nR-periodic). Yin and Mehr in [10] use nP -periodic channel in-
put vectors in order to excite and to identify the (R,R )-LPTV
system. Transposed to the context of characterizing a SRC sys-
tem, this identification method implicitly turns into a least-square
FIR identification method knowing one period from x and observ-
ing one period from y. Compared to these identification methods
[7, 10], the LTI approach relaxes the constraints onN which is not
a necessary multiple of PR.

The impulse response is another type of interesting test vector.
In such case, the impulse response h(n) of the kernelH is directly
available in y. When x(n) = δn, only remains XmR

R
= zm for

m ∈ [0, P ); any other contribution being pure zero:

H(z) = Y (z) =

P−1X
m=0

z−mRYmR
P

(zP )

∀m ∈ [0, P ) h(nP +mR) = ymR
P

(n)

P
Q

R
 =

 p
R

P
Q

R
 =

 r
P

z−1

z−1

z−1

↓ r ↑↓ R/P ↑ p

↓ r ↑↓ R/P ↑ p

↓ r ↑↓ R/P ↑ p

z−1

z−1

z−1

y

x

Figure 5: causal LTI context for a fractional resampler.

where n varies in the support from ymR
P

. The method is indeed
valuable and cheap (P channel vectors to process instead of PR)
for characterizing an ideal SRC system but it misses the effects
from internal rounding errors.

In order to cover those effects, we assume that with orthogonal
input signals (obtained for instance by random phase shifting as
in [7]), rounding errors average to zero. Distortion observed on
the compound system is exclusively due to rounding errors: this
can be observed for instance by feeding a full-scale sine in the
compound LTI system. Alternatively, the method developped in
[11] for measuring the performance of weakly nonlinear system
can be used.

Note that the method requires the exact knowledge of the re-
sampling ratio×R/P . A separate adhoc method may be necessary
in order to estimate this ratio if it is not explicitly given.

Note also that for complex resampling ratios, such as those
encountered for resampling 44.1 kHz audio streams at 48 kHz, the
amount of channels becomes large: for R = 160 and P = 147,
we need to process PR = 23520 input channel test vectors. A
script automating the processing and the storage of each of those
PR audio files is needed.

3.3. Causal System

The LTI compound system as described in Fig. 4 is obviously not
causal. In the previous discussion, non-causality was not an issue
because we assumed that the analysis proceeded in batch process-
ing. Causality may be required for real-time applications. In such
case, we can use the type-4 polypase decomposition instead and
obtain a causal LTI context for the analysis of a SRC in Fig. 5. The
transfer function of the causal LTI compound system becomes:

Y (z) = z−PQR+1H(zQ) ·X(z).

3.4. Bispectrum analysis

The bispectrum (or bifrequency system function) of a LPTV sys-
tem is a bivariate function H(ejω1 , ejω2) that associates the spec-
trum Y

`
ejω2

´
of the input signal to the spectrum X

`
ejω1

´
of the
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output signal (cf. [7]):

∀ω2∈ R, Y
“
ejω2

”
=

+πZ
−π

H
“
ejω1 , ejω2

”
X
“
ejω1

”
dω1. (8)

Theorem 2. The bispectrum H(ejω1 , ejω2) of the ideal ×R/P
sample rate conversion system consists of Dirac lines deriving
from H(ejω), the transfer function of its kernel:

H
“
ejω1 , ejω2

”
=

1

P

P−1X
m=0

H
“
ej
ω1
R

”
δ (Pω1 −R (ω2 + 2mπ))

where δ corresponds to the Dirac distribution.

Due to the fact that R and P are relatively prime, the different
Dirac lines exhibited by the bispectrum reduce to one single Dirac
line shaped by the transfer function of the SRC kernel and repeated
along the quadrants.

Therefore the spectrum analysis of the LTI compound system
compares to the bispectrum analysis of the LPTV system as in [6].
Kernel spectrum and bispectrum can both be retreived in black
box conditions. It is however our opinion that the LTI approach
obtained from the compound system from Fig. 4 is more flexible
than the bispectrum approach: constraints about input signal are
relaxed and analysis methods are more straighforward to use be-
cause directly derived from traditional methods.

4. EXAMPLES

4.1. Upsampler ×3

Figures 6 and 7 illustrate how the kernel transfer function from
two x3 in-house upsampler algorithms can be revealed with the
LTI methodology. The upsampling algorithms under study were
provided as binary executable files that process soundfiles in dou-
ble precision floating point arithmetic. The soundfiles are stored
in single precision floating point (i.e. 24-bit mantissa). Both algo-
rithms proceed in two stages, including first an upsampling block
(resp. ×128 and ×4) and a decimating block obtained by polyno-
mial interpolation (resp. linear interpolation and quadric interpola-
tion) as in [12]. The actual upsampler kernel is difficult to evaluate
in a formal way due to the presence of the polynomial interpolation
block.

In order to reveal the upsampler kernel transfer function, two
complementary test vectors, x(1) and x(2) are generated. The first
test vector x(1) is generated as the impulse response of a low-order
lowpass filter (with a cutoff frequency approximatively set to π/2).
The second test vector x(2) was generated by the modulation of
x(1) at the Nyquist frequency. The tranfer function H(ejω) is ob-
tained as a weighted sum of the ratio Y (ejω)/X(ejω) for each
available test vector:

H
“
ejω
”

=
1P

iW
(i)(ω)

×
X
i

W (i)(ω)
Y (i)

`
ejω
´

X(i)(ejω)
.

In this example, the weightW (i)(ω) was set to |X(i)(ejω)|2. Fig. 6
demonstrates that in-band ripples behave accordingly to the spec-
ifications, resp. ±0.002 dB and ±0.01 dB. Fig. 7 demonstrates
that the alias rejection performance matches the −94 dB specifi-
cation only for the second algorithm. Examination of both figures
demonstrates that the don’t care bandwidth matches the specified
band [0.9π, 1.1π]/3.
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Figure 6: Estimated upsampler×3 transfer function, passband de-
tails.
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Figure 7: Estimated upsampler ×3 transfer function, stopband de-
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4.2. Resampler ×3/2

Figures 8 and 9 illustrate how different types of arithmetic impact
measurements obtained from the LTI methodology. The SRC sys-
tem under study is an in-house one-stage ×3/2 SRC implementa-
tion available respectively in double precision floating point arith-
metic, in 24-bit fixed-point arithmetic and in 16-bit fixed-point
arithmetic. The algorithms were provided in an executable format.

Fig. 8, obtained with the set of test vectors from section 4.1,
illustrates the impact of the filter coefficients quantization. The 24-
bit coefficient quantization provides an accuracy compatible with
the stopband specification whereas the 16-bit quantization does
not.

Fig. 9 demonstrates the impact of internal rounding errors on
a pure sine located at π/8. The noise floor due to the storage for-
mat is about −186 dB. The harmonic distortion observed for the
floating-point version of the algorithm serves as a reference as-
sessing the impact from both the double-precision floating-point
internal rounding errors and the quantization due to the file for-
mat storage. This reference is about −160 dB. The differences
between the reference blue line and the dotted red (resp. dotted
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green) curve on Fig. 9 are only due to rounding errors in the 24-bit
(resp. 16-bit) fixed-point arithmetic. In the implemented algo-
rithm, the impact of the rounding errors in the 24-bit fixed-point
arithmetic seems neglectable with regard to the alias level. In the
16-bit arithmetic, the impact of internal rounding error is more sen-
sible but still limited with regard to the actual performance of the
alias rejection. Interestingly, only odd harmonics are generated in
16-bit fixed-point arithmetic. Note that the impact of the rounding
errors is quite limited in this example because the SRC process-
ing is single stage and the rounding error happens only once per
output sample without propagation when the result of the double
precision accumulation is cast back into single precision. A more
complex situation is expected when the SRC algorithm involves
multiple stages or polynomial interpolation.

5. CONCLUSION

In this paper, we have discussed the merits of a compound system
made of several instances of a sample rate conversion systems.
This compound system is LTI and its transfer function, H(zQ), is

directly related to the transfer function of the SRC kernel. Reg-
ular identification and characterization methods designed for LTI
systems can be applied on this system in order to reveal the li-
near characteristics responsable for both the in-band and the alias-
ing behaviour and the weakly nonlinear characteristics due to the
propagation of rounding errors. This LTI context simplifies the
analysis method proposed in [7] when the periods from the LPTV
systems are relatively prime.
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A. PROOFS FOR THE THEOREMS

Proof for Theorem 1. LetQ be any positive natural integer. Name
r (resp. p) the integer r = RQ (resp. p = PQ). The parameters
P , R, r and p are associated through the following properties:

r = RQ, p = PQ, R/P = r/p, P ∧R = 1. (9)

We use equation (7) in order to describe the signal x as the
interleaving from the input channels x k

r
:

∀k ∈ Z, X k
r

(zr) =
zk

r

r−1X
n=0

ωnkr X(ωnr z).

In order to continue the calculous, we introduce intermediary vari-
ables. First, let define the composite root Ωm,n as:

∀m ∈ [0, P ), ∀n ∈ [0, r), Ωm,n = ωmp ω
n
r

= ωmR+nP
PQR

then define the intermediary functions χml (z) and χm(z) as:

∀l ∈ [0, P ), χml (z) =

Q−1X
k=0

z−kX k+lQ
r

(ωRmP zr),

∀m ∈ [0, P ), χm(z) =
1

P

PR−1X
l=0

z−lQχml (z)

=
1

P

PR−1X
l=0

Q−1X
k=0

z−(k+lQ)X k+lQ
r

(ωRmP zr).

Notice that k + lQ with k ∈ [0, Q) and l ∈ [0, PR) covers the
entire range [0, pR). Therefore, the previous sum can be rewritten
as:

∀m ∈ [0, P ), χm(z) =
1

P

pR−1X
k=0

z−kX k
r

(ωRmP zr).

Let evaluate X k+lQ
r

(zr) first, X k+lQ
r

(ωRmP zr) then

X k+lQ
r

(zr) =
zk+lQ

r

r−1X
n=0

ωn(k+lQ)
r X(ωnr z).

For the second evaluation, notice ωRmrP = ωRmRp = ωmp and there-
fore:

X k+lQ
r

(ωRmP zr) = X k+lQ
r

`
(ωmp z)

r´
=

`
ωmp z

´k+lQ

r

r−1X
n=0

ωn(k+lQ)
r X(ωmp ω

n
r z)

=
zk+lQ

r

r−1X
n=0

Ωk+lQ
m,n X(Ωm,nz).

Now, let evaluate χml (z) and finaly χm(z):

χml (z) =

Q−1X
k=0

z−kX k+lQ
r

(ωRmP zr)

=
zlQ

r

Q−1X
k=0

r−1X
n=0

Ωk+lQ
m,n X(Ωm,nz),

χm(z) =
1

P

PR−1X
l=0

z−lQχml (z)

=
1

rP

PR−1X
l=0

Q−1X
k=0

r−1X
n=0

Ωk+lQ
m,n X(Ωm,nz)

=
1

PQR

PQR−1X
k=0

r−1X
n=0

Ωkm,nX(Ωm,nz).

The response channels signal y k
p

results from the application
of the fractional SRC to x k

r
. Apply equation (5):

Y k
p

(zP ) =
1

P

P−1X
m=0

H(ωmP z) ·X k
r

(ωRmP zR).

The signal y is obtained by interleaving every channel y k
p

:

Y (z) =

pR−1X
k=0

z−kY k
p

(zp)

=

pR−1X
k=0

z−kY k
p

(zPQ)

=
1

P

pR−1X
k=0

z−k
P−1X
m=0

H(ωmP z
Q) ·X k

r
(ωRmP zr)

=
1

P

P−1X
m=0

H(ωmP z
Q)

pR−1X
k=0

z−kX k
r

(ωRmP zr)

=

P−1X
m=0

H(ωmP z
Q)χm(z).

This concludes the evaluation of Y (z) in term of the modula-
tion components X(Ωm,nz):

Y (z) =
1

PQR

P−1X
m=0

pR−1X
k=0

r−1X
n=0

H(ωmP z
Q)Ωkm,nX(Ωm,nz).

Since P and R are coprime, mR+ nP mod (PQR) covers ex-
actly the range [0, PQR) when m ∈ [0, P ) and n ∈ [0, RQ). Let
apply the Chinese remainder theorem: the double sum in m and n
can be replaced by a simple sum in i, with m = i × R̄, labelling
R̄ the multiplicative inverse from R in the ring Z/PZ :

Y (z) =
1

PQR

PQR−1X
i=0

pR−1X
k=0

H(ωiR̄P zQ)ωikPQRX(ωiPQRz)

=
1

PQR

PQR−1X
i=0

PQR−1X
k=0

ωikPQRH(ωiQPQRz
Q)X(ωiPQRz).

Since ωPQR is a root of the unity, we have:

PQR−1X
k=0

ωikPQR = PQR
X
n

δi−nPQR.

Every modulation component vanishes from Y (z) and only re-
mains:

Y (z) = H(zQ) ·X(z). (10)
This concludes the demonstration because the vanishing of ev-
ery modulation component X(ωiPQRz) from Y (z) proves that the
system is LTI.
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Proof for Theorem 2. The proof is obtained by substituting the ex-
pression of the bispectrum in equation (8). The Dirac lines, located
at ω1 = R/P (ω2 + 2mπ), simplify the integral expression:

Y
“
ejω2

”
=

1

P

P−1X
m=0

H
“
ej
ω2+2mπ

P

”
X
“
ej
R
P

(ω2+2mπ)
”
.

In order to simplify the notation from the previous expression, in-
troduce ω such as ω2 = Pω:

Y
“
ejPω

”
=

1

P

P−1X
m=0

H
“
ej(ω+ 2mπ

P )
”
X
“
ejR(ω+ 2mπ

P )
”
.

The modulation equation (5) that characterizes the ideal ×R/P
SRC system can be recognized here, where z is substituted by ejω .
This concludes the proof by identification of the bifrequency func-
tion.
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 OPTIMAL FILTER PARTITIONS FOR REAL-TIME FIR FILTERING  
USING UNIFORMLY-PARTITIONED FFT-BASED CONVOLUTION  

IN THE FREQUENCY-DOMAIN 
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RWTH Aachen University 

Aachen, Germany 
 

 

ABSTRACT 

This paper concerns highly-efficient real-time FIR filtering with 

low input-to-output latencies. For this type of application,  

partitioned frequency-domain convolution algorithms are estab-

lished methods, combining efficiency and the necessity of low 

latencies. Frequency-domain convolution realizes linear FIR  

filtering by means of circular convolution. Therefore, the  

frequency transform’s period must be allocated with input  

samples and filter coefficients, affecting the filter partitioning as 

can be found in many publications, is a transform size K=2B of 

two times the audio streaming block length B. 

 

In this publication we review this choice based on a generalized 

FFT-based fast convolution algorithm with uniform filter  

partitioning. The correspondence between FFT sizes, filter parti-

tions and the resulting computational costs is examined. We 

present an optimization technique to determine the best FFT size. 

The resulting costs for stream filtering and filter transformations 

are discussed in detail. It is shown, that for real-time FIR filtering 

it is always beneficial to partition filters. Our results prove  

evidence that K=2B is a good choice, but they also show that an 

optimal FFT size can achieve a significant speedup for long  

filters and low latencies. 

 

Keywords: Real-time filtering, Fast convolution, Partitioned 

convolution, Optimal filter partitioning 

 

1. INTRODUCTION 

The term fast convolution summarizes techniques to efficiently 

compute the discrete convolution of two sequences x(n) and h(n). 

This paper considers real-time linear FIR filtering, where a  

continuous stream of input samples x(n) is convolved with an 

impulse response h(n)=h0,...,hN-1 of finite length N. Thereby a 

continuous stream of output samples y(n) is generated, which is 

defined by the discrete convolution formula 

 ∑
∞

−∞=

−⋅=

k

knhkxny )()()(  (1) 

 

Efficient real-time FIR filtering is important for many fields in 

technology and science. Its use for audio applications includes 

real-time digital audio effects, like equalizers and convolution 

reverbs, audio rendering for computer games and auralization in 

virtual reality, comprehensive 3-D sound reproduction tech-

niques, like wave-field synthesis (WFS)—and much more. 

The filtering in eq. 1 can be easily implemented in the time-

domain, using a direct-form FIR filter (transversal filter, tapped 

delay-line). The method has no inherent latency. Since filter  

coefficients can be directly altered, it allows concepts for a large 

variety of filter adaptation. Unfortunately, FIR filtering in the 

time-domain is very inefficient. The runtime-complexity for  

filtering N samples with N filter coefficients is within O(N²) and 

makes real-time filtering with long filter impulse responses  

virtually impossible. 

 

Fast convolution methods 
 

Methods that compute the discrete convolution faster than in 

O(N²) are known as fast convolution algorithms. Many of these 

techniques base on fast frequency-domain transforms and com-

pute the discrete convolution within the transform’s domain, 

where the convolution operation itself is computationally cheap 

to realize. The overall complexity is eventually determined by the 

fast frequency-domain transform algorithms, which have typical 

runtimes in O(N log N). The most famous transform is the  

Discrete Fourier Transform (DFT) implemented using Fast 

Fourier Transform (FFT) algorithms. But other transforms like 

the Discrete Trigonometric Transforms (DTTs) [1] or Number 

Theoretic Transforms (NTTs) [2] can be used to implement fast 

convolution as well, yielding to different formulations of the 

convolution operation in the transform’s domain. A great deal of 

research has been spent on finding the minimum number of 

arithmetic operations to implement discrete convolution. For 

small sizes, number theoretic convolution concepts, like the 

Agarwal-Cooley algorithm [3], require less arithmetic operations. 

But for long filters FFT-based convolution is most efficient [3]. 

The popularity of FFT-based fast convolution algorithms is to a 

high degree reasoned by the availability of highly-optimized FFT 

libraries (e.g. FFTW [4], Intel Performance Primitives) and  

excellent CPU support of floating-point arithmetic, including 

instruction sets that ease the implementation of complex-valued 

operations. 

 

When it comes to real-time filtering, simple frequency-domain 

convolution concepts, like the classical (unpartitioned) block 

convolution [5], lack efficiency. Filters need to be partitioned in 

order to combine computational efficiency and the demand for 

low input-to-output latencies. Splitting filters into several sub-

filters of equal length is referred to as uniformly partitioned con-

volution. Highly-developed algorithms exist. We give an over-
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Figure 1: Effective utilization of a full DFT period  

for fast circular convolution without time-aliasing. 

 

view on the state-of-the-art for these techniques in section 4. An 

advantage of uniformly partitioned convolution is, that it can be 

easily implemented and suits the requirement of most applica-

tions. Another feature is that it allows combining frequency-

domain filters—in serial or parallel [6]. However, when it comes 

to long filters, a non-uniform filter partitioning is more favorable 

[7,8,9,10]. It includes longer parts as well, which eventually low-

er the overall computational complexity. Unfortunately, non-

uniform methods are difficult to implement and also put up  

additional restrictions on the exchange of filters [11]. The  

question for the optimal non-uniform filter partition has been 

raised by several authors [9,10]. 

 

 

2. CONTRIBUTIONS 

When implementing real-time FIR filtering by partitioned convo-

lution in the frequency-domain, one can choose the transform 

sizes—e.g. FFT sizes. Basically, small transform sizes K can be 

efficiently computed using codelets [4], but they have the dis-

advantage of resulting in many filter parts. Large size transforms 

on the other hand reduce the number of filter parts, but might 

compute less efficiently. For real-time filtering the standard 

choice is a transform size of K=2B two times the block length B, 

which can be found in numerous publications—regarding  

uniformly [12] and non-uniformly partitioning [9,10]. This 

choice seems reasonable [12], but it is unclear whether it is the 

optimal solution in terms of the lowest computational effort. 

 

In this paper we therefore research the influence of the transform 

size used for FFT-based partitioned frequency-domain convolu-

tion and optimize it for maximum computational efficiency. The 

following aspects are concerned: 

• The correspondence between transform sizes and the 

filter partitioning is derived. 

• A generalized uniformly-partitioned FFT-based convolution 

algorithm is presented, incorporating state-of-the-art 

techniques. Its runtime is analyzed in detail. 

• Founding on this algorithm, the FFT size is optimized for 

maximum computational efficiency. 

• The resulting computational costs for streaming filtering and 

also the exchange/adaptation of filters are reviewed.  

• General conclusions are drawn and the consequences to other 

real-time filtering techniques are discussed. 

 

 

3. PROBLEM DESCRIPTION 

We regard the problem of real-time FIR filtering from the pers-

pective that filter length N and input-to-output latency, given by 

the audio streaming block length B, are fixed constraints. B is 

chosen to meet the low latency requirements–typical values are 

small powers of two, like 128, 256 or 512 samples. The objective 

is to minimize the computational effort required for the filtering. 

Therefore, this work concerns the FFT size K as an optimization 

parameter. The choice of the transform size K has consequences 

on the filter partitioning and the efficiency. In this section we 

introduce the basic relations between these variables. 

 

In general, the convolution of two sequences with finite lengths 

M, N yields to a sequence with a maximum length of M+N-1. 

The circular convolution property of the DFT [13] states that 

 

 )}}({
)(

)}({
)(

{
)(

)(
1

nh
k

DFTnx
k

DFT
k

DFTny ⋅=
−  (2) 

 

for a DFT size K. In order to realize the desired linear convolu-

tion in eq. 1 by circular convolution as in eq. 2, the lengths M, N 

of the two sequences must satisfy the critical condition 

 

 1−+≥ NMK  (3) 

 

meaning that the maximum length M+N-1 of the result y(n) fits 

into the DFT period of K points. Otherwise the output is time-

aliased and incorrect. For a maximal computational efficiency it 

is advised to fully exploit a DFT period of K values. Under-

utilization of the DFT period K is unfavorable, because it intro-

duces unnecessary zero-padding and increases the number of  

filter parts. As figure 1 shows, the DFT period K can be fully 

utilized, by allocating B values for the input samples and by  

using all of the remaining K-B+1 values for filter coefficients. 

Accordingly, the whole filter of N coefficients is split into parts 

of L filter coefficients determined by 

 

 1+−= BKL  (4) 

 

The number of resulting filter parts P is given by the integer 

 

 








+−

=

1BK

N
P  (5) 

 

Obviously, the number of filter parts decreases with increasing 

DFT sizes K, because more filter coefficients can be packed into 

a DFT period. Valid ranges for the FFT size K are determined by 

 

 1−+≤< BNKB  (6) 

 

K must in any case exceed the block length K>B, otherwise no 

filter coefficients are processed. For K≥N+B-1 the filter remains 

unpartitioned. Values K>N+B-1 are useless, because they  

increase costs by processing ineffective, padded zeros. 
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The simplest case is not to partition the filter and process it as a 

whole (P=1). Therefore, the DFT size K is chosen so that input 

block and filter fit into the period, meaning Kunpart.=B+N-1. The 

unpartitioned method is efficient for filter length N≈B close to 

the block length B, ideally N=B. For large N>>B far too much 

ineffective zeros are processed, making the method inefficient.  

 

4. CONVOLUTION ALGORITHM  

For our research of optimal FFT sizes we introduce a generalized 

partitioned convolution algorithm that allows FFT sizes to be 

freely adapted. It is illustrated in figure 2. The algorithm uses a 

uniform filter partitioning as discussed before.  Input parameters 

are the block length B, corresponding to the desired input-to-

output latency, and the filter length N. The DFT period of K 

points gets fully utilized with B input samples and L=K-B+1  

filter coefficients. Accordingly, the filter of N coefficients is split 

into P parts of L=K-B+1 coefficients each. The algorithm incor-

porates several improvements, which have been published in re-

cent years. The Overlap-Save scheme [13] is used to filter con-

secutive stream blocks. Overlap-Save computes more efficiently 

than Overlap-Add, because it saves extra additions of the partial 

outputs. Necessary delays for the subfilters, are directly imple-

mented in the frequency-domain, using a frequency-domain  

delay-line (FDL) [14]. This is possible, because all DFT spectra 

share the same size. An FDL is implemented as a shift register of 

DFT spectra.  Moreover, it is beneficial to implement the summa-

tion of the subfilters’ results in the frequency-domain as well. 

Using these two techniques, only one FFT and one IFFT have to 

be computed for each processed stream block. Thereby the major 

computational load goes back to the complex-valued multiplica-

tions. Specialized FFTs/IFFTs for real-valued input data [15] are 

used and all computations are performed on complex-conjugate 

symmetric DFT spectra, speeding up the processing by nearly a 

factor of two.  

 

The algorithm consists of two main parts: filtering the samples of 

the audio streams, referred to as stream processing.  Before they 

can be used with the method, a filter transformation has to be 

performed, which transforms the filter impulse responses into the 

according partitioned frequency-domain representation. There-

fore, it is uniformly partitioned into filter parts of the length L. 

Each filter part is zero-padded to match the FFT size K.  After-

wards, each padded filter part is transformed using a  

K-point real-to-complex FFT.  

 

Each block of the audio stream is processed in the following 

way: A time-domain input buffer acts as a sliding window of K 

samples on the stream of input samples. With each new input 

block, its contents are shifted K-B elements to the left and the 

new input block of B samples is then placed to the right. The 

whole buffer is then transformed using a K-point real-to-complex 

FFT and the resulting DFT spectrum is stored in a frequency-

domain delay-line (FDL).  Before this step, the FDL is shifted by 

one slot. All DFT spectra in the FDL are now point-wise com-

plex-valued multiplied with the corresponding DFT spectra of 

the transformed filter parts. All results are summed up in a  

frequency-domain accumulation buffer. Next the contents of this 

buffer are transformed back into the time-domain using a  

K-point complex-to-real IFFT. The B left values form the output 

block. The other K-B values are time-aliasing and discarded. 

Runtime analysis 

We account the computational complexities by numbers of re-

quired arithmetic operations. These measures found on theoreti-

cal considerations. Under knowledge of the properties of the 

given hardware, they can be approximately translated into CPU 

cycles or runtimes. An exact mapping however is nearly impossi-

ble to achieve, because the runtime behaviour is hard to  

predict—due to cache utilization and efficiency under load of 

multiple threads. We assume that a K-point Fast Fourier Trans-

form (forward and backward) can be computed with KKk log⋅  

arithmetic operations (with log the natural logarithm). k is a  

scaling factor that depends on the actual FFT algorithm used. We 

benchmarked the single-threaded execution of real-valued FFTs 

using the FFTW3 library on an Intel Core2 system. For input  

sizes that are powers of two, we obtained a value of k ≈1.7—

assuming one arithmetic operation per CPU cycle. This scaling 

factor is also a good approximation for the number of arithmetic  

operations of the real-valued split-radix FFT in [15]. Allowing 

for an effective analysis, we consider idealized costs of the FFT 

with a constant k=1.7 for arbitrary input sizes K in the following. 

 

 

 
 

Figure 2: Uniformly partitioned FFT-based fast convolution algorithm 
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A complex-valued multiplication of the form =++ ))(( dicbia  

ibcadbdac )()( ++−  requires six arithmetic operations (four 

multiplications and three additions). DFT spectra )(kX of purely 

real-valued input sequences )(nx  fulfil the Hermitian symmetry 

)()( kKXkX −=  [13], for a transform size of N. This symmetry 

can be exploited for improved performance, because only the 

number of 

 

 






 +

2

1K
 (7) 

 

symmetric DFT coefficients out of the total N DFT coefficients 

need to be stored and processed. The complex-valued multiplica-

tion of two symmetric DFT spectra therefore takes 

 2/)1(6 +K operations. The accumulation of DFT spectra is re-

alized by point-wise additions of the elements, which accounts to 

 2/)1(2 +K  operations. Note that for the accumulation of P 

spectra only (P-1) spectrum additions need to be carried out.  

Measures shall be independent of the block length and are there-

fore divided by B. 

 

The computational cost for filtering one output sample is  

hence given by 
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 (8) 

 

The overall number of arithmetic operations for transforming a 

filter into the frequency-domain representation, demanding to 

compute P K-point FFT transforms, is expressed by 

 










+−

=

1
 )log(   :   ),,(

BK

N
KkKKBNT

ftrans
  (9) 

 

 

 

5. OPTIMIZATION PROBLEM 

 
For input parameters (N, B) the optimization problem is the  

minimization of the cost ),,( KBNTstream
(eq. 8) for feasible 

transform sizes in the range 1−+≤< BNKB  (eq. 6). Before 

discussing optimal solutions in general, we like to illustrate the 

characteristic properties of the cost function ),,( KBNTstream
 by 

the help of an example: The black curve in figure 3a shows the 

computational costs of the algorithm depending on the FFT size 

K for the example of N=4096 and B=128. For a better under-

standing, we also added the corresponding number of filter parts 

in the diagram (gray curve). For all problem instances (N, B) we 

found this common type of cost progression. Very small FFT 

sizes K just above the lower bound K>B+1 result in large num-

bers of filter parts, which are computationally inefficient. With 

increasing FFT sizes the cost decreases until the optimum Kopt is 

reached—in the example Kopt=443. From here on the costs in-

crease again. Generally, the number of filter parts given by eq. 5 

decreases with increasing FFT sizes K until it reaches the mini-

mum of 1 for K≥N+B-1 (indicated by the vertical line). From this 

point on the filter is unpartitioned. Larger values of K are mean-

ingless, because unnecessary zeros are processed and the number 

of DFT coefficients increases. The result is a strictly linear cost 

progression for K≥N+B-1. From the graph we can already see, 

that a partitioned convolution outperforms an unpartitioned fil-

tering clearly. 

 

Figure 3b shows the region around the optimum Kopt. In between 

the points of discontinuity, the progression is monotonously in-

creasing and it shows ripples. These originate from ceiling in the 

definition of the number of symmetric DFT coefficients in eq. 7. 

Local minima of the cost function are located at values of K, 

where in eq. 7 K+B-1 is a factor of N—or in other words, the 

filter size N is a multiple of the filter part length L. At these 

points denoted by Kmin
(i) the number of filter parts is reduced by 

one, compared to the preceding transform size Kmin
(i)-1. This  

abruptly reduces the number of necessary complex-valued  

 

Figure 3a: Computational costs for a fixed filter length 

N=4096 and block length B=128 as a function of the 

 FFT size K (black curve) The gray curve is the cor- 

responding number of filter parts. For K≥4332 the filter 

consists of a single part only and remains unpartitioned. 

 

 

 
 

Figure 3b: Detailed view of the cost function shown in (3a) 

around the optimum (cost minimum), here Kopt=443. 
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Filter Block Optimal DFT size Standard DFT size Unpartitioned filter 

length length Kopt parts cost K=2B parts cost ratio Kunpart. cost ratio 

1024 128 298 6 99,0 256 8 100,2 1,01 1151 242,5 2,45 

1024 256 460 5 71,7 512 4 72,5 1,01 1279 136,5 1,90 

1024 512 767 4 56,3 1024 2 61,2 1,09 1535 83,8 1,49 

1024 1024 1365 3 47,4 2048 1 57,9 1,22 2047 57,8 1,22 

4096 128 443 13 248,6 256 32 293,7 1,18 4223 1035,5 4,16 

4096 256 665 10 158,9 512 16 168,9 1,06 4351 535,1 3,37 

4096 512 1097 7 108,9 1024 8 109,3 1,00 4607 285,1 2,62 

4096 1024 1843 5 80,2 2048 4 81,9 1,02 5119 160,2 2,00 

4096 2048 3071 4 63,4 4096 2 70,6 1,11 6143 98,0 1,54 

4096 4096 5461 3 53,7 8192 1 67,3 1,25 8191 67,3 1,25 

16384 128 713 28 743,6 256 128 1067,7 1,44 16511 4646,3 6,25 

16384 256 1075 20 431,7 512 64 554,4 1,28 16639 2342,9 5,43 

16384 512 1604 15 263,7 1024 32 301,6 1,14 16895 1191,2 4,52 

16384 1024 2513 11 170,9 2048 16 178,0 1,04 17407 615,4 3,60 

16384 2048 4095 8 118,5 4096 8 118,6 1,00 18431 327,5 2,76 

16384 4096 6826 6 88,4 8192 4 91,3 1,03 20479 183,8 2,08 

16384 8192 12287 4 70,5 16384 2 80,0 1,13 24575 112,1 1,59 

16384 16384 21845 3 60,0 32768 1 76,7 1,28 32767 76,7 1,28 

65536 128 1257 58 2508,6 256 509 4139,5 1,65 65663 20885,9 8,33 

65536 256 1745 44 1366,6 512 256 2096,4 1,53 65791 10465,0 7,66 

65536 512 2559 32 768,4 1024 128 1071,1 1,39 66047 5254,6 6,84 

65536 1024 4002 22 450,4 2048 64 562,3 1,25 66559 2649,4 5,88 

65536 2048 6143 16 278,0 4096 32 310,7 1,12 67583 1346,8 4,85 

65536 4096 9557 12 182,4 8192 16 187,3 1,03 69631 695,5 3,81 

65536 8192 16383 8 128,0 16384 8 128,0 1,00 73727 370,0 2,89 

65536 16384 27306 6 96,2 32768 4 100,7 1,05 81919 207,3 2,15 

65536 32768 49151 4 77,6 65536 2 89,4 1,15 98303 126,3 1,63 

65536 65536 87381 3 66,2 131072 1 86,1 1,30 131071 86,1 1,30 

Table 1: Resulting stream filtering costs of optimal FFT sizes in comparison the other methods. 

multiplications. Optimal FFT sizes Kopt can hence easily be 

found by just inspecting the absolute minimum at all points 

Kmin
(i)  in the interval [B+1, N+B-1]. 

 

 

However, it is desirable to obtain a closed formula for Kopt(N, B) 

as a function of the problem instance (N, B). This is much hin-

dered by the discontinuous ceil functions in the cost formulation 

(eq. 8), which demand a piecewise analysis. The problem can be 

relaxed by replacing ceil(x) in eq. 8 with its lower and upper 

bounds   1+≤≤ xxx  (see figure 3b). This yields to a  

continuous cost formulation of the functional form 
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b
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+= log)(  

 

The absolute minimum of this continuous function is located at 

the zero of its derivative 
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Finding the root of this type of function turned out to be difficult 

as well and there does not seem to be an analytic expression for x 

solving 0d/)(d =xxf  (within intervals of interest), which even-

tually define the optimal FFT size Kopt. 

 

6. RESULTS 

 

We reviewed a multitude of problem instances (N, B) and in-

spected the resulting optimal transform sizes Kopt. In the follow-

ing the results are discussed with respect to several aspects  

including the sheer computational cost for filtering the audio 

stream but also the complexity for transforming filters into the 

frequency-domain representation in order to use them. 

 

Costs of stream filtering 

 

Table 1 gives a detailed insight into the results. The two leftmost 

columns define the problem instance (N, B). Followed by the 

data of the optimal uniformly partitioned convolution using the 

presented algorithm, starting with the optimal FFT size Kopt, the 
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Figure 4: Relative computational costs of the filter transfor-

mation. The graph shows factors in relation to an unparti-

tioned fast convolution. The block length here is B=128. 

 

number of resulting filter parts P and the computational costs. All 

cost measures in the table refer to the definition in the previous 

section. The next block of columns lists data for uniformly parti-

tioned convolution with the standard FFT size K=2B, two times 

the block length B. The fourth column in this block is the cost 

ratio of this method in relation to the optimal approach, given by 

Tstream(N,B,2B)/Tstream(N,B,Kopt). The right block lists data for the 

unpartitioned convolution of the instance (N, B). Here the FFT 

size is chosen Kunpart.=N+B-1 and the filter consists of a single 

part only. The rightmost column is the cost ratio of an unparti-

tioned filtering in comparison to the optimal solution. 

 

Straightaway we see that for all problem instances the two cost 

ratios are above one. A closer comparison on the computational 

costs reveal, that the optimized method is faster in any case—

sometimes just by a tiny margin. The data in table 1 underlines, 

that an unpartitioned convolution is only efficient when N≈B. 

Here the choice of K=2B converges against the FFT size Kun-

part.=N+B-1≈2B-1, resulting in almost identical computational 

costs. We see that optimal FFT sizes Kopt can be smaller or larger 

than the FFT sizes for the two other methods. Interestingly, even 

for large N≈B the computational costs for an optimal FFT size 

Kopt are significantly less than for an unpartitioned filtering. Op-

timal filter partitions consist here of three parts and we can iden-

tify a speedup of ≈1.3 for the optimized method over the other 

methods. This is a very important discovery, stating that it is al-

ways beneficial to partition filters for real-time filtering in the 

frequency-domain. 

 

Another observation is that for a filter length N, we can always 

find a block length B, where an FFT size of K=2B results in al-

most optimal (minimal) costs, even if K=2B differs from Kopt. 

These cases (N, B) seem to approximately fulfil N≈16B. For 

problem instances around this point, the standard solution K=2B 

drops in efficiency. But we like to point out, that the penalty in 

costs is rather low, proving evidence that K=2B is a very good 

choice in general. Nevertheless, when filtering very long filters 

with low latencies, an optimized FFT size Kopt leads to a signifi-

cant reduction of costs. An example is the case of N=65536, 

B=128 where the speedup against the standard solution reaches 

65%. 

 

 

Costs of filter transformation 
 

In case that filters are adapted or exchanged over time, they have 

first to be transformed into the corresponding frequency-domain 

representation. This computation introduces a separate latency, 

we refer to as filter exchange latency. It as well depends on the 

partitioning, as eq. 9 shows. 

 

In figure 4 we compare filter transformation costs for an unparti-

tioned filter with the standard choice of K=2B and the optimal 

transform size Kopt. In this example a block length of B=128 was 

chosen. The filter transformation for a transform size Kopt is sig-

nificantly cheaper than for K=2B. For N=4096 we find a de-

crease in costs ≈22% and for N=65536 ≈28%. For long filters the 

transformation is even cheaper than for the unpartitioned case. 

However, there is a lower limit in filter length where the unparti-

tioned filter are cheaper to realize. In the example this limit is 

N≈4096 taps, where N≈32B. 

 

We conclude that an optimal transform size Kopt lowers the com-

putational effort for transforming filters significantly over all 

other methods. This is a huge advantage of our method. Not only 

is the stream filtering more efficient, but also the filter transfor-

mation for the majority of cases. Exceptions are found for small 

filter lengths. In the example we identified a maximum increase 

in costs of 52% for N<4096. Concerning that the transformation 

of small filters can be computed very fast anyway, this is no real 

disadvantage. 

 

 

 

7. CONCLUSIONS 

In this work we discussed the choice of transform sizes for effi-

cient real-time linear filtering realized by fast uniformly parti-

tioned convolution in the frequency-domain. Small transform 

sizes result in a large number of filter parts and vice versa. For 

detailed research of the optimal transform size, we presented a 

generalized convolution algorithm with a uniform filter partition-

ing and analyzed its properties. Even if they found on FFT-based 

implementations, our results can be applied for other transform-

based convolution techniques like (e.g. Discrete Trigonometric 

Transforms and Number Theoretic Transforms).  

 

The presented results give a detailed insight into the properties of 

optimal filter partitions for uniformly partitioned frequency-

domain convolution algorithms. We can confirm that the stan-

dard transform size K=2B of twice the block length B—

commonly found in literature—is generally a good choice, deliv-

ering a high computational efficiency. However, it turns out that 

specific optimization of the FFT size can significantly lower the 

costs for the case of long filters and low latencies. A very inter-

esting observation is that the partitioning of filters is always 

beneficial and outperforms unpartitioned convolution in  

any case. We find for an optimal uniform partitioning, the  

computational costs do not have a linear dependency on the  

filter length—as it is known for non-uniformly partitioned  

convolution [9].  
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Consequences for other methods 
  

The standard method for real-time filtering with long filters of 

>10.000 coefficients is non-uniformly partitioned convolution. 

Increasing subfilter sizes can significantly lower the computa-

tional effort compared to a uniform-partitioning. But any non-

uniform filter partitioning is assembled from segments, which are 

basically uniformly partitioned sections with equal subfilter 

sizes. Consequently, our results can be applied to further  

optimize this class of algorithms as well and leads to an im-

proved performance. 

 

 

Applicability in practice 
 

Optimal solutions in theory do often not translate into the desired 

optimal behaviour of practical implementations. A doubtful issue 

concerning this work might be to concern FFT sizes as an opti-

mization parameter, without applying restrictions—for instance 

powers of two. A large number of FFT algorithms are known  

today. Efficient O(N log N) algorithms exist for arbitrary sizes  

(prime-factor algorithm (PFA), see [16,17]). However, FFT  

algorithms are most efficient if the transform size N is a highly 

composite number. And yet still transform sizes that are powers 

of two are among the most efficient. But there is no rule stating 

that an FFT of next greater power of two does compute faster. 

Therefore, it is reasonable to also account non-powers of two for 

implementations. Hence, our results have great importance also 

for practical implementations. We like to point out that the num-

ber of arithmetic operations of an FFT cannot be precisely  

described with a fixed scaling factor k  for arbitrary input sizes. 

Optimal results in practice can only be achieved by bench-

marking the actual runtimes on the target hardware and using 

these measures for the optimization. 
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ABSTRACT
The analog diode-based ring modulator has a distinctive sound
quality compared to standard digital ring modulation, due to the
non-linear behaviour of the diodes. It would be desirable to be
able to recreate this sound in a digital context, for musical uses.
However, the topology of the standard circuit for a diode-based
ring modulator can make the process of modelling complex and
potentially computationally heavy. In this work, we examine the
behaviour of the standard diode ring modulator circuit, and pro-
pose a number of simplifications that maintain the important be-
haviour but are simpler to analyse. From these simplified circuits,
we derive a simple and efficient digital model of the diode-based
ring modulator based on a small network of static non-linearities.
We propose a model for the non-linearities, along with parameter-
isations that allow the sound and behaviour to be modified dynam-
ically for musical uses.

1. INTRODUCTION

Ring-modulation (RM) (also known as four-quadrant modulation)
is a technique similar to amplitude modulation (AM) and frequency
modulation (FM) and was developed, like AM and FM, for radio
transmission applications. Ideal RM is a special case of AM (i.e.
the multiplication of a carrier and modulator signal), where both
the carrier signal and the modulator signal are centred around 0V.
When this condition is fulfilled, the carrier and modulator signals
are completely cancelled and the output of the system consists of
only the sum and difference frequencies of these inputs. This effect
is musically useful, because it allows harmonic sounds to be trans-
formed into clangourous inharmonic sounds whilst still retaining
some of their original character and articulation.

Ring modulation was first used as musical effect by German
avant-garde composers [1], notably Karlheinz Stockhausen. Ring
modulators were also used by the BBC’s Radiophonic Workshop
in the 1950s and 1960s, notably to produce the distinctive voice
of the ’Daleks’ in the television show ’Doctor Who’ [2]. Estab-
lished as a normal part of the early electronic music studio, ring
modulators were naturally included in early analog modular syn-
thesizers. Don Buchla included a ring-modulator as one of the first
modules of his System 100 synthesizer, built for Morton Subotnick
[3]. Robert Moog’s initial complement of modules did not include
a ring-modulator, but one was later added via a collaboration with
Harald Bode. Thus, the ring-modulator came to be an element
available on a significant proportion of analog synthesizers, both
modular and non-modular.

The name ’ring-modulation’ refers to the way in which this
technique was often implemented in its early days, using a config-
uration that employed a ’ring’ of diodes [4] [5]. A schematic of this

Modulator

Carrier

Output

1 : 1 1 : 1

Figure 1: Schematic showing the layout of a traditional ring-
modulator circuit.

type of ring-modulation circuit can be seen in Figure 1. The diodes
used in the circuit have a strong effect on it’s final behaviour. The
use of silicon diodes results in a hard clipping or ’chopping’ ef-
fect and hence extremely bright extra harmonics, whilst germa-
nium diodes produce a softer non-linearity and a ’warmer’ sound
[1]. Later ring modulators instead employed a structure based on
VCAs, producing an output with far less added harmonics [5].

The basic idea of ring-modulation is trivial to implement dig-
itally, as it involves only a simple multiplication of two signals.
However, such a digital ring modulator lacks the additional non-
linear behaviour (beyond the multiplication itself) and extra gener-
ated harmonics of a real analog ring modulator, and hence a large
part of its characteristic sound. It is therefore desirable to produce
a digital model that can replicate this behaviour to some extent.
Previous work has derived ordinary differential equations govern-
ing the ring-modulator circuit, and solved them numerically us-
ing the Forward Euler method [6]. However, this method requires
significant over-sampling (a factor of ×128 is suggested), and is
hence not ideal for real-time usage.

In Section 2 of this paper, we propose a simplified circuit
which behaves analogously to the traditional diode ring-modulator.
In Section 3 we discuss how this circuit can be modelled digitally
using a network of static non-linearities. In Section 3.1 we discuss
how the shape of these non-linearities can be derived, and in Sec-
tion 3.2 we discuss the results produced by this algorithm. Finally,
in Section 4, we conclude.

2. A SIMPLIFIED RING MODULATOR CIRCUIT

Previous work has suggested that majority of the distortion charac-
teristics of the diode ring-modulator can be explained by assuming
that only two of the diodes in the ring conduct at any one time, the
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particular pair selected by the polarity of the carrier voltage [7] [8].
It is then postulated that distortion of the signal is produced by the
non-linear characteristics of the diodes, and by the finite time it
takes to switch between pairs [7] [8]. However, the presence of
transformers in the circuit described in Figure 1 complicates the
behaviour of the circuit in a number of ways, primarily by cou-
pling voltage between nodes of the diode ring and causing, in some
circumstances, three diodes to conduct simultaneously. This be-
haviour can be confirmed easily by measurement or by simulation
in a package such as SPICE or Qucs [9].

We propose a simplified circuit which does not contain a trans-
former. By examining the circuit in Figure 1, we can see that if
the modulator waveform is denoted Vin and the carrier waveform
denoted Vc, the voltage at the two input nodes of the diode ring
should be VC + Vin/2 and VC − Vin/2. We therefore replace the
input transformer and Vin and VC voltage sources with two volt-
age sources at these nodes providing the combined voltages. We
then replace the output transformer with two resistors connected
to ground. Figure 2 shows a schematic of this circuit. By exam-
ining this circuit, it should be clear that the diode pair D1 and D3

conduct when the signal Vc is positive, and the diode pair D2 and
D4 conduct when it is negative. The signal Vin is present at both
opposite nodes of the diode-ring, in opposing polarities, but is of
smaller amplitude and assumed to not bias the diodes. The output
is taken across the two resistors Rout (i.e. voltage v2 − v4), both
of which have a high resistance value. The resistors Rin have a
low resistance.

v6

v5

v1
v2

v3v4

D1

D2

D3

D4

Rin

Rin

Rout Rout

+

+
−

−

i1

i2

VC +
Vin

2

VC −
Vin

2

Figure 2: Schematic showing the layout of the simplified,
transformer-less ring-modulator circuit.

We then make the assumption that current only flows through
two diodes simultaneously, controlled by the polarity of Vc [7]
[8]. We then assume that the closed diodes act as an open circuit
and hence produce two substitute circuits representing the state of
the circuit when VC is positive, and when it is negative. Figure 3
shows a schematic of these circuits.

3. MODELLING THE SIMPLIFIED CIRCUIT

By examining the simplified circuit, it is easy to see what kind of
digital signal processing structure could be used to replicate the

v6v3v4
D3

RinRout

+ −

i2

VC −
Vin

2

RinRout

+ −

VC +
Vin

2

v5v1v2
D1

i1

v6v3

v4

RinRout

+ −

i2

VC −
Vin

2

RinRout

+ −

VC +
Vin

2

v5v1

v2

i1

D2

D4

a)

b)

Figure 3: Schematic showing the layout of the simplified,
transformer-less ring-modulator circuit when a) VC is positive and
b) VC is negative.

circuit. There are four parallel signal paths, two which process the
combination VC+Vin/2 and two which process VC−Vin/2. Each
of these signal paths consists of a non-linearity representing the
voltage-to-voltage transfer function of the resistor-diode-resistor
chain, plus (as necessary) inversion to represent the direction of
the diode and whether the branch of the circuit ends on v2 or v4.
A block diagram showing this structure is given in Figure 4. The
next task is then to derive the form of the non-linearity used on
each of the parallel paths of the structure.

3.1. Diode Non-Linearity Model

One possible method of modelling the diode non-linearity present
in each of the branches of the simplified circuit is to use standard
nodal analysis to solve for the voltage at v2 or v4 in one of the
branches. We do this by modelling the diode using Shockley’s
ideal diode equation, which is given by:

iD = IS(e
vD
nVT − 1) (1)

where iD is the current through the diode, IS is the reverse bias
saturation current, vD is the voltage across the diode, VT is the
thermal voltage and n is the ideality factor.

The exponential functions introduced by the use of Shockley’s
diode equation produce a relationship between the input and output
voltage of the diode that is only solvable analytically by applica-
tion of the Lambert W-function. Instead we expand out the expo-
nentials using Taylor series, and then solve the resulting implicit
relationship. The input-output voltage relationship of the diode
when modelled in this way is given in Figure 5. The parameter
values used to calculate this curve are given in Table 1, and are
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Figure 4: Block diagram showing the signal processing structure used to model the simplified ring modulator circuit.

chosen to be consistent with an average germanium diode such as
the 1N34.

Table 1: Values used for the fixed parameters of the model when
calculating the shaping function.

Section Element Value
Diodes n 2.19

VT 26× 10−3

IS 10−12

Fixed Rin 80
Resistors Rout 106

This method of calculating the non-linearity is only suitable
for producing a look-up table, as it involves a large amount of
computation. More desirable would be a non-linear function that
requires few operations to calculate and which lends itself to varia-
tion by the user in order to adjust the sound of the effect. Looking
at the form of the curve, it is clear that it is separated into three
main sections. At low voltage, the output is approximately zero.
At high voltages, the relationship is approximately affine. These
sections are connected by a smooth curve. It is therefore possible
to produce a very similar curve using a piecewise function, con-
sisting of a zero section, a polynomial, and an affine section. This
function is given by:

f(v) =

8><>:
0 v ≤ vb
h (v−vb)

2

2vL−2vb
vb < v ≤ vL

hv − hvL + h (vL−vb)
2

2vL−2vb
v > vL

(2)

where v is the input voltage, vb is a parameter specifying the equiv-
alent of the diode forward bias voltage, vL is a parameter giving
the voltage beyond which the function is linear, and h is a param-
eter specifying the slope of the linear section. The shape of this
function, with parameters adjusted to minimise maximum error
within the region of interest compared to the modelled curve, is
given in Figure 5.

3.2. Results

Figure 7 shows the output of the algorithm when when driven by a
1V 500 Hz sinusoidal Vin and a 1V 1500 Hz sinusoidal VC . Figure
6 shows the output of a real diode-based ring modulator, built to a
design consistent with the schematic given in Figure 1 [10]. It is
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0

0.5

1

1.5

2
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Input(/V)

O
ut
pu
t(/
V)

Figure 5: Graph showing the input-output relationship of the diode
wave-shaper. The version derived from circuit analysis is given in
solid grey, whilst the piecewise approximation is given as a dashed
black line.

clear that whilst not identical, the output of the digital model is rea-
sonably similar to the measured signal. There is a discrepancy in
the peak voltage between the real and modelled ring-modulators.
This is probably caused by the lack of buffering on the outputs
of the real ring-modulator (as it is a passive circuit), which leads
to the device having an output impedance that causes some signal
loss when connected to a standard audio pre-amplifier.

Figure 8 shows the frequency spectrum of the output of model
when presented with 50 Hz Vin and 1500 Hz VC . As expected,
visible are the sum and difference frequencies at 1550 Hz and
1450 Hz, along with further integer multiples of the modulator
frequency above and below the carrier frequency. Also visible are
odd harmonics of the modulated spectrum.

Informal listening tests show that the output of the algorithm is
sonically satisfying when applied to synthetic material, with much
of the character of a vintage ring-modulator present. When applied
to more natural sound sources, for example the human voice, the
result of the algorithm is harsher and brasher than that of simple
digital multiplication, as would be expected. Variation of the pa-
rameters of the diode wave-shaping function, as given in Equation
2, allow a variety of distortion characters to be generated - from
soft germanium-diode style saturation to the harsher distortion as-
sociated with silicon diodes. Sound examples of the algorithm ap-
plied to both synthetic and natural sources are available at the web-
site associated with this work [11]. Evaluation of the exact accu-
racy of the algorithm compared to both the analog ring-modulator
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and to direct numerical modelling of the circuit [6] would require
further investigation. However, the author would like to emphasise
that aim of the algorithm is to produce a computationally cheap
vintage ring-modulator style effect, rather than to replicate the be-
haviour of the analog circuit exactly.

The algorithm is efficient, and could comfortably be run on
modern computers in real-time with a small cost in computational
load. The structure itself requires 10 operations per sample, along
with 4 calls to the diode-shaping function. The diode-shaping
function requires 14 operations each time it is called. In systems
where it is cheap to calculate the absolute value of a sample (for
example by discarding the sign of a floating point number), both
the VC + Vin/2 and VC − Vin/2 paths can be reduced to using
a single nonlinearity, by proceeding the nonlinearity with a call to
an abs() or equivalent function.

As with any non-linear algorithm, some oversampling is rec-
ommended to avoid aliasing of the generated higher harmonics.
Examination of the harmonics generated by the system reveals that
they fall-off at a rate of around 20db per octave. An oversampling
factor of around ×32 would therefore be necessary to suppress
aliasing if wide-band signals were used for both the modulator and
carrier. In practical applications, the carrier is often sinusoidal, and
the modulator may be a voice or instrumental signal for which the
majority of the energy is in the band below 4-5kHz. In these ap-
plications, an oversampling factor of ×16 or ×8 is sufficient to
avoid audible aliasing. The aliasing characteristics of the algo-
rithm could be improved by re-designing the diode non-linearity
function as a pure polynomial function instead of a piecewise func-
tion, and this will be an interesting topic for further work.
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Figure 6: Output voltage produced when the real ring-modulator
circuit is driven by a 500 Hz modulator and a 1500 Hz carrier at
1V
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Figure 7: Output voltage produced when the model is used to pro-
cess a 500 Hz modulator and a 1500 Hz carrier at 1V.

4. CONCLUSIONS

In this work we examined the operation of the diode-based ring-
modulator, and proposed a simplified analogous circuit that does
not contain transformers. This analogous circuit produces similar
behaviour to the traditional diode ring-modulator, but its structure
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Figure 8: Spectrum of the output of the model when used to process
a 50 Hz modulator and a 1500 Hz carrier at 1V.

makes it simpler to model. We then showed how this structure
could be modelled digitally using a simple network of static non-
linearities. The result is an efficient parametric ring-modulator ef-
fect, which is suitable for real-time use in a computer music envi-
ronment.

5. ACKNOWLEDGMENTS

This work has been financed by the Academy of Finland (project
no. 122815) and by GETA. The author would like to thank Rafael
Paiva for several good discussions about circuit modelling.

6. REFERENCES

[1] H. Bode, “History of electronic sound modification,” Journal
of the Audio Engineering Society, vol. 32, no. 10, 1984.

[2] S Marshall, “The Story Of The BBC Radiophonic Work-
shop,” Sound on Sound, April 2008.

[3] T. Pinch and F. Trocco, Analog days: The invention and
impact of the Moog synthesizer, Harvard Univ Pr, 2004.

[4] H. Bode, “The Multiplier Type Ring Modulator,” Electronic
Music Review, vol. 1, pp. 16–17, 1967.

[5] Thomas E. Oberheim, “A ring modulator device for the per-
forming musician,” in Audio Engineering Society Conven-
tion 38, 5 1970.

[6] R. Hoffmann-Burchardi, “Digital simulation of the diode
ring modulator for musical applications,” in Proc. of the 11 th
Int. Conference on Digital Audio Effects (DAFx-08), Espoo,
Finland, September 1-4, 2008.

[7] HP Walker, “Sources of intermodulation in diode-ring mix-
ers,” The Radio and Electronic Engineer, vol. 46, no. 5,
1967.

[8] RV Stewart and JG Gardiner, “Contribution to mixer inter-
modulation distortion of nonlinearity in the diode forward
characteristics,” Electronics Letters, vol. 7, no. 10, pp. 279–
281, 1971.

[9] ME Brinson and S. Jahn, “Qucs: A gpl software package
for circuit simulation, compact device modelling and circuit
macromodelling from dc to rf and beyond,” International
Journal of Numerical Modelling: Electronic Networks, De-
vices and Fields, vol. 22, no. 4, pp. 297–319, 2009.

[10] K Stone, “Real ring modulator,” http://www.cgs.
synth.net/modules/cgsrr.html (accessed
22.10.10), 2002.

[11] “http://www.acoustics.hut.fi/go/dafx-ringmod,” .

DAFX-4

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-166



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

GESTURAL AUDITORY AND VISUAL INTERACTIVE PLATFORM

B. Caramiaux∗ , S. Fdili Alaoui† , T. Bouchara‡ , G. Parseihian§ M. Rébillat¶

LIMSI-CNRS, Ircam-CNRS, LMS-École Polytechnique
caramiau@ircam.fr

ABSTRACT

This paper introduces GAVIP, an interactive and immersive
platform allowing for audio-visual virtual objects to be controlled
in real-time by physical gestures and with a high degree of inter-
modal coherency. The focus is particularly put on two scenarios
exploring the interaction between a user and the audio, visual, and
spatial synthesis of a virtual world. This platform can be seen as
an extended virtual musical instrument that allows an interaction
with three modalities: the audio, visual and spatial modality. Inter-
modal coherency is thus of particular importance in this context.
Possibilities and limitations offered by the two developed scenar-
ios are discussed and future work presented.

1. INTRODUCTION

This paper introduces GAVIP (Gestural Auditory and Visual In-
teractive Platform), an interactive and immersive platform allow-
ing for audio-graphical virtual objects to be controlled in real-time
by physical gestures. GAVIP is based on a control unit driven
by gesture processing monitoring the behaviour of the virtual ob-
jects. A global control of the virtual world ensures the inter-modal
coherency of the proposed environment. The SMART-I2 audio-
graphical rendering engine achieves the spatialization of the vir-
tual objects in a 3D audio-graphical scene [1]. The spatialization
increases the coherence and thus the user’s feeling to be «present»
in the virtual scene [2]. Gesture processing allows for a wide
range of natural interaction enhanced by the presence sensation
[3].

GAVIP can be either considered as a sound installation, a plat-
form of development for experimental protocol or an extended mu-
sical virtual instrument. By «extended», we mean that the created
virtual musical instruments do not only allow an interaction with
the audio modality, but an interaction with three modalities: audio,
graphic and spatial. Declinations of GAVIP mainly depend on sce-
narios that are implemented. In this paper, focus is particularly put
on two scenarios exploring the interaction between a user and the
audio, graphic, and spatial synthesis of a virtual world where the
interaction is thought in the sense of virtual musical instrument de-
sign. Previous works have dealt with the interaction between ges-
ture and sound for the design of virtual musical instruments [4].
Early works have led to low interaction expressivity caused by a
direct mapping between gesture parameters and sound synthesis
engine parameters. Extensions have led to take into account more
expressive interactions by considering higher level descriptors or

∗ Ircam-CNRS
† LIMSI-CNRS, Ircam-CNRS
‡ LIMSI-CNRS, Univ. Paris 11
§ LIMSI-CNRS, Univ. Paris 11
¶LIMSI-CNRS, LMS-École Polytechnique

mapping based on physical models [5]. Progressively, virtual mu-
sical instrument became more linked to the sound perception and
immersion. This has led to consider the spatial diffusion of sounds
produced by such instruments [6], thus changing the terminology
from virtual musical instrument to sound installation in which in-
teractions are multimodal [7]. In this paper, our contribution is to
propose a platform that combines sound spatialization and audio-
graphical systems. To enhance interaction, our platform aims to
guarantee inter-modal coherency (see Sec. 2.2).

The paper is structured as follows. In the section 2 we present
the concept of GAVIP (the general platform for designing new ex-
tended musical instruments). Section 3 describes a first scenario
based on a simple interaction approach. To increase the degree of
inter-modal coherency, a second scenario was developed based on
a physical model. It is described in Section 4.

2. THE GAVIP CONCEPT
2.1. Concept

The goal of GAVIP is the conception and the exploitation of an
immersive, interactive and multimodal platform. Such a platform
is built as a support for different scenarios. These scenarios will
typically plunge the participants into a virtual environment pop-
ulated of several audio-graphical entities among which they can
freely evolve. Participants can interact in real-time with these en-
tities through their gestures. Gesture analysis is used as a natural
way to control the behaviour of audio-graphical entities and their
spatialization in a 3D scene. Thus, a great effort is made to design
a general architecture that allows for wide interaction strategies.

2.2. Interaction and Inter-modal coherency

In this paper, interaction means the bidirectional relationships be-
tween human gestures and virtual elements. Our hypothesis is that
perception of interaction is enhanced by the coherency between
audio and graphical objects (the so-called inter-modal coherency).
Without being stated, this idea is shared across complementary re-
search fields like Human Computer Interactions (HCI) [8], New
Interfaces for Musical Expression (NIME) [9], or Virtual Real-
ity (VR) [2]. By audio-graphical object we mean a virtual object
with consistent audio and graphical components. Inter-modal co-
herency of the audio and graphical components of the virtual ob-
ject (semantic and spatial) is required to integrate the audio and
graphical streams into one unique percept [10]. However the clas-
sical approach is to synthesize separately the audio and graphical
streams. Mismatches between these two information streams typ-
ically exist and are thus perceived. This can significantly degrade
the quality of the audio-graphical rendering and the resulting in-
teraction. To enhance presence and interaction, Inter-modal co-
herency has to be ensured.
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2.3. Architecture

In order to achieve interaction with consistent audio-graphical ob-
jects in a virtual 3D scene, we designed a general virtual space
where the audio and graphical parts of each entities are governed
by the same control unit. Concretely, one unique control model is
mapped with both modalities (the sound synthesis and the graph-
ical synthesis) and the virtual space (spatialization) according to
three consistent intra-modal mapping strategies (see Fig. 1). This
allows the immersed user to influence through his/her gesture the
control model itself and, consequently, the audio-graphical ob-
jects behaviour and their position in the virtual space. The con-
sequence of an action of the user is by nature multimodal (au-
dio/graphical/spatial) and a careful design of the mapping strate-
gies ensures, by construction, the preservation of a strong inter-
modal coherency.

Figure 1: Overview of the general architecture of the GAVIP

2.4. Audio-graphical spatial rendering

The SMART-I2 (Spatial Multi-user Audio-graphical Real-Time In-
teractive Interface) [1] provides an immersive, real-time and con-
sistent audio-graphical spatial rendering. The spatial sound ren-
dering is achieved by means of Wave Field Synthesis (WFS) [11].
The WFS technology physically synthesizes the sound field corre-
sponding to one or several virtual audio sources (up to 16 sources)
in a large rendering area. The 3D graphical rendering is made us-
ing passive tracked stereoscopy. In the SMART-I2 system, front-
projection screens and loudspeakers are integrated together to form
large multi-channel loudspeakers also called Large Multi-Actuator
Panels (LaMAPs). The rendering screens consist of two LaMAPs
(2 m× 2.6 m with each supporting 12 loudpeakers) forming a cor-
ner (see Fig. 2). Overall, the SMART-I2 allows to generate 16
independent virtual objects. Each virtual object is a sound source

and a graphical object. See [12] for more informations regarding
audio-visual immersive systems using WFS.

Figure 2: Front (left) and back (right) views of the SMART-I2

audio-graphical rendering system. The left picture shows a partic-
ipant using the early approach of interaction.

3. EARLY APPROACH

This approach was presented as a demo during the european meet-
ing European VR-EVE 2010 that took place at the LIMSI-CNRS,
Orsay, France.

3.1. Overview

In this first approach, each graphical object was a bubble and each
sound source was a single sound sample taken from a given database
(see Fig. 2). The challenging task was to control the set of 16 in-
dependent sound sources generated by the SMART-I2. We chose
to synthesize sounds of water drops. Two modes of interaction
correspond to either a sequential or a single triggering of sound
samples. Since a simple one-to-one mapping was impossible, we
chose to have automatic controls of some of the sound parame-
ters. We separated the sound controls (sample volume, sample
playback speed, period between two successive sounds) from the
spatial controls (voice number, distance, azimuth). Each of these
parameters was controlled by a specific probability density func-
tion from which each parameter’s value was drawn. This allowed
to control the parameters’ variations and to have less predictable
behavior.

3.2. Gesture Control

The gesture control process is twofold. First, an Optitrack motion
capture system composed of six circular cameras is used to track
the user motion and adapts the graphic feedback to his/her spatial
position. The calibration of the cameras is performed with the help
of the Optitrack Rigid Bodies software. This software locates the
markers dispatched on the user stereoscopic glasses and sends their
3D positions and orientation via a VRPN communication protocol.

Second the sound control is achieved by means of a WiiMote
controller. Hence, the gyroscopes are used for driving azimuth and
distances: the user can choose to be either closer or further from
the sound sources and put the sources either on the right side or on
the left side. Accelerometers are used for triggering control. We
refer the reader to the previous section (Sec. 3.1) for the presen-
tation of the two triggering modes. In the first mode (triggering
mode), the user can use the controller to trigger percussive sound
of water drop. In the second mode (sequential triggering), regular
hits with the controller at a certain frequency trigger sequentially
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played sounds with the same frequency The frequency range al-
lowed for synthesizing sound textures from separate water drops
to heavy rains.

3.3. Limitations

The gesture control of audio-graphical objects proposed by this ap-
proach is straightforward. This enables a direct understanding of
the general behavior by the user that can experience the scenario in
a ludic way. However, this approach features several limitations.
First, the global behavior is mostly controlled by probability den-
sity functions and the user’s degree of control is limited. Hence
the user can not really consider the interface as a virtual musical
instrument as its control in sound production and positioning in
space is limited. Second, the audio and graphical elements have
a basic discontinuous behavior that consists in appearing – disap-
pearing which does not simulate sound texture.

4. CURRENT APPROACH

To overcome the limitations of the first scenario, focus has been
put on the control aspects of the platform for two main reasons.
First, we aim at providing a smoother control of sound synthe-
sis and sound spatialization. Second, in our quest for inter-modal
coherency, we were looking for a more coherent relationship be-
tween audio and graphical parts of the virtual entities.

4.1. Overview

We refer the reader to the general architecture of GAVIP depicted
in Fig. 1. The control process in the early approach was based on
accelerometer–gyroscope sensor data analysis and simply linked
triggering and orientation messages between gesture and audio
modalities (also called direct mapping). Here we propose to define
a more complex control unit based on a physical model simulating
the interactions between elements in the scene. Audio elements
are sound grains obtained by segmenting recorded environmen-
tal sounds. Since we aim to recreate sound textures we basically
segment environmental textures like rains, winds, etc. Graphical
sources are deformable sphere whose dynamics was inspired by
magma lamp. In the following we mainly focus on audio control
and rendering.

4.2. Physical Model

Here we define a physical model governing the dynamic of N ab-
stract spherical particles in a 2D space. These particles are in a
mutual interaction and in interaction with their environment. A
physical model of N punctual masses linked together with springs
governs their movements in this environment. Let us denote ~an(t)
the acceleration of particle n at t, each element n has a mass mn

and follows the Newton’s second law of motion defined by:

mn~an(t) =
∑

k 6=n

~Fk→n(t) + ~Fcentre→n(t) + ~Fext→n(t)

Where at time t,
∑

k 6=n
~Fk→n(t) is the sum of the forces applied

from the other particles on the particle n, ~Fcentre→n(t) is the force
applied from the centre on the particle n, and ~Fext→n(t) are the
external forces exerted on n. Within the framework of this physical
model, the forces are defined as follows:

• ~Fk→n(t) accounts for: the elastic force (characterized by a
parameter αk), the viscous friction (characterized by µk),

the electrostatic attraction (characterized by the product of
their electrostatic load qnqk)

• ~Fcentre→n(t) accounts for: the elastic attraction (character-
ized by K) and the central viscous friction (characterized
by η)

• ~Fext→n(t) accounts for: the global rotation (characterized
by βn) and a magnetic field that is linked to the electrostatic
load of the particle qn.

This physical model allows to generate the relative movements of
masses from a given initial state. At each time step t, the physi-
cal model returns the particles’ index together with their Cartesian
coordinates.

4.3. Sound Synthesis

The sound synthesis is based on the CataRT software developed
by Diemo Schwarz at Ircam [13]. The software takes a set of
sounds and segments them given a grain size (the default grain size
is 242ms) and/or a segmentation algorithm (for instance based on
onset detection). Since we work with sound textures with no onset,
we choose to segment the input audio stream every 242ms. CataRT
analyzes each grain by computing a set of audio descriptors. The
resulting grain representation is a vector whose elements are the
descriptors’ mean values. CataRT then visualizes those grains in a
2D space (also called descriptor space) where the dimensions are
chosen by the user among the available descriptors, for instance
the loudness along the x-axis and the spectral centroid along the
y-axis. Depending on an input path on this 2D space, sound grains
are selected: at each time step t, the selected grain (i.e., played) is
the closest to the current position xt, yt in the path in terms of a
Mahalanobis distance. More precisely, this distance is computed
between xt, yt and the grain descriptors mean values that corre-
spond to the 2D space axis (e.g., loudness and spectral centroid).
Note that a path in the descriptor space can be given either by using
a gesture interface such as a mouse or by an input sound described
in the same descriptor space. The latter case is sometimes called
mosaicing.

Here, the sound grains are selected by the abstract particles’
positions defined previously. To that end, we match both 2D repre-
sentation used for the physical model and the sound corpus. Fig. 3
depicts the process. The sound corpus remains unchanged but the
output of the physical model (which consists in each particle index
and Cartesian coordinates) is scaled to fit the sound corpus dimen-
sions. Hence we have two layers in the same Cartesian space (see
the image at the middle of Fig. 3). An abstract particle position se-
lects the closest grain (according to a certain neighborhood radius)
at each time step. Concretely, our physical model is composed of
16 particles navigating in the sound corpus and selecting 16 grains
(i.e., sound sources). Finally, this virtual plane is the sound field
produced by the WFS.

4.4. Gesture control

The user’s head is still tracked using an Optitrack motion capture
system that allows to adapt the graphic feedback to his/her spatial
position. Then, the gesture control of the virtual environment and
objects corresponds to the possibilities of action and influence that
a participant will have on them. One of the main challenges is
to offer the participant an important power of expression in his
control of the environment and the virtual objects.

At this step, the mapping between gesture analysis outputs and
physical model parameters is not implemented but the global con-
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Figure 3: Sound Synthesis. Physical model environment and the
sound corpus environment are matched and assigned to the sound
field produced by the WFS.

cept is as follows. Two main gesture parameters will be computed
(periodicity and energy) and the mapping is one-to-many. A peri-
odic gesture with low energy will involve a stable behavior of the
system with low changes in its parameters and high viscosity, and
high magnetic rotation forces. A periodic gesture with high energy
will decrease the viscosity and the elastic force between particles
leading to a set of particles with higher quantity of motion. Finally,
a non-periodic gesture with high energy will produce a highly en-
tropic and unstable behaviour of the physical system. Hence, en-
ergy will be computed on data coming from the 3D accelerometers
and periodicity on the data coming from the 3D gyroscope (using
an autocorrelation criterion for example).

4.5. Implementation

A first version is already implemented in the Max/MSP real-time
programming environment. A demonstration video of the phyiscal
model controlling CataRT is available online1. A smaller version
using binaural sound spatialization and simple 3D graphical ren-
dering will be shown during the conference.

5. CONCLUSION

In this paper, a platform for the conception and exploitation of im-
mersive, interactive and multimodal scenario were presented. An
effort has been made to define a modular architecture that allows
for various interesting interaction designs with respect to the co-
herency between audio and graphical objects. Two concrete sce-

1http://imtr.ircam.fr/imtr/GAVIP

narios were presented. The first one made use of simple triggering
and orientation interactions between gesture and audio synthesis
and spatialization. The second scenario proposed a general phys-
ical model that governs the behavior of audio-graphical objects in
the scene. Gestures analysis controls the physical model. This
new approach offered better coherency between audio and visuals
as well as a smoother gesture control of them.

Future works will consist in (1) completing the implementa-
tion of the gestural control of the physical model and (2) designing
perceptual experiments to evaluate the platform.
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ABSTRACT

Recurrence plots (RPs) are two-dimensional binary matrices used
to represent patterns of recurrence in time series data, and are typ-
ically used to analyze the behavior of non-linear dynamical sys-
tems. In this paper, we propose a method for the generation of
time-variant delay effects in which the recurrences in an RP are
used to restructure an audio buffer. We describe offline and real-
time systems based on this method, and a realtime implementation
for the Max/MSP environment in which the user creates an RP
graphically. In addition, we discuss the use of gestural data to gen-
erate an RP, suggesting a potential extension to the system. The
graphical and gestural interfaces can provide an intuitive and con-
venient way to control a time varying delay.

1. INTRODUCTION

Recurrence plots (RP) are binary matrices representing patterns of
repetition in sequential data. They are used for analyzing and vi-
sualizing the behavior of non-linear dynamical systems, and have
been applied in fields as diverse as physics, genomics, chemistry,
and economics [1, 2]. More relevant, RPs have also been applied
to the analysis of music, e.g. for understanding rhythmic structure
[3], cover-song identification [4] and measuring structural similar-
ity [5].

In this paper, we propose a system that inverts this process:
instead of using RPs to analyze an audio sequence, our system
restructures music audio using the patterns of recurrence repre-
sented by a given RP. The approach works by combining blocks of
the input signal such that the repetitions characterized by the RP
are enforced on the output signal. The system thus acts as a time-
variant delay line, able to produce complex patterns of repetition.
Furthermore, we can use a graphical or gestural interface to mod-
ify the topology of the RP, hence providing a novel mechanism for
system control that is more intuitive than existing hardware and
software implementations of similar effects. Finally, note that our
approach operates on an audio buffer, either offline or in real time,
as a digital audio effect, and is thus unlike previous approaches
that synthesize audio directly from the output of non-linear sys-
tems [6].

The remainder of this paper is structured as follows. Section 2
discusses the basics of delay lines and related commercial and non-
commercial work. In section 3 we briefly define recurrence plots
and propose a method for adapting them to the task of restruc-
turing audio. Section 4 describes a Max/MSP implementation of
our system, while section 5 discusses a preliminary gestural con-
trol mechanism. Finally, Section 6 discusses our conclusions and
some directions for future work.

2. RELATED WORK

Delay lines are widely used audio effects [7]. In their simplest
form, the output signal y[n] consists solely of the input signal x[n]
delayed by an integer number of samples M , i.e.

y[n] = x[n−M ] (1)

In addition, the delay can feed the output signal y[n], scaled by a
gain factor g, back into the input:

y[n] = x[n] + g · y[n−M ] (2)

where 0 ≤ g ≤ 1 in order to ensure stability. While in equations 1
and 2, M is restricted to integer values, fractional delay techniques
allow for arbitrary delay times. This model serves as the basis for
most audio delays, both in hardware and software.

Using a fixed delay time (i.e., a constant value of M ) produces
a regular pattern of repetition, resulting in a time-invariant system.
Alternatively, some delay line implementations allow M to vary
over time, either manually or by a low-frequency oscillator, thus
creating irregular patterns of repetition. Techniques such as time
shuffling (brassage) and granular synthesis [7], in which an output
buffer consists of random combinations of segments of an input
buffer, can be regarded as time varying delay effects.

Such variations are common practice in commercial hardware
implementations, e.g. as pedals or rack-mounted units. A num-
ber of artists, for example guitarists David Torn and Bill Frisell,
use such devices in performance to achieve various glitching, stut-
tering, and similar effects in real time. Frequently, these artists
produce these effects by changing the delay time (and other pa-
rameters) via direct and active manipulation of various controls on
the delay device. In an effort to improve these interactions, novel
user interfaces have been proposed. For example, the MATRIX
interface [8] is a physical controller consisting of a 12x12 array of
vertical rods, each of which able to move up and down indepen-
dently. By varying the pressure applied to the rods and the orien-
tation of the hands, the user generates a continuous signal that can
be used to control effects and synthesis parameters. In one exam-
ple, the control data is used to continuously change the delay time
parameters of a multi-tap delay.

Other time-variant delays have been implemented in environ-
ments such as Pure Data, Max/MSP, and Supercollider. For ex-
ample, Jonny Greenwood, guitarist for the rock band Radiohead,
uses a Max/MSP patch that repeats segments of live audio in un-
predictable patterns [9]. Another example is the BBCut2 library
for SuperCollider [10] that allows users to splice and rearrange au-
dio in real time or offline. BBCut2 makes use of “cut procedures,”
which define how an audio buffer is subdivided, including tools
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Figure 1: System overview : Input signal x is filtered by F yielding
y. A given recurrence plot (RP) is a parameter set of F . As seen in
the bottom half of the figure, the resulting sound y has a structural
form that can be described by the given recurrence plot (RP).

to analyze the rhythmic structure of the audio. Users can create
their own cut procedures programmatically, or use predefined pro-
cedures included with the library. While BBCut2 is undoubtedly
a powerful tool capable of creating a wide variety of interesting
effects, it is a library and not a stand-alone application with a fully
developed user interface. Thus, use of BBCut2 entails a certain
amount of programming knowledge, not necessarily available to
most composers and performers. In addition, there are a num-
ber of freeware and commercially available plugins, such as iZo-
tope’s Stutter Edit plugin1, that allow users to create various types
of glitch and stutter edits.

3. APPROACH

While the systems and implementations discussed above can cre-
ate compelling musical results in the right hands, none offer an
intuitive interface that allows a user to quickly create and experi-
ment with different time varying delay patterns. In this paper we
argue that recurrence plots (RP) can be used to exercise (and visu-
alize) control of audio delays, and propose a method for doing so,
which can be seen in Figure 1. An input signal x is rearranged and
remixed by a function F in order to produce the output signal y. F
is fully defined by a given RP, such that the recurrences in the plot
should also appear in y. In the following sections we will discuss
how RPs are obtained, and describe a method for using the plots
to specify F , first offline, and then in real time.

3.1. Recurrence Plots

Let us assume the time series y to describe the output of a dynam-
ical system, such that if the state of the system at time i recurs at
time j, then yi is the same as yj within a margin of error, �. In

1http://www.izotope.com/products/audio/stutteredit
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8

n

Figure 2: An example of recurrence plot with N = 8.

this case, cell (i, j) of the RP matrix is set to 1 (black in the graph-
ical representation); otherwise, the cell is set to 0 (white). More
formally, the RP matrix R can be defined as follows:

Ri,j =

�
1, ||yi − yj || < �

0, ||yi − yj || ≥ �
, i, j = 1, . . . , N (3)

where N represents the length of the time series, and thus the num-
ber of rows and columns in the plot, and || · || denotes a norm (e.g.,
Euclidean norm). The resulting plot is a symmetric, binary matrix
such as the one shown in Figure 2.

3.2. Audio Restructuring using a Recurrence Plot

Next, we must develop a method for restructuring audio using
an existing RP. To simplify the reconstruction problem, assume
that the input signal x[n] is finite and divided into N segments,
n ∈ [1, N ]. The output sound y[n] can be obtained by a linear
combination of the input segments as:

y[n] =
N�

i=1

x[i] · ci,n (4)

where ci,n is a reconstruction coefficient satisfying the condition
that y[n] should have the temporal structure described in the RP.

A simple approach to find an appropriate coefficient set c is
by direct application of the information about the temporal recur-
rences described in the RP. That is, if a state at time n1 recurs
at time n2, the states at time n1 and n2 are assumed to be the
same, i.e. y[n1] = y[n2]. As an example, consider the simple RP
shown in Figure 2. In the first column of this RP, the rows at time
n = {1, 4, 5, 7} are activated, indicating that the output sounds
y[1], y[4], y[5], and y[7] should be identical. In the same manner,
from column 2, we can infer that y[2] = y[5] = y[8], from column
3 that y[3] = y[5] = y[6], etc. However, the fact that y[5] appears
in each of the first three columns implies that all the segments are
equal (i.e. that y[1] = y[2] = · · · = y[N ]). This result is in con-
flict with the given RP: if all the segments were identical, all the
cells of the RP matrix would be black.

The problem with this approach is the assumption that recur-
ring segments are identical. In fact, the margin of error � from
equation (3) implies that the RP represents only approximate rela-
tionships between segments. Therefore, in the previous example,
while the first column indicates that y[1] ≈ y[5], and the second
indicates that y[2] ≈ y[5], we cannot assume that y[1] ≈ y[2].
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Figure 3: Reconstruction using the RP in Figure 2 : (a) the input
signal x[n] (b) the resulting sound y[n].

Because information is lost when computing an RP (i.e., the
exact distance between y[i] and y[j]), precise reconstruction of y
is impossible. However, we can approximate y[n] by consider-
ing only column-wise recurrences, and ignoring any relations that
appear within a given column. By doing this, each row becomes
independent, indicating the recurrences of an individual compo-
nent, x[n]. With this in mind, the coefficients ci,n can be derived
from the nth column vector of RP as follows:

ci,n =
Ri,n�N

i=1 Ri,n

(5)

where the denominator is a normalization factor accounting for the
number of activated components in the column. Therefore, we can
derive the following reconstruction rule from equations (4) and (5):

y[n] =

�N
i=1 x[i] · Ri,n�N

i=1 Ri,n

, (6)

Figure 3 shows the input sound x[n] and the resulting sound
y[n] using the RP in Figure 2. Accordingly, y[1] ≈ y[4] ≈ y[7],
with each output segment a combination of the input components
x[1, 4, 7]. Likewise, y[1] ≈ y[5], with each output segment a com-
bination of x[1, 5].

3.3. Real-time Approach

There are two main restrictions to adapting the reconstruction ap-
proach discussed in Section 3.2 to real-time processing. First, un-
like the non-real-time situation, the length of the incoming signal
is unknown, and thus assumed to be infinite. Second, future audio
segments are not available. The following solutions and compro-
mises are necessary to cope with these restrictions.

First, for a given N × N plot, we use an N -length circular
buffer B[n̂], n̂ ∈ [1, N ]. The buffer stores the last N L-long
segments of the incoming signal x, such that the oldest segment is
always the one to be overwritten. For this to happen, we define the
buffer index n̂ as follows:

n̂ =
�
(n− 1) mod N

�
+ 1, n ∈ Z+ (7)

such that n̂ is reset to 1 after each group of N signal blocks has
been stored. The index n̂ is also used to index the rows and columns
of the RP, allowing us to rewrite equation (6) as:

y[n] =

�N
i=1 B[i] · Ri,n̂�N

i=1 Ri,n̂

, (8)
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17 18 ...

n

n̂

{
Figure 4: A given RP (N = 8) for the real-time process: n̂ indi-
cates the corresponding row and column indexes at time n (bottom
of the figure).
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Figure 5: Real-time reconstruction example: the resulting sound
y[n] from the input x[n]. x[1, 2, 3] recur at y[4, 5, 6] (solid circles
and arrow), and both x[7] and x[9] recur at y[12] (dotted circles
and arrows). The magnitude differences are due to normalization.

Second, the causality of the system means that the current out-
put is necessarily a function of previous inputs. However, the use
of the circular buffer introduces boundary effects that are not im-
mediately apparent. Take for example the RP in Figure 4: x[1]
recurs at n = 4, x[2] recurs at n = 5, and x[3] at n = 6 (indicated
by solid arrows in the figure), thus seemingly defining a standard
delay with delay time 3. However, due to the modulo operation,
x[7] recurs at n = 12, a delay of 5 instead of 3. In fact, the fourth
column of the RP indicates that y[12] is a linear combination of
x[7, 9, 12] (dotted arrows and circles in the figure).

Figure 5 shows an example of real-time reconstruction using
the RP in Figure 4. As described above, x[1, 2, 3] recur at y[4, 5, 6]
(indicated by the solid arrow and circles in the figure), and both
x[7] and x[9] are mixed into y[12] (indicated by the dotted arrows
and circles in the figure).

In practice, due to the fact that the buffer B is initially empty,
the direct implementation of equation (8) yields an unwanted fade-
in effect at the beginning of y[n], for the length of one cycle of
buffering (i.e., for n ∈ [1, N ]). We thus modify the normalization
factor in equation (8) as follows:
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Figure 6: Max/MSP user interface.

y[n] =

�N
i=1 B[i] · Ri,n̂

K

where K =





�n
i=1 Ri,n n ≤ N

�N
i=1 Ri,n̂ n > N

(9)

4. IMPLEMENTATION

4.1. Technical details

The RP-based delay approach described above was implemented
using Max/MSP, a graphical programming language designed specif-
ically for use in realtime systems. It also provides a number of
useful user interface elements, making it an excellent prototyping
environment. The external object, rpprocessor~, was developed in
C using the Max 5 API, in order to compensate for the shortcom-
ings of the native audio buffers in Max/MSP. This object maintains
the audio buffer and an internal representation of the RP, and re-
constructs the output signal according to equation (9). In addition,
rpprocessor~ manages the creation, loading, saving and display of
the RP data.

4.2. User interface

The user interface for the Max patch is shown in Figure 6. The
user draws the desired recurrence pattern in the large grid area
marked 1� , by clicking/toggling cells between black and white.
Once again, note that black squares indicate a recurrence. To main-
tain the standard topology of RPs, a non-editable main diagonal is
added by default. Additionally, symmetry is enforced by automat-
ically toggling equivalent cells the other side of the diagonal. The
“clear” button above the RP deactivates all the cells in the block
except those in the main diagonal.

The sliders marked 2� allow the user to set N , the size of the
RP, and L, the duration of each cell in the RP. Both of these val-
ues can be set using the sliders or the associated number boxes.
Adjusting N changes the resolution of the RP grid, with higher

(a) (b)

Figure 7: Constructing an RP from gestural data: (a) captured hand
movements (the upper arrow and the lower arrow indicate the start
point and the end point respectively) (b) RP generated from the
gesture data shown in (a).

values corresponding to increased resolution. The segment dura-
tion is displayed both in milliseconds and samples.

The value of L is also displayed in beats per minute (bpm) in
the “bpm” number box. According to equation (7), the value of n̂
varies between 1 and N , and represents a particular column of the
RP. Because the duration of each cell in the RP is L, n̂ advances at
a rate determined by L. We can therefore assume n̂ to represent a
beat, and compute the value of L in bpm as follows: bpm = 60/L
(where L is measured in seconds).

The sliders in 3� are used to adjust the mix between the dry
and wet signals and the overall gain. To enable the system, the
user presses the large button in this region of the UI, thus turning
on the analog-to-digital and digital-to-analog converters. Once the
system has been enabled and is in play mode, the columns of the
RP are highlighted in sequence, with the cells corresponding to
the current n̂ in a given column colored red and the unactivated
cells colored yellow. The highlighting proceeds from left to right,
wrapping back to the first column once n̂ reaches N . As discussed
above, n̂ is incremented every L seconds. The highlighting thus
makes the value of L explicit, allowing the user to more easily
synchronize his or her playing with the system.

The user can save the current RP into a text file by using the
“write” button in 4�. Pressing this button brings up a file chooser
window, allowing the user to specify the desired name and location
of the file. Pressing the “read” button also brings up a file chooser,
allowing the user to load an RP from an existing text file. Once
loaded, the RP will be displayed in the editing region ( 1� in figure
6).

5. GENERATING AN RP FROM GESTURAL DATA

In the previous section, we have discussed how the user can draw
a recurrence plot to control a time-variant delay line. However,
because each RP is inherently associated with a time series, we
have the ability to use any time series to control the audio effect.
In this section, we provide a simple extension to our system in
which we generate RPs from hand gestures.

To capture hand movements, we use an infrared LED and an
Apple iSight web camera. The camera is fitted with a filter that
blocks all visible light letting only infrared light pass. To capture

DAFX-4

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-174



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0.5

0

0.5

(a) x

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0.5

0

0.5

(b) y

Figure 8: Real-time reconstruction example: (a) an input signal (b)
a resulting sound using the RP in Figure 7b.

a gesture, the user holds the infrared LED in his or her hand, and
moves it in view of the camera. The resulting X-Y positions of the
LED, which we will define as P (n) = (Xn, Yn), are recorded at
fixed time intervals.

Figure 7a shows a 400-point example time series of captured
hand gestures, showing four repetitions of a figure-8 pattern. Posi-
tions are represented with black dots, with the starting point marked
with a red arrow, and the end point marked with a blue one. The ex-
ample trajectory illustrates an important issue with this approach.
At the center of the figure-8 pattern the four upward and four
downward trajectories pass through a small region of the 2-D space.
According to equation (3), the proximity between these points
makes them recurrences of each other. However, it can be ar-
gued that the upward and downward sub-trajectories are differ-
ent enough that they should be regarded as different, and that the
closeness between their constituent points is circumstantial. This
implies measuring recurrences between sub-trajectories instead of
between individual points, in order to avoid such spurious detec-
tions (and the resulting noisy plots). This can be done using a
technique known as time-delay embedding [1, 2], where the nth

point of the embedded time-series is defined as:

P̂ (n) =
�
Xn, Xn−1, . . . , Xn−ω+1,

Yn, Yn−1, . . . , Yn−ω+1

� (10)

where ω ∈ N is known as the embedding dimension (note that we
assume the embedding delay to be 1). The RP can be obtained as:

Ri,j =

�
1, ||P̂ (i)− P̂ (j)|| < �

0, ||P̂ (i)− P̂ (j)|| ≥ � (11)

where, as before, � is the margin of error and || · || is the Euclidean
norm.

Figure 7b shows the RP computed from the gesture data using
� = 50 and ω = 3. It has three diagonal lines in the upper and
lower triangular parts of the plot, indicating that the main diagonal
recurs three times. The shorter diagonals in the RP correspond to
the crossing of the sub-trajectories discussed above. They can be
filtered out entirely with a larger ω value, however at the cost of
missing recurrences in the larger diagonals. Finding an optimal
parameterization for embedding is an active area of research [2].

Figure 8 shows the result of applying the RP from Figure 7b
to an input signal x, with L = 46.5ms (i.e., 2048 samples in
44.1 kHz sample rate). Sound examples, including stutter and time
shuffling effects, as well as the sounds described above, are avail-
able at http://marl.smusic.nyu.edu/rpprocess.

6. CONCLUSIONS AND FUTURE WORK

We have presented a method for transforming an input signal based
on the patterns of recurrence represented in an RP, and a realtime
implementation of this method in which the user creates the RP
using a graphical interface. The output signal from this system ex-
hibits the recurring structures described by the RP. Unlike existing
systems, however, the graphical interface in our system allows a
user to easily experiment with different delay patterns. The use
of gestural data to control the system suggests another intuitive
means of controlling the delay parameters.

While the realtime system achieved the goal of producing com-
plex delay effects, its time varying nature made it somewhat diffi-
cult to use in practice. In contrast to the case of a standard delay
line, in which a user can easily synchronize his or her playing with
the repeats, the time dependent behavior of our system made such
synchronization difficult. The highlighting of the current column
of the RP, while intended to ameliorate this problem, proved to be
of limited use. Although further practice with the system would
likely make synchronization easier, other remedies could include
the use of an onset detector to trigger the start of an RP cycle.

We are also interested in more fully exploring the generation
of the RP through gestural data. We feel that with these improve-
ments, our system could prove to be a useful tool for performers
and composers interested in producing complex delay effects.
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ABSTRACT

This paper describes the implementation of an innovative musi-

cal interface based on the sound localization capability of a mi-

crophone array. Our proposal is to allow a musician to plan and

conduct the expressivity of a performance, by controlling in real-

time an audio processing module through the spatial movement of

a sound source, i.e. voice, traditional musical instruments, sound-

ing mobile devices. The proposed interface is able to locate and

track the sound in a two-dimensional space with accuracy, so that

the x-y coordinates of the sound source can be used to control

the processing parameters. In particular, the paper is focused on

the localization and tracking of harmonic sound sources in real

moderate reverberant and noisy environment. To this purpose, we

designed a system based on adaptive parameterized Generalized

Cross-Correlation (GCC) and Phase Transform (PHAT) weighting

with Zero-Crossing Rate (ZCR) threshold, a Wiener filter to im-

prove the Signal to Noise Ratio (SNR) and a Kalman filter to make

the position estimation more robust and accurate. We developed a

Max/MSP external objects to test the system in a real scenario and

to validate its usability.

1. INTRODUCTION

Music interaction is an important and new area in the field of audio

based Human Computer Interaction (HCI) systems. The develop-

ment of new interfaces for musical applications has the potential to

change and enhance the experience of musical performance and in

particular to allow a performer the interaction with a computer for

real-time audio processing. The development of digital audio ef-

fects has always stimulated the design of interfaces for controlling

the processing parameters. A large number of musical interfaces

[1] has been implemented and tested with the goal of providing

tools for gestural interaction with digital sounds.

In [2], the author divides gestural controllers into four main

categories: gestural interfaces played by touching or holding the

instrument, interfaces with haptic feedback, interfaces worn on the

body and interfaces that may be played without any physical con-

tact. In this last category, the position of the body might be used

without the need for the performer to wear or touch any special de-

vices. Examples of such interfaces are: Gesture Wall [3], that uses

electric field sensors to measure the position and movement of the

player’s hands and body in front of a projection screen; Litefoot

[4], based on optical sensor; an interface based on video camera

that allows the performers to use their full-body for controlling

in real-time the generation of an expressive audio-visual feedback

[5].

Musical interfaces are often used to allow the performer to

enhance the expressive control on the sounds generated by their

acoustic instruments in a live electronics context. E.g., in Medea

by Adriano Guarnieri (2002) the movement of the bell of a trom-

bone is captured by a camera [6] and mapped into parameters for

sound spatialization; in fili bianco-velati (Guarnieri, 2005), the

movement of a violinist is followed by a motion capture system

based on infrared cameras.

In general, those kind of systems have considerable complex-

ity and in some situations some problems. In fact, the performer

has to wear sensors or devices which can be a hindrance to his/her

movements; besides, in the camera-based systems there could be

problems with the low and/or not always controllable lighting of

the concert hall.

This paper describes the implementation of an innovative mu-

sical interface based on the sound localization capability of a mi-

crophone array. The interface allows a musician to plan and con-

duct the expressivity of a performance, by controlling in real-time

an audio processing module through the spatial movement of a

sound source. In this way a musician, during the performance, is

able to interact with the live electronics system through the move-

ment of his/her own musical instrument with an immediate, in-

stinctive and gestural approach. The proposed interface is com-

pletely non-invasive (no need for markers, sensors or wires on the

musician) and requires no dedicated hardware.

The system uses an algorithm based on an estimate of the Time

Difference Of Arrival (TDOA) for sound source localization. Typ-

ically, these algorithms tend to reduce their performance in pres-

ence of competing sources, high reverberant environment, or low

signal to noise ratio. Moreover, in the context of live electronics

it is not always possible to have a controlled acoustic scene (there
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could be other sources or noise due to the return of audio monitor),

thus, we propose an innovative approach that combines an array

of supercardioid polar pattern microphones (instead of the classic

omnidirectional ones which are usually used in array processing)

and a localization process task based on adaptive parameterized

GCC-PHAT with ZCR threshold, a Wiener filter to improve the

SNR and a Kalman filter to make the position estimation more ro-

bust and accurate.

The paper is organized as follow: Section 2 presents the sys-

tem architecture, both the hardware and software aspects; the al-

gorithms for the sound source localization are detailed in Section

3; finally, Section 4 shows some preliminary results.

2. SYSTEM ARCHITECTURE

The interface consists of three main components: i) a microphone

array for signal acquisition; ii) signal processing algorithms for

robust sound localization; iii) a mapping strategy to control the

audio processing parameters.

The array is composed by three microphones arranged in an

uniform linear placement. In this way we can localize a sound

source in a plane (three microphones are the bare minimum). Sig-

nal processing algorithms estimate the the sound source position

in a horizontal plane by providing its Cartesian coordinates. The

last component implements the mapping strategy [7], so that the

x-y coordinates are associated with audio processing parameters.

For the purpose of testing, in this paper we have limited ourselves

to explore a one-to-one mapping strategy, by using the x-y values

to directly control two parameters of an audio effect, e.g. cutoff

frequency and resonance of a filter or amount and decay time of a

reverb. Of course, this task is closely related to user needs, and in

literature there are a lot of works proposing strategies to transform

from two-to-many parameters [8] [9] [10] [11] [12]. This paper is

mainly focused on the localization task.

Figure 1 summarizes the system architecture. Sound source

localization allows to extract information about the location of one

or more sources using microphone arrays and signal processing

techniques. A widely used approach to estimate the source posi-

tion consists of two steps: in the first step, a set of TDOAs are

estimated using measurements across various combinations of mi-

crophones; in the second step, knowing the position of sensors and

the velocity of sound, the source position is calculated by means

of geometric constraints and using approximation methods such as

least-square techniques [13]. The traditional technique to estimate

the TDOA between a pair of microphones is the GCC-PHAT [14].

It is highly effective in a moderately reverberant and noisy environ-

ment. Unfortunately, concerning musical sounds that are mainly

harmonics, the GCC-PHAT approach does not work, because the

PHAT filter normalizes the GCC according to the spectrum magni-

tude. Then, new considerations are required to estimate the TDOA

for pseudo-periodic signals. Our proposal is to use a parameterized

GCC-PHAT, that weights the contribution of the PHAT filtering,

depending on the threshold of the ZCR parameters.

A de-noise algorithm based on Wiener filter is used to improve

the SNR of the signals. When the maximum peak detection does

not observe any source, it is computed an average estimation of

noise (noise print), which will be subtracted in all three signals

before the TDOA estimation task.

Then, starting from the estimated TDOA between microphones

τ̂12 and τ̂23, it is possible to calculate the coordinates of the source

by means of geometric constraints. In a near-field environment we
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Figure 1: Block diagram of interface.

have

x̂ = r cos(θ) (1)

ŷ = r sin(θ) (2)

where the axis origin is placed in microphone 2, r is the distance

between the sound source and the microphone 2, and θ is the angle

between r and the x axis

θ = arccos
( c(τ̂12 + τ̂23)(τ̂12τ̂23c

2 − d2)

d(2d2 − c2(τ̂2
12 + τ̂2

23))

)
(3)

r =
τ̂2
12c

2 − d2

2(τ̂12c + d cos θ)
(4)

where c is speed of sound and d is the distance between micro-

phones.

Finally, a second filter provides a more accurate tracking of

the source position, by means of the Kalman theory. The Kalman

filter is able to provide an estimation of the position of the source,

also if the TDOA estimation task misses the target in some frame

of analysis.

3. SOUND SOURCE LOCALIZATION

3.1. TDOA estimation using GCC-PHAT

GCC [14] is the classic method to estimate the relative time delay

associated with the acoustic signals received by a pair of micro-

phones in a moderate reverberant and noisy environment. It basi-

cally consists of a cross-correlation followed by a filter that aims

at reducing the performance degradation due to additive noise and
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multi-path channel effects. The signals received at the two micro-

phones x1(t) and x2(t) may be modeled as

x1(t) = h1(t) ∗ s(t) + n1(t)

x2(t) = h2(t) ∗ s(t − τ) + n2(t)
(5)

where τ is the relative signal delay of interest, h1(t) and h2(t)
represent the impulse responses of the reverberant channels, s(t)
is the sound signal, n1(t) and n2(t) correspond to uncorrelated

noise, and * denotes linear convolution. The GCC in the frequency

domain is

Rx1x2(t) =

L−1∑

w=0

Ψ(w)Sx1x2(w)e
jwt
L (6)

where w is the frequency index, L is the number of samples of the

observation time, Ψ(w) is the frequency domain weighting func-

tion, and the cross-spectrum of the two signals is defined as

Sx1x2(w) = E{X1(w)X∗
2 (w)} (7)

where X1(w) and X2(w) are the Discrete Fourier Transform (DFT)

of the signals and * denotes the complex conjugate. GCC is used

for minimizing the influence of moderate uncorrelated noise and

moderate multipath interference, maximizing the peak in corre-

spondence of the time delay.

The relative time delay τ is obtained by an estimation of the

maximum peak detection in the filter cross-correlation function

τ̂ = argmin
t

Rx1x2(t). (8)

PHAT [14] weighting is the traditional and most used func-

tion. It places equal importance on each frequency by dividing

the spectrum by its magnitude. It was later shown that it is more

robust and reliable in realistic reverberant conditions than other

weighting functions designed to be statistically optimal under spe-

cific nonreverberant noise conditions [15]. The PHAT weighting

function normalizes the amplitude of the spectral density of the

two signals and uses only the phase information to compute the

GCC

ΨPHAT(w) =
1

|Sx1x2(w)| . (9)

It is widely acknowledged that GCC performance is dramat-

ically reduced in case of harmonic sound, or generally pseudo-

periodic sounds. In fact, the GCC have less capability to reduce

the deleterious effects of noise and reverberation, when it is ap-

plied to pseudo-periodic sound.

3.2. Adaptive parameterized GCC-PHAT with zero-crossing

rate threshold

The PHAT weighting can be generalized to parametrically con-

trol the level of influence from the magnitude spectrum [16]. This

transform will be referred to as the PHAT-β and defined as

ΨPHAT−β(w) =
1

|Sx1x2(w)|β (10)

where β varies between 0 and 1. When β = 1, equation (10)

becomes the conventional PHAT and the modulus of the Fourier

transform becomes 1 for all frequencies, when β = 0 the PHAT

has no effect on the original signal, and we have the cross-correlation

function.

Therefore, in case of harmonic sounds we can use an interme-

diate value of β so that we can detect the peak to estimate the time

delay between signals, and to have a system, at least in part, which

exploits the benefits of PHAT filtering to improve performance in

a moderately reverberant and noisy environments. To adapt the

value of β we use the ZCR to check if sound source is periodic or

not. ZCR is a very useful audio feature, and it is defined as the

number of times that the audio waveform crosses the zero axis

ZCR(t) =
1

2N

N∑

i=1

|sgn(x(t + i)) − sgn(x(t + i − 1))|.

(11)

where sgn(x) is the sign function.

Then, we can express the adaptive parametrized GCC-PHAT,

identifying by experimental tests a suitable threshold µ such as

{
β = 1, if ZCR ≥ µ

β < 1, if ZCR < µ
(12)

3.3. De-noise Wiener filter

Frequency domain methods, which are based on the Short Time

Spectral Attenuation (STSA) [17], require a little information to

carry out the filtering (a priori information): only an estimate of

the noise present is necessary (noise print), since it is assumed

to be stationary along the entire signal. Any further information

needed (a posteriori information) is automatically calculated by

the algorithm through the analysis of the characteristics of the sig-

nal. Since this method is easy to use and is generally applied to

different typologies of audio signals, they are employed in com-

mercial hardware and software systems.

These de-noise systems consist of two important components:

a noise estimation method and a suppression rule. These tech-

niques employ a signal analysis through the Short-Time Fourier

Transform (STFT) (which is calculated on windowed section of

the signal as it changes over time) and can be considered as a non-

stationary adaptation of the Wiener filter [18] in the frequency do-

main. In particular, Short Time Spectral Attenuation (STSA) con-

sists in applying the short-time spectrum of the noise to a time-

varying suppression and does not require the definition of a model

for the audio signal. Suppose considering the useful signal s(t)
as a stationary aleatory process to which some noise n(t) is added

(uncorrelated with x(t)) to produce the degraded signal x(t). The

relation that connects the respective power spectral densities is

therefore

Px(w) = Ps(w) + Pn(w). (13)

If we hypothesize to succeed in retrieving an adequate esti-

mate of Pn(w), during the silence intervals of the signal x(t), and

in the musical portions of Px(w), we can expect to obtain an es-

timate of the spectrum of s(t) by subtracting Pn(w) from Px(w);

the initial assumption of stationariness can be considered locally

satisfied since short temporal windows are employed. Note that

the use of a short-time signal analysis is equivalent to the use of

a filter bank. First each channel (that is, the output of each filter)

is appropriately attenuated and then it is possible to proceed with

the synthesis of the restored signal. The timevarying attenuation

applied to each channel is calculated through a determined sup-

pression rule, which has the purpose to produce an estimate (for

each channel) of the noise power. Each particular STSA technique

is characterized by the implementation of the filter bank and of the

suppression rule.
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If we denote the STFT of the x(t) noisy signal with X(t, wk),

where t represents the temporal index and wk the frequency index

(with k = 1...N , N represents the number of STFT channels), the

result of the suppressing rule application can be interpreted as the

application of a G(t, wk) gain to each value Y (t, wk) of the STFT

of the noisy signal. This gain corresponds to a signal attenuation

and is included between 0 and 1. In most of the suppression rules,

G(t, wk) only depends on the noisy signal power level (measured

at the same point) and on the estimate of the noisy power at the wk

frequency

P̂n(wk) = E{|N(t, wk)|2} (14)

(which does not depend on the temporal index t due to the pre-

sumed noise stationariness). At this point a relative signal can be

defined

Q(t, wk) =
|X(t, wk)|2

P̂n(wk)
(15)

which, starting from the hypothesis that the n(t) noise is not cor-

related to the x(t) signal, we deduce should be greater than 1

E{Q(t, wk)} = 1 +
E{|S(t, wk)|2}

P̂n(wk)
. (16)

A typical suppression rule is based on the Wiener filter [18]

and can be formulated as follows

G(t, wk) =
|X(t, wk)|2 − P̂n(wk)

|X(t, wk)|2 . (17)

3.4. Kalman filter

The Kalman filter [19] is the optimal recursive Bayesian filter for

linear systems observed in the presence of Gaussian noise. We

consider that the state of the sound localization could be summa-

rized by two position variables, x and y, and two velocities, vx and

vy . These four variables are the elements of the state vector xt

xt = [x, y, vx, vy]T . (18)

The process model relates the state at a previous time t − 1
with the current state at time t, so we can write

xt = Fxt−1 + wt−1 (19)

where F is the transfer matrix and wt−1 is the process noise asso-

ciated with random events or forces that directly affect the actual

state of the system. We assume that the components of wt−1 have

Gaussian distribution with zero mean normal distribution with co-

variance matrix Qt, wt−1 ∼ N(0,Qt). Considering the dynam-

ical motion, if we measured the system to be at position x with

some velocity v at time t, then at time t + dt we would expect the

system to be located at position x + v · dt, thus this suggests that

the correct form for F is

F =




1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1


 . (20)

At time t an observation zt of the true state xt is made accord-

ing to the measurement model

zt = Hxt + vt (21)

where H is the observation model which maps the true state space

into the observed space and vt is the observation noise which is

assumed to be zero mean Gaussian white noise with covariance

Rt,vt ∼ N(0,Rt). We only measure the position variables.

Hence, we have

zt =

[
x̂
ŷ

]
, (22)

and then we have

H =




1 0
0 1
0 0
0 0


 . (23)

The filter equations can be divided into a prediction and a cor-

rection step. The prediction step projects forward the current state

and covariance to obtain an a priori estimate. After that the correc-

tion step uses a new measurement to get an improved a posteriori

estimate. In predication step the time update equations are

x̂t|t−1 = Ftx̂t−1|t−1, (24)

Pt|t−1 = FtPt−1|t−1F
T + Qt−1, (25)

where Pt denotes the error covariance matrix. In the correction

step the measurement update equations are

x̂t|t = x̂t|t−1 + Kt(zt − Htx̂t|t−1), (26)

Pt|t = (I − KtH)Pt|t−1, (27)

where I is the identity matrix and so-called Kalman gain matrix is

Kt = Pt−1|t−1H
T (HtPt−1|t−1H

T + Rt)
−1. (28)

This formulation requires that the dynamic of the system is lin-

ear. However our specific problem is non-linear. To accommodate

non-linear state transition and observation models, the Extended

Kalman Filter (EKF) [20] implements a local linearization of the

models. Thus, we need to compute new values for F, at every time

step, based on the state x to approximate the real update.

1 2 3

Figure 2: The map of the considered control area.
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Figure 3: Comparison of parameterized PHAT-β TDOA estimation performance. All sound sources are approximately located in (0,50)

cm. a) White noise played on mobile device, β = 1. b) Flute, β = 1. c) Flute, β = 0.65. d) Flute, β = 0.65 and de-noise Wiener filter.

The variances of TDOA estimation are: a) σ2
a = 0.04; b) σ2

b = 80; c) σ2
c = 0.65; d) σ2

d = 0.5.

4. RESULTS

Some experimental results related to the localization performance

of the interface in a real scenario are presented. To verify and vali-

date our approach to the localization of pseudo-periodic sounds we

used and compared three types of sources: white noise played on

a mobile device, a flute played by a musician and a human voice.

The interface works with sampling rate of 96 kHz, a Hanning anal-

ysis window of 42 ms, a time window for the estimation of the

average noise (noise print) of 4.2 s. We used three microphones

with supercardioid pickup pattern, which are the most frequently

used microphones to acquire sound signals in electroacoustic mu-

sic. It is important to highlight that the classic microphone for

array processing is the omindirectional polar pattern, but its use is

not appropriate in this context because of possible interference of

the loudspeakers during the application in live performance. How-

ever, as we shall see, the use of directional microphones allows

the localization of an acoustic source in the small area of inter-

est (Figure 2). The distance between microphones is d = 15 cm.

The working area is included in a square of side 1 meter. The axis

origin coincides with microphone 2 (m2) position, and x axis can

vary between -50 cm and 50 cm and y axis between 0 and 100 cm

(Figure 2).

Experiments have been done in a rectangular room of 3.5×4.5
m, with a moderately reverberant and noisy environment. Figure 3

shows a comparison of parameterized PHAT-β TDOA estimation

performance. We made four tests with different parameters of in-

terface configuration. We consider the TDOA estimation between

microphone 2 and 3. All sound sources are approximately located

in the center of interested map, (a) (5,52) cm, (b) (4,51) cm, (c)

(5,53) cm, (d) (3,51) cm. In the first test (a), we played a contin-

uous white noise signal by a mobile device with β = 1 interface

configuration. In this way we checked the whole efficiency offered

by the PHAT filter to optimize the TDOA estimation, reducing the

degradation effects due to noise and reverberation. We can see

in Figure 3 how the maximum peak detection is clearly visible

(white line). We can also see the effects of multipath reverberation

represented by the other parallel gray lines. The value of TDOA

estimation is τ̂23 = 7 (sample). The variance of TDOA maximum

peak during the whole reproduction of sound is σ2
a = 0.04. The

TDOA estimation is extremely accurate. In test (b), is considered

a flute again with β = 1 parameter. As expected, the source is not

detected (σ2
b = 80). Subsequently, in test (c) we examined a flute

with β = 0.65 setting. The source is detected as shown in Figure

3. The mean value of TDOA estimation is τ̂23 = 7 (sample) and

it corresponds to the correct position of the source, the variance

results σ2
c = 0.65. In the last test (d), we considered once more

a flute with β = 0.65 and the de-noise Wiener filter task. The

mean value of TDOA estimation is τ̂23 = 5 (sample), the variance

results σ2
c = 0.5. Hence, in this case, a lower value of variance in-

dicates a less swinging of the TDOA than the average value, which

is the correct location of the source.

Therefore, the parameterized PHAT-β allows the TDOA esti-

mation of harmonic sounds, and de-noise component can improve

the accuracy. However, the comparison with test (a), whose robust

and well-defined result we aim to obtain, does not give yet satisfac-

DAFX-5

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-181



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

Figure 6: The Max/MSP interface with the external object asl∼.

tory results. A parameterization of PHAT with value of β = 0.65,

in according to [16], is a good compromise between filtering and

detection.

Before considering the experiments with the Kalman filter, we

show the results of a test with a human voice, ranging from har-

monic to noise sounds, in order to verify the threshold value of

zero-crossing rate for the activation of PHAT-β. The human voice

source is located in (-20,70) cm. Figure 4 shows the results of

the ZCR and adaptive parameterized GCC-PHAT-β with thresh-

old value of µ = 0.03, β = 0.65 when ZCR < µ and de-noise

Wiener filter. We believe that this value µ is enough to achieve

an adequate adaptation of GCC. Still in Figure 4, we can note that

when the sound becomes harmonic, and then we have partially fil-

tered GCC with PHAT, the TDOA peak tends to widen, reducing

its robustness, but still allowing the estimation of source position.

Finally, the last test on the localization performance shows the

effectiveness of the Kalman filter to make the xy coordinates more

accurate and usable in the interface. Once again we used a flute

moving within the mapped area. The threshold value of ZCR is

µ = 0.03, β = 0.65, and de-noise task is active. As you can

see from Figure 5, the black lines, which represents the data after

the Kalman filtering, are reported in order to have less stability

problems due to reverberation. In fact, the estimated raw data (gray

lines) present very high swinging values, which would make the

interface inappropriate to control the processing parameters.

In conclusion, we implemented the system by developing a

Max/MSP external object, named asl∼, in order to validate the

interface in real-world music application. The object receives in-

coming audio signals acquired by the three microphones and, as

output, it gives the position of the sound source. The object per-

forms all the signal processing techniques described in the previ-

ous sections. Moreover, a simple Max/MSP patch (see Figure 6)

has been developed in order to control in real-time an audio pro-

cessor. As mentioned, xy values have been used to directly control

the parameters of an audio effect. We made use of different VST

plug-ins, such as reverb and delay effects, with encouraging re-

sults.

5. CONCLUSIONS

We described a digital interface that incorporates real-time sound

source localization for gestural control without any physical con-

tact, which can be used as audio HCI system to enhance the expe-

rience of a musical performance. In order to work with harmonic

sounds, we proposed a system consisting of adaptive parameter-

ized GCC-PHAT with zero-crossing rate threshold. We have seen

that this solution allows to locate sources such as musical instru-

ments, but it is less robust in moderate reverberation and noisy

environments, comparing to the standard GCC-PHAT. For this rea-

son, we included two filters. The first one has been set up using

the STSA with Wiener filter, before the TDOA estimation task, in

order to improve the SNR of signals. The second one has been for-

mulated using the Kalman filter theory, after the estimation of the

source position. In this way, we obtained an accurate localization

system. We used a linear array of three supercardioid polar pattern

microphones, and we have seen that we are able to locate the sound

source inside an area of one square meter. The usability of the in-

terface was validated by developing a Max/MSP external object,

so that we can map the xy position of the sound source (i.e. voice,

traditional musical instruments and sounding mobile devices) into

control parameters.

Future works include the test and use of the sound localization

based interface in real application of live performance to verify

how the system works with interfering sources from a sound rein-

forcement system and other instruments. In addition, we plan to

test other mapping strategies in order to obtain a more articulate,

complex and interesting system.
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ABSTRACT

This paper presents a robust, accurate sound source localization
method using a compact, near-coincident microphone array. We
derive features by combining the microphone signals and deter-
mine the direction of a single sound source by similarity matching.
Therefore, the observed features are compared with a set of previ-
ously measured reference features, which are stored in a look-up
table. By proper processing in the similarity domain, we are able to
deal with signal pauses and low SNR without the need of a separate
detection algorithm. For practical evaluation, we made recordings
of speech signals (both loudspeaker-playback and human speaker)
with a planar 4-channel prototype array in a medium-sized room.
The proposed approach clearly outperforms existing coincident lo-
calization methods. We achieve high accuracy (2◦ mean absolute
azimuth error at 0 dB SNR) for static sources, while being able to
quickly follow rapid source angle changes.

1. INTRODUCTION

The task of acoustic source localization (ASL) is to estimate the lo-
cation of one or several sound sources given acoustic information
only. Typically, a microphone array is used as a sensor front-end.
ASL can be used to determine the steering direction of a micro-
phone array beamformer and/or to direct a video camera towards
the estimated source direction [1]. Typical applications are hands-
free communication, conferencing systems and human-like robots.
Most of the established methods for ASL use spatially distributed
microphones to capture the direction-dependent time difference of
arrival (TDOA) [2, 3]. Since the magnitude of the TDOA is di-
rectly related to the microphone spacing, arrays well suited for
TDOA-based ASL require more space than so called near-coin-
cident microphone arrays (NCMAs).
NCMAs consist of two or more microphone capsules having their
acoustic center as close to each other as possible. Instead of evalu-
ating time differences, the key principle behind ASL with NCMAs
is to use level differences between the microphone signals. These
level differences can be caused either by dedicated directional cap-
sules [4, 5, 6] or by omni-directional transducers which are differ-
entially combined [7]. Established methods for coincident local-
ization [4, 5, 6, 7] share in common that the source direction is
determined by computing the active sound intensity vector.

∗ New affiliation: BCT - Electronic GesmbH, Saalachstrasse 88, 5020
Salzburg, Austria
† Thanks to AKG Acoustics, GmbH, Vienna, esp. Martin Opitz, Marco

Riemann and Matthias Maly-Persy, for providing the prototype micro-
phone array and supporting our work.

In this paper, we propose a new coincident ASL-method based on
supervised pattern recognition via a minimum distance classifier.
The principle of our approach is depicted in Fig. 1. We derive spe-
cific features Y from the captured microphone signals and com-
pare them to a set of pre-measured reference features, stored in a
look-up table. This table consists of a numberQ of feature vectors
Y(Θq), each relating to a specific source position Θq . Basically,
the source position is estimated as that position Θq where Y(Θq)
is most similar to Y .
To be able to track changing source locations, the processing is
performed frame-wise. For each frame l, we obtain a similarity
curve (SC) Cl(Θq) via the Euclidean distance between Y l and
Y(Θq). The SC is ought to peak at the position of the sound
source. If the shape of the SC is however flat, without a clear,
global maximum, it is likely that the current frame would produce
a more or less random source location estimate. This is for in-
stance typical for a speaking pause between two words. By using
the shape of the SC for weighting the influence of the observed
frame with respect to previous ones, we can however effectively
suppress the influence of signal pauses. With that, we obtain a sta-
ble source position estimate without jumping away from the source
in signal pauses which is important in many practical applications
such as camera- or beam-steering.
Instead of smoothing the sequence of location estimates with a
fixed time-constant, our approach is adaptive. This makes our
position estimator able to quickly follow a sudden change of the
source location and produce a very smooth result without outliers
in case of a static source position. In contrast to a separate voice
activity detector, our SC-shape based detection method is indepen-
dent of the signal type, e.g. speech, narrow-band, noise, transient
signals, and comes at virtually no additional computational cost.

Mic Array

Mic Array

Similarity S(φ)

ReferenceReference

     Feature

Estimated source angle

 )(maxargˆ 


S

Figure 1: Supervised pattern classification principle.
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Figure 2: The microphone array used in this paper.

A good basis for localization of a single sound source is to track
strong frequencies and compute an average SC over those frequen-
cies. To extend our method to tracking of multiple sources, we
suggest to perform clustering in the frequency-dependent SC in-
stead of averaging. Multi-source tracking is however beyond the
scope of this paper.
A basic property inherent to coincident localization is that two
sources providing energy at the same frequency at the same time
cannot be separated. Instead, if the sources have equal level, the
mean direction is detected. However, multiple speakers are typi-
cally not always active at the exact same time and frequency and
hence histogram or time-averaging approaches make multi-speaker
localization possible [7].
In [7], it is suggested to use a measure of diffuseness as a relia-
bility measure, which is conceptually very similar to our approach
with rating the shape of the SC. As outlined above, we do how-
ever not use a threshold and do not use a fixed time constant for
averaging, which makes our position estimator able to react either
quick or smooth, depending on the situation. Another point rele-
vant in practice, is the effect of microphone mismatch. Here, the
coincident localization approach is likely to get less accurate, will
however not completely fail, because the the overall characteristic
of the level differences will not completely change due to manu-
facturing tolerances.

2. METHOD

2.1. Signal Model

Consider a single, acoustic point source s located at a position
Θs =

[
ϕs, ϑs, rs

]T . ϕ, ϑ, and r denote the spherical co-
ordinates azimuth, elevation and radius, respectively. The coordi-
nate system is centered at the center of a coincident microphone
array. This array consists of M microphone capsules indexed by
m = 0, . . . ,M − 1. Our goal is to estimate Θs from the micro-
phone array signals. In short time Fourier transform (STFT) do-
main, a linear, time invariant (LTI) model of the mth microphone
signal is given as

Xm(l, f) = S(l, f) ·Hm|Θs(l, f) + Vm(l, f) (1)

where Xm(l, f), S(l, f) and Vm(l, f) represent the mth micro-
phone, acoustic source and an additive disturbance (noise) signal,
respectively. l is the frame time index and f the frequency index.
Hm|Θs(l, f) represents the frequency response of the mth micro-
phone given a source position Θs.

Because the frequency response is dependent on the source posi-
tion, we refer to Hm|Θs(l, f) as the position dependent frequency
response (PDFR). It models frequency dependence as well as the
directivity and the proximity effect [8] of the microphone. The
PDFR of an ideal first order microphone including the proximity
effect, is given as [8]

Hm|Θs(f) = (1−βm)+βm cos(ϕ−ϕm) cos(ϑ−ϑm)
1 + j 2πf

c
r

j 2πf
c
r
(2)

where j =
√
−1, c is the speed of sound, (ϕm, ϑm) is the look-

direction of the microphone and βm specifies the directivity. For
high 2πf/c · r (far-field), βm = 0.5, βm = 0, βm = 1 yields the
well-known cardioid, omni-directional and figure-8 polar pattern,
respectively. To model a real microphone, the PDFR can be ob-
tained by means of impulse response measurements, e.g. using the
exponential sine sweep method [9].

2.2. Microphone array

For the following discussion and derivation of our ASL-algorithm
we restrict to the planar, 4-channel NCMA configuration depicted
in Fig. 2. This array consists of one omni-directional microphone
capsule and three directional, first order microphones (cardioid po-
lar pattern) respectively. The cardioids are oriented towards the
azimuth angles 0◦, 120◦ and 240◦, respectively, within the same
plane ϑ = 0. Instead of using a separate omni-directional cap-
sule, the omni-characteristic can also be achieved by summing the
cardioids [10]. In our experiments, the source localization per-
formance was the same in both cases. Using a separate micro-
phone can however produce a better low-end sound when coinci-
dent beamsteering is performed.
Due to the planar setup, robust estimation of the elevation angle
ϑs is hardly possible. With a 3D-array such as the SFM it should
however be possible to perform estimation of the elevation angle
equally well as azimuth-estimation. The proximity effect provides
a physical basis for estimation of the source distance rs. How-
ever, first experiments and theoretical considerations indicate, that
distance estimation is very sensitive to noise and limited to close
(nearfield) sources [10]. Therefore, this paper restricts to tracking
of the source azimuth angle. Hence, we use ϕ instead of Θ in (4)
and all following equations. Furthermore, only tracking of a single
sound source is considered. We do however suggest how to extend
the presented method to allow for tracking of multiple sources at
the same time.

2.3. Features

The basic idea behind our features is that there is a direction-
dependent triplet of cardioid microphone gains (cf. Fig. 2a and
Fig. 3, top). For our observed feature vector Y (l, f), we must try
to obtain to these gains from the microphone signals Xm(l, f).

Y (l, f) =
[
Y1(l, f), Y2(l, f), Y3(l, f)

]T (3)

Ym(l, f) =
|Xm(l, f)|
|X0(l, f)| =

|S(l, f) ·Hm|ϕs(l, f) + Vm(l, f)|
|S(l, f) ·H0|ϕs(l, f) + V0(l, f)|

(4)
The directional microphones are indexed by m = 1, 2, 3, and
m = 0 is the omni-directional channel. The normalization by
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Figure 3: Effect of different source configurations (single sources,
omni-directional noise, mix). Top: Reference features (solid lines)
and feature vectors (markers) on basis of measured data of the pro-
totype array (1 kHz, r = 1 m, ϑ = 0). Bottom: Corresponding
similarity curves (SCs). In case of a single sound source there is a
sharp peak in the SC. If several directions contribute energy at the
same frequency (extreme case: omni-directional noise, red curve)
the SC gets flatter.

|X0(l, f)| is useful to become less dependent on the source sig-
nal: If S(l, f) provides enough energy to suppress the influence of
the noise terms Vm(l, f), i.e. S(l, f) ·Hm|ϕs(l, f) >> Vm(l, f),
the source signal S(l, f) in (4) cancels and only the ratio of the
PDFRS remains. This ratio is known for a variety of source an-
gles, because the PDFRs can be measured for a number Q of an-
gles ϕq , q = 0, . . . , Q − 1. The basic reference feature vector
Y(l, f, ϕq) =

[
Y1(l, f, ϕq),Y2(l, f, ϕq),Y3(l, f, ϕq)

]T is hence
defined by

Ym(l, f, ϕq) =
|Hm(l, f, ϕq)|
|H0(l, f, ϕq)|

(5)

In case of multiple sources, reverberation or measurement noise
the disturbance terms Vm(l, f) in (4) cannot be neglected and the
reference features in (5) are not appropriate. The difference be-
tween the cardioid channels decreases and hence the feature curves
get compressed (cf. Fig. 3). With our planar array, the same thing
happens for elevated sources (cf. (2)). To model all these effects,
we extend our database with compressed versions of the clean fea-
tures in (5).

Ym(l, f, ϕq, i) =
|Hm(l, f, ϕq)|+Gi|H̄m(l, f)|
|H0(l, f, ϕq)|+Gi|H̄0(l, f)| (6)

where Gi, i = 0, . . . , I − 1 is a SNR-dependent weighting factor
and H̄m(l, f) is the mean of Hm(l, f, ϕ) over ϕ. Compared to
actually measuring features in noisy conditions, the advantage of
the noisy reference feature model in (6) is that the measurement
effort and memory requirements can be reduced significantly.
By focusing only on a number of Np strong, deterministic fre-
quency components fp, we can increase the performance in noisy
environments, while reducing the computational complexity in the
following processing steps. We obtain the peak-frequencies fp by
peak-picking in |X0(l, f)|.

Figure 4: SimilarityC(f, ϕq). The source is a speech vowel signal
located at ϕs = 0◦ mixed with omni-directional noise (6dB SNR).
The peak-frequencies fp are indicated on the ordinate.

2.4. Similarity Matching

We use a similarity measure based on the Euclidean norm:

Sim {Y ,Y} =
1

1 +
√∑M−1

m=1 |Ym − Ym|
2

(7)

Eq. (7) yields values bound between 0 (completely dissimilar) and
1 (vectors are the same). The similarity between the lth observed
feature vector and the reference is computed for every reference
position ϕq , peak frequency fp and SNR index i.

C(l, fp, ϕq, i) = Sim {Y (l, fp),Y(l, fp, ϕq, i)} (8)

Instead of simply searching for the global maximum, we propose
the following procedure: First, we compute an index imax(l, fp)
that helps us to select the best matching SNR-version.

imax(l, fp) = argmax
i

{
max
ϕq

{C(l, fp, ϕq, i)}
}

(9)

Then we average over frequency which yields a single SC:

C(l, ϕq) = mean
fp
{C(l, ϕq, fp, imax(l, fp))} (10)

To illustrate why we focus only on strong frequency components
fp, an example of the frequency-dependent SC is shown in Fig. 4.
At the peak-frequencies fp, the SC peaks close to the true source
angle. At other frequencies, where the source does not provide suf-
ficient energy, noise prevails and there is an increased likelihood
of having a flat SC without a clear peak or a peak at a wrong angle.

2.5. Reliability Filtering

The azimuth estimate could be computed directly from C(l, ϕq)
as follows:

ϕ̂s(l) = argmax{C(l, ϕq)} (11)

If the frame does however contain mainly background noise (e.g.
in a speaking pause), the estimate is likely to be different from the
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Figure 5: Effect of reliability filtering (RF) on a speech signal located at 0◦ with added omni-directional pink noise (SNR=0dB). By rating
the quality of each frame between 0 (unreliable) and 1 (reliable) a stable, correct localization result can be obtained. Because the SNR is
low, the frame estimate without RF (red) looks erratic and random. For the same reason, the frame quality measure bl is close to zero most
of the time. As can be seen from (12), the influence of such ‘bad frames’ is hence suppressed in the enhanced estimate (blue), i.e. we rely
mainly on the previous estimate. Please note that at times where bl (cyan) is significantly higher than 0, the frame-estimator (red) delivers
the true result. This is the basis for a correct enhanced estimate (blue).

actual source direction. Hence, we rate the “frame quality” and
smooth the run of C(l, ϕq) over time l. We use a 1-pole lowpass-
filter with a time-varying coefficient 0 ≤ bl ≤ 1:

C̃(l, ϕq) = bl · C(l, ϕq) + (1− bl) · C̃(l − 1, ϕq) (12)

If bl = 0 the SC is not updated, i.e. the previous SC is used. If bl =
1 we rely only on the current frame and neglect the history. We
compute bl by rating the shape of the SC with a sample variance
like metric:

b̃l =
1

Q− 1

Q−1∑

q=0

(
C(l, ϕq)−mean

ϕq

{C(l, ϕq)}
)2 (13)

A flat SC achieves a low value whereas a SC with a clear, single
peak achieves a high value of b̃l. To ensure that bl takes values
close or equal to 1 under good conditions, we normalize and sat-
urate b̃l, i.e. bl = max(b̃l/b̃max), where b̃max is obtained from a
recording under perfect conditions (single source, free-field, high
SNR). With C̃(l, ϕq) in (12), the enhanced position estimate is
given as

ϕ̂s(l) = argmax
ϕq

{C̃(l, ϕq)} (14)

Fig. 5 exemplifies the effect of reliability filtering (RF), i.e. the
basic frame-level estimate in (11) is compared with the enhanced
version in (14).
The azimuth estimate ϕ̂s(l) in (14) is tied to the reference azimuth
grid ϕq . To be able to produce results between the grid, interpo-
lation between the maximum of the SC and its neighbors can be
performed. We achieved good results with parabolic interpolation
[10].

3. PRACTICAL EVALUATION

Recordings were carried out at the Institute of Electronic Music
and Acoustics (IEM) in the “IEM-CUBE”, an approximately 10 x
12 x 4 m large room usually used as a lab, for lectures and electro-
acoustic music (reverberation time RT60 ≈ 0.7 s ). The CUBE is
equipped with an optical tracking system (OTS, a V624 data sta-
tion and 15 M2 cameras by Vicon, cf. http://www.vicon.com) and
a 24-channel hemispherical loudspeaker array (LSA).

As a sound source, we used 1) a loudspeaker and 2) a human
speaker moving freely around the array. Both were tracked by the
OTS for exact determination of the true source position (ground-
truth) ϕl. The LSA was used for generation of omni-directional
pink noise. To account for various SNRs, we added the appro-
priately weighted pink-noise recording to the clean target source
recordings, i.e. the source recordings were made in quiet condi-
tions (SNR between 25 and 45dB depending on the microphone,
off/on-axis).
The reference database was obtained from impulse response (IR)
measurements using a loudspeaker placed at different positions
relative to the microphone array. To get smooth frequency re-
sponses and exclude noise and room reflections, these IRs were
cut and windowed (to approx. 12ms) before transforming them to
frequency domain. This makes the reference database more or less
independent from the environment. We made experiments with a
database recorded in a different room and achieved similar perfor-
mance compared to a matched database.
The influence of diffuse reverberation is modeled via the noisy ref-
erence features in (6). It should however be noted that strong re-
flections from a dedicated direction may act as a competing source
and can therefore impair the accuracy.
The placement of the array is not very critical because due to the
normalization of the feature vector with the omni-directional chan-
nel, the characteristic pattern stays more or less the same. We com-
pared placing the array on a desk with placement on the floor [10].
For the results shown in this paper, our array was placed on a small
desk. We used a generic reference database (array placed on the
floor, free-field) of our microphone with 10◦ azimuth resolution.
If the azimuth resolution is coarser the accuracy may be impaired
due to imperfect interpolation.

We compared our similarity approach (SIM) with 1), a time- and
2), a frequency-domain intensity vector (IV) localization approach
(TDIV, and FDIV, respectively). We used 512 samples long, ham-
ming windowed frames with 50 % overlap at a samplerate of 11025
Hz. We consideredNp = 10 peak frequency components between
200 and 4000 Hz for the SIM.
For the TDIV, the energy of each channel is computed in time do-
main and transformed to IV components [4]. We used a smoothing
pole a = 0.9 to average the IV over time to achieve better results.
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Figure 6: Static source position: Performance of different methods
in terms of the mean (over ϕs) MAE. The errorbars indicate the
first and the third quartile.
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Figure 7: Source location jumps trough concatenation of differ-
ent loudspeaker recordings (male speech). The estimate follows
quickly.

The FDIV is based on a STFT and similar to the method described
in [6]. Details on our implementation can be found in [10].

The estimation error is given as

ϕ̃s(l) = princarg {ϕ̂s(l)− ϕs(l)} , (15)

where the principle argument function can be defined using the
modulo operator mod: princarg (ϕ) = mod {ϕ+ π,−2π}+ π.
As performance metrics, we used the mean absolute error MAE
the root mean square error RMSE and the accuracy ACC∆, where
δ∆(ϕ̃s) = 1, if |ϕ̃s| ≤ ∆ and 0 otherwise.

MAE = mean {|ϕ̃s(l)|} (16)

RMSE =
√

mean {ϕ̃s(l)2} (17)

ACC∆ =
1

L

L−1∑

l=0

δ∆(ϕ̃s(l)) (18)

ACC5 = 90% means for instance that 90% of all frames achieve
an estimation error |ϕ̃s(l)| ≤ 5◦.

A short sentence (1.8s) of clean, male speech was played back
from a loudspeaker positioned at 1m distance to the array. The el-
evation was 15◦ and the azimuth was varied between −180◦ and
0◦ in steps of 10◦. A separate estimation result was computed for
each angle. Fig. 6 shows the mean performance over all source an-
gles in dependence of the SNR for the SIM,TDIV and FDIV. Our
SIM-approach is very accurate and clearly superior to the TDIV
and FDIV method. The exact values regarding the performance of
our method are given in Table 1.
To assess the timing behavior of our algorithm, we concatenated
the recordings from different azimuth angles, without pauses. Fig.
7 shows the true azimuth (optically tracked) and the estimate both
for a recording with 0dB SNR and without added noise. Fig.
8 shows a similar plot, but for a male, human speaker walking
around the array. More results can be found in [10].

SNR -12 -6 -3 0 3 6 12 24
ACC5 13 60 84.2 95.9 98.2 99.3 99.7 100
ACC10 18.9 85.6 97.3 100 100 100 100 100
ACC15 25.4 97.9 100 100 100 100 100 100
MAE 68.5 5.3 3.0 1.6 1.4 1.2 1.0 0.8
RMSE 84.9 6.0 3.4 2.1 1.8 1.4 1.3 1.0

Table 1: Performance of our SIM-approach with regard to static
sources (Mean over ϕs = (−180,−170, . . . , 0)◦)).
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Figure 8: A male human speaks while walking around the array.
The elevation was approx. 30◦ < ϑs < 40◦, the radius rs ≈ 1m.

4. SUMMARY, CONCLUSION AND FUTURE WORK

We have presented a new method for tracking of a single sound
source with a compact near-coincident microphone array (NCMA)
that is cheap and handy. A reference feature database of the ar-
ray has to be recorded once (free-field conditions, array placed on
the floor). For source localization, a feature vector is computed
frame-wise and compared to the database which yields a similar-
ity curve (SC). We use a simple measure of the shape of the SC as
a weight for the reliability of the current frame with respect to pre-
vious ones. With that, stable (no problems in signal pauses) and
fast tracking can be achieved at the same time, without employ-
ing a separate detection algorithm. Conceptual advantages of our
method are that we model the influence of noise and reverberation
in our features and that we do not use fixed thresholds or time-
constants. Practical experiments in a real room demonstrate the
effectiveness of our approach, even in the presence of strong (−6
dB SNR) omni-directional noise.
The most obvious next working steps are a detailed study of the
influence of microphone mismatch and evaluation of the perfor-
mance in highly reverberant rooms. Our localization concept could
be adapted to multi-source tracking and different array configura-
tions, e.g. spherical arrays that also provide time-differences be-
tween the microphones. In contrast to our NCMA, such arrays al-
low for steering of higher order beam-patterns. Future work could
also use the basic ideas behind our features and apply advanced
pattern recognition approaches, e.g. a multi-class support vector
machine.
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ABSTRACT 

A comparison of analysis and resynthesis methods for use with a 
system for dividing time-coincident stereo audio signals into di-
rectional segments is presented. The purpose of such a system is 
to give greater flexibility in the presentation of spatial informa-
tion when two-channel audio is reproduced. Example applica-
tions include up-mixing and transforming panning from ampli-
tude to time-delay based. Included in the methods are the dual-
tree complex wavelet transform and wavelet packet decomposi-
tion with best basis search. The directional segmentation system 
and the analysis and resynthesis methods are briefly described, 
with reference to the relevant underlying theory, figures of merit 
are presented for each method applied to three stereo mixtures of 
contrasting material and the subjective quality of the output (with 
links to all audio examples) is discussed. 

1. INTRODUCTION 

Audio recordings represent the capture of an acoustic event, or 
the rendering of an electronic/digital process, at a particular point 
in time. If there is more than one discrete channel then spatial 
information can be included in the recorded information. For 
two-channel stereo recordings, despite the sparsity of the spatial 
sampling points, a rich spatial experience can be provided for the 
headphone listener (particularly if the information is binaurally 
captured), or for (a) person(s) within a small listening area be-
tween two loudspeakers in a good listening environment. That 
said, there are now increased opportunities for surround sound 
(i.e. more than two-channel) storage, transmission and playback. 
Also, for individual listeners, the ideal presentation of the spatial 
information contained within a two-channel stereo audio re-
cording will depend to a certain extent on their own preferences, 
listening environment and reproduction equipment. As trends in 
spatial presentation have varied over time, and continue to vary, 
so there may be a desire to revise the spatial presentation in exist-
ing two-channel recordings. Examples such as these require the 
‘un-locking’ of the spatial information for each source (real and 
virtual) direction. This represents a considerable challenge where 
there are more source directions than channels.  
 The purpose of the target system, for which the analy-
sis and resynthesis methods are compared here, is to divide the 
auditory scene presented by time-coincident (level-panned) audio 
into directional ‘segments’ [1]. Having more segments than au-
dio channels offers flexibility in how each segment is presented 
at two (or more, if up-mixing is the application) loudspeakers. 
This is the over-arching aim of this research. As such, this work 
exists between individual source separation, such as that de-

scribed in [2], and spatial processing (for example [3-5]). The 
purpose is not necessarily to provide every single instrument 
separately for re-mixing, but to provide (distinct or overlapping) 
zones within a two-channel audio scene. 
 Previously an adaptive analysis/resynthesis method, 
based on dual-tree complex wavelets, was investigated and com-
pared for use in this system with other methods traditionally used 
for this type of application [1]. Whilst the complex wavelet pack-
ets demonstrated an ability to adapt to the input, the figures of 
merit (FoM) used in that study demonstrated that they were al-
ways out-performed by another method (albeit not always the 
same one). However their adaptivity did avoid the transient 
smearing that was exhibited with short-time Fourier transform 
(STFT) methods with relatively long window lengths. A version 
of best basis search of complex wavelet packets, which used the 
available phase information was also investigated but did not 
consistently offer an improvement in the FoM and, in one case, 
caused a significant degradation in performance. 
 The work in this paper expands the range of analy-
sis/synthesis methods used, introduces a regularised version of 
the phase-weighted best basis search and includes an additional 
FoM. Since subjective evaluation is also a crucial part of assess-
ing these methods all audio examples used to generate the FoMs 
are discussed and made available online, as was done for the pre-
vious work.  
 In the next section of this paper an overview of direc-
tional segmentation of stereo audio is given and the segmentation 
system that all of the methods are tested with is described. Sec-
tion 3 summarises the different analysis/resynthesis methods used 
and discusses the necessary theoretical detail. In section 4 the 
experimental design is explained and section 5 presents results 
for three different two-channel amplitude-panned mixtures. The 
final section summarises the paper and presents conclusions 
based on the results. 

2. DIRECTIONAL SEGMENTATION OF TWO-
CHANNEL AUDIO 

2.1. Application examples 

Space is represented in stereo recordings by differences between 
the signals reproduced at each loudspeaker (or earpiece if head-
phones are used, although only loudspeaker reproduction is con-
sidered in this paper). If there are no differences between the sig-
nals then the presentation is monophonic. The inter-channel dif-
ferences may be amplitude (e.g. coincident microphones, typical 
panning controls), time (e.g. spaced microphones, time-delay 
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panning) and/or spectral (e.g. binaural with crosstalk cancellation 
for loudspeaker reproduction). A detailed discussion of the dif-
ferences between amplitude- and time-difference presentation of 
audio via loudspeakers has been given previously [1, 6]. The 
work in those papers, and that presented here, is motivated by the 
desirability of reconfiguring spatial audio so that the spatial in-
formation can be presented in a different way. This work focuses 
on processing of amplitude panned (or captured) spatial audio.  
 
If directional segments can be extracted from a two-channel mix-
ture then they could be re-panned using time differences instead, 
therefore changing the presentation of spatial information. To 
introduce such position dependent delays for each source direc-
tion post-recording/mixing, where there are more source direc-
tions than channels, requires a separation system. The work de-
scribed in this paper tests the effectiveness of different time-
frequency analysis and synthesis methods when used in such a 
system. 
 
Another means of changing the presentation is to change the 
number, or configuration, of loudspeakers. More than two-
channels, delivered via the same number of loudspeakers (or 
more) can improve localisation, create a greater sense of envel-
opment and increase the size of the listening ‘sweet spot’. For 
soundfield reconstruction systems (such as high-order ambison-
ics) increasing the number of loudspeakers reduces spatial alias-
ing. For panning systems (e.g. so called ‘pair-wise’ positioning 
of sources) a greater number of discrete channels concentrates 
sound energy for a single source into a smaller number of speak-
ers (or a smaller area of the array). This improves localisation 
over a wider listening area. For example, where there are more 
loudspeakers but just two discrete audio channels available (such 
as for the playback of legacy two-channel stereo over 5.1 sur-
round systems) then the listening sweet spot may be enhanced 
(for example by extracting centre source directions and reproduc-
ing the audio via all of the front three speakers) or the spatial 
presentation may be enhanced by the positioning of source direc-
tions into rear speakers (e.g. for improved rendering of reverbera-
tion). This process is known as ‘up-mixing’ (e.g. [5]). Again, this 
process requires some form of separation algorithm in cases 
where there are more than two source directions. 

2.2. Directional segmentation via time-frequency analysis and 
resynthesis 

Time-frequency analysis, and resynthesis, is concerned with the 
decomposition, and construction, of signals as combinations of 
individual components that have certain positions and distribu-
tions in time and frequency [7]. The time-frequency plane for a 
signal is the distribution of these components across these two 
dimensions. An overview of the use of time-frequency analysis 
and resynthesis for directional segmentation of audio, along with 
a discussion of important prior work, is given in [1] and the 
reader is directed there for further information.  
 
The context for the comparison of time-frequency analysis and 
resynthesis methods which is reported in this paper is a system 
that is described in detail in [1] and, again, the reader can find 
more information there. In that paper the possibility of using a 
phase-weighted entropy measure, in cases where the analysis-
resynthesis method was both adaptive and complex, was exam-
ined. This phase-weighted entropy measure was given by: 

( )( ) ( )( )
( ) ( )

L R 2 L R

R L1

( ) log ( )P
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where a and φ are the energy and phase of an individual atom of 
the decomposition,  (L and R designate which spatial channel the 
atom belongs to) and H is the entropy for a particular basis of P 
atoms. It was found that this measure did not consistently im-
prove performance. For this paper a regularised version of (1) is 
employed to investigate whether this improves consistency 
and/or performance, where r is the regularisation constant:  
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For real packet decompositions this version of the cost function 
cannot be used since no phase information is available. No best 
basis search is performed where the analysis-synthesis basis is 
fixed (i.e. the method is non-adaptive). 
 
As described in [1] overlapping directional windows are used 
rather than the binary functions that have been commonly used in 
other studies (e.g. [2]). These directional windowing functions 
are shown in Figure 1 four equally spaced segments (which is the 
scenario tested in this paper). In most situations it will be desir-
able for a segment to be centred on a single source, and encom-
pass that source only.  In the case where sources are not regularly 
spaced, a modified windowing function would be required to en-
sure that segments are source-centred and preserve energy when 
combined. This could be achieved by using Hann-like tapering at 
the ends of constant functions as described in [26]. 
 
The windowing functions shown in Figure 1 only fully cover the 
front and rear quadrants (not the sides) of the recorded space. In 
anechoic situations where sources are only placed within the 
front quadrant (as is tested here) then the presence of energy out-
side of these regions (the residual after separation) indicates that 
separation has not been completely successful - the lower the en-
ergy level in the residual, the more successful the capture of 
sources within directional segments has been. Therefore the rela-
tive amount of energy in this residual is used as an FoM in the 
results presented in this paper. In echoic situations then this re-
sidual may also (correctly) contain reverberation/reflections from 
the side.  

 

Figure 1: Directional segmentation windows applied to 
an audio scene containing four equidistantly and sym-
metrically spaced sources. 
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3. TIME-FREQUENCY ANALYSIS/SYNTHESIS 
METHODS 

This section surveys the different analysis/resynthesis methods 
which are tested within the system discussed in sub-section 2.2. 
They can be grouped in two different ways: real and non-
redundant versus complex and redundant, or adaptive versus 
non-adaptive. Since extensive coverage of many of the methods 
has been provided previously, what is presented here is a short 
summary of the information in [1], with additional detail on 
methods which have been used here for the first time. 

3.1. Discrete wavelet transform (DWT) 

This transform, which is exhaustively covered in the existing lit-
erature (e.g. [8]) is characterised by successive high and low pass 
filtering operations followed by decimation by a factor of two 
which yields a dyadic division of the time-frequency plane (fixed 
basis). The DWT is non-redundant, shift-variant and is some-
times referred to as the ‘fast’ or ‘decimated’ wavelet transform, 
to differentiate it from undecimated wavelet transforms (which 
are redundant). The nature of the wavelet (e.g. its distribution in 
time-frequency) is determined by the coefficients used in the fil-
ters. Four different sets of filter coefficients are used here. The 
first set are those of Daubechies with six vanishing moments 
(‘db6’, 12 tap filters), the second are Daubechies with fourteen 
vanishing moments (‘db14’, 28 tap) and the third are those of 
Vaidyanathan, designed for narrow transition from pass- to stop-
band (‘vaid’, 24 tap) [8]. These filter sets are available either in 
the Mathworks Wavelet Toolbox, the Wavelab Toolbox or the 
Dual-Tree Wavelet Packet Toolbox [9-11]. The fourth set has 
been generated using the Filter Design Toolbox in Matlab 
(firpr2chfb function). These are 48 tap power-symmetric 
filters. The magnitude response of the low-pass filter is shown in 
Figure 2 (since the filters are power-symmetric the high-pass re-
sponse is the exact reverse of that shown in the figure). In the 
experiments conducted for this paper, the DWT is carried out 
over eleven stages, yielding an eleven-scale decomposition.  All 
four filter sets are orthogonal (i.e. the synthesis filters are the 
time reverse of the analysis filters). 

 

Figure 2: Magnitude frequency response of the 48 tap fil-
ter low-pass filter. 

3.2. Wavelet packet decomposition (WPD) 

The wavelet packet decomposition (WPD) is a generalisation of 
the DWT. Dyadic is just one of many different divisions of the 
time-frequency plane which are achieved when both low and 
high pass filtering operations are carried out on each set of coef-
ficients at each decomposition level. A number of different de-
compositions can be achieved by different combinations of high- 

and low-pass filtering operations and from these a single decom-
position, offering a particular division of the time-frequency 
plane, can be chosen. Because of the binary tree structure of the 
decomposition, fast algorithms exist for searching for the best 
representation (the ‘best basis’) for a particular signal [12, 13].   
 
The same four sets of filters that are used to implement the DWT 
are used for the WPD. Although the WPD can be considered to 
include the DWT, results for the DWT are presented separately 
in the next section since deriving a DWT only is a much cheaper 
operation computationally (but the basis is fixed). As for the 
DWT, the WPD is carried out over eleven scales, dividing the 
frequency axis into 2048 components for a full packet decompo-
sition at this scale. 

3.3. Cosine Packet Decomposition 

Local cosine bases given by the Cosine Packet Decomposition 
(CPD) are also amenable to fast searching for a best basis [8]. 
The reader is directed to [1] for details of the implementation 
used in these experiments. The CPD divides the time-frequency 
plane into time partitions (whose frequency resolution are deter-
mined by choice of partition length), as opposed to the WPD, 
which divides the time-frequency plane into frequency partitions 
(whose length are determined by the choice of bandwidth) [8]. In 
both cases, many different combinations of different length (or 
bandwidth) segments can be chosen to form a number of or-
thogonal transforms (bases) from which a best basis can be cho-
sen. As for the WPD with best basis, the CPD with best basis 
gives real coefficients of a non-redundant transform. The CPD is 
implemented here with the Wavelab toolbox [10]. A ‘sine’ taper 
is used and D is chosen so that the shortest packet is 512 samples 
long, given N. Where necessary the input signal is appended with 
zeros so that its length N is a power of two. 

3.4. Short-time Fourier transform (STFT) 

The STFT is perhaps the most widely known and well under-
stood time-frequency analysis-resynthesis method for audio sig-
nals. A detailed discussion and description can be found in many 
sources (e.g. [14]). This method decomposes signals into equal 
length frames, which can be overlapping and tapered. A discrete 
Fourier transform (DFT) is applied to each frame and this gives a 
set of complex coefficients for sinusoids which are harmonics of 
the frame period, at the centre of each frame. The amount of 
overlap, and hence redundancy, can be arbitrarily set but is con-
strained by the shape of the tapering window applied to the frame 
(e.g. a minimum 50% overlap is required for the Hann window) 
and the distance from the centre of one frame to the next cannot 
be more than the frame length itself. Although the STFT can be 
non-redundant, tapering is usually applied to prevent energy 
spreading due to discontinuities at frame boundaries, and this 
renders the STFT redundant. For example, an overlap of 50% 
yields an STFT with 100% redundancy (providing zero-padding 
is not used). For the work described in this paper two sets of five 
STFT types are employed: one set applies a Hann window with 
50% overlap prior to the DFT but no windowing of the output of 
the inverse DFT (IDFT), the second set has a 75% overlap and a 
Hann window is applied prior to DFT and after IDFT (where a 
Hann window is applied twice, the minimum overlap is 75%). 
Within each STFT set five frame lengths are used: 512, 1024, 
2048, 4096 and 8192 samples. The frames are not zero-padded 
prior to analysis. 
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3.5. Dual-Tree Complex Wavelet Transform (DT-CWT) 

The Dual-Tree Complex Wavelet Transform (DT-CWT) of 
Kingsbury is an extension of the DWT whereby a signal is de-
composed by two sets of basis functions for which each corre-
sponding pair of functions are approximately Hilbert transforms 
of each other [15]. As a result of this approach the DT-CWT is 
100% redundant and approximately shift invariant. The Q-shift 
method of achieving approximate analyticity is used to determine 
the filter coefficients for level two of the decomposition onwards 
[16]. A different set of filter coefficients is used for the first stage 
of the transform: this filter set is used for both ‘trees’ with a one 
sample relative delay. At subsequent stages the Q-shift (quarter 
sample delay) filter set is used in both trees. In the second tree 
these filter coefficients are used in reverse order, giving a three-
quarter delay and, therefore, the half sample relative delay be-
tween trees needed for analyticity. The longer the Q-shift filters 
are, the closer the two sets of basis functions are to being Hilbert 
transform pairs. Four sets of filter coefficients are used here to 
implement the DT-CWT: ‘db5’ (first stage) followed by the 14-
tap Q-shift filter coefficients given in Table 2 of [15], ‘db14’ fol-
lowed by the same 14-tap Q-shift filter coefficients, 24 tap Vaid-
yanthan followed by 24 tap Q-shift filters and, finally, the 48 tap 
filters  described at the end of Section 3.1 followed by 48 tap Q-
shift filters. The last two sets of Q-shift filters were designed us-
ing the Q-shift filter design toolbox [17]. For comparison the 
magnitude response of the 14, 24 and 48 tap Q-shift filters are 
shown in Figure 3. As for the real DWT, the number of scales in 
the following experiments is eleven. 

 
Figure 3: Magnitude frequency responses of each low-pass Q-
shift filter. 

3.6. Dual-Tree Complex Wavelet Packet (DT-CWPD) 

The Dual-Tree Complex Wavelet Packet Decomposition (DT-
CWPD) is the complex equivalent of the WPD, in the same way 
that the DT-CWT is the complex equivalent of the DWT. It 
yields bases with 100% redundancy. Since the DT-CWT consists 
of two orthogonal decompositions of the same signal, a straight-
forward approach to deriving a wavelet packet decomposition is 
to treat the two ‘trees’ as completely independent with their own 
sets of filters, where, after the first decomposition stage, the set 
used in one tree is the time-reverse of the set used in the second 
tree (as is the case for the DT-CWT). However ‘analyticity’ is 
better preserved by an altered scheme where some of the filtering 
stages of both trees use the same filters [18]. This scheme is em-
ployed here for the DT-WPD and it is implemented using (with 
some modifications) the toolbox provided at [19]. The same filter 
sets are used as for the DT-CWT (except that the first stage filter 
is ‘db5’ rather than ‘db6’, although it is replaced with ‘db6’ 
when non Q-shift filters are used in subsequent stages, see [19]). 
In fact, the first two filter sets are the same as those provided as 
examples at [19]. The maximum decomposition level is, again, 
eleven. 

4. COMPARISON OF ANALYSIS/RESYNTHESIS 
METHODS 

In order to compare the methods described in Section 3, they are 
tested using the system discussed at the end of Section 2. They 
are tested with three different anechoic audio mixtures, ranging 
from two to seven seconds in length, each containing four 
equally spaced point sources. The use of mixtures of anechoic 
sources allows the Signal to Residual Ratio (SRR, the ratio of 
energy in the residual segment to the energy contained in all of 
the other segments) to be used as an FoM. As for the experiments 
described in [1], for the purposes of this test the source positions 
for each mixture are the same and are known a priori. Whilst a 
priori  knowledge of source positions is unlikely to be available 
in real-world applications it is the ability of the decomposition 
methods for segmentation which is specifically being tested here. 
In practice, a posteriori knowledge of source positions could be 
gained from global statistics for the mixture, such as the 
‘panogram’ described in [5]. Each mixture contains four sources 
(src1-4 and each of these are panned to the left and right outputs 
(outL, outR) of the mixture via: 
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This mixing matrix gives the same ratio between left and right 
energy that would occur for four sources spaced equidistantly in 
an arc within the front quadrant of a coincident pair of dipole 
microphones at 90 degrees to each other: sources positioned at –
33.75 degrees (-3π/16 radians), -11.25 (-π/16), 11.25 (π/16) and 
33.75 (3π/16) from the centre of the front quadrant. The centres 
of the windows shown in Figure 1 are at these positions and each 
position is covered by that one window only (at the centre of one 
window, the other three windows are at zero). 

4.1. Mixture 1: pitched instruments 

The individual sources for this mixture are clarinet, violin, so-
prano singer and viola performing an excerpt from a Mozart op-
era. The sources are obtained from [20]. 

4.2. Mixture 2: speech babble 

This is a combination of four speakers talking simultaneously. 
The mixture comprises two male adults, one female adult and 
one male child. The sources are obtained from [21]. 

4.3. Mixture 3: percussion with single pitched instrument 

This mixture consists of three hand percussion instruments and a 
single note with swept pitch from a Shakuhachi-like instrument. 
The sources are obtained from [22]. 

4.4. Figures of merit (FoM) 

The quality of the segmentations is objectively measured by four 
quantities for each separated source: the energy weighted inter-
channel correlation, the signal to residual energy ratio (SRR), the 
azimuth error and the signal to distortion ratio (SDR). The SDR 
is described in [23] and can be evaluated using the BSS_Eval 
Toolbox [24]. It compares the separated sources with the original 
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un-mixed sources and attempts to measure the ratio of the actual 
source energy to the energy due to artefacts of the separation al-
gorithm and interference from other sources. It requires prior 
knowledge of the individual sources, which is available here. The 
SDR is designed for monophonic separated sources so it is ap-
plied here to the sum of each channel of the stereo separated out-
puts. 
 
The other FoMs were introduced and used in [1] and so are only 
briefly summarised here. The zero-lag inter-channel cross-
correlation between two channels for a single point source will 
be 1.0 since there are identical signals at each channel (albeit 
with different gains, if not positioned centrally) and there is no 
relative delay between then. Therefore, the closer this FoM is to 
1.0, the better this segment has captured audio from one source 
only. The zero-lag cross correlation is given by: 

X
⋅

= L R

L R

src' src'

src' src'
                           (4) 

where src' L and src'R are vectors containing the samples of the 
left and right channels of the segmented source. An overall FoM 
for all of the separated sources is given by the energy weighted 
mean of X of the sources. Whilst the SDR and the cross-
correlation give an indication of the quality of the segmentation, 
the SDR does not take account of gain errors and the cross-
correlation does not take account of gain or frequency response 
errors (it just measures the localisation of energy for a source – 
not how it is distributed in frequency). For anechoic sources the 
relative level of energy in the residual segment is an indicator of 
how successful the segmentation is in capturing the elements of 
the signal. The Signal to Residual ratio (SRR, measured in dB) is 
the ratio of the residual energy to the energy in the input mixture. 
The azimuths of individual separated sources can be calculated 
using 

( )' sgn arccotθ = −
−

+ 
 
 

R L
R L

R L

src' src'
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and from this the azimuth error can be found, since actual the 
source directions are known. The energy-weighted mean azimuth 
error for all sources is an indicator of the extent to which seg-
ments are contaminated by each other, since azimuths will be 
biased by the presence of energy from other sources. 

5. RESULTS 

Three sets of plots are presented, one for each mixture. Within 
each set there are four plots which compare the performance of 
the different analysis and resynthesis methods for each FoM. The 
following abbreviations are used: 
 
DT-CWPD 1, DT-CWT 1: 14 tap Q-shift filters, non Q-shift fil-
ters are ‘db5’ at the first stage, ‘db6’ thereafter. 
DT-CWPD 2, DT-CWT 2: 14 tap Q-shift filters, non Q-shift fil-
ters are ‘db14’ at all stages. 
DT-CWPD 3, DT-CWT 3: 24 tap Q-shift filters, non Q-shift fil-
ters are 24 tap Vaidyanathan filters. 
DT-CWPD 4, DT-CWT 4: 48 tap Q-shift filters, non Q-shift fil-
ters are 48 tap Vaidyanathan filters. 
 
WPD 1, DWT 1: ‘db6’ filters. 
WPD 2, DWT 2: ‘db14’ filters. 
WPD 3, DWT 3: Vaidyanathan 24 tap filters. 

2x: STFT with 50% overlapping windows 
4x: STFT with 75% overlapping windows 
 
‘Phase’ indicates that the best basis has been determined using 
equation (2), rather than (1). The value of r, heuristically deter-
mined, is set at 0.01 for all mixtures. 
 
For each set of figures, the x-axis labels, which indicate the type 
of analysis/synthesis method under test, are provided in the first 
of the four plots.  

5.1. Figures of merit 
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Figure 4: FoM for the instrument mixture: SDR (dB, top of pre-
vious page), correlation (middle of previous page), SRR (dB, 

bottom of previous page), azimuth error (radians, above) 
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Figure 5: FoM for the speech mixture: SDR (dB), correlation, 

SRR (dB), azimuth error (radians) 
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Figure 6: FoM for the percussion mixture: SDR (top), correla-

tion, SRR, azimuth error (bottom) 

5.2. Online audio examples 

Audio files of the original sources, mixtures and separated 
sources for each method are provided in an online archive so that 
they can be auditioned [25]. 

5.3. Discussion 

Some clear trends can be seen in Figures 4-6. Redundancy, 
whether achieved through introducing a second orthonormal 
transform whose basis functions are an approximate Hilbert 
transform pair with the first, or by increasing the overlap of basis 
functions improves the SDR performance of these methods for 
directional segmentation: STFTs using 75% overlapping win-

dows achieve better results than those using 50% overlap and the 
complex DWT or WPD always outperforms its real counterpart. 
Whilst ‘real’ methods do relatively well in terms of cross-channel 
correlation and azimuth error, they perform poorly in terms of 
SRR and their SDR performance is markedly worse than com-
plex versions of the same methods in many cases. This shows 
that real analysis methods produce individual sources which have 
close to the correct azimuth and have narrow width, but this is at 
the cost of additional energy appearing in the residual. 
 
The STFT with 75% overlap achieves the best FoMs for all mix-
tures. The 4096 frame-length STFT is best for the pitched in-
strument and speech mixtures, the 2048 frame-length version 
doing slightly better for the percussion mixture. The DT-CWPD 
using the fourth filter set performs best in terms of SDR out of 
the wavelet methods for all except the speech mixture. However 
it is out-performed by the CPD for all but the percussion mixture. 
As was found in [1], the use of phase-weighting in the entropy 
measurement for the best basis search does not have a dramatic 
positive impact on the FoMs. However the incorporation of a 
regularisation constant (not employed in [1]) does improve the 
consistency of phase-weighting overall (preventing serious 
anomalous degradations as occurred in [1]). Overall it is also 
more effective than the non-phase weighted measure, but the dif-
ference in performance is insufficient to be conclusive. 
 
Listening to the audio outputs for the percussion mixture the 
drawback of long frame-length STFT analysis and resynthesis is 
clearly audible: transient smearing is much worse (although the 
separation is audibly better) than it is, for example, for the DT-
CWPD with the filter set 3. The CPD performs well in the first 
half of the separation but then time definition is lost completely. 
Although transient smearing is both time-varying gain and spec-
tral change, both of which the SDR should penalise, it does not 
have much impact on this FoM. It is worth noting here that in [2] 
the maximum STFT size was limited to 1024 because of the 
damage that longer frame sizes did to note onsets. 
 
The longer-frame STFT methods audibly perform very well on 
speech and the pitched instrument mixture, although occasionally 
consonants and note onsets are degraded. Applying a window to 
the output of the IDFT, as well as the input to the DFT, is helpful 
in removing annoying ticks that are due to end-of-frame discon-
tinuities introduced by the segmentation process. 

6. CONCLUSIONS AND FUTURE WORK 

This paper, along with its accompanying online resource of audio 
examples, has presented a comparison of a number of different 
time-frequency analysis/resynthesis methods for use in direc-
tional segmentation. The FoMs used clearly indicate that long-
frame STFT methods with relatively high redundancy work best, 
although audition of the segmentations, particularly for percus-
sion, provide a caution about using such objective measures as a 
sole indicator of quality. Whilst the dual-tree versions of the 
wavelet methods perform better than their real counterparts, and 
complex packets with long filters (including Q-shift) generally 
perform best, they do not begin to compete (numerically at least)  
with the STFT (or the CPD, considering just the speech mixture).  
 It is highly desirable to have an adaptive method that 
can perform as well as the STFT and there are many parameters 
and possibilities of the DT-CWPD that have yet to be fully inves-
tigated. Filters of 48 taps may still be too short for general audio 
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applications and the benefit of phase-weighting may become 
more apparent with longer Q-shift filters. The development of an 
adaptive method which can match the STFT’s performance 
within the system, and on the example mixtures, tested here, re-
mains a challenge. However the challenge is a worthwhile one, 
given the potential benefits of high-quality directional segmenta-
tion. Of course, some consideration should also be given to com-
putational cost, and more redundant methods are usually more 
expensive. But, for this application, redundant time-frequency 
representations seem to perform best overall. 

7. REFERENCES 

[1] J. Wells, “Directional Segmentation of Stereo Audio via 
Best Basis Search of Complex Wavelet Packets”, presented 
at the 130th Audio Engineering Society International Con-
vention, London, UK, 2011Convention, Preprint No. 8436. 

[2] A. Nesbit et al., “Audio Source Separation with a Signal-
Adaptive Local Cosine Transform”, Signal Processing, Vol. 
87, No. 8, August 2007, pp. 1848-1858. 

[3] V. Pulkki, “Spatial Sound Reproduction with Directional 
Audio Coding”, Journal of the Audio Engineering Society, 
Vol. 55, No. 6, June 2007, pp. 503-516. 

[4] C. Faller, “Modifying the Directional Responses of a Coin-
cident Pair of Microphones by Postprocessing”, Journal of 
the Audio Engineering Society, Vol. 56, No. 10, October 
2008, pp. 810-822. 

[5] C. Avendano and J. Jot, “A Frequency Domain Approach to 
Multichannel Upmix”, Journal of the Audio Engineering 
Society, vol. 52, No. 7/8, July/August 2004, pp. 743-749. 

[6] J. Wells, “Modification of Spatial Information in Coincident 
Pair Recordings”, presented at the 128th Audio Engineering 
Society International Convention, London, UK, 2010, Pre-
print No. 7983. 

[7] L. Cohen, Time-Frequency Analysis, Prentice Hall, 1994. 
[8] S. Mallat, A Wavelet Tour of Signal Processing, 2nd edi-

tion, Academic Press, 1999. 
[9] M. Misiti et al., “Wavelet Toolbox User’s Guide”, available 

from http://www.mathworks.com 
[10] Donoho, D. et al, “The WaveLab Matlab Toolbox”, avail-

able from: http://www-stat.stanford.edu/~wavelab/ 
[11] Bayram, I., “The Dual-Tree Complex Wavelet Packet Trans-

form Matlab Toolbox”, available from  
http://web.itu.edu.tr/~ibayram/dtcwpt/ 

[12] M. Wickerhauser, Adapted Wavelet Analysis from Theory to 
Software, A K Peters, 1994. 

[13] R. Coifman and M. Wickerhauser, “Entropy Based Algo-
rithms for Best Basis Selection“, IEEE Transactions on In-
formation Theory, Vol. 38, No.2, pp. 713-718, 1992. 

[14] U. Zölzer, Ed., DAFX – Digital Audio Effects, J. Wiley & 
Sons, 2002. 

[15] I. Selesnick et al, “The Dual-Tree Complex Wavelet Trans-
form”, IEEE Signal Processing Magazine, pp. 123-151, 
2005. 

[16] N. Kingsbury, “Complex Wavelets for Shift Invariant 
Analysis and Filtering of Signals”, Journal of Applied and 
Computational Harmonic Analysis, Vol. 10, No. 3, pp. 234-
253, 2001. 

[17] N. Kingsbury, “Complex Wavelet Design Package”, avail-
able from http://www-sigproc.eng.cam.ac.uk/~ngk/ 

[18] I. Bayram and I. Selesnick, “On the Dual-Tree Complex 
Wavelet Packet and M-Band Transforms”, IEEE Transac-

tions on Signal Processing, Vol. 56, No. 6, pp. 2298-2310, 
2008. 

[19] I. Bayram, “The Dual-Tree Complex Wavelet Packet Trans-
form Matlab Toolbox”, available from                                    
http://web.itu.edu.tr/~ibayram/dtcwpt/ 

[20] T. Lokki et al., “Anechoic Recordings of Symphonic Mu-
sic”, available at http://auralization.tkk.fi/ 

[21] Howard, D. et al., CD of audio examples accompanying 
Howard, D. and Angus, J., Acoustics and Psychoacoustics 
(3rd Edition), Focal Press, London, 2006. 

[22] Various, Roland Sampling Showcase, Time and Space Au-
dio CD, 1994. 

[23] E. Vincent et al., “Performance measurement in blind audio 
source separation”, IEEE Transactions on Audio, Speech 
and Language Processing, Vol. 14, No. 4, pp. 1462 – 1469, 
2006. 

[24] C. Févotte et al., “BSS_Eval Toolbox User Guide Revision 
2.0”, available at     
http://bass-db.gforge.inria.fr/bss_eval/user_guide.pdf 

[25] Audio examples and Matlab code for this paper is available 
at: Audio examples for this paper available at: 
www.jezwells.org/directional_segmentation. 

[26] A. Master, “Stereo Music Source Separation via Bayesian 
Modeling”, PhD Thesis, Stanford University, USA, 2006. 

 

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-198



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

FAUST-STK: A SET OF LINEAR AND NONLINEAR PHYSICAL MODELS FOR THE FAUST
PROGRAMMING LANGUAGE

Romain Michon,∗

CIEREC, EA 3068
Université Jean Monnet

F-42023, Saint-Etienne, France
rmichon@ccrma.stanford.edu

Julius O. Smith,

Center for Computer Research in Music and Acoustics.
(CCRMA) Stanford University

Palo Alto, CA 94305, USA
jos@ccrma.stanford.edu

ABSTRACT
The FAUST Synthesis ToolKit is a set of virtual musical instru-
ments written in the FAUST programming language and based on
waveguide algorithms and on modal synthesis. Most of them were
inspired by instruments implemented in the Synthesis ToolKit (STK)
and the program SynthBuilder.

Our attention has partly been focused on the pedagogical as-
pect of the implemented objects. Indeed, we tried to make the
FAUST code of each object as optimized and as expressive as pos-
sible.

Some of the instruments in the FAUST-STK use nonlinear all-
pass filters to create interesting and new behaviors. Also, a few
of them were modified in order to use gesture data to control the
performance. A demonstration of this kind of use is done in the
Pure Data program.

Finally, the results of some performance tests of the generated
C++ code are presented.

1. INTRODUCTION

The FAUST Synthesis ToolKit1 is set of virtual musical instruments
programmed in the FAUST2 programming language. Most of them
are based on physical models inspired from the algorithms imple-
mented in the Synthesis ToolKit (STK)3 [1] and the program Syn-
thBuilder [2].

The STK has been developed since 1996 by P. R. Cook and
G. P. Scavone. It is a set of open source audio signal processing
and algorithmic synthesis classes written in the C++ programming
language that can be used in the development of music synthesis
and audio processing software.

SynthBuilder was a program developed at Stanford’s CCRMA4

in the nineties to implement sound synthesis based on physical
models of musical instruments. Most of its algorithms use the
waveguide synthesis technique but some of them are also based
on modal synthesis [3].

An important part of our work consisted of improving and sim-
plifying the models from these two sources in order to make them

∗ CCRMA visiting researcher from Saint Étienne University, France.
Work carried out in the frame of the ASTREE Project (ANR-08-CORD-
003).

1<faust-distribution>/examples/faust-stk/
2Functional AUdio STream is programming language that proposes an

abstract, purely functional approach to signal processing. It has been de-
veloped at Lyon’s GRAME (Groupe de recherche en Acoustique et en
Musique Electronique) since 2002: http://faust.grame.fr/.

3https://ccrma.stanford.edu/software/stk/
4Center for Computer Research in Music and Acoustics

more efficient thanks to the FAUST semantic. All FAUST code in
the FAUST-STK is commented, including frequent references to
external bibliographical elements. Finally, many of the algorithms
from the STK and SynthBuilder were upgraded with nonlinear all-
pass filters [4].

First, we discuss the different models of musical instruments
implemented in the FAUST-STK, noting problems encountered and
how they were resolved. Finally, we’ll present performance mea-
surements for the generated C++ code.

2. WAVEGUIDE MODELS

Waveguide synthesis of string and wind instruments was intro-
duced during the 1980s [5, 6, 3]. It can be viewed as a general-
ization of either the Kelley-Lochbaum vocal-tract model [7, 8] or
Karplus-Strong “digitar” algorithm [9, 3]. Waveguide synthesis
makes it possible to model any kind of string, bore, or vibrating
structures with a network of delay lines and filters. Waveguide in-
struments are very suitable for implementation in the FAUST lan-
guage because of their 1D “stream like” architecture.

We now give a brief overview of the FAUST-STK waveguide
instruments.

2.1. Wind Instruments

The algorithms used in the FAUST-STK are almost all based on
instruments implemented in the Synthesis ToolKit and the program
SynthBuilder. However, it is important to observe that some of
them were slightly modified in order to adapt them to the FAUST
semantic.

An attempt was made to use functions already defined in the
default FAUST libraries to build our models. However, new sup-
port functions were written as needed in order to be able to use
parameters from the STK classes and the SynthBuilder patches
verbatim, without transformation or embedding within more gen-
eral functions. The added functions were placed in a file called
faust-stk/instrument.lib.

All the wind instruments implemented in the FAUST-STK are
based on a similar architecture. Indeed, in most cases, the breath
pressure that corresponds to the amplitude of the excitation is con-
trolled by an envelope. The excitation is used to feed one or several
waveguides that implement the body of the instrument. For exam-
ple, in the case of a clarinet, the excitation corresponds to the reed
that vibrates in the mouthpiece, and the body of the instrument is
the bore and the bell. In Figure 1, it is possible to see the block dia-
gram of one of the two clarinet models that are implemented in the
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FAUST-STK. In that case, an ADSR5 envelope that is embedded
in the breathPressure box controls the breath pressure.

The other clarinet implemented in the FAUST-STK is a bit
more complex as it has a tone hole model that makes it possible
to change the pitch of the note being played in a more natural way.
Indeed, in the algorithm shown in Figure 1 and as in most of the
basic waveguide models, the pitch is modulated by changing the
length of the loop delay line which would correspond in “the real
world” to changing dynamically the size of the clarinet’s bore dur-
ing the performance, as if it were a trombone.

breathPressure

filter

-0.95

*
-

reedTable
*

+

delayLine

process

Figure 1: clarinet.dsp algorithm drawn by FAUST using
faust2svg.

The reed table employed with the two clarinets to excite the
model was also used to create a very simple saxophone model that
is even more comparable to a violin whose strings are excited by a
reed.

Two models of flute are implemented in the FAUST-STK. The
first one is based on the algorithm used in the Synthesis ToolKit
that is a simplified version of [10]. The other model is showed in
Figure 2. It uses two loops instead of one.

blow

+ delay1

cubic

+jetFilterdelay2

0.4

feedback2

*
2

/

0.4

feedback2

*

process

Figure 2: flute.dsp algorithm drawn by FAUST using
faust2svg.

A simple model of a brass instrument inspired from a class of
the Synthesis ToolKit and with a mouthpiece based on the model
described in [11] is implemented in the FAUST-STK. It can be
used to emulate a wide range of instrument such as a french horn,
a trumpet or even a trombone. Its algorithm can be seen in Figure
3.

5Attack - Decay - Sustain - Release.

Finally, a tuned bottle in which it is possible to blow through
the neck to make sound is also implemented in the FAUST-STK.

2.2. String Instruments

Some waveguide synthesis algorithms for plucked strings have
previously been implemented in FAUST [12], and elements of these
ports appear in the libraries filter.lib and effect.lib
within the FAUST distribution. Going beyond these, the FAUST-
STK includes models of stringed instruments from the STK such
as a Sitar, bowed-string instrument, and SynthBuilder patches (run-
ning on a NeXT Computer) for an acoustic bass, piano, and harp-
sichord. Most of these models were furthermore extended with
the new nonlinear allpass for spectral enrichment [4]. Further dis-
cussion regarding the nonlinear allpass and synthesis of keyboard
instruments is given below in §3 and §6, respectively.

2.3. Percussion Instruments

Four objects in the FAUST-STK use the banded waveguide synthe-
sis technique (described in [13]) to model the following percussion
instruments:

• an iron plaque;

• a wooden plaque;

• a glass harmonica;

• a tibetan bowl.

Each of them can be excited with a bow or a hammer.

3. USING NONLINEAR PASSIVE ALLPASS FILTER
WITH WAVEGUIDE MODELS

Some of the instruments implemented in the FAUST-STK are us-
ing nonlinear passive allpass filters in order to generate nice natural
and unnatural sound effects [4]. Nonlinear allpass filters can add
interesting timbral evolution when inserted in waveguide synthe-
sis/effects algorithms. The nonlinearities are generated by dynam-
ically modulating the filter coefficients at every sample by some
function of the input signal. For the instruments that use this kind
of filter in the FAUST-STK, the user can decide whether the co-
efficients are modulated by the input signal or by a sine wave. In
both cases, a “nonlinearity factor” parameter scales the range of
the modulation of the filter coefficients. This parameter can be
controlled by an envelope in order to make the modulated behav-
ior more natural.

We adjust the length of the delay line of the instruments that
use nonlinear allpass filters in function of the nonlinearity factor
and of the order of the filter as follows:

DL = (SR/F )− FO ×NF (1)

where DL is the delay length in samples, SR is the sampling rate, F
is the pitch frequency, FO is the filter order and NF the nonlinearity
factor (value between 0 and 1).

The nonlinear allpass filter can be placed anywhere in the wave-
guide loop, for example just before the feedback as showed in Fig-
ure 4.

Finally, it is interesting to mention that we were able to imple-
ment a frequency modulation synthesizer in the FAUST-STK by
using this kind of filter on a sine wave signal. A related result is
reported in [14].
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borePressure

deltaPressure lipFilter

mouthPressure
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b0

-

*
+ dcblocker

boreDelay
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Figure 3: brass.dsp algorithm drawn by FAUST using faust2svg.

breathPressure

filter

-0.95

*
-

reedTable
*

+

delayLineNLFM

process

Figure 4: Modified version of clarinet.dsp (Cf. figure 1) that
uses a nonlinear allpass filter in its feedback loop.

4. MODAL MODELS

A set of instruments using modal synthesis can be found in the
FAUST-STK. They are all implemented in the same code as they
are based on the same algorithm.

Modal synthesis was developed primarily by J-M. Adrien in
the 1980s [15] and is very similar to the banded-waveguide tech-
nique (§2.3), as it consists of exciting a filter-bank with an impulse
(Figure 5). The source-filter approach to sound synthesis has long
been used for voice synthesis [16].

Implementing modal synthesis with FAUST was a bit challeng-
ing, as it requires handling a large number of parameters and an ex-
citation signal stored in a wave file. The first problem was solved
by using the foreign-function primitive in FAUST which allows us-
ing a C++ function within FAUST code. The different values were
stored in an array of floats used in a function that takes an index as
an argument and that returns the corresponding number.

To solve the other problem of importing a wavetable from a
sound file in a FAUST object, we first tried to use the libsndfile
library developed by E. de Castro Lopo [17] that makes it possible
to easily handle wave files in C++. Unfortunately, it appears that
this solution was not compatible with all the FAUST architectures.
Based on this observation and the fact that the wave tables used in
the STK had a maximal size of 1024 samples, we decided to use
the same technique as the one previously explained. Indeed, the
raw data were extracted from the wave file to be put in an array of
floats that can be used in a C++ function to return the values with

an index. This C++ function can then be called in FAUST using
the foreign-function mechanism to fill a buffer with the rdtable
primitive.

5. VOICE SYNTHESIS

A very simple voice synthesizer based on the algorithm from the
Synthesis ToolKit is implemented in the FAUST-STK. It uses a
lowpass-filtered impulse-train to excite a bank of 4 bandpass fil-
ters that shape the voice formants. The formant parameters are
stored in a C++ function in the same way described in §4 as a set
of center frequencies, amplitudes, and bandwidths. This function
is then called in the FAUST code using the foreign function primi-
tive. The thirty-two phonemes stored in this function are the same
as in the Synthesis ToolKit.

6. KEYBOARDS

A SynthBuilder patch implementing a commuted piano [18] was
written in the late 1990s at Stanford’s CCRMA. This patch was
partly ported in 2006 by Stephen Sinclair at McGill University in
the Synthesis ToolKit [19]. A big part of his work consisted of ex-
tracting parameter-values from the SynthBuilder patch and storing
them in a set of C++ functions. We reused them to build our FAUST
commuted piano version by using the foreign function mechanism
as described in §4.

In this piano model, the keyboard is split into two parts, each
using a different algorithm: The tones below E6 use the commuted
waveguide synthesis technique [3] while tones above or equal to
E6 use modal synthesis (a series of biquad filters) to generate the
sound (Figure 6).

A commuted harpsichord has also been implemented in the
FAUST-STK. It was inspired by another SynthBuilder patch that
uses a very similar algorithm to the one described above.

The current FAUST versions of the commuted piano and harp-
sichord are not polyphonic. However, the faust2pd program devel-
oped by Albert Gräf [20] makes it possible to automatically pro-
duce Pure Data patches that implement polyphonic synthesizers
that use FAUST generated Pd plug-ins. They can then be controlled
via MIDI or OSC directly in Pure Data.
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Figure 5: modalBar.dsp algorithm drawn by FAUST using faust2svg.

soundBoard

conditionLowNote
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* hiPass dcBlock1 hammer
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dcBlock1 coupledStrings
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+

dcBlock2a highBqs dcBlock2b

+

process

Figure 6: Commuted piano algorithm drawn by FAUST using
faust2svg. The upper figure is the beginning of the model and the
lower figure the end.

7. USING A FAUST-STK PHYSICAL MODEL WITH
GESTURE-FOLLOWING DATA

Parameter values are very important when dealing with physical
modeling. Indeed, even if in most cases it is possible to produce
nice sounds with static values for each parameter, the sound quality
can be improved a lot by using dynamic values that can describe
better the state of the model as a function of the note and the am-
plitude being played.

E. Maestre worked during his PhD on modeling the instrumen-
tal gesture for the violin [21] at the MTG.6 With his help, it was
possible to modify the algorithm of the bowed instrument from the
STK in order to make it compatible with gesture data. The follow-
ing changes were performed on the model:

• the ADSR used to control the bow velocity was removed;

6Music Technology Group, University Pompeu Fabra, Barcelona
(Spain).

inlet inlet r $0-read

r $0-all faust-control $0

s $0-writer $0-in

s $0-out

faust-gate 1 piano~

faust-gate 2 piano~

faust-gate 3 piano~

faust-gate 4 piano~

faust-gate 5 piano~

faust-gate 6 piano~

faust-gate 7 piano~

faust-gate 8 piano~

outlet~ outlet~outlet

Figure 7: Synthesis part of the Pure Data polyphonic sub-patch
generated with faust2pd from “piano.dsp”. In the current case, a
height voices polyphony synthesizer is implemented so piano∼.dsp
is called height times.

• a “force” parameter that controls the slope of the bow table
was added;

• a switch was added at the output of the bow table;

• we created a four-string violin where it is possible to modify
the value of the parameters of each string independently;

• the simple body filter was replaced by a bank of biquad
filters that impart a violin body response on the generated
sound;

• an improved reflection filter also based on a bank of biquads
is used.

The FAUST code was used to create a Pure Data plug-in. The
gesture data for each physical parameter (note frequencies, bow
position, bow velocity, bow force, and number of the string to be
used) of the violin model were placed in separated text files that
can be used in a Pd patch. In the example shown in Figure 8, the
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values are changed every 4.167 milliseconds. The gesture dataset
used plays a traditional Spanish song called Muiñeira.

textfile

read pitch.txt

freq $1

textfile

read beta.txt

bowPosition $1

textfile

bowVel $1

read bow_vel.txt read force_newtons.txt

textfile

force $1

metro 4.167

read string.txt

textfile

stringNumber $1

outlet

inlet inlet

inlet

Figure 8: Pure Data sub-patch used to send the gesture data for
Muiñeira in the FAUST generated plug-in.

8. OPTIMIZATION AND PERFORMANCE

8.1. File size

Digital signal processing algorithms can be expressed very com-
pactly in FAUST. The reduction in code size over C++ or even mat-
lab implementations is most of the time very significant. Thereby,
we tried to make the FAUST-STK algorithms as concise and read-
able as possible.

It is difficult to compare the STK C++ and FAUST source, be-
cause most of the physical models in the Synthesis ToolKit were
implemented using several functions spread-out among different
files. Moreover, these functions may contain information not re-
lated to the algorithm itself.

We nevertheless carried out a source-size comparison as a rough
guide, and the results are given in Table 1 (last page). We took into
account, in both FAUST and C++, the implementation of the algo-
rithm itself, and the code concerning parameter-handling. While
the precision of the comparison is open to debate, we see clearly
that the FAUST code is generally more compact than the C++.

8.2. CPU load

The FAUST compiler optimizes the efficiency of its generated C++
code. Thus, we tried to compare for some models the CPU load be-
tween Pure Data plug-ins created using the stk2pd7 program with
Pd plug-ins generated by FAUST using the Pure Data architecture
file.

In both cases, Pd plug-ins were compiled in 32 bits and the
signal processing is scalar. Tests were carried out on a MacBook
Pro with the following configuration:

• processor: 2.2 GHz Intel Core 2 Duo;

• RAM: 2GBytes DDR2.

Results of this comparison can be seen in Table 2.

7stk2pd is a program that was developed at Stanford’s CCRMA by M.
Gurevich and C. Chafe. It converts any C++ code from the STK into a
plug-in for Pure Data [22].

FAUST file STK FAUST Difference
name

blowBottle.dsp 3.23 2.49 22.91
blowHole.dsp 2.70 1.75 35.19

bowed.dsp 2.78 2.28 17.99
brass.dsp 10.15 2.01 80.20

clarinet.dsp 2.26 1.19 47.35
flutestk.dsp 2.16 1.13 47.69

saxophony.dsp 2.38 1.47 38.24
sitar.dsp 1.59 1.11 30.19

tibetanBowl.dsp 5.74 2.87 50

Table 2: Comparison of the performance of Pure Data plug-ins
using the STK C++ code with their FAUST generated equivalent.
Values in the “STK” and “FAUST” columns are CPU loads in
percents. The “difference” column give the gain of efficiency in
percents.

As the original STK C++ code is already very well written
and optimized, this comparison shows how efficient the FAUST
compiler is at generating highly optimized C++ codes.

9. CONCLUSIONS

Even if the primary goal of the FAUST-STK is the use of its phys-
ical models in a musical manner, it was also built to be a pedagog-
ical tool. Indeed, because of its transparency and efficiency, the
FAUST programming language is particularly suitable for teach-
ing digital audio signal processing. Therefore, a clean and well
commented FAUST program is arguably the best way to document
the implemented instruments, especially in view of the automatic
block-diagram facility. FAUST also has the advantage of being
committed to a stable computational specification, unlike C++ in
which the meanings of “long” and “short” may change over time,
for example, or even across computing platforms.

With its continually growing user community, FAUST is be-
coming a high quality tool for the implementation of audio digital
signal processing algorithms. The number of filters, effects and
sound synthesizers available in FAUST is constantly increasing.
The combined forces of JACK8 and FAUST recently upgraded by
the possibility to control the generated programs with the OSC9

communication standard constitute a high efficiency work plat-
form whose limits are only constrained by one’s imagination.
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ABSTRACT

The digital modeling of guitar effect units requires a high phys-
ical similarity between the model and the analog reference. The
famous MXR DynaComp is used to sustain the guitar sound. In
this work its complex circuit is analyzed and simulated by using
state-space representations. The equations for the calculation of
important parameters within the circuit are derived in detail and a
mathematical description of the operational transconductance am-
plifier is given. In addition the digital model is compared to the
original unit.

1. INTRODUCTION

In the field of guitar technology, certain products enjoy cultic sta-
tus because of their unique auditory characteristics, like the MXR
DynaComp. This guitar compressor pedal, created by MXR in the
1970’s, was a very popular tool of achieving a fattened up sound
with noticeable more sustain to lead guitar lines. The compression
effect of the DynaComp is used to smooth out differences in vol-
ume between notes. Thereby it is a kind of volume controller that
varies its internal gain to sustain the guitar sound.

In recent years a new trend has won recognition in music tech-
nology - the digital modeling and simulation of analog audio cir-
cuits. The advantage is the independence of cost-intensive, unreli-
able and often impractical analog technologies.

The state-space model has turned out to be a practicable tool
to simulate non-linear audio systems with parametric components.

2. CIRCUIT ANALYSIS

The circuit of the MXR DynaComp is depicted in Fig. 1. For the
sake of clarity we split this complex circuit into the four adequate
blocks: (1) input circuit, (2) output circuit, (3) power supply and
(4) the heart of the DynaComp, the operational transconductance
amplifier (OTA). The simplified structure is given in Fig. 2 and
shows the coupling between each stage.

The power supply block feeds the other blocks with two con-
stant voltages Vbatt = 9 V and Vbias = 2.93 V. This subcircuit
has no further effect on the audio signals and is neglected in the
following considerations.

2.1. Input Stage

The input stage buffers the input signal and provides two signals
to the differential inputs of the OTA, which are commensurate to
the input signal.

Input capacitanceC3 isolates the internal biased DC-level from
the 0 V DC-level of the guitar. Transistor Q1 is used as a buffer

Vin
Input
Stage

OTA
LM13700

Output
Stage Vout

Power
Supply

Vbatt

Vbias

Vbatt

Vbias

V-

V+
IOTA

Vbatt

IABC

Figure 2: Simplified block diagram of the circuit.

and provides a low-impedance signal at its emitter. This buffered
signal is set by capacitance C2 to the DC-level of the OTA and
is then routed to the inverting input. The signal is also routed to
the non-inverting input with a potential drop at the potentiometer
causing a signal-dependent difference between differential inputs.

2.2. OTA

The operational transconductance amplifier LM13700 is depicted
in Fig. 3. It has a pair of differential inputs, a single output and
one controllable gain input. The chip is completely composed of
transistors and diodes. The task of the OTA is to produce an am-
plified output current depending on the differential input voltages.
The gain of the OTA is variably controlled by the amplifier bias
current IABC . Detailed information can be found in [1] and [2].

N
PN
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N
PN

-2
PN

P-
1

PN
P-
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T6

T7

T8

T9

T10

T11

V- V+

VCC+

VCC−

IABC

Out

D1 D2

D3 D4

Figure 3: Simplified circuit of the OTA LM13700.

To find an analytical description of the OTA, it is necessary to
simplify the integrated circuit. In addition to the differential ampli-
fier, the integrated circuit can be expressed as an subtraction circuit
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Figure 1: Schematic of the MXR DynaComp and component values.

composed of two NPN-current mirrors and two PNP-current mir-
rors. In the following we assume that the reference current and the
output current are equal [3].

Since IABC is the reference current of the first NPN-current
mirror, the same current has to be pulled out of the differential
amplifier. Disregarding the base currents we obtain

IABC = IC,T4 + IC,T5 (1)

with the collector currents of T4 and T5 composing the differential
amplifier. Expressing these currents by the approximation

IC = IS · e
VBE
VT , (2)

with thermal voltage VT ≈ 26 mV, we consider the ratio

IC,T4

IC,T5
=
e

VBE,T4
VT

e
VBE,T5

VT

= e
VBE,T4−VBE,T5

VT (3)

assuming that the saturation currents IS of T4 and T5 are equal.
With VD = VBE,T4−VBE,T5 = V−−V+ and equations (1) and
(3) we obtain two expressions for the collector currents

IC,T4 =
IABC

e
−VD

VT + 1

, IC,T5 =
IABC

e
VD
VT + 1

. (4)

Transforming these terms using [4]

2

1 + e−x
= 1 +

1− e−x

1 + e−x
= 1 + tanh

x

2
(5)

the collector currents result in

IC,T4 =
IABC

2

(
1 + tanh

VD

2VT

)
(6)

IC,T5 =
IABC

2

(
1− tanh

VD

2VT

)
. (7)

Tracking the collector currents through the current mirrors, the
output current of the OTA is

IOTA = IC,T5 − IC,T4 = −IABC · tanh
VD

2VT

= −IABC · tanh
V− − V+

2VT
. (8)

2.3. Output Stage

The output current of the OTA is the input variable of the output
stage. This stage is a circuit controlled by the signal level of IOTA

applying the required gain to the OTA by feeding back the ampli-
fier bias current IABC . Another task is to derive the output voltage
Vout as the output signal of the DynaComp circuit.

The output of the OTA is attached to a high frequency roll-off
composed of R8 and C4 and to transistor Q2. Q2 performs two
tasks - firstly it buffers the output signal and secondly it inverts the
phase to follow the envelope of the signal. Both the emitter and
the collector current, provide out-of-phase signals to a rectifier-
filter arrangement. The negative parts of both signals are earthed
by the diodes attached to the base ofQ5 andQ4. The base currents
of these two transistors, derived from the emitter and collector cur-
rents of Q2, follow the envelope by controlling the voltage across
capacitance C10. This voltage represents an inversion of the input
signal, i.e. higher signals of IOTA causing higher base currents of
Q4 and Q5. Thus the voltage across C10 is pulled down because
of the current flowing out ofR14 divides into the collector currents
of Q4 and Q5. If there are small signals at the input, voltage VC10

rises - with no signal at the input it rises nearly to VBatt = 9 V.
Voltage VC10 controls IABC , which is adjustable by the 470 kΩ-
potentiometer, as depicted in Fig. 4.

As a result, the amplifier bias current rises and amplifies the
gain of the OTA in case of a decreasing input signal. The output
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Figure 4: Stimulation with exponentially decreased sine burst.
Capacitor state VC10 (dashed), currents IOTA (gray) and IABC

(black).

voltage of the circuit is tapped from the emitter of Q2. It is also
adjustable by a 47 kΩ-potentiometer.

3. STATE-SPACE MODELS

The state-space representation is a common tool to describe physi-
cal systems, especially to simulate non-linear systems with change-
able parameters. This method models the system as a set of input,
u, output, y, and state variables, x and ẋ. The relation between
them are based on network theory basics and formed into first-
order differential equations. The equations used in this paper and
the discretization are derived in detail in [5]. The differential equa-
tions describing continous non-linear systems are

ẋ(t) = A · x(t) + B · u(t) + C · i(v(t)) (9)
y(t) = D · x(t) + E · u(t) + F · i(v(t)) (10)
v(t) = G · x(t) + H · u(t) + K · i(v(t)). (11)

The number of independent energy storage elements defines the
number of state variables in vector x and ẋ, typically the volt-
ages across capacitors. The discrete-time system is obtained by
using the trapezoidal rule with sampling interval T. The substitu-
tion xc(n) = T

2

((
2
T
I + A

)
x(n) + Bu(n)

)
serves the discrete

state-space model with

xc(n) = A · xc(n− 1) + B · u(n) + C · i(v(n)) (12)

y(n) = D · xc(n− 1) + E · u(n) + F · i(v(n)) (13)

v(n) = G · xc(n− 1) + H · u(n) + K · i(v(n)). (14)

To solve the non-linear equations given in (14) we use the damped
Newton algorithm. Function F (v(n)) and its Jacobian J(v(n))
are required in this algorithm. To obtain a non-linear relation be-
tween the transistor currents i = (IB , IE) and the transistor volt-
ages v = (vBE , vBC) we use the Ebers-Moll equations

IB = IES
1

1 + βF

(
e

VBE
Vt − 1

)
+ ICS

1

1 + βR

(
e

VBC
Vt − 1

)

(15)

IE = −IES

(
e

VBE
Vt − 1

)
+ ICS

βR
1 + βR

(
e

VBC
Vt − 1

)
. (16)

4. SIMULATION

4.1. Input Stage

To simulate the input stage, we just have to use the algorithm of
the discrete state-space model. Because there are no variations
from the procedure explained in Section 3, we deal briefly with
this part. With the conventions for currents through capacitances
and transistors iC = C · u̇C and IC + IB + IE = 0 we obtain
the system matrices by using Kirchhoff’s circuit laws. Firstly all
voltages across resistors have to be expressed by non-linear tran-
sistor elements, known values and/or capacitor states. Afterwards
a mesh analysis has to be accomplished to find adequate meshes
to express the transistor voltages, the output and the whole system.
We find the mesh equations

0 =Vin − VR1 − VBE1 + VR6 + VC3

0 =VR4 − VC5 − VC1

0 =VR3 − VR4 + VPb + VPa

0 =VR2 + VPa + VC2 − VBE1 + VBC1 .

To gain the dependencies on the different parameters and to build
the system matrices we have to solve these equations for v̇Ci . After
this the discretization has to be operated and non-linear equations
have to be solved. Since there are two output voltages, V− and V+,
the discrete output y(n) consists of two entries.

4.2. Output Stage

The simulation of the output stage is more complicated, because
of the feedback of the amplifier bias current. This feedback causes
linear dependencies in system matrix K, which has to be inverted
to calculate the non-linear transistor currents. This problem is
known as a delay-free loop which can be eliminated by using, for
example, the K-method [6]. In our case we decided to simplify the
feedback loop as a one sample delay.

A method to solve this problem is to modify the output stage
by neglecting the base current ofQ3. In additionQ3 is replaced by
a voltage-controlled voltage-source VC10 and a current-controlled
current source with a non-linear internal resistance RABC . VC10

serves the same voltage as the voltage drop at capacitance C10

to control IABC as depicted in Fig. 4. Another problem is the
unknown voltage drop at the ABC-input of the OTA, VABC , which
is necessary to set up a mesh equation for the calculation of IABC .
We obtain an expression for VABC by observing current mirror
NPN-1 in Fig. 3 with

VABC = VBE,T2 + VD1 . (17)

Knowing the electrical properties of the disposed elements within
the integrated circuit, we can use the Shockley-equations with ap-
proximation (2) for the collector current of T2 and diode current
of D1 to express IABC by

IABC ≈ IC,T2 = IS,T2 · e
VBE,T2

VT ≈ ID1 = IS,D1 · e
VD1
VT

(18)

with the saturation currents IS,T2 and IS,D1. After transposing
and inserting these equations in (17), we get

VABC = Vt ·
(

ln

(
IABC

IS,T2

)
+ ln

(
IABC

IS,D1

))
. (19)
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The voltage drop across RABC , V , is defined by VABC and the
base-emitter voltage of the replaced transistor Q3, VBE3 ,

V = Vt ·
(

ln

(
IABC

IS,T2

)
+ ln

(
IABC

IS,D1

)
+ ln

(
IABC

IS,Q3

))
(20)

With the mesh equation

V = VC10 − VRS − VR11 = VC10 − IABC · (RS −R11), (21)

IABC can be numerically calculated by solving

IABC =
3

√
IS,T2 · IS,D1 · IS,Q3 · e

VC10
−IABC ·(RS−R11)

Vt .
(22)

Thus the simulation of the output stage can be done straight for-
ward by using the conventions made in section 4.1 and the general
algorithm of the discrete state-space model. The mesh analysis for
the system is set up by

0 = −VR13 + VC7 + VBE4

0 = −VBatt + VR12 − VC8 + VBE5

0 = −VBatt + VR14 + VC10

0 = −Vbias + VC4 + VBC2 − VC8 + VBC5 + VC10

0 = VR8 − Vbias + VBE2 − VC9 − VR15 + VRvol1
+ VRvol2

and provides on the one hand the output voltage, Vout = VRvol2
,

and on the other hand the voltage drop across C10 to calculate via
(22) and (8) the new values of IABC and IOTA [7]. The state-
space vectors are

ẋ(t) =
[
v̇C4(t) v̇C7(t) v̇C8(t) v̇C9(t) v̇C10(t)

]T
, (23)

u(t) =
[
IOTA(t) Vbias(t) VBatt(t)

]T
, (24)

i(t) =
[
IB2 IE2 IB4 IE4 IB5 IE5

]T
. (25)

To simplify the circuit and to reduce computational costs, it
is practical to enhance the Ebers-Moll-Model by connecting the
diodes attached to Q4 and Q5 in parallel to the base-emitter junc-
tion. Thus equation 15 has to be modified [7].

5. RESULTS AND DISCUSSION

To evaluate the performance of the state-space model, the output
data has been compared to the original MXR DynaComp as refer-
ence by stimulating both with the same test signals.

Fig. 5 displays the dynamic characteristics of both models
using the same settings - sensitivity: maximum, output: maximum.
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Figure 5: Dynamic characteristic. Input signal with 10/100 mV
(gray), envelopes of measurement (dashed) and simulation.

For audio compressors it is useful to analyze the static behav-
ior. Thus the static characteristics of the digital model is compared
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Figure 6: Static curves of simulation (dashed) and measurement
(solid). On the left: sensitivity =0, right: sensitivity =100.

to the original pedal by showing the input-output-relation using
different settings for sensitivity in Fig. 6. Both, the static and the
dynamic characteristics, illustrate a good similarity. There are dif-
ferences in the attack and release behavior which can be explained
by component tolerances in the measured system and by approxi-
mations made during the derivation of the discrete system.

In addition some sound clips of electric guitar playing are
available on our homepage

http://ant.hsu-hh.de/dafx2011/compressor

6. CONCLUSION

This paper presented a state-space model of the MXR DynaComp
for a digital simulation of its sustaining and dynamic range con-
trolling effect. The analog circuit was analyzed and equations for
the calculation of the OTA output current and the amplifier bias
current were derived in detail. The algorithm of the derivation of
the discrete state-space matrices was introduced.

The comparison between the model and the reference showed
a good match, too, although a lot of approximations had been made
to develop a functional state-space description of the DynaComp.
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ABSTRACT

Pinna-Related Transfer Functions (PRTFs) reflect the modifica-
tions undergone by an acoustic signal as it interacts with the lis-
tener’s outer ear. These can be seen as the pinna contribution to
the Head-Related Transfer Function (HRTF). This paper describes
a database of PRTFs collected from measurements performed at
the Department of Signal Processing and Acoustics, Aalto Univer-
sity. Median-plane PRTFs at 61 different elevation angles from
25 subjects are included. Such data collection falls into a broader
project in which evidence of the correspondence between PRTF
features and anthropometry is being investigated.

1. INTRODUCTION

Anthropometric features of the human body have a key role in
Head-Related Transfer Function (HRTF) characterization. While
non-individualized HRTFs represent a cheap and straightforward
mean of providing 3-D perception in headphone reproduction, lis-
tening to non-individualized spatialized sounds may likely result
in evident sound localization errors such as incorrect perception of
elevation, front-back reversals, and lack of externalization [1], es-
pecially when head tracking is not utilized in the reproduction [2].
On the other hand, individual HRTF measurements on a significant
number of subjects may be both expensive and inconvenient.

Structural modeling of HRTFs ultimately represents an attrac-
tive solution to these shortcomings. As a matter of fact, if one
isolates the contributions of the listener’s head, pinnae, ear canals,
shoulders, and torso to the HRTF in different subcomponents -
each accounting for some well-defined physical phenomenon -
then, thanks to linearity, one can reconstruct the global HRTF
from a proper combination of all the considered effects. Relat-
ing each subcomponent’s temporal and/or spectral features (in the
form of digital filter parameters) to the corresponding anthropo-
metric quantities would then yield a HRTF model which is both
economical and individualizeable [3].

Following such structural assumption, the present work fo-
cuses on the pinna contribution to the HRTF. It is undoubted that
the pinna plays a primary part in the perception of source eleva-
tion; even so, the relation between acoustic phenomena due to

the pinna - mainly resonances and sound reflections [4] - and an-
thropometry is yet not fully understood. In [5] a promising cor-
respondence between reflection points on pinna surfaces and fre-
quencies of notches occurring in the high-frequency range of the
HRTF spectrum was informally found by analyzing median-plane
responses from the CIPIC database [6] along with photos of four
subjects’ pinnae. Still, in order for a more extensive and accurate
analysis to be carried out, an alternative database is needed, the
most relevant reasons being:

• the presence in the CIPIC HRTFs of the head and shoulders’
contributions, which cannot be fully eliminated a posteriori;

• the need of highly detailed photographs of the subjects’ pin-
nae for an effective image processing method that extracts
the possible reflection contours to be designed;

• the public unavailability of the remaining subjects’ pinnae
photographs, necessary to perform such an analysis.

This paper presents such a database, which we refer to as
Pinna-Related Transfer Function (PRTF) Database, primarily fo-
cusing on the choices and tools through which the final responses
were collected. Furthermore, some early results on the so ob-
tained PRTFs’ features will be sketched. All of the following
work was carried out at the Department of Signal Processing and
Acoustics, Aalto University. The database, accompanied by de-
tailed photographs of the subjects’ pinnae and the measurement
setup, is publicly downloadable from the first author’s website at
http://www.dei.unipd.it/~spagnols/PRTF_db.zip
as a .zip archive.

2. MEASUREMENT PROCEDURE AND APPARATUS

In an ideal situation, the PRTF is the response of the pinna mounted
on an infinite plane [7]. In our measurements, an ad hoc pinna iso-
lation device that approximates the ideal case was built and used.
The test subjects’ torsos and shoulders were isolated by a1-m ×
1-m, 15-mm thick wooden board having a24-cm-diameter circu-
lar hole in the middle of it that approximately fits the size of the
human head. A polycarbonate sheet with grinded edges and a6-
cm-diameter circular hole in the middle was fixed with a dozen
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Figure 1:The pinna isolation device used for PRTF measurements.

Figure 2: Subject position during the measurements. On top left,
the boom-controlled loudspeaker used for sweep reproduction.

flat head screws to the board in order to completely cover the hole
for the head while letting the subjects’ right pinnae come out of
the other side of it (see Figure 1). Furthermore, a thick layer of
foam with a head-profile-shaped cut in the middle was glued to
the upper side of the board with the purpose of adding comfort to
the subjects. A piece of such layer could be taken off accordingly
with the specific subject’s build.

The isolation device was brought right in the middle of an ane-
choic chamber and placed over an acoustically transparent, one
meter high cylindrical metallic fence having 1.75mm thread width
in order to avoid reflections from prospective table legs. A con-
trolled boom mounted on the room’s ceiling had the purpose of
moving the sound source (a Genelec 8030A loudspeaker) along a
circumference centered in the pinna hole and laying on the plane
parallel to the isolation device. The loudspeaker was positioned
upside down, so that the woofer was at the level of the foremen-
tioned plane while the tweeter was under it, allowing high-frequency
components to directly join the pinna hole without reflecting on
the border of the isolation device. Furthermore, the distance be-
tween the loudspeaker and the pinna hole was approximately1.6
m, so we can assume the incident wave to be plane for frequen-
cies above 3 kHz (the loudspeaker’s crossover frequency). This
assumption may not be guaranteed below3 kHz, yet the relative
little importance of pinna features below this threshold makes this
problem negligible. Since the boom was not acoustically transpar-
ent and other loudspeakers were fixed to the chamber’s walls, let
us label the environment as low-echoic rather than anechoic. In
spite of this, as Subsection 2.1 will mention, all the data will be
adequately windowed so as to discard reflections occurring on the

Figure 3:Subject 08’s right pinna.

room’s equipment.
25 subjects (18 men and 7 women), mostly students and staff

of Aalto University, participated to the measurements. A Knowles
FG-23329 microphone carefully stuffed in the middle of a hollow
earplug was placed inside the right ear canal of each subject in
turn. Then, the subject was asked to stand in front of one side of
the panel (eventually with the help of a pedestal to let his waist
reach the level of the isolation device), bend90 degrees forwards
and lay his head on the right side in order to let his pinna pass the
hole (see Figure 2). The required90◦ head-neck rotation could
be reached thanks to the thick layer of foam which allowed the
right shoulder to sink at a lower level than the left. This way, the
plane spanned by the loudspeaker’s rotation approximately corre-
sponded to the subject’s median plane. The pinna position was
then adjusted both by instructing the subject on how to move his
head and by manual intervention through a big hole in the fence.
Finally, vertical orientation was adjusted by manually rotating the
subject’s head to let his ear axis point at a precise mark on one of
the chamber’s walls. Subjects were told to remain as still as pos-
sible, yet their movements were not monitored during the actual
measurement session.

The responses were measured via the logarithmic sweep (or
logsweep) method [8]. The used sine sweep had48 kHz sampling
frequency,1 s duration, and spanned the frequency range from20
Hz to 22 kHz. By controlling the boom rotation and sweep re-
production from a Max/MSP patch running on a workstation just
outside the anechoic chamber, sweep responses for61 different el-
evation angles were recorded at48 kHz sampling frequency in ap-
proximately six minutes’ time. The selected elevation angles, con-
sidering the interaural-polar coordinate system (see [6]), spanned
the range from−60 to 240 degrees at5-degree steps. The boom
constantly rotated during the measurements, hence high frequen-
cies were measured from a slightly different elevation than low fre-
quencies. However, since the angular speed was almost constantly
less that one degree per second, the impact on measurements looks
negligible.

In addition, free-field responses were taken by placing the
microphone-stuffed earplug inside of a small foam cut, position-
ing it in the middle of the pinna hole of the isolation device, and
repeating the measurement procedure in the same way as for the
test subjects.

Pictures of the subjects’ right pinnae were also taken before
or after the measurements (see e.g. Figure 3). The distance and
orientation of the camera with respect to the pinna was kept as
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Figure 4:Original sweep magnitude response (solid line) and post-processed PRTF magnitude (thick dashed line).

constant among subjects as possible through the help of a tripod.
Also, each subject’s pinna height (variabled5 in [6]) was measured
and tracked down for resizing purposes. This information, along
with each subject’s sex and evidenced anomalies in the experiment
with respect to the optimal situation, can be found in the online
database. As for anomalies, Subject06’s pinna did not completely
pass the hole, Subject13 had a piercing on the helix which could
not be taken off, and Subject18 had the earplug slightly displaced
at the end of the measurements.

2.1. Data post-processing

According to the logsweep method, inverse filtering was performed
on the measured sweeps (including free-field sweeps) in order to
obtain the corresponding impulse responses. Specifically, the in-
verse response of the excitation signal was first computed and then
low-passed and high-passed with fifth-order digital Butterworth
filters to compensate for the original zero sound pressure level be-
low 20 Hz and above22 kHz in the sweep signal. Since the pinna
has no effect below3 kHz and sounds above15-20 kHz are hardly
perceptible by humans we let the high-pass and low-pass Butter-
worth filters’ cutoff frequency be loose, that is1.2 and21.6 kHz
respectively. Hence, each impulse response was calculated by con-
volving such band-passed inverse filter with the measured sweep.

Subsequently, a 300-sample Hann window was applied to each
impulse response with the aim of cutting off late reflections possi-
bly occurring on the subject’s legs, the pedestal, or the room equip-
ment. The window was centered in the first positive peakp exceed-
ing a heuristic amplitude threshold in the impulse response, so that
the windowed impulse lasts approximately3 ms fromp.

Finally, free-field compensation of the subjects’ impulse re-
sponses had to be performed. To this end, for each elevatione,
a 10th-order minimum-phase IIR filter which approximates the
magnitude of the inverse free-field response at source elevatione
was designed through the least-squares fit procedure provided by
the Yule-Walker method of ARMA spectral estimation [9]. As we
expected, all free-field responses had similar and almost flat - ex-
cept for a ripple around2.5 kHz probably due to the loudspeaker’s
crossover frequency - magnitude plots, with no tangible diffrac-
tion occurring on the wooden board. This result certifies the trans-
parency of the measurement setup. Straightforward filtering of the

subject’s impulse response at elevatione through the so built IIR
filter gave the free-field compensated, final pinna-related impulse
response (PRIR) that is stored in the database.

Figure 4 shows the magnitude plots of an original recorded
sweep and the corresponding post-processed PRTF. It can be clearly
seen how the general notch/resonance structure of the typical PRTF
is preserved, excluding the very upper and lower frequency ranges
which are, however, not of interest to us.

3. EARLY RESULTS AND DISCUSSION

It should be mentioned that, since data was collected for a sin-
gle azimuth value only, there is no guarantee that integrating a fu-
ture pinna model based on these responses in a complete structural
model would give an appropriate representation of the HRTF. In
other words, the PRTF for elevatione and azimuth0◦ may have
a totally different look than the PRTF for elevatione and e.g.
azimuth60◦. However, informal inspection of different HRTF
sets revealed how generally there is no pronounced variation in
median-plane reflection and resonance patterns across the angular
range when the azimuth’s absolute value is increased from0◦ up
to about30◦. Hence we may assert that under the assumption that
the source moves in the vicinity of the median plane, pinna effects
solely depend on source elevation.

Through direct inspection of the PRTF magnitude plots of all
25 subjects, a couple of observations can be made. First, when the
source is ahead of the frontal plane (in our case when−60◦ ≤ e <
90◦), the PRTF behaviour is quite complex and greatly varies from
subject to subject. However, commonly known features evidenced
in previous works on PRTFs [10, 11], such as the4-kHz omnidi-
rectional resonance mode and the notch whose frequency (6 − 10
kHz) increases with elevation, appear in the vast majority of sub-
jects (see e.g. Subject08 in Figure 5). In some cases (e.g. Subject
15), however, the reflection structure is unclear, the magnitude plot
presenting valleys which happen to be excessively shallow.

Secondly, while all PRTFs greatly differ among subjects when
the source is ahead of the frontal plane, their behaviour is simi-
lar for all other elevations. Specifically, allowing some degree of
approximation:

• for 90◦ ≤ e ≤ 125◦ the majority of PRTFs show a de-
scending magnitude plot with one major resonance around
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Figure 5:Magnitude plot (in dB) of Subject 08’s PRTF.

7 kHz and no evident notches;

• from aboute = 130◦ one frequency notch appears at around
10 kHz, eventually followed by others at higher frequen-
cies when the source is about to cross the horizontal plane
ate = 180◦ (this notch was found in [11] too);

• PRTFs for the last elevation angles, especiallye = 240◦,
show a more complex magnitude structure with3 or more
notches below15 kHz (also reported in [11]).

These features can all be detected in Figure 5. The absence of
evident notches when the source is above the listener may easily
be attributed to the presence of the helix which “masks” the con-
cha, evading direct reflections on it. Conversely, the presence of
complicated patterns ate = 240◦ comparable to those for sources
ahead of the frontal plane may be both attributed to reflections on
different pinna contours such as the upper part of the helix, the
tragus or the crus helias, or to possible unwindowed reflections on
the subject’s legs.

Finally, even after post-processing some PRTFs still present a
“noisy” spectrum. This artifact may likely be associated to sub-
jects’ slight movements during the sweep reproduction or to a rat-
tling noise coming from the metallic fence which was reported by
a few subjects right after their measurement session. However, be-
sides being isolated cases only, the main features of PRTFs remain
preserved.

4. CONCLUSIONS AND FUTURE WORK

A database of Pinna-Related Transfer Functions was presented in
this paper. The measurement setup and procedure was described
in details, along with the polishing operations applied to obtain
the final PRTFs from the measured responses. The early results
and assumptions traced in the last section need of course to be
further investigated, especially for what concerns PRTF behaviour
in the elevation range−60◦ ≤ e ≤ 90◦ where pinna modifications
happen in greater number. Future work includes adaptation of a
separation algorithm [12] that extracts the reflective and resonant
components from each PRTF to the present database in order to
analyze each component separately and study the relation between
its features and anthropometry, the final aim of such work being
customization of a structural HRTF model.
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ABSTRACT

FAUST [Functional Audio Stream] is a functional programming
language specifically designed for real-time signal processing and
synthesis. It consists in a compiler that translates a FAUST pro-
gram into an equivalent C++ program, taking care of generating
the most efficient code. The FAUST environment also includes
various architecture files, providing the glue between the FAUST
C++ output and the host audio and GUI environments. The com-
bination of architecture files and FAUST output gives ready to run
applications or plugins for various systems, which makes a single
FAUST specification available on different platforms and environ-
ments without additional cost. This article presents the overall de-
sign of the architecture files and gives more details on the recent
OSC architecture.

1. INTRODUCTION

From a technical point of view FAUST 1 (Functional Audio Stream)
is a functional, synchronous, domain specific language designed
for real-time signal processing and synthesis. A unique feature of
Faust, compared to other existing languages like Max, PD, Super-
collider, etc., is that programs are not interpreted, but fully com-
piled.

One can think of FAUST as a specification language. It aims
at providing the user with an adequate notation to describe signal
processors from a mathematical point of view. This specification
is free, as much as possible, from implementation details. It is the
role of the FAUST compiler to provide automatically the best possi-
ble implementation. The compiler translates FAUST programs into
equivalent C++ programs taking care of generating the most effi-
cient code. The compiler offers various options to control the gen-
erated code, including options to do fully automatic parallelization
and take advantage of multicore machines.

The generated code can generally compete with, and some-
times even outperform, C++ code written by seasoned program-
mers. It works at the sample level, it is therefore suited to im-
plement low-level DSP functions like recursive filters up to full-
scale audio applications. It can be easily embedded as it is self-
contained and doesn’t depend of any DSP library or runtime sys-
tem. Moreover it has a very deterministic behavior and a constant
memory footprint.

From a syntactic point of view FAUST is a textual language,
but nevertheless block-diagram oriented. It actually combines two
approaches: functional programming and algebraic block-diagrams.
The key idea is to view block-diagram construction as function

1http://faust.grame.fr

composition. For that purpose, FAUST relies on a block-diagram
algebra of five composition operations (: , ~ <: :>) [1, 2].

We don’t have the space to describe the language in details
but as an example here is how to write a pseudo random number
generator r in Faust 2 :

r = +(12345)~*(1103515245);
This example uses the recursive composition operator ~ to cre-

ate a feedback loop as illustrated figure 1.

Figure 1: Block-diagram of a noise generator. This image is pro-
duced by the FAUST compiler using the -svg option.

Being a specification language the FAUST code says nothing
about the audio drivers or the GUI toolkit to be used. It is the
role of the architecture file to describe how to relate the dsp code
to the external world. This approach allows a single FAUST pro-
gram to be easily deployed to a large variety of audio standards
(Max-MSP externals, PD externals, VST plugins, CoreAudio ap-
plications, Jack applications, etc.). In the following sections we
will detail this architecture mechanism and in particular the re-
cently developed OSC architecture that allows FAUST programs to
be controlled by OSC messages.

2. FAUST SIGNAL PROCESSORS

A FAUST program denotes a signal processor implemented as an
instance of a dsp class, defined as follows:

2Please note that this expression produces a signal r(t) = 12345 +
1103515245 ∗ r(t − 1) that exploits the particularity of 32-bits integer
operations
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class dsp {
public:

dsp() {}
virtual ~dsp() {}
virtual int getNumInputs() = 0;
virtual int getNumOutputs() = 0;
virtual void buildUserInterface(UI* ui) = 0;
virtual void init(int samplingRate) = 0;
virtual void compute(int len, float** in,

float** out)= 0;
};

The dsp object is central to the FAUST architectures design:

• buildUserInterface creates the user interface,

• compute is called by the audio architecture for the signal
processing,

• getNumInputs, getNumOutputs provides informa-
tion about the signal processor,

• init is called to initialize the sampling rate, which is typ-
ically done by the audio architecture.

3. AUDIO ARCHITECTURE FILES

A FAUST audio architecture is a glue between the host audio sys-
tem and a FAUST module. It is responsible to allocate and re-
lease the audio channels and to call the FAUST dsp::compute
method to handle incoming audio buffers and/or to produce au-
dio output. It is also responsible to present the audio as non-
interleaved float data, normalized between -1. and 1.

A FAUST audio architecture derives an audio class defined as
below:

class audio {
public:

audio() {}
virtual ~audio() {}
virtual bool init(const char* name, dsp*) = 0;
virtual bool start() = 0;
virtual void stop() = 0;

};

The API is simple enough to give a great flexibility to audio
architectures implementations. The initmethod should initialize
the audio. At init exit, the system should be in a safe state to
recall the dsp object state.

Table 4 gives the audio architectures currently available for
various operating systems.

4. GUI ARCHITECTURE FILES

A FAUST UI architecture is a glue between a host control layer and
a FAUST module. It is responsible to associate a FAUST module
parameter to a user interface element and to update the parameter
value according to the user actions. This association is triggered
by the dsp::buildUserInterface call, where the dsp asks
a UI object to build the module controllers.

Since the interface is basically graphic oriented, the main con-
cepts are widget based: a UI architecture is semantically oriented
to handle active widgets, passive widgets and widgets layout.

A FAUST UI architecture derives an UI class (defined in ap-
pendix 10.1).

Audio system Operating system
Alsa Linux

Core audio Mac OS X, iOS
Jack Linux, Mac OS X, Windows

Portaudio Linux, Mac OS X, Windows
OSC (see section 5.2) Linux, Mac OS X, Windows

VST Mac OS X, Windows
Max/MSP Mac OS X, Windows
CSound Linux, Mac OS X, Windows

SuperCollider Linux, Mac OS X, Windows
PureData Linux, Mac OS X, Windows
Pure[3] Linux, Mac OS X, Windows

Table 1: FAUST audio architectures

4.1. Active widgets

Active widgets are graphical elements that control a parameter
value. They are initialized with the widget name and a pointer
to the linked value. The widget currently considered are Button,
ToggleButton, CheckButton, VerticalSlider, Hori-
zontalSlider and NumEntry.
A GUI architecture must implement a method
addxxx (const char* name, float** zone, ...)
for each active widget. Additional parameters are available to
Slider and NumEntry: the init value, the min and max values and
the step.

4.2. Passive widgets

Passive widgets are graphical elements that reflect values. Simi-
larly to active widgets, they are initialized with the widget name
and a pointer to the linked value. The widget currently considered
are NumDisplay, TextDisplay, HorizontalBarGraph
and VerticalBarGraph.
A UI architecture must implement a method
addxxx (const char* name, float** zone, ...)
for each passive widget. Additional parameters are available, de-
pending on the passive widget type.

4.3. Widgets layout

Generally, a GUI is hierarchically organized into boxes and/or tab
boxes. A UI architecture must support the following methods to
setup this hierarchy :
openTabBox (const char* label)
openHorizontalBox (const char* label)
openVerticalBox (const char* label)
closeBox (const char* label)

Note that all the widgets are added to the current box.

4.4. Metadata

The FAUST language allows widget labels to contain metadata en-
closed in square brackets. These metadata are handled at GUI level
by a declare method taking as argument, a pointer to the widget
associated value, the metadata key and value:
declare(float*, const char*, const char*)

Table 2 gives the UI architectures currently available.
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UI Comment
console a command line UI

GTK a GTK based GUI
Qt a multi-platform Qt based GUI

FUI a file based UI to store and recall modules states
OSC see section 5.1

Table 2: FAUST UI architectures

5. OSC ARCHITECTURES

The OSC support opens the FAUST applications control to any
OSC capable application or programming language. But it also
transforms a full range of devices embedding sensors (wiimote,
smart phones...) into physical interfaces for FAUST applications
control, allowing a direct use as music instrument (which is in
phase with the new FAUST physical models library adapted [4]
from STK [5]).

The FAUST OSC architecture provides an UI architecture but
also an audio architecture. This audio architecture runs at the OSC
data stream rate, meaning that it allows to slow the audio computa-
tion down, up to frame by frame computation, and thus proposing
a new and original way to make digital signal computation.

5.1. OSC GUI architecture

The OSC UI architecture transforms all the UI active widgets addi-
tions into an addnode call, ignores the passive widgets and trans-
forms containers calls (openxxxBox, closeBox) into op-
engroup and closegroup calls.

5.1.1. OSC address space and messages

The OSC address space adheres strictly to the hierarchy defined
by the addnode and opengroup, closegroup calls. It sup-
ports the OSC pattern matching mechanism.

A node expects to receive OSC messages with a single float
value as parameter. This policy is strict for the parameters count,
but relaxed for the parameter type: OSC int values are accepted
and cast to float.

Two additional messages are defined to provide FAUST appli-
cations discovery and address space discoveries:

• the hello message: accepted by any module root address.
The module responds with its root address, followed by its
IP address, followed by the UDP ports numbers (listening
port, output port, error port). See the network management
section below for ports numbering scheme.

• the get message: accepted by any valid OSC address. The
get message is propagated to every terminal node that re-
sponds with its OSC address and current values (value, min
and max).

Example:
Consider the noise module provided with the FAUST examples:

• it sends /noise 192.168.0.1 5510 5511 5512
in answer to a hello message,

• it sends /noise/Volume 0.8 0. 1.
in answer to a get message.

5.1.2. Network management

The OSC architecture makes use of 3 different UDP port numbers:

• 5510 is the listening port number: control messages should
be addressed to this port.

• 5511 is the output port number: answers to query messages
are send to this port.

• 5512 is the error port number: used for asynchronous errors
notifications.

When the UDP listening port number is busy (for instance in
case of multiple FAUST modules running), the system automati-
cally looks for the next available port number. Unless otherwise
specified by the command line, the UDP output port numbers are
unchanged.

A module sends its name (actually its root address) and allo-
cated ports numbers on the OSC output port on startup.

Ports numbers can be changed on the command line with the
following options:

[-port | -outport | -errport] number
The default UDP output streams destination is localhost.

It can also be changed with the command line option
-dest address where address is a host name or an IP

number.

5.2. OSC audio architecture

The OSC audio architecture provides audio input and output using
OSC messages. It is not intended for real-time audio transportation
due to the overhead introduced by the OSC coding. But, as we will
explain, it provides a very useful and powerful mean to analyze
and/or debug the behaviour of a Faust application.

Using this architecture, a FAUST module accepts arbitrary data
streams on its root OSC address, and handles this stream as input
interleaved signals. Each incoming OSC packet addressed to a
module root triggers a computation cycle, where as much values
as the number of incoming frames are computed.

The output of the signal computation is sent to the OSC out-
put port as non-interleaved data to the OSC addresses /root/n
where root is the module root address and n is the output number
(indexed from 0). For example, consider a simple FAUST program
named split and defined by:

process = _ <: _,_;
expected and generated OSC datagrams are illustrated in figure 2.

process

/split 0.5
/split/0 0.5

/split/1 0.5

Figure 2: In and out OSC datagrams for the split module.

The OSC audio architecture provides a very convenient way
to execute a signal processing at an arbitrary rate, allowing even to
make step by step computation. Connecting the output OSC sig-
nals to Max/Msp or to a system like INScore3, featuring a powerful
dynamic signals representation system, provides a close examina-
tion of the computation results.

3http://inscore.sf.net
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6. OPEN ISSUES AND FUTURE WORKS

Generally, the labeling scheme for a GUI doesn’t result in an op-
timal OSC address space definition. Moreover, there are potential
conflicts between the FAUST UI labels and the OSC address space
since some characters are reserved for OSC pattern matching and
thus forbidden in the OSC naming scheme. The latter issue is han-
dled with automatic characters substitutions. The first issue could
be solved using the metadata scheme and will be considered in a
future release.

Another issue, resulting from the design flexibility, relies on
dynamic aggregation of multiple architectures covering the same
domain: for example, it would be useful to embed both a standard
and the OSC audio architecture in the same module and to switch
dynamically between (for debugging purpose for example). That
would require the UI to include the corresponding control and thus
a mechanism to permit the UI extension by the UI itself would be
necessary.

7. CONCLUSIONS

FAUST is a mature language for the design of signal processors.
The FAUST architectures give the developer a handful of various
binary outputs without additional cost. The architectures design,
made for easy extension and combination, fits very well in the
landscape of the evolving technologies. Adaptation to new hard-
ware or software is simple and opens the door to all the existing
FAUST programs. The recent OSC addition makes the connec-
tion between FAUST modules and the more and more ubiquitous
hardware embedding sensors and usable as gestural controllers.
FAUST architectures add a practical and ready to run dimension
to the powerful FAUST language and additional contributions are
welcome.
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10. APPENDIX

10.1. UI class
class UI
{
public:

UI() {}
virtual ~UI() {}

// -- active widgets
virtual void addButton(const char* label, float* zone) = 0;
virtual void addToggleButton(const char* label, float* zone) = 0;
virtual void addCheckButton(const char* label, float* zone) = 0;
virtual void addVerticalSlider(const char* label, float* zone,

float init, float min, float max, float step) = 0;
virtual void addHorizontalSlider(const char* label, float* zone,

float init, float min, float max, float step) = 0;
virtual void addNumEntry(const char* label, float* zone, float init,

float min, float max, float step) = 0;
// -- passive widgets
virtual void addNumDisplay(const char* label, float* zone, int precision) = 0;
virtual void addTextDisplay(const char* label, float* zone,

const char* names[], float min, float max) = 0;
virtual void addHorizontalBargraph(const char* label, float* zone,

float min, float max) = 0;
virtual void addVerticalBargraph(const char* label, float* zone,

float min, float max) = 0;
// -- widget’s layouts
virtual void openTabBox(const char* label) = 0;
virtual void openHorizontalBox(const char* label) = 0;
virtual void openVerticalBox(const char* label) = 0;
virtual void closeBox() = 0;

// -- metadata declarations
virtual void declare(float* , const char* , const char* ) {}

};

10.2. Available FAUST architectures

Audio system Environment OSC support
Linux

Alsa GTK, Qt yes
Jack GTK, Qt, Console yes

PortAudio GTK, Qt yes
Mac OS X

CoreAudio Qt yes
Jack Qt, Console yes

PortAudio Qt yes
Windows

Jack Qt, Console yes
PortAudio Qt yes

iOS (iPhone)
CoreAudio Cocoa not yet

Table 3: FAUST applications architectures

Name System
ladspa LADSPA plugins
csound CSOUND opcodes

csounddouble double precision CSOUND opcodes
maxmsp Max/MSP externals

vst native VST plugins
w32vst windows VST plugins

supercollider Supercollider plugins
puredata Puredata externals

Q Q plugins
Pure Pure plugins

Table 4: FAUST plugins architectures
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ABSTRACT

This paper presents a formal grammar for discussing data flows
and dependencies in audio processing graphs. A graph is a highly
general representation of an algorithm, applicable to most DSP
processes.

To demonstrate and exercise the grammar, three central prob-
lems in audio graph processing are examined. The grammar is
used to exhaustively analyze the problem of scheduling process-
ing nodes of the graph, examine automatic parallelization as well
as signal rate inferral.

The grammar is presented in terms of mathematical set theory,
independent of and thus applicable to any conceivable software
platform.

1. INTRODUCTION

Most signal processing algorithms are extremely well suited to be
represented by graphs, connected networks of nodes. The nodes in
the network correspond to processing operations, while the inter-
connections denote signal flow.

In addition, audio graphs are typically directional. Signal flows
traverse the graph from initial sources to eventual destinations, en-
tering processing nodes via inputs and exiting them from their out-
puts.

Considering how the graph metaphor is so general and widely
applicable, it would be highly beneficial if a formal language could
be used to reason about graphs in the context of analyzing and
transforming audio algorithms.

This paper employs the elementary principles of mathematical
set theory in discussing, analyzing and transforming audio graphs.
Some straightforward additional notation is introduced to simplify
the discussion about data dependencies and node reachability.

As performance is typically critical in audio applications, an
immediate field of interest is using the emerging theoretical iden-
tities to optimize the computation of audio graphs. The emerging
logical language is employed to present and discuss proofs about
scheduling and transforming audio graphs, without tying the re-
sults to a particular platform or system. The research has been
applied to the foundations of the author’s work with signal pro-
cessing compilers[1].

The rest of this paper is organized as follows. First, in Section
2, Notation, elementary operators for describing subgraphs and su-
pergraphs are introduced. In Section 3, Scheduling a DAG, execu-
tion schedule constraints for an audio graph are formally laid out.
Section 4 Parallelization, discusses rules for automatic paralleliza-
tion of an audio graph. Section 5, Signal Rate Optimization exam-
ines how graphs can be analyzed for required update rates. Finally,

Section 6, Conclusions, summarizes the paper and the grammar in-
troduced in it.

2. NOTATION

The study of graphs is a relatively recent but growing topic in
mathematics. The type of graph best suited for digital computa-
tion of audio signals is the directed acyclic graph or DAG[2].

DAGs incorporate the direction of signal flow, so that outputs
are fed into inputs, and prohibit cycles in the graph – necessary for
a graph to be finitely computable.

Let us begin by defining set-theoretic operators and concepts
to enable the analysis of DAGs. For an overview of elementary set
theory, the reader is referred to literature[3].

2.1. Reachability

Reachability between two nodes is an intuitive concept. If there
exists a path between the nodes, from node to node via connec-
tions, the nodes reachable from each other. Let this condition be
represented by the general reachability operator, a l b, that pro-
duces a boolean truth value.

2.1.1. Upstream Locator

Reachability becomes more useful if the path is constrained. Let us
define a more specific reachability operator, the upstream locator.
Stated as a ↑ b, the operator is true if a can be reached from b by
traversing the graph upstream – the direction opposite to the signal
flow.

2.1.2. Downstream Locator

The inverse of the upstream locator is the downstream locator.
Used for convenience, the operator can be defined simply as

a ↓ b = b ↑ a (1)

.

2.2. Subgraphs and Supergraphs

In general graph theory, a subgraph is a set of nodes and inter-
connections that can be obtained from a larger graph by severing
some of the connections. In this paper, we shall adopt a narrower
definition of a subgraph.

Let us define a subgraph in terms of data dependency; let a
subgraph consist of a particular root node, and any nodes reach-
able from it by traversing the DAG upstream. In other words, the
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subgraph is the portion of the DAG through which signal must pass
before reaching the input of its root node.

Let a supergraph be the opposite of subgraph. Let the super-
graph consist of a root node and all the nodes that can be reached
from it by traversing the DAG downstream.

Let a be an arbitrary node in a DAG. Using the locator opera-
tors, the subgraph of a can be defined as a section of the universal
set U

⇑ a = a ∪ {x ∈ U : x ↑ a} (2)
Likewise, the supergraph of a is

⇓ a = a ∪ {x ∈ U : x ↓ a} (3)

Supergraphs and subgraphs have an inverse relation;

b ∈⇑ a⇐⇒ a ∈⇓ b (4)

Nested subgraphs and supergraphs imply subsets and supersets;

b ∈⇑ a⇔⇑ a ⊇⇑ b (5)

b ∈⇓ a⇔⇑ a ⊆⇑ b (6)

2.3. Summary of Notation

Notation Meaning
a ↑ b Node a can be reached from b by

traversing the graph upstream
a ↓ b Node a can be reached from b by

traversing the graph downstream
⇑ a The set of a and all nodes x for which

x ↑ a holds
⇓ a The set of a and all nodes x for which

x ↓ a holds

3. SCHEDULING A DAG

Let G be a DAG describing an audio algorithm, consisting of sev-
eral independent processing nodes. Should this DAG be trans-
formed into a computer program, the first requirement would be
to produce a correct processing order for the nodes.

The fundamental scheduling constraint is that the processing
of a node can not commence before all its inputs are ready for pro-
cessing. Let us define two informal operators, Ready, indicating
whether a node can be processed or not, and Finished, indicating
whether the node has been processed already. This results in;

Ready(a) = ¬(∃x ∈ (⇑ a \ {a}),¬Finished(x)) (7)

Note that nodes with no input connections, ie. ⇑ a = {a} are
always ready as they have no dependencies.

A linear list could be constructed from the nodes in graph G
by sorting them according to reachability. A sorting algorithm that
operates with a binary less-than predicate could be employed. By
utilizing the upstream locator operator as the less-than comparison,
a correct schedule can be constructed;

a < b⇐⇒ a ↑ b (8)
Such sorting algorithms are available in most programming

languages, including the standard template library for C++[4]. Sim-
ply iterating through such a sorted list is guaranteed to process all
the nodes in correct order, provided the sorting algorithm is com-
patible. This point is expanded in the following subsection.

3.1. Ordering and Reachability

It could be tempting to extend the semantic equivalence of the up-
stream locator to the full trichotomy of comparison operators;

a < b⇐⇒ a ↑ b (9)
a > b⇐⇒ a ↓ b (10)
a = b⇐⇒ ¬(a ↑ b ∨ a ↓ b) (11)

However, the metaphor breaks down at equality. Consider:

a ∈⇑ b
c /∈⇑ b
c /∈⇓ b

(12)

This would give a = c, b = c but also a 6= b, thus the hypo-
thetical equality operator doesn’t function as expected.

For less-than predicate sorting to work, the sorting algorithm
must not rely on equality derived as in equation 11. The class
of acceptable algorithms perform strict-weak ordering[5], which
relies on a binary less-than operator.

As there may be more than one correct order for any strict-
weakly ordered set, the exact result will depend on the sorting al-
gorithm.

4. PARALLELIZATION

As stated in Section 3, there are typically several valid processing
schedules for a DAG. In such cases, the ambiguity results from the
fact that there are operations that are independent of each other.
These operations can be performed in any order or even concur-
rently.

Any nodes that can be parallelized must therefore be ambigu-
ously ordered. In other words, the nodes should satisfy strict-weak
ordering according to upstream reachability in either order. Other-
wise, one of the nodes is upstream reachable from the other, and
the nodes must be serially processed to honor all the dependencies.

The condition for parallelization can thus be formally stated;

Parallelizable(a, b)⇐⇒ ¬(a ↑ b ∨ a ↓ b)
⇐⇒ ¬(a ↑ b ∨ b ↑ a)
⇐⇒ ¬(b ∈⇑ a ∨ a ∈⇑ b)

(13)

More generally, two entire subgraphs are parallelizable if their
intersection is the null set;

⇑ a∩ ⇑ b = ∅ (14)

If this condition is met, the subgraphs can be processed in-
dependently from each other. Note that this only applies to the
narrow definition of a subgraph as defined in Section 2.2, not the
subgraphs of general graph theory.

If the intersection yields a non-empty set, the parallelizable
components are the relative complements of the subgraphs and
their intersection;
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C =⇑ a∩ ⇑ b (15)

A′ =⇑ a \ C (16)

B′ =⇑ b \ C (17)
(18)

Therefore, A′ and B′ can be executed in parallel, but C must
be executed before either of them.

4.1. An Algorithm for Parallelization

As there is significant scheduling overhead in parallel computa-
tion, it is typically ideal to parallelize as little as possible while
still maintaining full utilization of computing resources. A well
known method for balancing utilization and overhead is the data
flow work queue, where a central pool of available tasks is main-
tained. Each worker thread pulls a task from the repository, com-
pletes it and places any newly available tasks into the pool. Tasks
become available as all their inputs are finished, as shown in equa-
tion 7.

Inadequate load balancing may cause performance degrada-
tion in the case of the data flow work queue. This means that some
computational cores are performing useful work while some are
not, possibly waiting for tasks that depend on the ones currently
being processed. In the case of a general audio DAG, load bal-
ancing can be improved by increasing work item granularity – in
other words, including fewer processing nodes in each work item.
This in turn can cause the scheduling overhead from the growing
number of work items to eradicate any gains made from improved
load balancing.

Utilizing the results shown above, an algorithm can be con-
structed that automatically generates a parallelized work schedule.
A work item size parameter is introduced to allow for fine tun-
ing the tradeoff between load balancing and scheduling overhead.
This algorithm carries the assumption that the computational time
consumed by processing a set of nodes can be approximated or
measured. The size of the work item corresponding to that set is
proportional to the computational time.

• Start parallelization from a root node R.

• Obtain the subgraphs of all nodes connected to the inputs
of R. Let these be {P1,P2, ...Pn}. Let I be the index set
{x ∈ Z : 0 < x ≤ n}.

• The serial dependency is

S =
⋃

i∈I


Pi ∩

⋃

j∈I,j 6=i

Pj


 (19)

• The parallelizable portions of the DAG are
{P1 \ S,P2 \ S, ...,Pn \ S}

• The parallelizable portions exceeding the size of the chosen
work item size treshold are kept. Those that fall below the
treshold should be combined, largest with the smallest, until
there are no more work items below the treshold or just one
item is left.

• For any set Pk for which Pk ∩ S 6= ∅, the respective par-
allelizable portion Pk \ S has a dependency on S, and must
be scheduled only after S is entirely completed.

• If the serial dependency S exceeds the work item size, it
should be recursively parallelized. Let the set of nodes
{x ∈ S : (⇓ x) ∩ S = ∅} form the root set from which
a new set of P subgraphs be built. S should be considered
completed only when the newly parallelized tasks are all
completed.

5. SIGNAL RATE OPTIMIZATION

Whereas parallelization is more concerned about when a node set
can be processed while maintaining data flow integrity, signal rate
optimization is about deducing when it must be processed.

Not all signals need equally frequent updates, and often sig-
nificant efficiency can be gained by updating certain node sets at a
lower rate. This optimization technique has a strong tradition, with
the concept of control rate being central in many music software
environments ever since the venerable CSound[6].

Another – arguably more desirable – approach is to analyze
the signal paths in the audio DAG and automatically determine the
desired signal rates for the most typical scenario. This approach,
presented here in the terms of the set-theoretic approach of this
paper, has previously been described by the author[7].

The automatic process can be guided by inserting non-processing
nodes into the DAG whose sole purpose is to guide the signal rate
inferral. Once the inferral is completed, these nodes can be re-
moved from the DAG to avoid any overhead.

There are two kinds of sources, streaming and event-based. A
streaming source will emit a sampled signal with regular sample
intervals. Event-based sources react to some external or internally
derived stimulus, producing an update upon receiving, for exam-
ple, a MIDI event.

In both cases, it is desirable to process the supergraph of a
source node according to its update rate. A filter processing the
output of an oscillator should work at the same signal rate. Like-
wise, if an event-driven signal like an user interface slider seldom
changes, computations that depend on it should be avoided when
unnecessary.

To infer the DAG signal rates, signal sources must be iden-
tified. In an audio DAG, these sources are oscillators, audio file
players, external audio inputs, user interface control signals and
other inputs such as MIDI or OSC[8].

5.1. Source Discovery

A first step in the analysis of the required signal rate for a partic-
ular node is to discover which source nodes have the node in their
supergraphs. According to equation 3, this can be determined by
collecting the source nodes from the subgraph of the node. Let
SRC be the set of all source nodes. As a starting point, we could
assume that the node needs to be recomputed whenever one of its
sources gets updated.

Sources(a) =⇑ a ∩ SRC (20)

5.2. Source Arbitration

There is, however, a further consideration. Stateful processes such
as filters or delay lines should be updated only according to their
audio signal inputs. This ensures a steady sample rate which would
otherwise be compromised by additional updates forced by control
signals. Therefore, if a filter node has both an audio input and a
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user interface slider in its supergraph, it should ignore the updates
by the slider and only update according to the audio rate.

This can be solved by introducing source priorities. By pro-
viding strict weak ordering[5] of the sources, the desired behavior
can be attained. If the audio input has a higher priority than the
user interface element, nodes that have both sources should just
ignore the user interface updates until the next audio-driven up-
date happens.

5.3. Update Regions

After arbitration, the nodes should be classified according to the
arbitrated sources driving them. In fact, both arbitration and clas-
sification can be described by simple equations. Let Saudio be a
high priority source, followed by a medium priority SOSC and a
low priority SUI . These correspond to audio, OSC-event and user
interface update priorities. Let the node sets they drive be Gaudio,
GOSC and GUI . This gives;

Gaudio =⇓ Saudio (21)
GOSC =⇓ SOSC \Gaudio (22)
GUI =⇓ SUI \ (Gaudio ∪GOSC) (23)

This list could further be expanded on the simple principle that
each source drives all the nodes in its supergraph, except those that
also belong to a supergraph of a higher priority source.

Such a system of graphs can be scheduled easily by processing
the node sets in reverse order of priority. From equations 4 and 23
it can be deduced that;

Gaudio ∪GOSC =⇓ Saudio∪ ⇓ SOSC (24)
GUI∩ ⇓ Saudio = ∅ (25)
GUI∩ ⇓ SOSC = ∅ (26)

∀x ∈ GUI , (⇑ x) ∩GOSC = ∅ (27)
∀x ∈ GUI , (⇑ x) ∩Gaudio = ∅ (28)

Thus, no subgraph of any node in GUI can contain any nodes
that also belong to GOSC or Gaudio. Therefore, GUI can safely
be scheduled before the higher priority blocks. The proof can be
extended to show that any lower priority node group can always
be safely scheduled before higher priority node groups. This is es-
pecially important in the case where both sources are driven from
a coherent clock source, such as traditional audio and control sig-
nals. Failure to schedule coherent clock sources according to their
priority would result in potential undesired delays at signal rate
boundaries.

5.4. Priority Inversal

In many algorithms, more precise control of signal rates is re-
quired. With just the inferral system described so far would make it
impossible, for example, to derive MIDI events from audio signals
at any rate below the audio sampling rate. To solve this problem,
it is necessary to be able to override the source priorities locally, at
a specific DAG junction.

The best possible priority inversal mechanism is still a topic
of active research. As an initial solution, priority escalation is sug-
gested. A special source could be generated for any DAG junctions
where priority inversal is desired. This source would have a higher

priority than the one it is meant to override. Scheduling-wise, this
additional source should be processed according to the reverse pri-
ority order, generating some additional bookkeeping overhead.

6. CONCLUSIONS

In this paper, elementary concepts for formally discussing directed
acyclic graphs in audio context were introduced. These concepts
include the upstream and downstream reachability operators, as
well as the construction of subgraphs and supergraphs. Taken to-
gether, these devices facilitate set-theoretic discussion of process-
ing directed acyclic graphs for audio signals.

Three practical, highly important problems were examined us-
ing the newfound grammar. The problem of scheduling operations
described as a signal processing graphs was examined and deemed
a strict-weak order based on a simple reachability operator. The
ambiguity of that strict-weak order was leveraged to analyze the
problem of concurrently executing portions of an audio processing
graph. Finally, the grammar was utilized to discuss automatic sig-
nal rate optimization and discover the additional scheduling con-
straints such a system imposes.

The concepts form the basis of the author’s work on signal
processing languages and compilers[1]. They are presented here
independently from any programming language or system, instead
employing the notation of mathematical set theory. The concepts
are not overwhelmingly difficult, but utilization of formal gram-
mar helps avoid ambiguously worded statements and pseudo-rules.
Further, statements in a formal language lend themselves to further
reasoning, identities and proofs. This is of vital importance when
constructing compilers and interpreters, especially in the case of
automatic parallelization of user algorithms. This paper is written
in the hopes of providing assistance in the form of a grammar to
the researchers working with these problems.
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ABSTRACT

The synthesis of sound textures, such as rain, wind, or crowds, is
an important application for cinema, multimedia creation, games
and installations. However, despite the clearly defined requirments
of naturalness and flexibility, no automatic method has yet found
widespread use. After clarifying the definition, terminology, and
usages of sound texture synthesis, we will give an overview of the
many existing methods and approaches, and the few available soft-
ware implementations, and classify them by the synthesis model
they are based on, such as subtractive or additive synthesis, gran-
ular synthesis, corpus-based concatenative synthesis, wavelets, or
physical modeling. Additionally, an overview is given over anal-
ysis methods used for sound texture synthesis, such as segmenta-
tion, statistical modeling, timbral analysis, and modeling of tran-
sitions.

1. INTRODUCTION

The synthesis of sound textures is an important application for
cinema, multimedia creation, games and installations. Sound tex-
tures are generally understood as sound that is composed of many
micro-events, but whose features are stable on a larger time-scale,
such as rain, fire, wind, water, traffic noise, or crowd sounds. We
must distinguish this from the notion of soundscape, which de-
scribes the sum of sounds that compose a scene, some components
of which could be sound textures.
There are a plethora of methods for sound texture synthesis based
on very different approaches that we will try to classify in this
state-of-the-art article. We’ll start by a definition of the terminol-
ogy and usages (sections 1.1– 1.3), before giving an overview of
the existing methods for synthesis and analysis of sound textures
(sections 2 and 3), and some links to the first available software
products (section 4). Finally, the discussion (section 5) and con-
clusion (section 6) also point out some especially noteworthy arti-
cles that represent the current state of the art.

1.1. Definition of Sound Texture

An early thorough definition, and experiments on the perception
and generation of sound textures were given by Saint-Arnaud [74]
and Saint-Arnaud and Popat [75], summarised in the following
visual analogy:

A sound texture is like wallpaper: it can have local
structure and randomness, but the characteristics of
the fine structure must remain constant on the large
scale.

Figure 1 illustrates this statement. They culminate in the following
working definition:

1. Sound textures are formed of basic sound elements, or
atoms;

2. atoms occur according to a higher-level pattern, which can
be periodic, random, or both;

3. the high-level characteristics must remain the same over
long time periods (which implies that there can be no com-
plex message);

4. the high-level pattern must be completely exposed within a
few seconds (“attention span”);

5. high-level randomness is also acceptable, as long as there
are enough occurrences within the attention span to make a
good example of the random properties.
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FIG. 19.1. Sound textures and noise show constant long-term characteristics. 

sound texture is like wallpaper: it can have local structure and randomness, but 
the characteristics of the fine structure must remain constant on the large scale. 

This means that the pitch should not change like that of a racing car, the 
rhythm should not increase or decrease, and so on. This constraint also means 
that sounds in which the attack plays a great part (like many timbres) cannot be 
sound textures. A sound texture is characterized by its sustain. 

Fig. 19.1 shows an interesting way of segregating sound textures from other 
sounds, by showing how the “potential information content” increases with time. 
“Information” is taken here in the cognitive sense rather then the information 
theory sense. Speech or music can provide new information at any time, and 
their “potential information content” is shown here as a continuously increasing 
function of time. Textures, on the other hand, have constant long term 
characteristics, which translates into a flattening of the potential information 
increase. Noise (in the auditory cognitive sense) has somewhat less information 
than textures. 

Sounds that carry a lot of meaning are usually perceived as a message. The 
semantics take the foremost position in the cognition, downplaying the 
characteristics of the sound proper. We choose to work with sounds which are 
not primarily perceived as a message, that is, nonsemantic sounds, but we 
understand that there is no clear line between semantic and non-semantic. Note 
that this first time constraint about the required uniformity of high level 
characteristics over long times precludes any lengthy message. 

19.1.2 Two-Level Representation 

Sounds can be broken down to many levels, from a very fine (local in time) to a 
broad view, passing through many groupings suggested by physical, 
physiological and semantic properties of sound. We choose, however, to work 
with only two levels: a low level of simple atomic elements distributed in time 
and a high level describing the distribution in time of the atomic elements. 
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Figure 1: Potential information content of a sound texture vs. time
(from Saint-Arnaud and Popat [75]).

1.1.1. What Sound Texture is Not

Attempting a negative definition might help to clarify the concept.
We exclude from sound textures the following:

Contact sounds from interaction with objects, such as impact,
friction, rolling sounds, treated in many works close to
sound texture synthesis [1, 15, 48, 65, 87]. These sounds
violate the “wallpaper” property.

Sound scapes are often treated together with sound textures,
since they always contain sound textures. However, sound
scapes also comprise information-rich event-type sounds,
as further explained in section 1.1.2.
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Abstract

This paper explores two different methods to capture the local anisotropy of locally parallel
textures. The corresponding models allow for both an analysis and a synthesis of oriented
patterns. The first method models such textures as local oscillations that can be analyzed by
a windowed Fourier transform. The resulting model can be sampled by alternating projections
that enforce the consistency of the local phase with the estimated spectrum of the input texture.
The second method models the texture over the domain of local structure tensor. These tensors
encode the local energy, anisotropy and orientation of the texture. The synthesis is performed
by matching the multiscale histograms of the tensor fields.

Figure 1: Examples of locally parallel textures.

This paper exposes two models for analyzing and synthesizing natural textures that exhibit
a local anisotropy. In section 3 we propose a model based on a local Fourier expansion for the
analysis and on iterated projections for the synthesis of the phase function. In section 4, we propose
a statistical model that captures the variations of the orientation over a tensor domain.

1 Previous Works

Analysis of oriented patterns. Oriented patterns provide key features in computer vision and
find applications in many processing problems such as fingerprints analysis [9]. Their analysis is
performed through the application of local differential operators averaged over the image plane

1

Figure 2: Examples of natural and synthesised oriented oscillating patterns from Peyré [70].

Sound design is the wider context of creating interaction sounds,
sound scapes, and sound textures. Literature in the field
often contains useful methods for sound texture design [10,
14, 58–61].

In some cases of music composition or performance, sound texture
is used to mean non-tonal, non-percussive sound material, or non-
harmonic, non-rhythmic musical material.

See also Strobl [84] for an investigation of the term texture outside
of sound, such as in textiles, typography, gastronomy.

1.1.2. Sound Scapes

Because sound textures constitute a vital part of sound scapes, it
is useful to present here a very brief introduction to the classifica-
tion and automatic generation of sound scapes. Also, the literature
about sound scapes is inevitably concerned about the synthesis and
organisation of sound textures.

The first attempts at definition and classification of sound scapes
have been by Murray Schafer [76], who distinguishes keynote, sig-
nal, and soundmark layers in a soundscape, and proposes a refer-
ential taxonomy incorporating socio-cultural attributes and ecolog-
ical acoustics.

Gaver [36], coming from the point of view of acoustic ecology,
organises sounds according to their physical attributes and interac-
tion of materials.

Current work related to sound scapes are frequent [8, 9, 33, 58–
61, 88, 89].

1.2. Existing Attempts at Classification of Texture Synthesis

As a starting point, Strobl et al. [85] provide an attempt at a defi-
nition of sound texture, and an overview of work until 2006. They
divide the reviewed methods into two groups:

Methods from computer graphics Transfer of computer graph-
ics methods for visual texture synthesis applied to sound
synthesis [22, 64, 67]. See figure 2 for examples of tex-
tured images.

Methods from computer music Synthesis methods from com-
puter music or speech synthesis applied to sound texture
synthesis [4, 7, 17, 42, 43, 94].

A newer survey of tools in the larger field of sound design and
composition [58] propose the same classification by synthesis
method as elaborated in section 2 below. The article makes a point
that different classes of sound require different tools (“A full tool-
box means the whole world need not look like a nail!”) and gives
a list of possible matches between different types of sound and the
sound synthesis methods on which they work well.

In an article by Filatriau and Arfib [31], texture synthesis algo-
rithm are reviewed from the point of view of gesture-controlled
instruments, which makes it worthwile to point out the different
usage contexts of sound textures in the following section.

1.3. Different Usages and Significations

It is important to note that there is a possible confusion in the lit-
erature about the precise signification of the term sound texture
that is dependent on the intended usage. We can distinguish two
frequently occuring usages:

Expressive texture synthesis Here, the aim is to interactively
generate sound for music composition, performance, or
sound art, very often as an expressive digital musical in-
strument (DMI). Sound texture is then often meant to dis-
tinguish the generated sound material from tonal and per-
cussive sound, i.e. sound texture is anything that is predom-
inantly defined by timbre rather than by pitch or rhythm.
The methods employed for expressive texture generation
can give rise to naturally sounding textures, as noted by
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Sound Texture Synthesis

Signal Models Physical Models

Subtractive Additive Wavelets Granular Synthesis Physically Informed Modal Synthesis

Noise Filtering

LPC QMF other

Corpus-based Synthesis

Figure 3: Classification hierarchy of sound texture synthesis methods. Dashed arrows represent use of information.

Di Scipio [17], but no systematic research on the usable pa-
rameter space has been carried out, and it is up to the user
(or player) to constrain herself to the natural sounding part.
This strand of sound texture is pursued in the already men-
tioned review in [31], and their follow-up work [32].

Natural texture resynthesis tries to synthesise environmental or
human textural sound as part of a larger soundscape,
amongst others for audio–visual creation like cinema or
games. Often, a certain degree of realism is striven for (like
in photorealistic texture image rendering), but for most ap-
plications, either symbolic or impressionistic credible tex-
ture synthesis is actually sufficient, in that the textures con-
vey the desired ambience or information, e.g. in simula-
tions for urbanistic planning. All but a few examples of the
work described in the present article is aimed this usage.

2. CLASSIFICATION OF SYNTHESIS METHODS

In this section, we will propose a classification of the existing
methods of sound texture synthesis. It seems most appropriate
to divide the different approaches by the synthesis methods (and
analysis methods, if applicable) they employ:

• Noise filtering (section 2.1) and additive sinusoidal synthe-
sis (section 2.2)

• Physical modeling (section 2.3) and physically-informed
signal models

• Wavelet representation and resynthesis (section 2.4)

• Granular synthesis (section 2.5) and its content-based ex-
tension corpus-based concatenative synthesis (section 2.6)

• Non-standard synthesis methods, such as fractal or chaotic
maps (section 2.7)

Figure 3 gives an overview over the classes and their relation-
ships. Other possible aspects for classification are the degree of
dependency on a model, the degree to which the method is data-
driven, the real-time capabilities, and if the method has been for-
mally evaluated in listening tests. Some of these aspects will be
discussed in section 5.

2.1. Subtractive Synthesis

Noise filtering is the “classic” synthesis method for sound textures,
often based on specific modeling of the source sounds.
Based on their working definition listed in section 1.1, Saint-
Arnaud and Popat [75] build one of the first analysis–synthesis
models for texture synthesis, based on 6-band Quadrature Mirror
filtered noise.
Athineos and Ellis [4] and Zhu and Wyse [94] apply cascaded
time and frequency domain linear prediction (CTFLP) analysis
and resynthesis by noise filtering. The latter resynthesise the back-
ground din and the previously detect foreground events (see sec-
tion 3.1.3) by applying the time and frequency domain LPC coeffi-
cients to noise frames with subsequent overlap–add synthesis. The
events are sequenced by a Poisson distribution. The focus here is
data reduction for transmission by low-bitrate coding.
McDermott et al. [53] apply statistical analysis (see section 3.2) to
noise filtering synthesis, restrained to unpitched static textures like
rain, fire, water only.
Peltola et al. [69] synthesises different characters of hand-clapping
sounds by filters tuned to recordings of claps and combines them
into a crowd by statistical modeling of different levels of enthou-
siasm and flocking behaviour of the crowd.
The venerable collection by Farnell [30], also available online1,
gives many sound and PUREDATA patch examples for synthesising

1http://obiwannabe.co.uk/tutorials/html/tutorials_main.html
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various sound textures and sound effects by oscillators and filters,
carefully tuned according to insights into the phenomenon to be
simulated, as in this quote about rain:

“What is the nature of rain? What does it do?” Ac-
cording to the lyrics of certain shoegazing philoso-
phies it’s "Always falling on me", but that is quite
unhelpful. Instead consider that it is nearly spher-
ical particles of water of approximately 1-3mm in
diameter moving at constant velocity impacting with
materials unknown at a typical flux of 200 per sec-
ond per meter squared. All raindrops have already
attained terminal velocity, so there are no fast or
slow ones. All raindrops are roughly the same size, a
factor determined by their formation at precipitation
under nominally uniform conditions, so there are no
big or small raindrops to speak of. Finally raindrops
are not "tear" shaped as is commonly held, they are
in fact near perfect spheres. The factor which pre-
vents rain being a uniform sound and gives rain its
diverse range of pitches and impact noises is what
it hits. Sometimes it falls on leaves, sometimes on
the pavement, or on the tin roof, or into a puddle of
rainwater.

2.2. Additive Sinusoidal + Noise Synthesis

Filtered noise is often complemented by oscillators in the additive
sinusoidal partials synthesis method.
In the QCITY project2, the non-real time simulation of traffic noise
is based on a sinusoids+noise sound representation, calibrated ac-
cording to measurements of motor states, exhaust pipe type, damp-
ing effects. It allows to simulate different traffic densities, speeds,
types of vehicles, tarmacs, damping walls, etc. [38]. The calcula-
tion of sound examples can take hours.
Verron [93] proposes in his PhD thesis and in other publications
[91, 92], 7 physically-informed models from Gaver’s [36] 3 larger
classes of environmental sounds: liquids, solids, aerodynamic
sounds. The models for impacting solids, wind, gushes, fire, water
drops, rain, and waves are based on 5 empirically defined and pa-
rameterised sound atoms: modal impact, noise impact, chirp im-
pact, narrow band noise, wide band noise. Each model has 2–
4 low-level parameters (with the exception of 32 band amplitudes
for wide band noise).
Verron then painstakingly maps high-level control parameters like
wind force and coldness, rain intensity, ocean wave size to the low-
level atom parameters and density distribution.
The synthesis uses the FFT-1 method [73] that is extended to in-
clude spatial encoding into the construction of the FFT, and then
one IFFT stage per output channel.3

2.3. Physical Modeling

Physical modeling can be applied to sound texture synthesis, with
the drawback that a model must be specifically developed for each

2http://qcity.eu/dissemination.html
3Binaural sound examples (sometimes slightly artificial sounding) and

one video illustrating the high-level control parameters and the difference
between point and extended spatial sources can be found on http://www.
charlesverron.com/thesis/.

class of sounds to synthesise (e.g. friction, rolling, machine noises,
bubbles, aerodynamic sounds) [63, 64], the latter adding an extrac-
tion of the impact impulse sound and a perceptual evaluation of
the realism of synthesised rolling sounds (see also Lagrange et al.
[47]). Often, modal resonance models are used [90], where the in-
expensively synthesisable modes are precalculated from expensive
rigid body simulations.

Other signal-based synthesis methods are often physically-
informed [12, 13] in that they control signal models by the out-
put of a physical model that captures the behaviour of the sound
source. See, e.g. Cook [14], Verron [93] (also described in sec-
tion 2.2), Picard et al. [71], or the comprehensive toolbox by Men-
zies [55] (see section 4 for its implementation).

The synthesis of liquid sounds described by Doel [20] is a combi-
nation of a physically informed sinusoidal signal model for single
bubble sounds (going back to [51]), and an empirical phenomeno-
logical model for bubble statistics, resulting in a great sound vari-
ety ranging from drops, rain, air bubbles in water to streams and
torrents.

An extreme example is the synthesis of sounds of liquids by
fluid simulations [62], deriving sound control information from
the spherical harmonics of individually simulated bubbles (up to
15000).4

2.4. Wavelets

The multiscale decomposition of a signal into a wavelet coefficient
tree has been first applied to sound texture synthesis by El-Yaniv
et al. [26] and Dubnov et al. [22], and been reconsidered by Ker-
sten and Purwins [45].5

Here, the multiscale wavelet tree signal and structure representa-
tion is resampled by reorganising the order of paths down the tree
structure. Each path then resynthesises a short bit of signal by the
inverse wavelet transform.

These approaches take inspiration from image texture analysis and
synthesis and try to model temporal dependencies as well as hier-
archic dependencies between different levels of the multi-level tree
representation they use. Kersten and Purwins’s work is in an early
stage where the overall sound of the textures is recognisable (as
shown by a quantitative evaluation experiment), but the resulting
structure seems too fine-grained, because the sequence constraints
of the original textures are actually not modeled, such that the fine
temporal structure gets lost. This violates the autocorrelation fea-
ture found important for audio and image textures by McDermott
et al. [53] and Fan and Xia [29].

An model-based approach using wavelets for modeling stochastic-
based sounds is pursued by Miner and Caudell [56]. Parameteriza-
tions of the wavelet models yield a variety of related sounds from
a small set of dynamic models.

Another wavelet-based approach is by Kokaram and O’Regan [46,
66], based on Efros and Leung’s algorithm for image texture syn-
thesis [23]. Their multichannel synthesis achieves a large segment
size well adapted to the source (words, baby cries, gear shifts,

4http://gamma.cs.unc.edu/SoundingLiquids
5Sound examples are available at http://mtg.upf.edu/people/

skersten?p=Sound%20Texture%20Modeling
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drum beats) and thus a convincing and mostly artefact-free resyn-
thesis.6

2.5. Granular Synthesis

Granular synthesis uses snippets of an original recording, and pos-
sibly a statistical model of the (re)composition of the grains [7,
22, 26, 35, 42, 43, 67]. The optimal grain size is dependent on
the typical time-scale of the texture. If chosen sufficiently long,
the short-term micro-event distribution is preserved within a grain,
while still allowing to create a non-repetitive long-term structure.

Lu et al. [50] recombine short segments, possibly with transpo-
sition, according to a model of transition probabilities (see sec-
tion 3.4). They explicitly forbid short backward transitions to
avoid repetition. The segmentation is based on a novelty score
on MFCCs, in the form of a similarity matrix.

Strobl [84] studies the methods by Hoskinson and Pai [42, 43] and
Lu et al. [50] in great detail, improves the parameters and resynthe-
sis to obtain “perceptually perfect segments of input textures”, and
tries a hybridisation between them [84, chapter 4]. She then im-
plements Lu et al.’s method in an interactive real-time PUREDATA
patch.

2.6. Corpus-based Synthesis

Corpus-based concatenative synthesis can be seen as a content-
based extension of granular synthesis [78, 79]. It is a new approach
to sound texture synthesis [11, 80, 82, 83]. Corpus-based conca-
tenative synthesis makes it possible to create sound by selecting
snippets of a large database of pre-recorded audio (the corpus) by
navigating through a space where each snippet is placed according
to its sonic character in terms of audio descriptors, which are char-
acteristics extracted from the source sounds such as pitch, loud-
ness, and brilliance, or higher level meta-data attributed to them.
This allows one to explore a corpus of sounds interactively or by
composing paths in the space, and to create novel timbral evolu-
tions while keeping the fine details of the original sound, which is
especially important for convincing sound textures.

Finney [33] uses a corpus of unstructured recordings from the free-
sound collaborative sound database7 as base material for sample-
based sound events and background textures in a comprehensive
sound scape synthesis application (see section 4, also for evalua-
tion by a subjective listening test). The recordings for sound tex-
ture synthesis are segmented by MFCC+BIC (see section 3.1.2)
and high- and low-pass filtered to their typical frequency ranges.
Spectral outliers (outside one standard deviation unit around the
mean MFCC) are removed. Synthesis then chooses randomly out
of a cluster of the 5 segments the MFCCs of which are closest.
How the cluster is chosen is not explicitly stated.

Schwarz and Schnell [80] observe that existing methods for sound
texture synthesis are often concerned with the extension of a given
recording, while keeping its overall properties and avoiding arte-
facts. However, they generally lack controllability of the resulting
sound texture. They propose two corpus-based methods of statisti-
cal modeling of the audio descriptor distribution of texture record-
ings using histograms and Gaussian mixture models. The models

6Sound examples are available at http://www.netsoc.tcd.ie/~dee/
STS_EUSIPCO.html.

7http://www.freesound.org/

can be interpolated to steer the evolution of the sound texture be-
tween different target recordings (e.g. from light to heavy rain).
Target descriptor values are stochastically drawn from the statis-
tic models by inverse transform sampling to control corpus-based
concatenative synthesis for the final sound generation, that can also
be controlled interactively by navigation through the descriptor
space.8 See also section 4 for the freely available CATART appli-
cation that served as testbed for interactive sound texture synthesis.
To better cover the target descriptor space, they expand the cor-
pus by automatically generating variants of the source sounds with
transformations applied, and storing only the resulting descriptors
and the transformation parameters in the corpus. A first attempt
of perceptual validation of the used descriptors for wind, rain, and
wave textures has been carried out by subject tests [52], based on
studies on the perception of environmental sound [57, 86].

The work by Picard et al. [71] (section 2.3) has a corpus-based
aspect in that it uses grain selection driven by a physics engine.

Dobashi et al. [18, 19] employ physically informed corpus-based
synthesis for the synthesis of aerodynamic sound such as from
wind or swords. They precompute a corpus of the aerodynamic
sound emissions of point sources by computationally expensive
turbulence simulation for different speeds and angles, and can then
interactively generate the sound of a complex moving object by
lookup and summation.

2.7. Non-standard Synthesis Methods

Non-standard synthesis methods, such as fractal synthesis or
chaotic maps, generated by iterating nonlinear functions, are used
most often for expressive texture synthesis [17, 32], especially
when controlled by gestural input devices [3, 31].

3. ANALYSIS METHODS FOR SOUND TEXTURES

Methods that analyse the properties of sound textures are con-
cerned with segmentation (section 3.1), the analysis of statisti-
cal properties (section 3.2) or timbral qualities (section 3.3), or
the modeling of the sound source’s typical state transitions (sec-
tion 3.4).

3.1. Segmentation of Source Sounds

3.1.1. Onset Detection

O’Modhrain and Essl [65] describe a granular analysis method
they call grainification of the interaction sounds with actual grains
(pebbles in a box, starch in a bag), in order to expressively control
granular synthesis (this falls under the use case of expressive tex-
ture synthesis in section 1.3): By threshold-based attack detection
with a retrigger limit time, they derive the grain attack times, vol-
ume (by picking the first peak after the attack), and spectral content
(by counting the zero-crossings in a 100 sample window after the
attack). These parameters control a granular synthesizer’s trigger,
gain and transposition. See also Essl and O’Modhrain [28].

Lee et al. [48] estimate contact events for segmentation of rolling
sounds on a high-pass filtered signal, on which an energy threshold

8Sound examples can be heard on http://imtr.ircam.fr/imtr/Sound_
Texture_Synthesis.

DAFX-5

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-225



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

is applied. Segments are then modeled by LPC filters on several
bands for resynthesis.

3.1.2. Spectral Change Detection

Lu et al. [50] segment sounds based on a novelty score on MFCCs,
in the form of a similarity matrix. This also serves to model tran-
sition probabilities (see section 3.4). The analysis has been im-
proved upon by Strobl [84].

Finney [33] (see also sections 2.6 and 4) uses a method of seg-
menting environmental recordings using the Bayesian Information
Criterion (BIC) on MFCCs [2], while enforcing a minimum seg-
ment length dependent on the type of sounds: The segment length
should correspond to the typical event length.

3.1.3. LPC Segmentation

Kauppinen and Roth [44] segment sound into locally stationary
frames by LPC pulse segmentation, obtaining the optimal frame
length by a stationarity measure from a long vs. short term predic-
tion. The peak threshold is automatically adapted by the median
filter of the spectrum derivative.

Similarly, Zhu and Wyse [94] detect foreground events by fre-
quency domain linear predictive coding (FDLPC), which are then
removed to leave only the ’din’ (the background sound). See also
section 2.1 for their corresponding subtractive synthesis method.

3.1.4. Wavelets

Hoskinson and Pai [42, 43] (see also section 2.5) segment the
source sounds into natural grains, which are defined by the min-
ima of the energy changes in the first 6 wavelet bands, i.e. where
the sound is the most stable.

3.1.5. Analysis into Atomic Components

Other methods [49, 50, 59, 60, 67] use an analysis of a target sound
in terms of event and spectral components for their statistical re-
combination. They are linked to the modelisation of impact sounds
by wavelets by Ahmad et al. [1].

Bascou [5], Bascou and Pottier [6] decompose a sound by Match-
ing Pursuit into time-frequency atoms from a dictionary manually
built from “characteristic” grains of the sound to decompose.

3.2. Analysis of Statistical Properties

Dubnov et al. [22], El-Yaniv et al. [26] apply El-Yaniv et al.’s [25]
Markovian unsupervised clustering algorithm to sound textures,
thereby constructing a discrete statistical model of a sequence
of paths through a wavelet representation of the signal (see sec-
tion 2.4).

Zhu and Wyse [94] estimate the density of foreground events, sin-
gled out of the texture by LPC segmentation (see section 3.1.3).
Masurelle [52] developed a simple density estimation of impact
events based on O’Modhrain and Essl [65], applicable e.g. to rain.
For the same specific case, Doel [20] cites many works about the
statistics of rain.

McDermott et al. [53] (see section 2.4) propose a neurophysically
motivated statistical analysis of the kurtosis of energy in subbands,
and apply these statistics to noise filtering synthesis (later also ap-
plied to classification of environmental sound [27]).

3.2.1. Analysis not for Synthesis

There is work concerned with analysis and classification of sound
textures, which is not relevant for synthesis, like Dubnov and
Tishby [21], who use higher-order spectra for classification of en-
vironmental sounds, or by Desainte-Catherine and Hanna [16],
who propose statistical descriptors for noisy sounds.

In the recent work by Grill [37] for an interactive sound instal-
lation, a corpus-based synthesis system plays back samples of
soundscapes matching the participants’ noises. While the synthe-
sis part is very simple, the matching part is noteworthy for its use
of fluctuation patterns, i.e. the modulation spectrum for all bark
bands of a 3 second segment of texture. This 744-element fea-
ture vector was then reduced to 24 principal components prior to
matching.

3.3. Analysis of Timbral Qualities

Hanna et al. [40] note that, in the MIR domain, there is little work
about audio features specifically for noisy sounds. They propose
classification into the 4 sub-classes coloured, pseudo-periodic, im-
pulsive noise (rain, applause), and noise with sinusoids (wind,
street soundscape, birds). They then detect the transitions between
these classes using a Bayesian framework. This work is gener-
alised to a sound representation model based on stochastic sinu-
soids [39, 41].

Only corpus-based concatenative synthesis methods try to char-
acterise the sonic contents of the source sounds by perceptually
meaningful audio descriptors: [24, 78–80, 82, 83]

3.4. Clustering and Modeling of Transitions

Saint-Arnaud [74] builds clusters by k-means of their input sound
atoms (filter band amplitudes) using the Cluster based probability
model [72]. The amplitudes are measured at the current frame and
in various places in the past signal (as defined by a neighbourhood
mask) and thus encode the typical transitions occuring in the sound
texture. Saint-Arnaud’s master’s thesis [74] focuses on classifica-
tion of sound textures, also with perceptual experiments, while the
later article [75] extends the model to analysis by noise filtering
(section 2.1).

Lu et al. [50] model transition probabilities based on a similarity
matrix on MFCC frames. Hoskinson and Pai [42, 43] also model
transitions based on smoothness between their wavelet-segmented
natural grains (section 3.1.4). Both methods have been studied in
detail and improved upon by Strobl [84].

4. AVAILABLE SOFTWARE

Freely or commercially available products for sound textures are
very rare, and mostly specific to certain types of textures. The
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only commercial product the author is aware of is the crowd sim-
ulator CROWD CHAMBER9, that takes a given sound file to multi-
ply the sources, probably using PSOLA-based pitch shifting, time-
stretching and filtering effects. That means, it is not actually a tex-
ture synthesiser, but an effects processor that adds a “crowd” effect
on an existing voice recording. The provided example sounds are
very unconvincing.

Finney [33] presents a full soundscape synthesis system based
on concatenative and sample-based playback (see sections 2.6
and 3.1.2). The synthesis and interaction part is integrated into
Google Street View.10 Notable and related to sound textures is the
precise modeling of traffic noise with single samples of passing
cars, categorised by car type and speed, that are probabilistically
recombined according to time of day, number of street lanes, and
with traffic lights simulated by clustering. The evaluation also re-
ported in [34] concentrates on the immersive quality of the gener-
ated sound scapes in a subjective listening test with 8 participants.
Interestingly, the synthetic sound scapes rate consistently higher
than actual recordings of the 6 proposed locations.

The PHYA framework [54, 55] is a toolbox of various physically
motivated filter and resonator signal models for impact, collision,
and surface sounds.11

The author’s CATART system [83] for interactive real-time corpus-
based concatenative synthesis is implemented in MAX/MSP with
the extension libraries FTM&CO.12 and is freely available.13 It
allows to navigate through a two- or more-dimensional projection
of the descriptor space of a corpus of sound segments in real-time
using the mouse or other gestural controllers, effectively extend-
ing granular synthesis by content-based direct access to specific
sound characteristics. This makes it possible to recreate dynamic
evolutions of sound textures with precise control over the resulting
timbral variations, while keeping the micro-event structure intact,
as soon as the segments are long enough, described in section 2.6.
One additional transformation is the augmentation of the texture
density by triggering at a faster rate than given by the segments’
length, thus layering several units, which works very well for tex-
tures like rain, wind, water, or crowds.8

The descriptors are calculated within the CATART system by a
modular analysis framework [81]. The used descriptors are: fun-
damental frequency, periodicity, loudness, and a number of spec-
tral descriptors: spectral centroid, sharpness, flatness, high- and
mid-frequency energy, high-frequency content, first-order autocor-
relation coefficient (expressing spectral tilt), and energy. Details
on the descriptors used can be found in [77] and [68].

5. DISCUSSION

Concerning the dependency on a specific model, we can see that
the presented methods fall clearly on one of two sides of a strong
dichotomy between rule-based and data-driven approaches: The
methods using a low-level signal or physical model (sections 2.2–
2.3) are almost all based on a very specific modeling of the sound
texture generating process, except the first three methods using

9http://www.quikquak.com/Prod_CrowdChamber.html
10http://dev.mtg.upf.edu/soundscape/media/StreetView/

streetViewSoundscaper2_0.html
11Available at http://www.zenprobe.com/phya/.
12http://ftm.ircam.fr
13http://imtr.ircam.fr/imtr/CataRT

noise filtering by statistical modeling. The methods using seg-
ments of signal or wavelet coefficients (sections 2.4– 2.6) are, by
their data-driven nature, more generally applicable to many dif-
ferent texture sounds, and far more independent from a specific
texture model.

Also, physical models do not provide a direct link between their
internal parameters, and the characteristics of the produced sound.
As Menzies [55] notes:

In principle, sound in a virtual environment can
be reproduced accurately through detailed physi-
cal modelling. Even if this were achieved, it is not
enough for the Foley sound designer, who needs to
be able to shape the sound according to their own
imagination and reference sounds: explicit physi-
cal models are often difficult to calibrate to a de-
sired sound behaviour although they are controlled
directly by physical parameters.

Physically-informed models allow more of this flexibility but still
expose parameters of a synthesis model that might not relate di-
rectly to a percieved sound character. What’s more, the physi-
cal and signal models’ parameters might capture a certain vari-
ety of a simulated sound source, but will arguably be limited to a
smaller range of nuances, and include to a lesser extent the context
of a sound source, than the methods based on actual recordings
(wavelets and corpus-based concatenative synthesis).

5.1. Perception and Interaction

General studies of the perception of environmental sound textures
are rare, with the exception of [53, 57, 86], and systematic evalua-
tion of the quality of the synthesised sound textures by formal lis-
tening tests is only beginning to be carried out in some of the pre-
sented work, e.g. [52, 63]. Only Kokaram and O’Regan [46, 66]
have taken the initiative to start defining a common and compara-
ble base of test sounds by adopting the examples from El-Yaniv
et al. [26] and Dubnov et al. [22] as test cases.

Finally, this article concentrated mainly on the sound synthesis
and analysis models applied to environmental texture synthesis,
and less on the way how to control them, or the interactivity they
afford. Gestural control seems here a promising approach for in-
teractive generation of sound textures [3, 31, 52].

5.2. Recommended Reading

While this article strove to give a comprehensive overview of ex-
isting methods for sound texture synthesis and analysis, some of
the work stands out, representing the state of the art in the field:

• Finney [33] for the introduction to sound scapes, the ref-
erence to the MFCC+BIC segmentation method, and the
precise traffic modeling.

• Verron [93] and Farnell [30] for the detailed account of
physically informed environmental sound synthesis that
gives an insight about how these sounds work.

• Kokaram and O’Regan [46, 66] and Schwarz and Schnell
[80] for the most convincing results so far.
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6. CONCLUSION

We have seen that, despite the clearly defined problem and ap-
plication context, the last 16 years of research into sound texture
synthesis have not yet brought about a prevailing method that satis-
fies all requirements of realism and flexibility. Indeed, in practice,
the former is always the top priority, so that the flexibility of auto-
mated synthesis methods is eschewed in favour of manual match-
ing and editing of texture recordings in post-production, or simple
triggering of looped samples for interactive applications such as
games.
However, the latest state-of-the-art results in wavelet resynthe-
sis [46, 66] and descriptor-based granular synthesis [80] promise
practical applicability because of their convincing sound quality.

7. ACKNOWLEDGMENTS

The author would like to thank the anonymous reviewers and Ste-
fan Kersten for their careful re-reading, additional references, and
pertinent remarks.
The work presented here is partially funded by the Agence Na-
tionale de la Recherche within the project Topophonie, ANR-09-
CORD-022, http://topophonie.fr.

8. REFERENCES

[1] W. Ahmad, H. Hacıhabiboglu, and A.M. Kondoz. Analysis-
Synthesis Model for Transient Impact Sounds by Stationary
Wavelet Transform and Singular Value Decomposition. In
Proceedings of the International Computer Music Confer-
ence (ICMC), 2008.

[2] X Anguera and J Hernando. Xbic: Real-time cross probabil-
ities measure for speaker segmentation, 2005.

[3] D. Arfib. Gestural strategies for specific filtering pro-
cesses. Proceedings of the COST-G6 Conference on Digital
Audio Effects (DAFx), 2002. URL http://www2.hsu-
hh.de/EWEB/ANT/dafx2002/papers/DAFX02_Arfib_
Couturier_Kessous_gestural_stategies.pdf.

[4] M. Athineos and D.P.W. Ellis. Sound texture modelling with
linear prediction in both time and frequency domains. Pro-
ceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 5:V–648–51 vol.5,
April 2003. ISSN 1520-6149.

[5] C Bascou. Modélisation de sons bruités par la synthese gran-
ulaire. Rapport de stage de DEA ATIAM, Université Aix-
Marseille II, 2004.

[6] C. Bascou and L. Pottier. New sound decomposition method
applied to granular synthesis. In Proceedings of the Inter-
national Computer Music Conference (ICMC), Barcelona,
Spain, 2005.

[7] C. Bascou and L. Pottier. GMU, a flexible granular synthesis
environment in Max/MSP. In Proceedings of the Interna-
tional Conference on Sound and Music Computing (SMC),
2005.

[8] D. Birchfield, N. Mattar, and H. Sundaram. Design of a
generative model for soundscape creation. In Proceedings
of the International Computer Music Conference (ICMC),
Barcelona, Spain, 2005.

[9] D. Birchfield, N. Mattar, H. Sundaram, A. Mani, and B. She-
vade. Generative Soundscapes for Experiential Communica-
tion. Society for Electro Acoustic Music in the United States
(SEAMUS), 2005.

[10] P. Cano, L. Fabig, F. Gouyon, M. Koppenberger, A. Loscos,
and A. Barbosa. Semi-automatic ambiance generation. In
Proceedings of the COST-G6 Conference on Digital Audio
Effects (DAFx), Naples, Italy, 2004.

[11] Marc Cardle. Automated Sound Editing. Technical report,
Computer Laboratory, University of Cambridge, UK, May
2004. URL http://www.cl.cam.ac.uk/users/mpc33/
Cardle-Sound-Synthesis-techreport-2004-low-quality.
pdf.

[12] P Cook. Physically informed sonic modeling (PhISM):
Percussive synthesis. Proceedings of the International
Computer Music Conference (ICMC), 1996. URL
http://scholar.google.com/scholar?hl=en&q=cook+
phism&bav=on.2,or.r_gc.r_pw.&biw=1584&bih=
783&um=1&ie=UTF-8&sa=N&tab=ws#3.

[13] PR Cook. Physically informed sonic modeling (phism): Syn-
thesis of percussive sounds. Computer Music Journal, 1997.
URL http://www.jstor.org/stable/3681012.

[14] P.R. Cook. Din of an“iquity”: Analysis and synthesis of envi-
ronmental sounds. In Proceedings of the International Con-
ference on Auditory Display (ICAD2007), pages 167–172,
2007.

[15] Richard Corbett, Kees van den Doel, John E. Lloyd, and
Wolfgang Heidrich. Timbrefields: 3d interactive sound mod-
els for real-time audio. Presence: Teleoperators and Virtual
Environments, 16(6):643–654, 2007. doi: 10.1162/pres.16.
6.643. URL http://www.mitpressjournals.org/doi/abs/10.
1162/pres.16.6.643.

[16] M. Desainte-Catherine and P. Hanna. Statistical approach for
sound modeling. In Proceedings of the COST-G6 Conference
on Digital Audio Effects (DAFx), 2000.

[17] A. Di Scipio. Synthesis of environmental sound textures by
iterated nonlinear functions. In Proceedings of the COST-G6
Conference on Digital Audio Effects (DAFx), 1999.

[18] Yoshinori Dobashi, Tsuyoshi Yamamoto, and Tomoyuki
Nishita. Real-time rendering of aerodynamic sound us-
ing sound textures based on computational fluid dynamics.
ACM Trans. Graph., 22:732–740, July 2003. ISSN 0730-
0301. doi: http://doi.acm.org/10.1145/882262.882339. URL
http://doi.acm.org/10.1145/882262.882339.

[19] Yoshinori Dobashi, Tsuyoshi Yamamoto, and Tomoyuki
Nishita. Synthesizing sound from turbulent field using sound
textures for interactive fluid simulation. In Proc. of Euro-
graphics, pages 539–546, 2004.

[20] Kees van den Doel. Physically based models for liquid
sounds. ACM Trans. Appl. Percept., 2:534–546, Octo-
ber 2005. ISSN 1544-3558. doi: http://doi.acm.org/10.
1145/1101530.1101554. URL http://doi.acm.org/10.1145/
1101530.1101554.

[21] S. Dubnov and N. Tishby. Analysis of sound textures in
musical and machine sounds by means of higher order sta-
tistical features. In Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing

DAFX-8

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-228



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

(ICASSP), volume 5, pages 3845–3848. IEEE, 1997. ISBN
0818679190. URL http://ieeexplore.ieee.org/xpls/abs_
all.jsp?arnumber=604726.

[22] Shlomo Dubnov, Ziz Bar-Joseph, Ran El-Yaniv, Danny
Lischinski, and Michael Werman. Synthesis of audio sound
textures by learning and resampling of wavelet trees. IEEE
Computer Graphics and Applications, 22(4):38–48, 2002.

[23] A.A. Efros and T.K. Leung. Texture synthesis by non-
parametric sampling. In Proceedings of the International
Conference on Computer Vision, volume 2, page 1033, 1999.

[24] Aaron Einbond, Diemo Schwarz, and Jean Bresson. Corpus-
based transcription as an approach to the compositional con-
trol of timbre. In Proceedings of the International Computer
Music Conference (ICMC), Montreal, QC, Canada, 2009.

[25] R. El-Yaniv, S. Fine, and N. Tishby. Agnostic classification
of Markovian sequences. In Proceedings of the 1997 confer-
ence on Advances in neural information processing systems
10, pages 465–471. MIT Press, 1998. ISBN 0262100762.

[26] Z.B.J.R. El-Yaniv, D.L.M. Werman, and S. Dubnov. Gran-
ular Synthesis of Sound Textures using Statistical Learning.
In Proceedings of the International Computer Music Confer-
ence (ICMC), 1999.

[27] D.P.W. Ellis, X. Zeng, and J.H. McDermott. Classifying
soundtracks with audio texture features. Proceedings of the
IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), 2010. URL http://www.ee.
columbia.edu/~{}dpwe/pubs/EllisZM11-texture.pdf.

[28] G. Essl and S. O’Modhrain. Scrubber: an interface for
friction-induced sounds. In Proceedings of the Conference
for New Interfaces for Musical Expression (NIME), page 75.
National University of Singapore, 2005.

[29] G. Fan and X.G. Xia. Wavelet-based texture analysis and
synthesis using hidden Markov models. IEEE Transactions
on Circuits and Systems—I: Fundamental Theory and Appli-
cations, 50(1), 2003.

[30] Andy Farnell. Designing Sound. MIT Press, October
2010. ISBN 9780262014410. URL http://mitpress.mit.
edu/catalog/item/default.asp?ttype=2&tid=12282.

[31] J.J. Filatriau and D. Arfib. Instrumental gestures and sonic
textures. In Proceedings of the International Conference on
Sound and Music Computing (SMC), 2005.

[32] J.J. Filatriau, D. Arfib, and JM Couturier. Using visual tex-
tures for sonic textures production and control. In Proceed-
ings of the COST-G6 Conference on Digital Audio Effects
(DAFx), 2006.

[33] N. Finney. Autonomous generation of soundscapes using
unstructured sound databases. Master’s thesis, MTG, IUA–
UPF, Barcelona, Spain, 2009. URL static/media/Finney-
Nathan-Master-Thesis-2009.pdf.

[34] N. Finney and J. Janer. Soundscape Generation for
Virtual Environments using Community-Provided Au-
dio Databases. In W3C Workshop: Augmented Real-
ity on the Web, June 15 - 16, 2010 Barcelona, 2010.
URL http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.168.4252&rep=rep1&type=pdfhttp:
//www.w3.org/2010/06/w3car/.

[35] M. Fröjd and A. Horner. Sound texture synthesis using an
overlap-add/granular synthesis approach. Journal of the Au-
dio Engineering Society, 57(1/2):29–37, 2009. URL http:
//www.aes.org/e-lib/browse.cfm?elib=14805.

[36] WW Gaver. How do we hear in the world? Explorations in
ecological acoustics. Ecological psychology, 1993.

[37] T. Grill. Re-texturing the sonic environment. In Proceed-
ings of the 5th Audio Mostly Conference: A Conference
on Interaction with Sound, pages 1–7. ACM, 2010. URL
http://portal.acm.org/citation.cfm?id=1859805.

[38] S. Guidati and Head Acoustics GmbH. Auralisation and psy-
choacoustic evaluation of traffic noise scenarios. Journal of
the Acoustical Society of America, 123(5):3027, 2008.

[39] P. Hanna. Statistical modelling of noisy sounds : spec-
tral density, analysis, musical transformtions and synthe-
sis. PhD thesis, Laboratoire de Recherche en Informatique
de Bordeaux (LaBRI), 2003. URL http://dept-info.labri.fr/
~hanna/phd.html.

[40] P. Hanna, N. Louis, M. Desainte-Catherine, and J. Benois-
Pineau. Audio features for noisy sound segmentation. In
Proceedings of the 5th International Symposium on Music
Information Retrieval (ISMIR’04), pages 120–123, 2004.

[41] Pierre Hanna and Myriam Desainte-Catherine. A Statisti-
cal and Spectral Model for Representing Noisy Sounds with
Short-Time Sinusoids. EURASIP Journal on Advances in
Signal Processing, 2005(12):1794–1806, 2005. ISSN 1687-
6172. doi: 10.1155/ASP.2005.1794. URL http://www.
hindawi.com/journals/asp/2005/182056.abs.html.

[42] R. Hoskinson. Manipulation and Resynthesis of Envi-
ronmental Sounds with Natural Wavelet Grains. PhD
thesis, The University of British Columbia, 2002. URL
https://www.cs.ubc.ca/grads/resources/thesis/May02/
Reynald_Hoskinson.pdf.

[43] Reynald Hoskinson and Dinesh Pai. Manipulation and resyn-
thesis with natural grains. In Proceedings of the International
Computer Music Conference (ICMC), pages 338–341, Ha-
vana, Cuba, September 2001.

[44] I. Kauppinen and K. Roth. An Adaptive Technique for Mod-
eling Audio Signals. In Proceedings of the COST-G6 Con-
ference on Digital Audio Effects (DAFx), 2001.

[45] Stefan Kersten and Hendrik Purwins. Sound texture synthe-
sis with hidden markov tree models in the wavelet domain.
In Proceedings of the International Conference on Sound and
Music Computing (SMC), Barcelona, Spain, July 2010.

[46] Anil Kokaram and Deirdre O’Regan. Wavelet based high
resolution sound texture synthesis. In Proceedings of the
Audio Engineering Society Conference, 6 2007. URL http:
//www.aes.org/e-lib/browse.cfm?elib=13952.

[47] M. Lagrange, B.L. Giordano, P. Depalle, and S. McAdams.
Objective quality measurement of the excitation of impact
sounds in a source/filter model. Acoustical Society of Amer-
ica Journal, 123:3746, 2008.

[48] Jung Suk Lee, Philippe Depalle, and Gary Scavone. Analysis
/ synthesis of rolling sounds using a source filter approach. In
Proceedings of the COST-G6 Conference on Digital Audio
Effects (DAFx), Graz, Austria, September 2010.

DAFX-9

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-229



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

[49] L. Lu, S. Li, L. Wen-yin, H.J. Zhang, and Y. Mao. Audio tex-
tures. In Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), vol-
ume 2, 2002. URL http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.2.4586&rep=rep1&type=pdf.

[50] L. Lu, L. Wenyin, and H.J. Zhang. Audio textures:
Theory and applications. IEEE Transactions on Speech
and Audio Processing, 12(2):156–167, 2004. ISSN 1063-
6676. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=1284343.

[51] A. Mallock. Sounds produced by drops falling on water.
Proc. R. Soc., 95:138––143, 1919.

[52] Aymeric Masurelle. Gestural control of environmental tex-
ture synthesis. Rapport de stage de DEA ATIAM, Ircam–
Centre Pompidou, Université Paris VI, 2011.

[53] J.H. McDermott, A.J. Oxenham, and E.P. Simoncelli. Sound
texture synthesis via filter statistics. In IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics
(WASPAA), New Paltz, NY, October 18–21 2009.

[54] Dylan Menzies. Phya and vfoley, physically moti-
vated audio for virtual environments. Proceedings of
the Audio Engineering Society Conference, 2010. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.149.9848&amp;rep=rep1&amp;type=pdf.

[55] Dylan Menzies. Physically Motivated Environmental Sound
Synthesis for Virtual Worlds. EURASIP Journal on Audio,
Speech, and Music Processing, 2011. URL http://www.
hindawi.com/journals/asmp/2010/137878.html.

[56] Nadine E. Miner and Thomas P. Caudell. Using wavelets
to synthesize stochastic-based sounds for immersive virtual
environments. ACM Trans. Appl. Percept., 2:521–528, Oc-
tober 2005. ISSN 1544-3558. doi: http://doi.acm.org/10.
1145/1101530.1101552. URL http://doi.acm.org/10.1145/
1101530.1101552.

[57] Nicolas Misdariis, Antoine Minard, Patrick Susini, Guil-
laume Lemaitre, Stephen McAdams, and Etienne Parizet.
Environmental sound perception: Metadescription and mod-
eling based on independent primary studies. EURASIP Jour-
nal on Audio, Speech, and Music Processing, 2010. URL
http://articles.ircam.fr/textes/Misdariis10b/.

[58] A. Misra and P.R. Cook. Toward synthesized environments:
A survey of analysis and synthesis methods for sound de-
signers and composers. In Proceedings of the International
Computer Music Conference (ICMC), 2009.

[59] A. Misra, P.R. Cook, and G. Wang. A new paradigm for
sound design. In Proceedings of the COST-G6 Conference
on Digital Audio Effects (DAFx), 2006.

[60] A. Misra, P.R. Cook, and G. Wang. Tapestrea: Sound scene
modeling by example. In ACM SIGGRAPH 2006 Sketches,
page 177. ACM, 2006. ISBN 1595933646.

[61] A. Misra, G. Wang, and P. Cook. Musical Tapestry: Re-
composing Natural Sounds†. Journal of New Music Re-
search, 36(4):241–250, 2007. ISSN 0929-8215.

[62] William Moss, Hengchin (Yero) Yeh, Jeong-Mo Hong,
Ming C. Lin, and Dinesh Manocha. Sounding Liquids:
Automatic Sound Synthesis from Fluid Simulation. ACM
Transactions on Graphics, 28(4):1–12, August 2009. ISSN

07300301. doi: 10.1145/1559755.1559763. URL http:
//portal.acm.org/citation.cfm?doid=1559755.1559763.

[63] E. Murphy, M. Lagrange, G. Scavone, P. Depalle, and
C. Guastavino. Perceptual Evaluation of a Real-time Synthe-
sis Technique for Rolling Sounds. In Conference on Enactive
Interfaces, Pisa, Italy, 2008.

[64] J.F. O’Brien, C. Shen, and C.M. Gatchalian. Synthesizing
sounds from rigid-body simulations. In Proceedings of the
2002 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation, pages 175–181. ACM New York, NY, USA,
2002.

[65] S. O’Modhrain and G. Essl. PebbleBox and CrumbleBag:
tactile interfaces for granular synthesis. In Proceedings of
the Conference for New Interfaces for Musical Expression
(NIME), page 79. National University of Singapore, 2004.

[66] D. O’Regan and A. Kokaram. Multi-resolution
sound texture synthesis using the dual-tree com-
plex wavelet transform. In Proc. 2007 European
Signal Processing Conference (EUSIPCO), 2007.
URL http://www.eurasip.org/Proceedings/Eusipco/
Eusipco2007/Papers/A3L-B03.pdf.

[67] J.R. Parker and B. Behm. Creating audio textures by ex-
ample: tiling and stitching. Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), 4:iv–317–iv–320 vol.4, May 2004. ISSN
1520-6149. doi: 10.1109/ICASSP.2004.1326827.

[68] Geoffroy Peeters. A large set of audio features for
sound description (similarity and classification) in the
Cuidado project. Technical Report version 1.0, Ir-
cam – Centre Pompidou, Paris, France, April 2004.
URL http://www.ircam.fr/anasyn/peeters/ARTICLES/
Peeters_2003_cuidadoaudiofeatures.pdf.

[69] Leevi Peltola, Cumhur Erkut, P.R. Cook, and Vesa Valimaki.
Synthesis of hand clapping sounds. Audio, Speech, and
Language Processing, IEEE Transactions on, 15(3):1021–
1029, March 2007. ISSN 1558-7916. doi: 10.1109/TASL.
2006.885924. URL http://ieeexplore.ieee.org/xpls/abs_
all.jsp?arnumber=4100694.

[70] Gabriel Peyré. Oriented patterns synthesis. Technical re-
port, Unité Mixte de Recherche du C.N.R.S. No. 7534,
2007. URL http://www.ceremade.dauphine.fr/preprints/
consult/cmd_by_years.php.

[71] Cecile Picard, Nicolas Tsingos, and François Faure. Retar-
getting Example Sounds to Interactive Physics-Driven An-
imations. In AES 35th International Conference, Audio in
Games, London, UK, 2009.

[72] K. Popat and R. W. Picard. Cluster-based probability
model and its application to image and texture process-
ing. IEEE transactions on image processing : a publi-
cation of the IEEE Signal Processing Society, 6(2):268–
84, January 1997. ISSN 1057-7149. doi: 10.1109/
83.551697. URL http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=551697.

[73] Xavier Rodet and Phillipe Depalle. A new additive synthe-
sis method using inverse Fourier transform and spectral en-
velopes. In Proceedings of the International Computer Music
Conference (ICMC), October 1992.

DAFX-10

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-230



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

[74] Nicolas Saint-Arnaud. Classification of Sound Textures. PhD
thesis, Universite Laval, Quebec, MIT, 1995.

[75] Nicolas Saint-Arnaud and Kris Popat. Analysis and synthesis
of sound textures. In in Readings in Computational Auditory
Scene Analysis, pages 125–131, 1995.

[76] R. Murray Schafer. The Soundscape. Destiny Books,
1993. ISBN 0892814551. URL http://www.amazon.com/
Soundscape-R-Murray-Schafer/dp/0892814551.

[77] Diemo Schwarz. Data-Driven Concatenative Sound Syn-
thesis. Thèse de doctorat, Université Paris 6 – Pierre et
Marie Curie, Paris, 2004. URL http://mediatheque.ircam.
fr/articles/textes/Schwarz04a.

[78] Diemo Schwarz. Concatenative sound synthesis: The early
years. Journal of New Music Research, 35(1):3–22, March
2006. Special Issue on Audio Mosaicing.

[79] Diemo Schwarz. Corpus-based concatenative synthesis.
IEEE Signal Processing Magazine, 24(2):92–104, March
2007. Special Section: Signal Processing for Sound Syn-
thesis.

[80] Diemo Schwarz and Norbert Schnell. Descriptor-based
sound texture sampling. In Proceedings of the International
Conference on Sound and Music Computing (SMC), pages
510–515, Barcelona, Spain, July 2010.

[81] Diemo Schwarz and Norbert Schnell. A modular sound
descriptor analysis framework for relaxed-real-time applica-
tions. In Proc. ICMC, New York, NY, 2010.

[82] Diemo Schwarz, Grégory Beller, Bruno Verbrugghe, and
Sam Britton. Real-Time Corpus-Based Concatenative Syn-
thesis with CataRT. In Proceedings of the COST-G6 Confer-
ence on Digital Audio Effects (DAFx), pages 279–282, Mon-
treal, Canada, September 2006.

[83] Diemo Schwarz, Roland Cahen, and Sam Britton.
Principles and applications of interactive corpus-based
concatenative synthesis. In Journées d’Informatique
Musicale (JIM), GMEA, Albi, France, March 2008.
URL http://mediatheque.ircam.fr/articles/textes/
Schwarz08a/index.pdf.

[84] G. Strobl. Parametric Sound Texture Generator. Msc the-
sis, Universität für Musik und darstellende Kunst, Graz;
Technische Universitäåt Graz, 2007. URL http://en.
scientificcommons.org/43580321.

[85] G. Strobl, G. Eckel, and D. Rocchesso. Sound texture mod-
eling: A survey. In Proceedings of the International Confer-
ence on Sound and Music Computing (SMC), 2006.

[86] Patrick Susini, Stephen McAdams, Suzanne Winsberg, Yvan
Perry, Sandrine Vieillard, and Xavier Rodet. Characteriz-
ing the sound quality of air-conditioning noise. Applied
Acoustics, 65-8:763–790, 2004. URL http://articles.ircam.
fr/textes/Susini04b/.

[87] N. Tsingos, E. Gallo, and G. Drettakis. Perceptual audio
rendering of complex virtual environments. In ACM SIG-
GRAPH 2004 Papers, pages 249–258. ACM, 2004.

[88] A. Valle, V. Lombardo, and M. Schirosa. Simulating the
Soundscape through an Analysis/Resynthesis Methodology.
Auditory Display, pages 330–357, 2010.

[89] Andrea Valle, Vincenzo Lombardo, and Mattia Schirosa. A
graph-based system for the dynamic generation of soundsca-
pes. In Proceedings of the 15th International Conference on
Auditory Display, pages 217–224, Copenhagen, 18–21 May
2009.

[90] Kees van den Doel, Paul G. Kry, and Dinesh K. Pai. Fo-
leyautomatic: physically-based sound effects for interactive
simulation and animation. In Proceedings of the 28th an-
nual conference on Computer graphics and interactive tech-
niques, SIGGRAPH ’01, pages 537–544, New York, NY,
USA, 2001. ACM. ISBN 1-58113-374-X. doi: http://doi.
acm.org/10.1145/383259.383322. URL http://doi.acm.org/
10.1145/383259.383322.

[91] C. Verron, M. Aramaki, R. Kronland-Martinet, and G. Pal-
lone. Spatialized Synthesis of Noisy Environmental Sounds,
pages 392–407. Springer-Verlag, 2010. URL http://www.
springerlink.com/index/J3T5177W11376R84.pdf.

[92] C. Verron, M. Aramaki, R. Kronland-Martinet,
and G. Pallone. Contrôle intuitif d’un synthé-
tiseur d’environnements sonores spatialisés. In
10eme Congres Français d’Acoustique, 2010. URL
http://cfa.sfa.asso.fr/cd1/data/articles/000404.pdf.

[93] Charles Verron. Synthèse immersive de sons
d’environnement. Phd thesis, Université Aix-Marseille I,
2010.

[94] X. Zhu and L. Wyse. Sound texture modeling and time-
frequency LPC. In Proceedings of the COST-G6 Conference
on Digital Audio Effects (DAFx), volume 4, 2004.

DAFX-11

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-231



Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-232



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

VECTOR PHASESHAPING SYNTHESIS

Jari Kleimola*, Victor Lazzarini†, Joseph Timoney†, Vesa Välimäki*

*Aalto University School of Electrical Engineering, Espoo, Finland
†National University of Ireland, Maynooth, Ireland

jari.kleimola@aalto.fi, victor.lazzarini@nuim.ie, joseph.timoney@nuim.ie
vesa.valimaki@tkk.fi

ABSTRACT
This paper introduces the Vector Phaseshaping (VPS) synthesis
technique, which extends the classic Phase Distortion method by
providing flexible means to distort the phase of a sinusoidal oscil-
lator. This is achieved by describing the phase distortion function
using one or more breakpoint vectors, which are then manipulated
in two dimensions to produce waveshape modulation at control
and audio rates. The synthesis parameters and their effects are ex-
plained, and the spectral description of the method is derived. Cer-
tain synthesis parameter combinations result in audible aliasing,
which can be reduced with a novel aliasing suppression algorithm
described in the paper. The extension is capable of producing a
variety of interesting harmonic and inharmonic spectra, including
for instance, formant peaks, while the two-dimensional form of the
control parameters is expressive and is well suited for interactive
applications.

1. INTRODUCTION

Abstract sound synthesis techniques have had a long history of de-
velopment. Since the introduction of digital waveshaping in Ris-
set’s catalogue of computer instruments [1] in the late 1960s, sub-
sequent theories related to non-linear distortion synthesis methods,
such as FM, Discrete Summation Formulae (DSF) and others [2]
[3] [4] [5] [6] [7] have emerged. Recently, the area has been re-
vitalised with work on adaptive techniques [8] [9] [10], as well as
new non-linear [11] and audio feedback methods [12] [13].

In this paper, we will start from an established non-linear Phase
Distortion (PD) synthesis method [14], and propose three exten-
sions to it in order to distort a sinusoidal waveform in a more com-
plex manner: the inflection point is described as a two-dimensional
vector, the phase distortion function is defined with multiple in-
flection points, and the modulation rate of the inflection points is
raised to audio frequencies. These extensions allow a wider sonic
palette to be extracted from the method, as well as more flexible
control over the spectral changes. The new technique is named
Vector Phaseshaping (VPS) synthesis.

Phaseshaping [15] [16] can be understood as a generalisation
of the idea of PD, which in turn can be seen as a type of complex-
wave phase modulation [11]. Phaseshaping is also related to non-
linear waveshaping [17], but has some advantages over it. One of
them is that in phaseshaping the use of non-smooth shaping func-
tions does not necessarily imply the presence of audible aliasing,
which is more or less inevitable in waveshaping. In addition, it is
possible to mitigate the effects of aliasing, as will be explored later
in this paper. Finally, waveshaping – as it is based on a non-linear
amplification effect – requires care in terms of gain scaling to be
usable. This is not, in general, a requirement for phaseshaping.

After a brief introduction to the original PD synthesis tech-
nique in Section 2, this paper is organized as follows. Section
3 introduces the VPS method, defines its multi-point vectorial ex-
tension, derives its spectral description, and proposes a novel alias-
suppression method. Section 4 explores control rate modulation
of the vector in 1-D, 2-D, and multi-vector configurations, while
Section 5 complements this at audio rates. Finally, Section 6 con-
cludes.

2. PHASE DISTORTION SYNTHESIS

The classic PD synthesis technique is defined by equations

s(n) = −cos{2πφpd[φ(n)]}, (1)

φpd(x) =

{
1
2
x
d
, 0 ≤ x ≤ d

1
2
[1 + (x−d)

(1−d) ], d < x < 1,
(2)

where n is the sample number and d is the point of inflection (see
Fig. 1). In this case, equation (2) is a phaseshaper acting on an
input signal φ(n). This is a trivial sawtooth wave with frequency
f0 and sampling rate fs, and given by

φ(n) = [
f0
fs

+ φ(n− 1)] mod 1, (3)

which is same as the phase signal used in a standard table lookup
oscillator, for instance. The mod 1 operator can be defined as

x mod 1 , x− bxc, x ∈ R. (4)

In this particular phaseshaper, the point of inflection d deter-
mines the brightness, the number of harmonics, and therefore the
shape of the output signal. The closer d is to 0 or to 1, the brighter
the signal (and more prone to audible aliasing). At d = 0.5, there
is no change in the phase signal as the shaper function is linear.
In fact, there is a symmetry condition around d = 0.5, with the
output being based on a falling shape with 0 ≤ d < 0.5 and a
rising shape with 0.5 < d ≤ 1. By varying d, we can get an effect
that is similar to changing the cutoff frequency of a low-pass filter.
The PD equation can also be cast as a case of complex-wave phase
modulation, as discussed in [11] and [15].

3. VECTOR PHASESHAPING SYNTHESIS

This section introduces the VPS method, which is a new extension
to the phase distortion synthesis technique described above. In
classic PD, the inflection point d controls the x-axis position of
the phase distortion function bending point, which traces the thin
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Figure 1: Classic PD sawtooth waveform (thick), phaseshaping
function (dashed), and inflection point path (thin horizontal line).
The inflection point d = 0.05 is marked with a square.

horizontal path shown in Fig. 1. Thus, the vertical position of
the bend is fixed at 0.5. VPS synthesis releases this constraint and
expresses the inflection point as a two-dimensional vector

p = (d, v), (5)

where d is the horizontal, 0 ≤ d ≤ 1, and v is the vertical posi-
tion of the bending point. The two-dimensional phase distortion
function is given by

φvps(x) =

{
vx
d
, 0 ≤ x ≤ d

(1− v) (x−d)
(1−d) + v, d < x < 1,

(6)

which reduces to the classic form of equation (2) when v = 0.5.
To gain an understanding of the effect of v, consider first set-

ting p = (0.5, 0.5), which, when applied to the waveshaper of
equation (1), produces an undistorted inverted cosine waveform as
shown in Fig. 2(a). As v is then raised towards unity, the slope
of the first segment of equation (6) is increased as well, and the
waveshaped output of the first segment grows towards a full-cycle
sinusoid (Fig. 2(b), before period 0.5). Consequently, the slope of
the second segment becomes less steep, and at v = 1, it produces
the static portion of the waveform depicted in Fig. 2(c).

The bandwidth of the spectrum grows from a single harmonic
to the form shown in Fig. 2(b), and then shrinks towards that of
Fig. 2(c). Since the latter waveform resembles a half-wave recti-
fied sinusoid, its spectrum consists of odd harmonics, with a strong
additional second harmonic.

On the other hand, if v is decreased from 0.5 towards 0, the
slope of the first segment decreases while that of the second one
increases. The waveforms of Fig. 2 become then reversed in
time, and therefore, identical spectra are obtained for v values
that are symmetric around 0.5. Since both vertical and horizon-
tal domains of the inflection vector are symmetric around this po-
sition, the point p0 = (0.5,0.5) defines the center location of the
two-dimensional VPS parameter space. However, when either d
or v is offset from its center position, this symmetry property (of
the other parameter) is no longer sustained. This leads to some
interesting characteristics that will be discussed next.

When v = 1, as in Fig. 2(c), d controls the duty width of
the produced waveform. The pulse width increases with d, from
a narrow impulse up to a full-cycle sinusoid at d = 1. Pulses
of various widths can then be constructed with p = (d, 1) and
0 < d ≤ 0.5, or p = (d, 0) and 0.5 ≤ d < 1 (these are
symmetrically-related vectors), as seen in Fig. 3. Transitions be-
tween various pulse widths and other waveshapes can be smoothly
created by interpolating the vector values. These effects will be

Figure 2: VPS waveforms and spectra of (a) p=(0.5,0.5), (b)
p=(0.5,0.85), and (c) p=(0.5,1). f0 = 500 Hz and fs = 44100
Hz, as in all examples of this paper.

particularly interesting when vectors are subjected to modulation.
Classic oscillator effects such as pulse-width modulation will be
easily implemented by modulating the d value of the vector with a
low-frequency oscillator (LFO).

Figure 3: VPS pulse waveforms and spectra of (a) p=(0.15,1), (b)
p=(0.1,1), and (c) p=(0.05,1).

Certain combinations of v and d will always produce sinu-
soids. For instance, v = 1, 2, 3...n and d = 1 forms a single-
segment linear phaseshaper, and similarly, v = d = 0.5 (i.e., the
trivial form) is linear, but there are other cases. For instance, si-
nusoids will be produced with v = 1.5 and d = 0.75, and with
v = 3 and d = 0.6. The general form of this, for 0 < d < 1, is

|v
d
| = |1− v

1− d |, v/d ∈ Z. (7)

This is because the derivative of the phase on both sides of the
inflection point has the same absolute value (it might only differ in
sign). Due to the use of a cosine wave, which is an even function,
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the change of sign of the derivative at the inflection point happens
to be of no consequence. The pitch of the produced sinusoid will
be equivalent to |v/d|f0, the fundamental frequency times the ab-
solute value of the phase derivative. The presence of these sinusoid
cases means that, when changing the waveshapes by manipulating
the vector, there will be loci of p where all components suddenly
vanish, leaving a single harmonic sounding. This effect can be
quite dramatic and of musical interest.

3.1. Synthesising Formants

At d = 0.5 and with v ≥ 1.5 VPS produces formants, which
are quite prominent when centred around exact harmonics of the
fundamental. In such situations, the spectrum consists of five har-
monics around a central frequency and of sidebands of odd order
harmonics, as shown in Fig. 4(a). As can be seen, the magnitude
of the emphasised frequency region is strong in comparison to the
sidebands, which is a useful property in vocal and resonant filter
synthesis applications.

Figure 4: (a) VPS formant, p = (0.5, 3), and (b) multiple formants
(d 6= 0.5).

In these cases, the ratio of the formant centre frequency ff and
the fundamental frequency f0 is defined as

ff
f0

= 2v − 1, (8)

so formants will be centred on exact harmonics of f0 when v =
1.5, 2, 2.5, ...

Offsetting d from its central position spreads the formant across
the digital baseband as shown in Fig. 4(b). As in classic PD, d con-
trols the spectral brightness of the timbre, and as it approaches 0
or 1, there will be an increased amount of aliasing in the output
spectra. This is due to the high-frequency periods in the shorter
segment. Aliasing can also happen when equation (8) does not
yield integral values. The reason now is that there will be incom-
plete periods, i.e., discontinuities in the waveform itself or in its
first derivative.

One possible way to counteract this last effect has been demon-
strated in other techniques, such as PAF [7] and phase-synchronous
ModFM [18]. These techniques also share a similar problem whereby
if the formant frequency is not an exact multiple of the fundamen-
tal, discontinuities in the output waveform can occur. The solution
is to use two oscillators, whose formant frequencies are tuned to
adjacent multiples of the fundamental around the exact formant

frequency that is required. A simple linear crossfading of the two
output signals will generate a peak at the target formant centre.
This allows us to sweep the spectrum smoothly with no aliasing
noise due to this particular effect. To achieve this, we define an in-
terpolation gain a that is dependent on the fractional part of ff : f0,

a = [2v − 1] mod 1, (9)
and then use it to scale the two VPS signals, s1(n) and s2(n),
employing inflection vectors p1 = (0.5, v) and p2 = (0.5, v +
0.5), respectively, with v > 1 and 2v− 1 ∈ Z to obtain the output
signal y(n):

y(n) = (1− a)s1(n) + as2(n). (10)

3.2. Aliasing Suppression

The aliasing produced by the incomplete periods may also be sup-
pressed by exploiting a novel single oscillator algorithm, which
modifies the phaseshaper when φvps[φ(n)] > floor(v), i.e., when
the phase is inside the incomplete period. The modified phase-
shaper is given by

φa(x) =

{
p mod 1

2b
, 0 < b ≤ 0.5

p mod 1
b

, 0.5 < b < 1,
(11)

where p = φvps(x) and b = v mod 1. When applied to equation
(1), the incomplete segment is rendered as a smooth full-cycle si-
nusoid, which is then scaled and offset in relation to c = cos(2πb):

sa(n) =

{
[(1− c)s(n)− 1− c]/2, 0 < b ≤ 0.5

[(1 + c)s(n) + 1− c]/2, b > 0.5, φa(x) > 0.5,

(12)
Fig. 5 shows that the aliasing present in the trivial VPS form (Fig.
5(a)) is reduced substantially when processed with this algorithm
(Fig. 5(b)). This is achieved at the cost of reduced high-end spec-
tral content.

Figure 5: (a) Trivial VPS timbre and (b) its alias-suppressed form.
p = (0.8, 2.2).

3.3. Notes on the Derivation of the VPS Spectrum

Given that VPS, as an extension of PD, is effectively a complex
form of Phase Modulation (PM) synthesis, it is reasonable to ex-
pect that we would be able to derive a closed-form expression for
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its spectrum. In order to do this, we would put the technique in
terms of a carrier phase, to which a given modulation function is
applied. In [11] this is implemented for the PD modulation func-
tion of equation (2) using a complex modulating wave PM spec-
trum derivation [19]. This yields an expression with many terms
based on a product series of Bessel coefficients that is very un-
wieldy and difficult to handle.

For simple geometric PM functions (such as the ones found
in VPS), it is, however, possible to obtain an alternative spectral
description that avoids the use of Bessel coefficients. This deriva-
tion method is similar to the one in [20]. For a VPS function
with v and d, we can have a corresponding PM function M(x) =
πd{2[φvps(x+ dx)− x− dx]− 1},−π ≤ x ≤ π, such that,

−cos{2πφvps[φ(t)]} = −cos{ωt+M(t) + φd} =

sin(ωt+ φd)sin[M(t)]− cos(ωt+ φd)cos[M(t)],
(13)

cos[M(t)] =

{
cos(yθ), 0 ≤ θ ≤ πx
cos[xy(π−θ)

1−x ], πx < θ ≤ π,
cos[M(t)] = cos[−M(t)],

(14)

and

sin[M(t)] =

{
sin(yθ), 0 ≤ θ ≤ πx
sin[xy(π−θ)

1−x ], πx < θ ≤ π,
sin[M(t)] = −sin[−M(t)],

(15)

where t is time, φd = 2πd, x = d/2, and y = v(1− d)/2.
Because cos[M(t)] and sin[M(t)] are even and odd, respec-

tively, in order to compute their Fourier series, we only need half
periods, as defined by equations (14) and (15). Using these series
and the right-hand side of equation (13), we can obtain a descrip-
tion of the VPS spectrum as

s(t) = −b′0cos(ωt+ φd) +

∞∑

n=1

cn − bn
2

cos(ωt[n− 1] + φd)−

cn + bn
2

cos(ωt[1 + n] + φd)

(16)

with

bn =
2

π

∫ πx

0

cos(yθ)cos(nθ)dθ+

2

π

∫ π

πx

cos(
yx(π − θ)

1− x )sin(nθ)dθ,

(17)

cn =
2

π

∫ πx

0

sin(yθ)sin(nθ)dθ+

2

π

∫ π

πx

sin(
yx(π − θ)

1− x )sin(nθ)dθ,

(18)

and b′0 = b0
2

.
With these expressions, it is possible to derive the spectrum

of single inflection point VPS. However, in our studies, we have
found that the VPS method is at times more simply described in
terms of waveform morphologies linked to the geometry of phase-
shaping functions. Some of these are described in Table 1.

3.4. Multiple Inflection Points

Finally, it is interesting to consider the possibility of more than one
inflection points. This can be used to obtain, for instance, square
wave-like output signals. Consider for instance the use of three
vectors p0 = (d0, v0), p1 = (d1, v1), and p2 = (d2, v2). With
p0 = (0.1, 0.5), p1 = (0.5, 0.5), and p2 = (0.6, 1), we have a
wave that approximates a square shape (see Fig. 6). These three
points, however, can be freely manipulated to provide a variety of
waveforms.

Figure 6: Square-like waveform (thick) produced by a phase-
shaping function (dashed) with three inflection points at p0 =
(0.1, 0.5), p1 = (0.5, 0.5), and p2 = (0.6, 1).

The general form for the phaseshaping function in Multiple
Vector Phaseshaping with N inflection points p0, p1, ...,
pN−1 is:

φmvps(x) =





v0x
d0
, x < d0

(vn − vn−1)
(x−dn−1)

(dn−dn−1)
+ vn−1, dn−1 ≤ x < dn

...

(1− vN−1)
(x−dN−1)

(1−dN−1)
+ vN−1, x ≥ dN−1

(19)
which reduces to equation (6) for N = 1.

4. ADAPTIVE VECTOR CONTROL

VPS synthesis provides rich spectra of various forms. In order to
seize the musical potential from the method, we need to provide
adaptive controls [21] to the vector parameters. In this section, we
will examine various possibilities arising from this.

4.1. One-dimensional Control

The simplest means of adaptive control over waveform shapes is
provided by varying one of the vector parameters, whilst holding
the other constant. For instance, keeping v = 0.5 and varying d
provides an emulation of a low-pass filter sweep, as the spectrum
gets richer with d close to 0 or 1. Keeping d = 0.5 and varying
v also provides a similar effect, but now with a resonant peak at
(2v − 1)f0, as discussed earlier. Other fixed values of d and v
will create transitions between the various characteristics outlined
in the previous section.

4.2. Two-dimensional Low-frequency Modulation

It is with two-dimensional adaptive control, however, that VPS
synthesis becomes a very original proposition. This can be per-
formed by a joystick or an x-y controller. Transitions between a
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Table 1: Some VPS morphologies.

p(d, v) Waveshape Spectrum Figure
(0.5, 1) half sinusoid missing some even harmonics 2(c)

(0.5, < 1) distorted half sinusoid steep spectral slope 2(b)
(0.5, > 1) varying-period sinusoids peaks at (2v − 1)f0 4(a)
(< 0.5, 1) pulse-like spectrum gets richer with d→ 0 3

(< 0.5, > 1) varying-period distorted sinusoids multiple formant peaks 4(b)
(< 0.5, 0.5) sawtooth-like more gradual spectral slope 1

variety of waveshapes (e.g., with those summarised in Table 1) can
be easily achieved, and this can provide a great source of timbral
expression in musical performance.

This facility can be extended by the use of a 2-D LFO. This
can take the form of two separate oscillators, controlling the two
parameters d and v, i.e., the rectangular coordinates of the vector,
or its polar representation, the angle and magnitude. The oscilla-
tors can exhibit different waveshapes and frequencies.

4.3. Lissajous Modulation

An interesting application of a 2-D LFO can be achieved by syn-
chronising the phase of the two oscillators, so that the path of the
modulated inflection point forms a Lissajous figure [22]. This is
achieved by combining the two modulator signals in the following
system of equations:

{
d = Ad{0.5 + 0.5cos(ωd + θ)}
v = Av{0.5 + 0.5cos(ωv)}, (20)

with 0 ≤ Ad ≤ 1 and Av ≥ 0.
Various interesting 2-D modulation shapes can then be ob-

tained. With ωd = ωv and θ = π/2 we can create circular or el-
liptical paths. If the two LFO frequencies are different, ωd = nωv
or ωv = mωd and θ = π/2, we will have n vertical or m hor-
izontal ‘rings’ (m,n ∈ Z and m > 1). By varying θ, we can
also collapse the path into a straight diagonal line (ωd = ωv and
θ = 0, ascending; or θ = 0.5, descending). Complex paths can be
created by varying these parameters. Fig. 7 shows various combi-
nations of these Lissajous modulation paths, while Fig. 8 shows a
spectrogram of a Lissajous-modulated VPS timbre. In addition, a
second-order modulator can be employed to control these param-
eters for a cyclical modulation path transformation.

4.4. Multi-vector Modulation

Finally, we must consider the possibilities of multi-vector modula-
tion. Here, the multiplication of parameters might pose a problem
for controller mapping. In addition, the horizontal component of
each vector will work on a limited range, which will depend on
the positions of neighboring inflection points. This is required so
that the phaseshaping function remains single-valued. However,
bounds for the vertical component work as before.

One solution to this issue is to use a single controller (such as
a 2-D LFO or a joystick), which would determine the positions of
all inflection points by a mapping matrix. The advantage of this
is that principles developed for single vectors, such as Lissajous
modulation, can be easily extended to this case.

Figure 7: Lissajous modulation, with Ad = 1 and Av = 3: (a)
ωd = ωv and θ = π/2; (b) ωd = 2ωv and θ = π/2; (c) ωd =
3ωv and θ = π/2; (d) ωv = 3ωd and θ = π/2; (e) ωv = 3ωd
and θ = π/4; (f) ωd = ωv and θ = 0.01.

To explore independent modulation of vectors, a solution can
be found in multi-touch controllers, where each inflection point
can be determined by finger position. Given that each segment of
the phaseshaping function will be independent, this type of adap-
tive control can be used to create wave sequencing effects.

5. AUDIO-RATE WAVESHAPE MODULATION

Other types of complex spectra are obtained by extending the ap-
plication of modulation to audio frequencies. As in the previous
section, we will first look at the modulation of individual vector
components, then study the combination of the two dimensions.
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Figure 8: Spectrogram of VPS with Lissajous modulation, ωd = 3ωv , θ = π/2, Ad = 1 and Av = 5.

5.1. One-dimensional Vector Modulation

Starting with the original PD arrangement, with v = 0.5, and mod-
ulating d, we observe two basic types of output for fm = f0 (with
fm as the modulator frequency):

1. Single-sided modulation, where 0 ≤ d ≤ 0.5 or 0.5 ≤
d ≤ 1, using an inverted cosine modulator produces a spec-
trum that decays more abruptly than 1/f and a sawtooth-
like waveshape, see Fig. 9(a). The bigger the phase differ-
ence between the modulator and an inverted cosine, means
the brighter the spectrum. The spectrum is brightest overall
with a cosine modulator.

2. Double-sided modulation, where 0 ≤ d ≤ 1, we observe
a peak at the second harmonic, and a more gradual decay
in the spectral envelope, with a cosine or inverted cosine
modulator. Discontinuities in the waveform reset also pro-
duce substantial aliasing, see Fig. 9 (b). The modulator
phase also has an effect: high frequency components will
be substantially attenuated and the peak at the second har-
monic disappears when the modulator is a sine wave, see
Fig. 9(c).

By reducing the modulation amount, less components will be
generated, so this parameter can be used as a timbre control. In
general, a fundamental difference between static or low-frequency
modulated and audio-rate modulated VPS is that in the latter case,
the phaseshaping functions are not based on linear segments, as
seen in Fig. 9.

On the other hand, if we hold d static at 0.5 and vary v, sinu-
soidally, fm = f0 and 0 ≤ v ≤ k , we will have a bright spectrum
that depends on the modulation width k. Higher values of k will
distribute the energy more evenly and produce a richer spectrum.
At the highest values of k, spectral peaks will be less pronounced.
Interestingly, the output will also be quasi-bandlimited, so it is pos-
sible to suppress aliasing by keeping k under control. Modulator
phase will also affect the output waveform shape and spectrum.
Fig. 10 shows three different cases of this type of modulation.

Finally, we must consider the cases where fm 6= f0. When
fm = nf0, n ∈ Z, the spectrum will be harmonic and generally
increasing in brightness with n. If fm << f0, the perceived fun-
damental will not be equivalent to f0 anymore. In cases where
fm = f0/n, n ∈ Z, we will have a harmonic spectrum with fm
as the fundamental. When fm/f0 is not a ratio of small numbers
or is irrational, we will have an inharmonic spectrum. The rea-
son for this is that the output will be composed of a fast sequence

Figure 9: Audio-rate shape modulation of vector component d,
fm = f0 (output, solid line; phase, dashed line): (a) Single-sided,
inverted cosine modulator, (b) double-sided, inverted cosine mod-
ulator, and (c) double-sided, sine modulator.

of different waveshapes, which will not be fused into a periodic
pattern. Interesting cases happen when fm and f0 are very close,
but not exactly the same value. In these cases, the spectrum will
be harmonic and we will perceive a cyclically changing timbral
pattern whose period is 1/(fm − f0). The spectrogram of such a
tone is shown in Fig. 11, where fm = fc − 0.1. These observa-
tions regarding the modulation frequency are similarly applied to
the two-dimensional cases discussed below.

5.2. Two-dimensional Vector Modulation

Two-dimensional audio-rate modulation is more conveniently im-
plemented using the Lissajous arrangement introduced in the pre-
vious section. In the case of audio-rate modulation, its parameters
will be modulation frequency fm, horizontal to vertical frequency
ratio ωd : ωv (which scales the modulation frequency for each
component), horizontal phase difference θ, and horizontal and ver-
tical modulation width, Ad and Av , respectively. Fig. 12 shows
three examples of different timbres produced by varying the Lis-
sajous parameters, all of them with fm = fc, defining three dif-
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Figure 11: Spectrogram of an audio-rate modulated VPS timbre showing a cyclically changing spectrum, d = 0.5 with v modulated by an
inverted cosine, k = 5, fc = 500 Hz, and fm = fc − 0.1.

Figure 10: Audio-rate shape modulation of vector component v,
fm = f0 (output, solid line; phase, dashed line): (a) modulator
width k = 2 , (b) k = 5 (cosine phase) and (c) k = 2 (sine phase).

ferent modulation paths: circular, three vertical rings and nearly
linear.

The advantages to the use of Lissajous modulation is that it is
possible to identify, in general lines, a particular modulation path
with a given tone spectrum. Therefore, the principles of defining
morphologies, which was done in Table 1 for the VPS tones, can
be extended to the more complex 2-D audio-rate shape-modulated
timbres. This could be the basis for the selection of desired timbral
qualities, with a simpler and more compact parameter set than the
case of independent modulators for the two dimensions. For in-
stance, it is clear from Fig. 12 that some paths will be more prone
to aliasing (e.g., Fig. 12 (c)), whereas others provide a cleaner
spectrum.

There is no doubt that 2-D audio-rate modulation will inevitably
produce aliasing of some kind. How objectionable this might be is
probably a better question. From a musical point of view, what we
observe in the output is that some types of modulation will gener-
ate aliasing that is perceptually a form of bright broadband noise,
and that is a sonority that is in some cases desirable. In this case, a

Figure 12: Lissajous audio-rate shape modulation of vector com-
ponent v, fm = f0, Ad = 1 and Av = 3 (output, solid line;
phase, dashed line): (a) ωd = ωv and θ = −π/2 (circular path);
(b) ωv = 3ωd and θ = −π/2 (three vertical rings); (c) ωd = ωv
and θ = 0.01 (nearly linear path).

technique for a synthesiser with wide musical applications might
embrace the production of some amount of aliasing as one of its
characteristics, rather than consider it to be a defect.

5.3. Multi-vector Manipulation

Completing the types of audio-rate shape modulation that are pos-
sible with VPS, we have multi-vector manipulation. Here, at least
four scenarios can be described:

• One-dimensional manipulation of a single vector (other vec-
tors constant)

• One-dimensional manipulation of multiple vectors.

• Two-dimensional manipulation of a single vector.

• Two-dimensional manipulation of multiple vectors.

Regarding these different cases, a few general lines can be dis-
cerned. The first case of one-dimensional modulation is effectively
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an extension of the single-vector case, and it is possible to apply
the principles discussed above to it. Similarly, two-dimensional
manipulation can be seen as an extension of ideas previously dis-
cussed in this paper, both in low-frequency modulation of multiple
vectors and in audio-rate Lissajous modulation.

The most complex case to handle, however, is possibly one-
dimensional manipulation of multiple vectors. Various sub-cases
can arise from this, since each inflection point can be modulated in
either direction. It is possible to simplify our approach and use a
single modulator that is mapped to different vectors/directions, as
in the case of the matrix mapping discussed earlier on in Section
3.4. The ranges of the horizontal component of each point will
have to be scaled properly so that no overlap occurs. In any case,
multi-vector manipulation is by far the most complex case of VPS
synthesis and it requires a detailed study that is left as future work.

6. CONCLUSIONS

This paper introduced the technique of Vector Phaseshaping syn-
thesis as an extension of the well-known Phase Distortion method.
Its main characteristics and spectral description were defined in de-
tail. A novel alias-suppression method was also described, and the
various methods of timbre modification via low-frequency modu-
lation were discussed. In a complementary manner, we also looked
at audio-rate shape modulation synthesis and discussed the gen-
eral principles of the technique. It is expected that the ideas pro-
posed in this paper will find a good range of applications in musi-
cal sound synthesis. Sound examples and software are available at
http://www.acoustics.hut.fi/go/dafx11-vps.
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ABSTRACT

In this work we present an approach to perform voice timbre con-
version from unpaired data. Voice Conversion strategies are com-
monly restricted to the use of parallel speech corpora. Our propo-
sition is based on two main concepts: the modeling of the timbre
space based on phonetic information and a simple approximation
of the cross-covariance of source-target features. The experimen-
tal results based on the mentioned strategy in singing-voice data
of the VOCALOID synthesizer showed a conversion performance
comparable to that obtained by Maximum-Likelihood, thereby al-
lowing us to achieve singer-timbre conversion from real singing
performances.

1. INTRODUCTION

One of the main limitations of current Voice Conversion technolo-
gies are the use of a parallel corpora of the source and the target
speakers to perform training of a conversion model. This corpus
consists of a set of recordings in which both speakers pronounce
the same utterances (same phonetic content) without applying any
distinctive emotion or vocal quality. The acquisition of such paral-
lel data may represent a number of difficulties, especially if aiming
to apply it on target voices which are hardly available; for example:
past celebrities.

Some proposals have been reported to achieve non-parallel
conversion based on the alignment of originally unpaired data by
exhaustive similarity search or the adaptation of an original paral-
lel model. An approach following the latter concept [1], is based
on the assumption of a linear relation between the timbre features
of originally paired speakers and unpaired ones. A conversion
model trained from paired data is adapted accordingly; however,
the source-to-target mapping is not defined directly from the un-
paired data.

Previously, the authors introduced a strategy to derive the tim-
bre conversion model exclusively from unpaired data consider-
ing that the phonetic segmentation is available [2]. The propo-
sition consists of a modification of the original Gaussian Mixture
Model(GMM) based approach of [3] and [4] by applying phoneme-
constrained modeling of the timbre space and an approximation of
the joint-statistics following the same assumption considered in
[1]. In terms of spectral conversion error, the conversion perfor-
mance was found comparable to that obtained by parallel training
without perceiving a significant reduction of the conversion effect
on the converted signals.

In this work we extend the study of the proposition presented
in [2]. In particular, we are interested in clarifying issues as the
learning conditions of the phoneme-constrained modeling and the
performance of the proposed non-parallel approach when the na-
ture of the source target corpora differs. We remark on our inter-
est in applying this technology to the concatenative singing-voice
synthesizer VOCALOID [5] in order to perform singer-timbre con-
version on the system databases by exclusively using real perfor-
mances from target singers. According to the work presented in
[6], the experimental study was carried out on full-quality singing-
voice data (Sr = 44.1KHz). However, the proposal presented in
this work may represent a generalized solution for Voice Conver-
sion purposes.

This paper is structured as follows: the phoneme-constrained
Multi Gaussian Modeling is presented in section 2, in section 3
we show study of simple strategy to approximate the source-target
cross-covariance, the experimental framework of our study is de-
scribed in section 4, to evaluate the performance of the proposed
method and compare it with the one based on ML, the results of
objective and subjective evaluations are reported and discussed in
section 5, and the paper concludes with observations and proposi-
tion for further study in section 6.

2. PHONEME-BASED ENVELOPE MAPPING

2.1. GMM-ML for features conversion

The conversion of the voice timbre is commonly achieved by mod-
ification of the short-term spectral envelope information based on
a probabilistic time-continuous transformation function [3]. The
conversion function is commonly derived from a Gaussian Mix-
ture Model of joint timbre features trained in a ML basis. The tim-
bre features correspond to all-pole based estimations of the spec-
tral envelope parameterized as Line Spectral Frequencies (LSF)
[4]. We remind, for clarity, the main expressions followed on this
strategy

ŷ =

Q∑

q=1

p(q|x) [µy
q + Σyx

q Σxx
q

−1(x − µx
q )] (1)

p(q|x) =
N (x; µx

q ; Σxx
q )

∑Q
q=1 N (x; µx

q ; Σxx
q )

(2)

Eq.1 depicts the conversion function, denoting x,y and ŷ the
source, target and converted envelope features respectively. The
GMM size (number of Gaussian components) is given by Q. Note
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that an a priori weighting of the mixture components is not consid-
ered. The term p(q|x) corresponds to the conditional probability
or class membership, according to Eq.2.

In general, concerning the configuration of the GMM, the num-
ber of Gaussian components depends on the amount of training
data as well as the form of the covariance matrices (full or diag-
onal). Normally, an eight-sized GMM with full covariance ma-
trices is in use to achieve learning generalization for voice con-
version purposes [3]. Commonly, the resulting Gaussian means,
when translated to the spectral domain, depict spectral envelopes
with formantic features. This is principally due to the restriction
of using only voiced speech and the significant amount of vocalic
content on the data. Note, however, that a one-to-one correspon-
dence cannot be straightforwardly stated between those envelope
patterns and the vocalic phonetic classes assumed to be contained
in the data.

The vocalic speech is widely considered as provider for the
most important perceptual cues for timbre identification. However,
they represent only a subset of the phonetic elements of a language.
Subsequently, we claim that if aiming to perform full timbre con-
version we might map the envelope characteristics regardless, in
general, of their vocalic or voiced nature. Accordingly, a clus-
tering of the envelope space by only eight gaussian components
may lead to a large averaging of the phonetic content. Note also
the highly competitive behavior observed on the ML-based mix-
ture, resulting in a full modeling of speech segments of different
phonetic nature by the same Gaussian distribution. These phenom-
ena lead to a significant simplification of the phonetic space on the
mapping process and are found at the origin of some “reduction” or
modification of the phonetic content perceived in some converted
utterances.

2.2. Phoneme-constrained Multi-Gaussian Model

Moreover, by means of setting the GMM size close to the as-
sumed number of phonetic events and restricting the covariance
matrices to be diagonal, the behavior of the mixture was found
to be more cooperative but unstable. We show in Fig.1 the re-
sulting component-to-phoneme correspondence for a GMM-ML
in terms of the average membership of each gaussian per pho-
netic class. The results were obtained by evaluating p(q|x) af-
ter training the GMM with labeled data. The vertical axis rep-
resents the GMM components whereas the horizontal axis lists
the phonemes included in VOCALOID according to the Japanese
language (SAMPA standard) ordered by phonetic group (vowels,
nasals, voiced plosives, voiced affricates, liquids, semivowels, un-
voiced plossives, fricatives, unvoiced affricates).

Clearly, following Fig.1, relationships between the clustering
achieved by the GMM-ML and the phonetic class of the features
can hardly be established. An unstable activation of the mixture
components along with phonetic content may produce irregular
evolution of the converted envelopes, representing a potential fac-
tor of degradations on the converted signals.

Consequently, we propose to control the fitting of the statis-
tical model by using the phonetic information; therefore, we re-
strict the computation of each Gaussian distribution to the data
corresponding to a same phoneme. A phoneme-based modeling
(pho-GMM) was already introduced in [7], showing some benefits
in terms of one-to-many mapping reduction compared to conven-
tional GMM-ML.

Following this strategy the resulting component-to-phoneme
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Figure 3: Corresponding spectral envelopes of the MGM means
within phonetic groups. Vowels (top), nasals (bottom).

correspondence is clearly increased [2], as shown in Fig.2. The
model was therefore able to extract characteristic information for
most of the phonemes, and to increase, consequently, the discrim-
ination between them.

Note however some “shared” regions on the grid within ele-
ments of a same phonetic group (e.g. nassals, plosives). Unlike
the case of the vowels, where the differences between the forman-
tic structures represent an important discriminaton factor, the aver-
age spectral patterns at these groups are relatively close. This can
be appreciated in Fig.3, where are shown the resulting envelope
patterns of the vowels (top) and nasals (bottom) sets. Although we
have not a theoretical basis to explain these similiarities, a further
simplifaction of the phonetic space and the role of such a “charac-
teristic envelope” on non-stationary phonemes (e.g. plosives) may
be studied.

Finally, keeping consideration that the phonetic information
is available, the conditional probability can be replaced by a pho-
netic flag to directly assign the corresponding component at the
conversion stage. However, this “forced” membership should be
smoothed at the phonetic boundaries to avoid abrupt changes when
transforming the signal. As was already described, by forcing a
full-competitive behavior we do not significantly differ from the
real role of p(q|x) observed in a GMM-ML. Moreover, following
this proposition we aim to refine the envelope mapping in a pho-
netic basis. Note however that, as comented in [7], without includ-
ing more meaningful context information some mapping losses
can be hardly alleviated if the acoustic characteristics of same-
phoneme data significantly differs. This is demonstrated further in
our experimentation by using data of increasing heterogeneity.

Accordingly, the original conversion function expressed in Eq. 1
is modified as

ŷ = µy
q(x) + Σyx

q(x)Σ
xx
q(x)

−1 [x − µx
q(x)] (3)

Moreover, the sub-index q(x), denotes the phonetic class of the
source input and therefore, defines the only gaussian component
involved in the mapping. Subsequently, since the resulting model
does not keep the “mixture” characteristic anymore, we refer to it
as a “Multi-Gaussian Model” (MGM) [2].
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Figure 1: Average conditional probability at each GMM component per phonetic class. ML-based fitting.
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Figure 4: GMM-ML and pho-MGM conversion error by overall
training size (top). pho-MGM Error by maximum training size per
component (bottom). The error measure (mel dB) coresponds to
the spectral distortion averaged over mel-scaled spectra.

2.3. MGM performance and training

We intended to study the minimal amount of data per phoneme re-
quired to generalize the timbre mapping. However, the amount of
frames per phoneme can barely be equilibrated since the vocalic
content is predominant in the Japanese language. Thus, we limit
our data size control to an upper bound, or maximal training size,
for the number of frames of a same phoneme used to fit a Gaus-
sian component. A regularization of the covariance matrices was
required for phonemes from which only a small amount of data
was available.

The results are shown in Fig. 4. The timbre features corre-
spond to LSF parameters of accurate spectral envelope estimates
obtained by a mel-based autoregressive model [6] with envelope
order set to 50. The cost function corresponds to the spectral
conversion error between the converted envelopes and the target
spectra. We compared GMM-ML and MGM models with similar
complexity (diagonal matrices, 38 components). In general, the re-
sulting conversion error levels are similar (top graph), showing the
MGM with slightly increased performance. An over-fitting effect
was not found to be affecting, though a small training set was used
(1000 vectors). We remark that the conversion performance was
always evaluated on unknown data (test set) in order to observe the
stabilization of the learning; that explains the decreasing behavior
of the error curve.

The maximal amount of training data per MGM component
was also evaluated (bottom graph). The arrows denote the number
of phonetic classes reaching the corresponding maximal number
of vectors at each case. The results show that it is not necessary to
have a large amount of frames (around 100) to approach the high
performance region.

3. CROSS-COVARIANCE APPROXIMATION

3.1. Motivation

From eq. 3 we remark that the only term for which paired data is
required is the source-target cross-covariance (Σyx). By simplify-
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Figure 5: Example of LSF data within a phoneme-class (one-
dimension). Real data (blue) and generated from the resulting ML-
based Gaussian distribution (red).
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Figure 6: Example of LSF data within a phoneme-class (one-
dimension). Real data (blue) and generated from the approximated
statistics for variable α (black, magenta, red).

ing the proposition of [1] via assuming directly a linear transfor-
mation between the source and target features their joint statistics
can be approximated. Moreover, the phoneme-constrained model-
ing presented in the past section limits this term, for each Gaussian
distribution, to depend exclusively on the data of the correspond-
ing phonetic class.

According to eq. 3, the term Σyx, commonly called transfor-
mation matrix after normalization by the source variance, acts ac-
tually as a weight of the variance of the converted features. The
values observed on this term on the GMM-ML based models are
rather small, resulting in poor dynamics of the converted features.
This well-known and characteristic over-smoothing, already ad-
dressed in works [8], is commonly perceived as a muffling quality,
affecting the naturalness of the converted signals.

Notably, an augmentation of the variance of the oversmoothed
converted parameters has been found to reduce significantly this
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muffling effect. Therefore, we assert that this term when estimated
by ML represents a limitation on the resulting conversion qual-
ity. Furthermore, having control of this value might represent an
effective way to increase the naturalness of the converted signals.

3.2. Covariance approximation by linear transformation

Following the phoneme-constrained modeling, the probabilistic lin-
ear transformation between the timbre features of two speakers
proposed in [1] can be simplified as y = Aq(x)x + bq(x), where
Aq is, in general, a square matrix according to the dimensionality
of x, and bq is a bias vector. Therefore, considering the mentioned
relation in the computation of Σyx for each phonetic-component
of the MGM we obtain

Σ̌yx = E[(y̌ − µy̌)(x − µx)] (4)

= E{[(Ax + b) − (Aµx + b)] (x − µx)} (5)

= E[(A(x − µx)2] = AΣxx (6)

Where A can be approximated similarly by evaluating Σyy

Σ̌yy = E{[(Ax + b) − (Aµx + b)]2} (7)

= E[(A2(x − µx)2] = A2Σxx (8)

A =
√

ΣyyΣxx−1 (9)

Although the relation y = Ax + b is assumed between features
corresponding to the same phoneme imposes a strong assump-
tion and, by using diagonal covariance matrices, the resulting one-
dimensional distributions restricts to narrow regions. As the norm
of A decreases, the “width” of the covariance region increases un-
til it reaches a circular form at the full-uncorrelated case (A = 0).
Thus, since the orientation of the modeled distribution is given ex-
clusively by Σxx and Σyy the proposed Σ̌yx may be rather seen
as a lower bound of the real distribution width. Accordingly, we
apply a weighting factor (0 < α < 1) to Σ̌yx on the conversion
function in order to impose a more realistic form on the approxi-
mated distribution.

In Fig. 6 we show a comparison of real and approximated
source-target distributions for several α values of one LSF dimen-
sion within a phonetic class. Clearly, the distribution strictly fol-
lowing the relation y = Ax+b (α = 1) does not suffice the data.
However, by setting α around 0.75, the covariance region approaches
the covariance based on ML. This can be seen in Fig. 5, illustrating
the case when the Gaussian is fitted in a ML basis.

Then, based on eq. 3, the final expression for the conversion
features will be as follows

ŷ = µy
q(x) + α

√
Σyy

q(x)Σ
xx
q(x)

−1 [x − µx
q(x)] (10)

Regarding the effect of the parameter α on the conversion perfor-
mance, values within the range [0.5-0.7] provide the best percep-
tual results. Further, we observe that, for the dimensions with a
low correlation, the imposition of a covariance value higher than
the real one was found to be beneficial. The naturalness of the
converted signals is improved by increasing the dynamics of the
predicted LSFs. Nevertheless, for clarity an objective and subjec-
tive evaluation of α is presented in Section 5.
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Figure 7: Example of a singing sample of a VOCALOID DB in-
cluding the phonetic segmentation and F0 estimation.

4. EXPERIMENTAL FRAMEWORK

4.1. VOCALOID singer databases

The VOCALOID singing-voice synthesizer system consists of three
main elements, the user interface (allowing to input lyrics and
melody information), a singer database (containing a collection
of singing-voice samples from a singer), and the synthesis engine
(performing, briefly, the selection, F0-transposition and concate-
nation of the samples).

In particular, the singer-DB consists of a pre-defined set of
phonetic sequences sung at different pitch ranges. The phonetic
scripts are assumed to cover principally the consonant-vowel com-
binations of the Japanese language. All the singing samples are
recorded at a same tempo following the same melodic pattern,
which is restricted to a one tone variation related to the representa-
tive musical height of each pitch set. An example of a singing sam-
ple is shown in Fig. 7. Each single-pitch set consists of more than
100 recordings, representing more than 70,000 feature vectors.
Typically, a complete VOCALOID-DB includes low, medium, and
a high pitch sets.

Singing-voice data from 2 VOCALOID singer-DBs were con-
sidered for our experimental study. A C4 ( 261Hz) pitch set of a
female singer was set as source voice whereas G3, C4 and E4 pitch
sets (193, 261, 330Hz) as well as 4 real singing performances
from a male singer were used as target voice. The configuration
of the target data was modified according to the interest of com-
paring both the mapping strategy and the effect of the pitch on the
conversion performance, and is described in the next section.

4.2. Effect of the corpora heterogeneity

There is advantage, in terms of envelope mapping performance,
to using data which is not only paired but restricted to a small
pitch variation [6]. Accordingly, the use of non-parallel corpora
may have an impact on the conversion performance if the nature
of the source and target corpora differs. We remark that one of our
main interests in applying non-parallel timbre conversion on the
singing-voice is to use real singing performances to compute the
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Figure 8: Spectrogram of the conversion filter for the sample of
Fig. 7 (energy in dBs).

conversion model, which may observe a large pitch range (melody),
different tempo, and a rich pronunciation variety among the con-
tent.

We were therefore interested in studying the performance us-
ing data with different characteristics. Therefore, we fixed three
different sets as target data: a)VOCALOID’s single-pitch data, b)
VOCALOID’s mixed-pitch data and c) real singing performances
(4 songs). Further, we considered the following evaluation cases:
a)GMM-ML single-pitch (labeled as GMM-ML P SP), b)MGM
single-pitch (MGM-PC P SP), c)non-parallel single-pitch (MGM-
PC NP SP), d)non-parallel mixed-pitch (MGM-PC NP MP), and
e)non-parallel real songs performances (MGM-PC NP RP). Since
objective evaluation on unpaired data is not straightforward, all
the approaches were evaluated on the single-pitch paired data i.e.,
different sets for training but same ones for evaluation.

An evaluation of this nature represents the most exigent case
since the single-pitch set observes the most precise and “homoge-
neous” features, resulting in an increased challenge for the models
trained on data corresponding to wider pitch-range and “hetero-
geneous” phonation characteristics (multi-pitch and real singing
performances sets).

4.3. Signal modification

As was already described, the timbre conversion process is based
in a short-term mapping of the spectral envelope information. The
transformation of the timbre is therefore achieved by replacing the
original envelope by the one given by the converted features. This
is commonly done by analysis-synthesis filtering following the au-
toregressive modeling of the envelope. However, we perform the
modification of the envelope by defining a conversion filter, corre-
sponding to the difference at each frame between the correspond-
ing transfer function of the converted LSFs and an interpolation of
a harmonic analysis of the source signal. The frame processing is
done in a pitch-synchronous basis. We show in Fig. 8, in the form
of a spectrogram, an example of resulting conversion filter for the
utterance of Fig. 7.

We use the harmonic information instead of the envelope on
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Figure 9: Converted LSF parameters given by α = 0 (dotted),
α = 0.25 (blue), α = 0.5 (red), α = 0.75 (black) and ML-based
conversion (magenta).

the source signal aiming to match closely the real source infor-
mation and discard the risk of estimation errors that occurred dur-
ing the computation of the autoregressive model. The harmonic
analysis and the processing framework itself follow the wide-band
technique described in [9].

Besides the capability of the processing method to perform
efficient envelope modification, the conversion itself may result
in some unnatural or distorted quality on the transformed signals
since the characteristics of the converted spectra may not match
naturally the original signal (harmonicity, energy, f0). Also, con-
sider that some abrupt changes on the evolution of the source sig-
nal cannot be properly reflected by the mapping process.

Moreover, the stable and controlled characteristics of the singing
samples might impact positively the conversion quality if com-
pared to the case of spontaneous speech. However, the particu-
lar evolution of the source signal and the use of wide-band based
information may result in an important variation of the envelope
information at successive frames. Accordingly, we consider two
parameters to control independently the smoothness of the con-
version filter for both time and frequency axes. Although it is
not generally required, this strategy was found effective to avoid
degradations in some converted utterances and to smooth unde-
sired frame-to-frame variations on the conversion filter.

5. EVALUATION

5.1. Objective evaluation

We were interested on studying three aspects in our experimen-
tal evaluation: first, the impact of the covariance approximation
on the converted features, second, to compare the conversion per-
formance of the parallel and non-parallel strategies, and finally to
evaluate the effect of the heterogeneity of the target data.

We therefore started analyzing the converted LSFs for differ-
ent α values. Note the benefits of using this parameterization, seen
as temporal trajectories denoting spectral pole locations, to ob-
serve differences in terms of variance. This can be seen in Fig. 9.
The plot shows a comparison of three converted LSFs at a segment
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Figure 10: Resulting spectral envelopes from converted LSF pa-
rameters for different α values.

of the utterance example. The different cases correspond to con-
versions obtained by using increasing α values as well as a ML
result issued from a model with similar complexity. As expected,
an augmentation of this value was found to increase the temporal
variance related to the means position (α = 0). The corresponding
effect in the spectrum is found as an emphasis of the maxima and
minima of energy, as shown in Fig. 10, producing a positive effect,
within a reasonable limit, in the perceived naturalness.

Fig. 11 shows the average variance measured on about 5000
evaluation vectors (test set) of target and predicted LSF for the
different evaluation cases as described in section 4.2. Note that
the resulting variances of the parallel cases are just slightly higher
than those given by the gaussian means (α = 0), denoting the poor
impact of the transformation matrix when it is exclusively derived
from the data (whether or not the variance is obtained by ML). On
the other hand, note that by setting α we can force a variance on
the converted features close to the real one.

Finally, Fig. 12 depicts a conversion performance comparison.
The cases involving models trained on single-pitch data (labels
ending with “SP”) are considered as the references since the train-
ing data corresponds to similar corpora with stable characteristics.
The proposed non-parallel conversion using single-pitch data per-
forms close of ML and MGM-parallel cases. As expected, the
performance decreases as the target data is more heterogeneous.
Moreover, the conversion performance shows a maximum related
to α; however, slightly higher values ([0.5-0.7]) have been found
as providing increased naturalness (muffled quality reduction).

5.2. Subjective evaluation

A subjective evaluation was designed aiming to compare the con-
version effect and the quality of the converted signals. Looking for
a strict perceptual evaluation, ten sound technology professionals
participated as listeners. Five VOCALOID samples, representative
of the different phonetic groups, were selected as the evaluation
set.

First, a timbre similarity test was defined considering three
conversion strategies: GMM ML SP, MGM NP SP and MGM
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Figure 11: Average variance of target and converted LSFs for the
different method and data confirgurations.
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Figure 12: Spectral conversion error for the different method and
data confirgurations.

NP RP. We intended to compare the conversion effect when us-
ing both parallel and non-parallel methods and the effect of using
a homogenous or heterogenous target corpus on the proposed non-
parallel method. The procedure was as follows: the source, target,
and the three converted utterances (randomly selected) were pre-
sented to the listeners. Then, the timbre similarity between the
converted and the reference samples was measured according to
the continuous range [0 1] (0 = source, 1 = target). This process
was repeated immediately to allow confirmation or modification
of the first judgement.

Note that at each sample case, both reference and converted ut-
terances observe stable and similar acoustic characteristics (pitch,
energy, and dynamics). A comparison based on this data appears
to be an efficient way to exclusively focus on the timbre and vocal
quality differences. However, the conversion of vocal quality fea-
tures is out of the scope of this work. We claim that although an
increased perceptual discrimination capacity may result in lower

DAFX-7

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-247



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

GMM ML SP MGM NP SP MGM NP RP

0

0.25

0.5

0.75

1
si

m
ila

rit
y

target

closer to
  target

 in the 
middle

closer to
 source

source

alpha=0.2 alpha=0.6 alpha=1

1

2

3

4

5

M
O

S

 

 

MGM NP SP
MGM NP RP

Figure 13: Subjective evaluation. Timbre similarity results (top)
according to given reference levels. Signal quality evaluation
(MOS) of the non-parallel conversion for different α values.

conversion scores it might lead us to a more robust evaluation of
the effect achieved by the spectral envelope conversion process.

The results are shown in Fig. 13 (top). In the figure the five
levels in red tagged with a subjective description correspond to the
scale references given to the listeners. The scores achieved by both
parallel and non-parallel methods when using the same corpora
were found similar and denote, in general, a reasonable conversion
effect. However, the performance suffers some reduction when
real singing corpora is used as target training data.

Second, a MOS-like test was focused on exclusively evalu-
ating the signal quality of the non-parallel conversion for differ-
ent α values. The test was applied separately for both corpora
cases in order to observe exclusively the effect of α. The subjec-
tive description of the MOS levels was re-defined looking for an
exigent evaluation and an association of the measurement levels
with some quality phenomena (5=perfect, 4=slight degradations,
3=clean enough, 2=artifact(s), 1=annoying).

The test followed a similar procedure as the similarity test. For
each sample case three converted samples, corresponding to three
representative α values (small, α=0.2; proposed, α=0.6; large,
α=1), were randomly selected and evaluated in the same two-step
basis. The results are shown in Fig. 13 (bottom). As expected,
best results were found for α=0.6. Note however that a large value
achieved a comparable performance. This might be explained by
a reduced risk of producing undesired amplitude modulations on
the spectrum when aplying a high variance to the LSF trajectories
on stable signals.

Although the overall results does not allow us to claim full
natural-quality conversion the scores achieved when using similar

and stable corpora show a general perception of an adequate nat-
uralness. As for the similarity test, the drop in the performance
level is attribuited to the increased heterogeneity of the target cor-
pora, resulting in over-smoothed envelope patterns on the conver-
sion model. The estimation of precise envelope information from
singing performances might be studied further.

6. CONCLUSIONS AND FUTURE WORK

In this work we presented an approach to perform voice timbre-
conversion from non-parallel data. The proposed strategy is based
on phoneme-constrained modeling of the statistical space of the
timbre features and an approximation of the cross-covariance in-
formation and is described and compared with the conventional ap-
proach based on parallel data and ML. The results, obtained from
an experimental study on singing-voice let us claim the achieve-
ment of comparable conversion performance although some de-
pendency was observed according to the heterogeneity of the cor-
pora.

The experimentation done in this work suggest to extend the
study in some issues: the estimation of the α parameter individu-
ally for each feature dimension; an efficient selection of envelope
features from real singing performances; an efficient mapping of
non-stationary phonemes, among others. However, the proposi-
tion presented in this work was proved to be a step-forward the
interests of voice timbre conversion.
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ABSTRACT

This paper proposes novel audio effects based on manipulating an
audio signal in a representation domain provided by non-negative
matrix factorization (NMF). Critical-band magnitude spectrograms
Y of sounds are first factorized into a product of two lower-rank
matrices so that Y ≈ BG. The parameter matrices B and G are
then processed in order to achieve the desired effect. Three classes
of effects were investigated: 1) dynamic range compression (or
expansion) of the component spectra or gains, 2) effects based on
rank-ordering the components (colums of B and the correspond-
ing rows of G) according to acoustic features extracted from them,
and then weighting each component according to its rank, and 3)
distortion effects based on controlling the amount of components
(and thus the reconstruction error) in the above linear approxima-
tion. The subjective quality of the effects was assessed in a listen-
ing test.

1. INTRODUCTION

Audio effects can be viewed as processing modules that take in an
audio signal and modify it according to certain control parameters
to produce the desired audio output [1]. Typical examples include
dynamic range compression, reverberation, and non-linear distor-
tion for the electric guitar. The widespread use of audio effects
in recorded music motivates the creation of new types of effects
that produce musically interesting results and can be controlled by
intuitive parameters.

During the last ten years, non-negative matrix factorization
(NMF) has been actively studied for the purposes of audio content
analysis [2, 3, 4, 5]. However, the potential of NMF for digital au-
dio effects has not been properly investigated. NMF decomposes
an input signal into a set of “components” that often correspond
to physically distinct sources or sound events, and thereby opens
a way towards applying effects on each source separately. For ex-
ample, dynamic range compression can be applied on each com-
ponent, instead of compressing the wideband signal or the signals
within fixed subbands. In this paper, we propose three different
strategies for manipulating an audio signal in the representation
domain provided by the NMF before resynthesizing it back to a
time-domain waveform. The results were evaluated in a listening
test where the subjects described the differences they heard be-
tween the affected samples and the original ones and gave their
opinions on whether the effect was interesting and useful. Over-
all, the results were positive and encourage further work in this
area. Audio examples of the proposed effects are available at
http://www.elec.qmul.ac.uk/people/anssik/NMFeffects/

2. METHOD

2.1. Data Representation

The effects discussed in this paper are based on factorizing the
magnitude spectrograms of audio signals. The short-time Fourier
transform (STFT) of a time-domain signal x(n) is first calculated
as

Xt(k) =

N−1∑

n=0

x(tH + n)w(n)e−j2πkn/N , (1)

where t is frame index, k is frequency index, N is the frame size,
H = N/2 is the frame hop, and w(n) is the hamming window.

The frequency resolution of STFT is linear, whereas the hu-
man auditory system carries out frequency analysis on a nonlin-
ear scale. The equivalent rectangular bandwidths bc of the critical
bands in human hearing are given by [6]

bc = 0.108fc + 24.7 Hz, (2)

where fc and bc denote the center frequency and bandwidth of crit-
ical band (“channel”) c, and c = 0, 1, . . . , C − 1. The bandwidth
bc can be viewed as the frequency resolution of the peripheral au-
ditory system at frequency fc.

The perceptual quality of the audio effects obtained using NMF
is greatly improved by warping the linear frequency resolution of
the STFT to a critical-band resolution. This is achieved by sim-
ulating a bank of critical-band bandpass filters in the frequency
domain. The center frequencies fc of the filters that we use are
distributed uniformly on the critical band scale (obtained by inte-
grating the inverse of (2)),

fc = 229
[
10(a1c+a0)/21.4 − 1

]
, (3)

where a0 = 1.5 determines the center frequency of the lowest
band (40 Hz) and a1 = 0.79 determines the band density in critical
bandwidth units. We use a total of C = 50 subbands between
40 Hz and 20 kHz.

Warping from a linear frequency scale to the critical band scale
is achieved using triangular sub-band responses (basis functions)
that assign appropriately weighted STFT frequency bin values to
the corresponding critical-band spectrogram bins. The basis func-
tions are stored as rows in matrix W which maps the STFT mag-
nitude spectrogram |X| of size (K×T ) to a critical-band spectro-
gram Y of size (C × T ) by

Y = W|X|. (4)

Figure 1 illustrates the structure of the basis matrix W.
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Figure 1: Illustration of the contents of the basis matrix W used to
warp from a linear frequency scale to a critical band scale.

2.2. Non-negative Matrix Factorization

The idea of NMF is to approximate a non-negative matrix Y ∈
RC×T

+ as a product of two lower-rank (that is, smaller) matrices
B ∈ RC×Z

+ and G ∈ RZ×T
+ :

Y ≈ BG. (5)

The columns of matrix B contain the spectra of individual com-
ponents z, z = 1, 2, . . . , Z, and the rows of matrix G contain the
corresponding time-varying gains. The number of columns in B
(and rows in G) is here denoted by Z and determines the num-
ber of components that Y is broken into. Since magnitude spec-
tra are inherently non-negative, a non-negativity restriction can be
placed on these matrices [4]. Since the power spectra of many nat-
ural sounds (such as drum hits or individual notes) remains quite
consistent across different occurrences, the factorization (5) often
results in the separation of meaningful sound sources [4].

The algorithm we used for learning B and G is based on min-
imizing the Kullback-Leiber divergence between Y and BG. The
algorithm works by initializing B and G with random positive val-
ues and updating them iteratively with multiplicative rules until
the algorithm converges [2]. The value of the cost function is de-
creased at each update until a local minimum is reached. The up-
date rules for B and G are given by

B← B.× (Y./BG)GT

1GT
(6)

G← G.×BT (Y./BG)

BT1
(7)

where 1 is aK-by-T matrix of ones, and .× and ./ denote element-
wise multiplication and division, respectively [2].

2.3. Resynthesis

The proposed audio effects are based on manipulating the matrices
B and G before resynthesis. Before discussing the actual effects,
however, let us consider the resynthesis of a time-domain signal
from the NMF representation.

2.3.1. Direct Resynthesis from the Linear Model

The most straightforward way of resynthesis is based on the linear
signal model of NMF directly:

Ŷ = BG (8)

This is followed by a warping of the critical-band scale back to the
linear frequency scale, achieved using a transpose of the matrix of
basis functions W:

|X̂| = WTŶ (9)

The resulting magnitude spectrogram is combined with the phase
spectrogram of the original mixture signal. Finally, inverse Fourier
transform of each frame and 50% overlap-add is performed to ob-
tain a time-domain signal.

2.3.2. Perfect Reconstruction Resynthesis

Synthesising a time-domain signal using (8) leads to inevitable dis-
tortion if the number of components Z is insufficient to represent
the input audio spectrogram accurately. A typical requirement for
audio effects is that the user can control the amount of effect ap-
plied on the input signal, and when this “effect depth” parameter is
set to zero, the output signal is identical to the input signal (perfect
reconstruction).

Perfect reconstruction resynthesis is achieved by reconstruct-
ing the complex-valued STFT spectrogram of component z by

Xz =

[
WT

(
bzgz
BG

)]
.×X (10)

where bi and gi denote the zth column of B and the zth row of G,
respectively, and X is the complex-valued STFT spectrogram of
the input signal. This is one form of the Wiener filter and leads to
perfect reconstruction of the complex-valued STFT spectrogram
of the input signal by

X =
∑

z

Xz (11)

Inverse Fourier transform of X followed by overlap-add can then
be used to reconstruct the original input signal.

2.4. Audio Effects in the “NMF Domain”

The effects proposed in this paper are based on processing the pa-
rameter matrices B and G before resynthesizing the signal. For
convenience in the following, we use the term “NMF domain” to
refer to the parametric representation (5) of the input signal pro-
vided by the NMF.

2.4.1. Dynamic Range Compression and Expansion

Dynamic range compression and expansion involve multiplying
the input signal by a slowly-varying gain factor that depends on
the level of the input signal [7]. The operation of a dynamic range
controller is typically described using a piece-wise linear curve
that defines the desired output level (in decibels) as a function of
the input level (in decibels). If the slope of this curve is 1

3
, for

example, any change ∆Li in the input level is mapped to a three
times smaller change ∆Lo in the output level and the correspond-
ing compression ratio R = ∆Li/∆Lo would be 3. The term
compression refers to R > 1 and expansion to R < 1.
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A straightforward implementation of compression in the NMF
domain can be achieved by raising the gains gz(t) ≡ gz of com-
ponent z to power 1/R. If the same amount of compression or
expansion is to be applied on all components, then all elements of
the matrix G are raised to power 1/R. For example, compression
by factor 3 is achieved by raising all elements of G to power 1/3.
This can be viewed as compression/expansion without a threshold
(i.e., there is no threshold level below which the effect would be
switched off).

Intuitively, compressing the component gains brings the less
prominent sounds (at a given time) more to the foreground, since
individual components tend to capture physical sound events or
sound sources on the recording.

In the experiments to be described in Section 3, we investi-
gated dynamics processing of not only the gain matrix but also the
spectral basis matrix B. Compression of the spectral basis matrix
B results in spectra of the individual components that are either
compressed (flattened) or expanded.

2.4.2. Effects Based on Ordering the Components

The factorization achieved by NMF suffers from permutation am-
biguity: the order of the components (columns of B and the corre-
sponding rows in G) is arbitrary and depends on the random initial-
ization of the matrices B and G before applying the multiplicative
updates (6)-(7). In this sense, the individual components have no
“identity”.

The class of effects described in this subsection is based on
ordering the components z = 1, 2, . . . , Z according to acoustic
features calculated from the component spectra and gains. The
components are then weighted differently before resynthesis, de-
pending on their position on the ordered list.

Two different ordering criteria were investigated: spectral cen-
troid and kurtosis. Spectral centroid is here defined as the first
moment of the spectrum of a given component and conveys in-
formation about the “brightness” of that component. The spectral
centroid Sz of component z is given by:

Sz =

∑
c fcbz(c)∑
c bz(c)

(12)

where fc is the center frequency of the critical band corresponding
to bin c of matrix B and is given by (3).

The spectral centroids Sz were then utilized to produce an au-
dio effect by weighting component z by (rz − 1)/(Z − 1) before
resynthesis. Here rz denotes the rank of component z on a list
where components are sorted in either ascending or descending-
centroid order.

Another criterion that we used for ordering the components
was the kurtosis. The kurtosis of the gain function gz(t) of com-
ponent z is given by

Kz =
1
T

∑T
t=1(gz(t)− ḡz)4(

1
T

∑T
t=1(gz(t)− ḡz)2

)2 − 3 (13)

where ḡz denotes the empirical mean of gz(t). Note that the term
−3 has no effect on the order and can be discarded.

We investigated ordering the components according to the kur-
tosis of their gains as well as the kurtosis of their spectra. Kurtosis
of the gains function characterizes the “transientness” of a com-
ponent (peakiness of its gains). Kurtosis of the spectrum, in turn,

tends to be higher for harmonic spectra (components representing
musical notes) than for “noisy” spectra (components representing
drum sounds for example). Similarly to the ordering based on
spectral centroid, components were then scaled by a weight be-
tween 0 and 1 depending on their rank on the sorted list of compo-
nents formed according to the kurtosis value.

2.4.3. Distortion as an Effect

The third class of effects is based on a controlled use of the re-
construction error caused by a direct resynthesis from the NMF
model as described in Section 2.3.1. The distortion resulting from
the NMF decomposition sometimes produces interesting effects in
itself as will be discussed in the Results section. The effect was
presented by cross-fading from the clean input signal to a signal
reconstructed from an NMF model with eight components. This
was then further cross-faded to a signal obtained using four, two,
and finally just one component, and then back to the clean signal
in the opposite order. The number of components used controls
the amount of distortion introduced.

3. RESULTS

As the success of an audio effect cannot be assessed objectively,
we conducted a listening test where the subjects rated and de-
scribed the effects they heard. The current implementation of the
method is non-causal and requires off-line processing of the input
signals. Therefore the parameters of the effects in the listening test
had to be fixed and the test stimuli calculated in advance, as op-
posed to allowing the subjects to tune the parameters in real-time.
We chose parameters and music clips that were thought to be rep-
resentative and interesting examples of each class of effects. The
samples and the used parameter values are available on-line at
http://www.elec.qmul.ac.uk/people/anssik/NMFeffects/

3.1. Stimuli

Four clips of music were chosen that were thought to best exem-
plify the investigated effects. The clips were from Smells Like Teen
Spirit by Nirvana, Billie Jean by Michael Jackson, Come Together
by the Beatles, and I Turn My Camera On by Spoon. These span
music from hard rock to pop and years from the 60s (Come To-
gether) up to a few years ago (I Turn My Camera On). For each of
the four clips, four effects were presented: compression/expansion
of spectra and/or gain curves, scaling of NMF components based
on their spectral centroid, scaling the components based on the
kurtosis of their spectra or gains, and the proposed distortion ef-
fect. Therefore the stimuli consisted of a total of twenty clips in-
cluding the four original versions and all of the effects.

With the compression/expansion there was obviously a choice
between compression and expansion, but there was additional vari-
ability in that either could be done to the spectra, the gain curves,
or both. These different combinations resulted in drastically dif-
ferent effects. As it would be infeasible to have a sample for each
possible combination, suitable parameter combinations were cho-
sen subjectively to exemplify the possibilities of each effect type.

3.2. Subjects

There were ten subjects in total, eight male and two female, aged
between 22 and 41. Seven of the subjects were musicians and three
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Table 1: Overall results (%) of whether the subjects found the ef-
fects interesting and would use them if they were available.

Interesting Would use
Distortion 80 64
Comp/Exp 80 59
Spec Cent 55 24
Kurtosis 73 39

Table 2: Overall results (%) of the subjects ranking the effects from
the most to the least interesting.

Most 2nd Most 3rd Most Least
Distortion 45 22.5 12.5 20

Comp./Exp. 22.5 32.5 27.5 17.5
Kurtosis 27.5 27.5 25 20

Spec Cent 10 12.5 35 42.5

were not. Seven out of the ten said they were familiar with the term
“audio effect” and how they are used, and six of them said they had
experience using them.

3.3. Experimental Setup

The listening test was conducted completely on-line. The order
of presentation was randomized for each clip. The first ques-
tion asked simply whether the listener found the effect “interest-
ing.” The next question asked the listeners to describe in their own
words the differences they heard between the original and the af-
fected clips. The third question asked the listener whether they
would be interested in using the effect were it available as a com-
mercial product. After all of the effects were evaluated for each
clip, the subject was asked to rank the four effects for that clip
from the most to the least interesting.

3.4. Results

Table 1 shows the percentages of subjects that a) found the effects
interesting and b) would consider purchasing or using the effect if
it were available to them. For the latter, responses were excluded
from subjects who reported “I don’t regularly use audio effects”.
In each case the majority of the subjects found the effect to pro-
duce interesting results, albeit a slight majority in the case of the
spectral centroid effect. A majority of the subjects who use audio
effects would be interested in using the distortion and compres-
sion/expansion effects. This was not the case, however, with the
spectral centroid and kurtosis effects.

Table 2 shows how people ranked the effects from the most to
the least interesting. Again the results have been averaged over all
the four clips. It is clear that the distortion effect leans towards be-
ing the one considered most interesting and the spectral centroid
effect the least, with the compression/expansion and kurtosis ef-
fects having a fairly even spread.

When describing the differences the subjects heard between
the original and affected versions it was common for the subjects
to describe the spectral centroid effect as sounding like a simple
filter was applied. This would explain the poor results, as listeners
familiar with audio effects might find it trivial. On the other hand,

the subjects generally seemed to be intrigued by the distortion ef-
fect, as if it were something they had never encountered before.

The responses for the compression/expansion and kurtosis ef-
fects were more mixed but still generally positive, and this was
also reflected in the written responses. These effects, similar to
the distortion effect, found the subjects coming up with more so-
phisticated descriptions of the things they heard, even in some
cases stating that they could not really describe what was going on.
For example with the compression/expansion effect for “Smells
Like Teen Spirit” two separate responses were received in which
the effect was described as making the clip sound more “indus-
trial”; other responses described the clip as sounding like it was
“recorded underwater” and “playing inside a can”.

4. CONCLUSIONS

Non-negative matrix factorization provides a musically meaning-
ful representation for audio signals that has not been fully utilized
for audio effects. Three different types of effects were investigated
in this paper: compression/expansion of component gains and/or
spectra, scaling components based on ordering them according to
extracted acoustic features, and distortion inherent to the NMF ap-
proximation. The distortion effect produced the best results, with
the subjects consistently ranking it as one of the more interest-
ing effects. The results concerning the compression/expansion and
kurtosis ordering effects were fairly mixed but generally positive.

Future work involves a real-time implementation of the pro-
posed effects. NMF is inherently a non-causal method since the
component spectra and gains are estimated jointly. However, a
causal (real-time) implementation can be achieved by keeping the
spectral bases B fixed and updating only the gains G for each in-
coming audio frame. The component spectra are then updated only
occasionally, for example every 5 seconds based on the preceding
10 second segment. A real-time implementation would be useful
for more efficient exploration of the parameter space of the effects.
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ABSTRACT 

This paper presents several strategies for designing Dynamic 
Range Controllers when using a block-based processing scheme 
instead of sample-by-sample processing scheme. The processes 
of energy measurement, gain calculus, and time constant selec-
tion are executed only once per each new incoming block of 
samples. Then, a simple and continuous gain update is computed 
and applied sample-by-sample between continuous sample 
blocks to achieve good sound quality and performance. This ap-
proach allows reducing the computational cost needs while main-
taining the flexibility and behavior of sample-by-sample 
processing solutions. Several implementation optimizations are 
also presented for reducing the computational cost and achieving 
a flexible and better sounding dynamic curve using configurable 
soft knees or gain tables. The proposed approach has been tested 
and implemented in a modern DSP, achieving satisfactory results 
with a considerable computational costs saving. 

1. INTRODUCTION 

Dynamic Range Controllers (DRC) are often used in audio appli-
cations with the objective of mapping an incoming dynamic 
range to a different outcoming one. They are used in systems like 
compressors, expanders, noise-gates, limiters, or even all to-
gether in a general DRC [1].  
 

 
Figure 1: Dynamic Range Controller (DRC) dB input to 

dB output relationship – Static Curve. 

 
Figure 1 shows the typical dB input to dB output relationship 

of a DRC that is defined by its Static Curve. It includes all the 
commented behaviours: noise gate, expander, compressor and 
limiter. The input levels NT, ET, CT, and LT are the threshold 
levels in which each behaviour is obtained respectively. The dB 

gain applied in each case is obtained as the dB difference from 
the bypass line (1:1) to the output dB level. 

Actually most of the DRC implementations are carried out in 
the digital domain using Digital Signal Processors (DSP) or mi-
croprocessors. Several generic implementations have been pro-
posed [1]-[5]. An interesting improvement that avoids the possi-
bility of clipping the output signal in digital limiters is presented 
at [6]. The use on non-linearities in DRC with a power polyno-
mial approximation is proposed at [7], [8] with the objective of 
simulating the non-linear behaviour of analog components like 
tube amplifiers [2]. [9] proposes the use of a time-varying loud-
ness model in the level detection stage of DRC. Recently, a 
hardware implementation in a FPGA (Field Programmable Gate 
Array) of a DRC has been described at [10]. A different approach 
is [11] that proposes a multichannel DRC working in the fre-
quency domain using frequency warping in order to achieve a 
closer behaviour to the auditory Bark scale. 

This paper presents implementation strategies for DRC when 
working in block-sample processing schemes instead of classical 
sample-by-sample schemes. As the energy of the input signal has 
a considerable lower bandwidth that the signal itself, the proc-
esses of energy measurement, gain calculus, and time constant 
control, are executed only once per each new block of samples, 
instead of  every new input sample. The gain applied is then in-
terpolated between consecutive sample blocks to have a continu-
ous update value and better sounding. By this way a great com-
putational cost saving is obtained while maintaining the desired 
behaviour of the DRC. Several implementation optimizations are 
also detailed with the aim of reducing the demanded computa-
tional cost, together with a mathematical development of a con-
figurable soft-knee characteristic for the Static Curve. 

The paper is organized as follows. Section 2 makes an over-
view of a sample-by-sample DRC implementation. Section 3 ex-
plains the proposed modifications for a block-processing DRC. A 
mathematical development of a soft-knee DRC is described at 
Section 4. An implementation in a modern DSP is commented at 
Section 5. Finally Section 6 summarizes the conclusions. 

2. SAMPLE PROCESSING OPERATION SCHEME  

Figure 2 displays the scheme of a DRC that is executed for any 
new input sample x[n] to produce the processed output y[n]. An 
optional post-gain (not shown in the figure) could be applied af-
ter y[n] to move up or down the whole Static Curve of Figure 1. 
Following the implementation of [1], the level of the input x[n] is 
measured using a RMS detector or a peak detector, giving the 
input level value xl[n]. This level value is converted to dB and 
used as the input to the Static Curve to determine the output dB 
level and hence the needed dB gain that is converted to its linear 
value g[n]. This gain is smoothed to gs[n] with the Smooth At-
tack/Release block, which controls the dynamic behaviour of the 
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DRC with the proper selection of the attack and release time con-
stants involved. See implementation details and time constant 
calculations and recommendation values at [1]. Finally, the 
smoothed gain gs[n] is applied to the input signal x[n] that could 
be delayed with the Look-ahead delay block in order to anticipate 
the behaviour of the DRC and avoiding big transients to pass 
without being controlled. All of these processes are executed for 
each new input sample, demanding computational cost. 
 

 

Figure 2: Sample-by-sample DRC operation scheme. 

 
As commented, the RMS or peak level xl[n] has a considera-

ble lower bandwidth than the incoming signal itself x[n], and 
there is no reason in executing the dB conversion, the dB gain 
calculus and its conversion to linear, and the gain smoothing,  for 
every new sample at the sampling frequency rate of the system 
fs. To save computational cost, Zölzer proposes at [1] the mod-
ified implementation scheme of Figure 3. 

 

 
Figure 3: Modified DRC operation scheme with down-
sampling and up-sampling for the gain calculus. 
 

Once measured the level of the signal, a decimation by a fac-
tor 4 is applied for reducing the internal sampling frequency to 
fs/4 and making all the gain calculus processes. Then, a final in-
terpolation by 4 is executed in order to apply the gain at fs. In this 
case, all the time constants must be calculated considering its in-
ternal fs/4 sampling frequency. For each new input sample x[n], 
the level measurement, the down-sampling and up-sampling, and 
the gain multiplication are executed at a rate of fs. The four 
down-sampled processes (dB conversion, dB gain calculus, con-
version to linear, smoother) are executed cyclically with a task 

scheduler, doing only once of them for each new x[n] cyclically. 
As a result, the computational cost is reduced because only one 
of the four processes is executed each time. This paper tries to go 
one step further increasing the practical decimation ratio as seen 
at the next section.  

3. BLOCK PROCESSING PROPOSSED SCHEME 

Most of the actual DSP and microprocessors used in audio, due 
to their internal hardware architecture and the possibility to use 
software pipeline techniques, are computationally more efficient 
when working in a frame basis in blocks of N samples, instead of 
working sample-by-sample. By this way they are also able to use 
the Direct Memory Access (DMA) engine to move all the audio 
in and out without the intervention of the CPU. Usual values for 
N in live audio applications are 16, 32 or 64. The introduced la-
tency in samples is 2*N. With fs=48kHz it is 0.67ms, 1.33ms, 
and 2.66ms respectively, and with fs=96kHz, 0.33ms, 0.67ms, 
and 1.33ms. This latency must be increased with the one intro-
duced by the AD and DA converters that is usually bellow 1 ms. 
These latency values are considered acceptable for live use.    

The proposed block-processing scheme is at Figure 4. The 
incoming data is the N samples block vector x[n] to x[n-(N-1)]. 
Now, only the optional look-ahead delay and the final gain inter-
polation and application are executed once per sample at fs rate. 
The rest of the process will be only executed once per block of N 
samples, with an effective rate of operation of fs/N.  

First, the signal level of the block is measured. If an RMS de-
tector is used, then the xRMS

2 is computed as 

 [ ]∑
−

=

−=
1

0

21
2

N

i
RMS inx

N
x . (1) 

This xRMS
2 is averaged with a first-order low-pass filter to have 

an energy value with an estimation time longer than N samples. 
The measured value xlblock is obtained with the difference equa-
tion (2) where TAV is averaging coefficient [3] and xlblock-1 is the 
value of xlblock in the previously processed block. For calculating 
TAV, the effective sampling frequency is now fs/N. 

 2TAV)TAV1( 1 RMSblockblock xxlxl ⋅+⋅−= −  (2) 

If a peak detector is used (i.e. in a limiter case), then the max-
imum absolute value of the input vector is obtained and the peak 
detector proposed at [1] and [3] is used.  

 

 
Figure 4: Proposed block-sample DRC operation scheme. 
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The measured level xlblock is now converted to xldBblock in dB, 
using a fast approximation by series expansion [1] or a log table 
in memory. In case of RMS detector, xlblock is the squared RMS 
measurement and the obtained xldBblock must be multiplied by 0.5 
to calculate the square-root and achieve the RMS value.  

The dB value of the input signal xldBblock is used as input to 
the Static Curve (i.e. like Fig. 1) to determine de output dB level 
and hence the dB gain to be applied GdBblock as the difference 
between the output dB value and the input dB value. One possi-
bility to implement the Static Curve is using the simple linear 
equations of the lines of Fig. 1 in each region of operation (noise-
gate, expander, bypass, compressor, limiter) using the threshold 
and ratio values of each region [1]. A more flexible choice is us-
ing a dB table in memory, mapping the incoming dB level direct-
ly to the applied dB gain. This allows the creation of any kind of 
Static Curve like the one seen at Figure 5. In this example, the dB 
gain table is defined every 3 dB, obtaining the dB gains between 
the table values by interpolation.  
 

 
Figure 5: Example of Static Curve implemented with a dB 

gain table defined with 3dB steps. 

 
The GdBblock value is converted to its lineal value gblock using 

again a series expansion or an antilog table. Finally this gain is 
smoothed to gsblock with the Attack/Hold/Release block with equ-
ation (3) where gsblock-1 is the gain of the previously processed 
block of samples. It controls the dynamic behavior of the DRC 
with the selection of the time constants AT (Attack Time, signal 
level increases) and RT (Release Time, signal level decreases).  
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A Hold Time HT is included for controlling the time that 

must stay in the release state before the gain starts to recover, 
maintaining its gain value. This avoids continuous gain changes 
and decreases the distortion introduced by the DRC. A good op-
tion is using a counter for the HT, being each count value the 
time of a block of samples of N/fs seconds. 

Once calculated the gain gsblock for each new input N samples 
block, it must be applied to the input vector x[n:n-(N-1)] to give 
the output vector y[n:n-(N-1)]. This gain, calculated at a rate of 
fs/N, is up-sampled (smoothed) to fs with the Gain Interpolator 

block. It performs a linear interpolation between gsblock-1 to gsblock 
just adding to the applied gain the gain step gstep/N for each new 
output sample. A simulation of a limiter with this interpolation is 
at Figure 6 where the calculated gsblock every N samples is dis-
played (the stepped gain) together with the linearly interpolated 
smoothed gain. More complex interpolation methods like splines 
could be used at expense on increasing the computational cost. 

 

 
Figure 6: Example of a Limiter with the proposed gain 
interpolation between consecutive N samples blocks. 

 
With conventional audio content, the proposed block-

processing DRC implementation with N values lower than 1ms 
(i.e. N=32 with fs=48kHz is 0.66ms.), achieves quasi-identical 
sounding results than a sample-by-sample DRC implementation, 
with a considerable reduction in computational cost. The effect 
of the block-sample processing is a slight increase in the effec-
tive time constants that are low-limited by the N value. Usually a 
value greater than 1ms is used for the attack-time. For greater N 
values, the input vector must be split in smaller blocks and repeat 
the process once per each smaller block. Other ways the time 
constants are excessively smeared and it will not be possible to 
work with short attack times below N/fs that are needed for ex-
ample in limiters or when working with high frequency signals. 

4. SOFT-KNEE STATIC-CURVE DEVELOPMENT 

Figure 1 shows a typical Static Curve made of straight lines on 
each section with sharp transitions (sharp gain changes) between 
regions (i.e. bypass to compressor). These transitions are refer-
enced as hard-knee. Some DRC use what is called soft-knee tran-
sitions that vary progressively from the slope of one region to the 
slope of the next one. This section describes a procedure to de-
sign configurable soft-knee links between consecutive regions of 
a Static Curve using a parabola as the link function.  
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t

n

 
Figure 7: Soft-knee Static Curve design. 
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Figure 7 shows a soft-knee link of width knee=2*k between 
two regions of slopes n and m (the ratio is the inverse of the 
slope). The threshold dB input is TH, and the soft-knee link is 
carried out within the input region TH-k to TH+k dB. The parab-
ola (4) is used as the link function and its coefficients are calcu-
lated solving the equation system that equals the derivative of the 
parabola to n at TH-k, to m at TH+k, and forces the value of the 
parabola at TH-k or TH+k. Once defined the soft-knee Static 
Curve, the gain in dB is obtained again as the difference between 
the output and input dB levels. An example of a soft-knee limiter 
(n=1, m=0, TH=-12dB) with different k values (from 0 to 10 dB) 
is displayed at Figure 8. This soft-knee limiter configuration al-
lows arriving to the limit value gradually, not instantly as hap-
pens with hard-knee limiters. It works like a compressor that in-
crements continuously its ratio from 1:1 to ∞:1 in 2·k dB input 
range, and it is judged to have a better sounding behaviour.  

( )
( )
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)()()2(1

)()()2(2)4(1 22

2
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mnkmnTHkb
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    (4) 

 

 
Figure 8: Example of a Limiter with Soft-knee.  

5. DSP IMPLEMENTATION 

An efficient implementation of the proposed block-based DRC 
with N=32 and fs=48kHz has been carried out in a SHARC 
ADSP21489 DSP [12] taking profit of its SIMD (Single Instruc-
tion Multiple Data) architecture, and its DMA engine.  
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Figure 9: Behavior of the proposed DRC on a DSP with a 
sinusoidal burst as input 

 
The implementation was able to work with Static Curves de-

fined by lines as Figure 1 with or without soft-knee, and with a 
gain table defined by the user. The percentage of CPU used by 
the DRC was of only 0.25%, meanwhile a sample-by-sample 
version of the DRC took 2.1%. The behavior of the DSP imple-
mentation with a sinusoidal burst input signal is shown at Figure 

9. It is easy to observe the level control of the DRC and the effect 
of the attack, release and hold times. 

6. CONCLUSION 

An efficient implementation of a DRC is proposed in this paper 
that exploits the benefits of working in blocks of N samples in-
stead of processing sample-by-sample. Most of the processes in-
volved in a DRC are modified and executed only once per new 
block of samples, and only the final gain smoothing and the ap-
plication of the gain is executed once per sample. This allows 
saving computational cost while maintaining the DRC behaviour 
and sound properties. A generic soft-knee link parabola is also 
presented. Finally, the proposed DRC has been implemented and 
tested in an actual DSP verifying the computational cost saving. 
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ABSTRACT

A new model for triodes of type 12AX7 is presented, featuring
simple and continuously differentiable equations. The descrip-
tion is physically-motivated and enables a good replication of the
grid current. Free parameters in the equations are fitted to refer-
ence data originated from measurements of practical triodes. It is
shown, that the equations are able to characterize the properties
of real tubes in good accordance. Results of the model itself and
when embedded in an amplifier simulation are presented and align
well.

1. INTRODUCTION

The theory of vacuum tubes was already discussed at full length
many decades ago and the best books on these devices were still
written in the 1930s to 1950s [1, 2, 3, 4]. The idea of model-
ing tubes intends not to challenge the correctness of the traditional
formulations that can be found in those books. It is more the task
of emulating the behavior of tubes at their boundaries of purpose.
While the first tube models were inspired by the desire for SPICE-
based simulations of hi-fi circuits, the newer approaches are rather
motivated by real-time simulations and guitar amplifier circuits.
These amplifier designs gain their special sound by intentionally
provoking a distortion of the instruments’ signal and thus have just
a little in common with ordinary amplifier theory. The recent ac-
tivities towards tube modeling consider the operation in overdriven
amplifiers [5].

With the digital simulation of analog audio circuits in mind,
the investigation of tube models is a natural next step. Any im-
provement in the critical parts promises better performance of the
complete simulation. Such improvements include challenges such
as accuracy, computational complexity and robustness.

The paper is organized as follows: The second section will
review the physical fundamentals of vacuum tubes. This is neces-
sary, because for a successful modeling of tubes or tube circuits, a
good knowledge of the theory is required. The tube experts may
skip this part. In Section 3 practical tubes are discussed. After
this some modeling approaches are reviewed in Section 4 and the
new contribution is introduced in Section 5. Finally, in Section
6, some results are presented, utilizing the model equations in the
state-space model of a common amplifier stage.

2. VACUUM TUBE BASICS

In this section we give a very brief introduction to the fundamen-
tals of vacuum tubes. For detailed exploration we refer to the his-
toric standard literature [1, 2, 3, 4]. Because of a certain contri-

bution to our triode model, we start with a view to simple vacuum
diodes.

2.1. Diode Characteristics

The most simple vacuum tube, the so-called vacuum diode, con-
sists of only two electrodes which are mounted in a vacuum cylin-
der. One electrode, the cathode (K), is heated and hence electrons
are emitted. The second electrode is called the anode or plate (A)
and is designed to collect the emitted electrons. Since electrons
can not be emitted by the cold anode the assumption of unilateral
conductivity is valid. In unheated condition, no current flow is
possible.

2.1.1. Initial Velocity Current

Without an external voltage applied to the anode, and even for a
slightly negative anode with respect to the cathode, some of the
faster electrons reach the anode and a small current flow is ob-
served. A small negative voltage must be applied in order to sup-
press the current flow. The current through the diode I follows the
exponential equation

I = I0 · e
V

ET , (1)

with anode voltage V , thermal voltage ET (in Volt) and current I0
at zero voltage.

2.1.2. Space-Charge Current

When a positive voltage is applied from anode to cathode, the
emitted electrons are pulled by the anode and an increasing cur-
rent flow is observed. But only a part of the emitted electrons
reach the anode. Most of them have only low velocity, they stay
near the hot cathode and form the space charge, a cloud of nega-
tive charges. The resulting current depends on the anode voltage
and is self-limited by reason of the electric field of the (negative)
charges. This is expressed by the Langmuir-Child equation

I = G · V 3
2 , V > 0, (2)

with perveanceG, a constant that only depends on the geometrical
construction of the tube.

2.1.3. Saturation Current

Beyond a certain voltage, all emitted electrons are drawn to the
anode. Saturation appears, that means, the current remains nearly
constant when the external voltage is increased further.
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2.2. Triode Characteristics

Triodes have a third electrode placed between anode and cathode,
which is constructed as a wire mesh and therefor called grid (G).
A voltage applied to the grid is able to control the flow of elec-
trons from the cathode: a negative grid voltage causes an electric
field that counteracts with the electric field from the anode, the
cathode current is reduced. A higher negative grid voltage inhibits
the current flow thoroughly. Small changes in grid voltage cause
high changes in current flow, thus it is possible to use triodes for
amplification.

For clarity we define the following conventions: Va is the
anode- and Vg the grid voltage (both referred to the cathode po-
tential), Ik, Ia and Ig are the cathode, anode and grid currents,
respectively. We define Ig + Ia = Ik where Ia and Ig are directed
into the device.

For the introduction of a grid between anode and cathode it
is a common prospect to replace the three-terminal triode by a
two-terminal one [2], where the electrode is placed at the grids’
position and loaded with the effective voltage,

Veff =

(
Vg +

1

µ
Va

)
. (3)

The amplification factor µ states about how much higher the anode
current is influenced by the grid than by the anode voltage. The
current Ik is calculated analog to equation (2),

Ik = G · (Veff)
3
2 , Veff > 0. (4)

Equation (4) is valid for the “normal” operating condition,
where the grid is slightly more negative than the cathode, while the
anode potential is very high (e.g. Vg = −2 V and Va = 300 V).
As for the diode we speak of the space-charge region. The grid
draws no current (Ig = 0) and consequentially anode and cathode
current are equal, Ia = Ik.

As a special case we consider the operation with a positive
grid. Since the grid now likewise attracts electrons, a positive cur-
rent Ig arises and hence the cathode current divides into anode and
grid current. Most books do not respect this case in detail, because
the flow of grid current introduces distortions and thus do not sat-
isfy the classical amplifier theory anymore. The positive grid is
irrelevant for the design of linear hi-fi tube amplifiers. Fact is, that
most guitar amplifier designs since the 1960s are operated under
these conditions and that the grid current is responsible for some
distortion effects like the blocking distortion [6, 7]. For a correct
simulation the inclusion of the grid current can play an important
role, especially if coupled stages in a cascade are examined.

3. PRACTICAL TUBES

Real tubes depart occasionally clearly from the idealized formula-
tions given in Section 2 as well as from the information found in
the manufacturer’s data sheets. Aging effects, small constructive
variations and origin have influence on the characteristics, to name
a few reasons. Even tubes from the same type and same manu-
facturer may show up to 20 % deviation of each other. Exemplary
measurement results are discussed e.g. in [8, 9].

3.1. Measurements

To have reliable reference data, numerous measurements on stan-
dard triodes of type 12AX7 were performed by the authors. Grid
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Figure 1: Anode current calculated with Langmuir-Childs formula
(dotted) and measurements from a RSD 12AX7 triode (solid) in a
qualitative plot.

and anode current were measured at the same time in good res-
olution for a fine mesh of discrete Vg and Va voltages. Since
tube circuits are normally operated with AC, the measurements
were not performed under static conditions, but using switched
voltage supplies and triggered meters. The two DC supplies for
Va and Vg were switched on at the same time and the currents
were measured for a short time period. From the stored current
values the median was chosen to be the final value. The dis-
tance between the discrete measurement points was chosen small
enough, that a subsequent interpolation is not required. In con-
sideration of the constrains given by maximum power consump-
tion and maximum anode current, the observed working range was
Va = 20 V to 300 V and Vg = −5 V to 3 V. The discrete steps for
the grid were ∆Vg = 0.1 V, |Vg| < 1 V and less dense for higher
values, and ∆Va = 20 V for the anode voltage. This manually per-
formed procedure is highly time-consuming (ca. 8h net./system),
so only three triode systems were tested as a start.

At first we settle for evaluating the measurements only quali-
tatively, some complete datasets will be shown in Section 5.5.

3.2. Observations on the Anode Current

Figure 1 opposes qualitatively a measurement from an old 12AX7
tube (RSD) and Langmuir-Child’s law. While the measurement in
principle follows the formula, two differences are visible: First,
the theoretic 3

2
-exponent does not fit perfectly for real triodes, see

1(a). In the plotted example, the slope of the measured curve is
lower, representing an exponent < 3

2
.

The second difference can be found at the bottom of the curve.
Equation (4) yields Ik = 0 for Veff = 0, and is not defined for
voltages Veff < 0. The measurement offers a small current for this
case and a smooth transition towards zero current. This is depicted
in Figure 1(b), where the highlighted region tags the range Veff <
0. We will resume these points later on in Section 5.

3.3. Observations on the Grid Current

The measured grid current increases when moving from small neg-
ative voltages towards the ordinate following an exponential shape,
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see Figure 2(a). For positive voltages the current increases less
steep, but may reach significant values (Figure 2(b)). The grid cur-
rent Ig is highly influenced by Vg , but has only small dependency
on Va.
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Figure 2: Grid current measured for 12AX7 triode (same tube).

4. MODELING OF TUBES

In the last 20 years about a dozen different tube models for SPICE
simulation tools were invented. These mathematical expressions
are also widely used in digital audio effect algorithms. For appli-
cation of those SPICE models we refer to a recent book [9] and the
original papers.

Basically we can distinguish between physical models, which
are based on the physical tube equations and heuristic or phe-
nomenological models, which have no physical foundation. A dif-
ferent distinction can be made by classifying models by purpose of
use. While the first tube models were motivated by SPICE-based
hi-fi circuit analysis, the newer models are explicitly invented for
guitar amplifier simulation. In the following we will review three
approaches briefly to get an introduction to the subject.

One of the most popular models is a phenomenological de-
scription invented by Koren [10]. In his approach the triode is
composed from basic SPICE components, namely current sources,
resistors and diodes and a mathematical description. The work
features a library with popular tubes. Koren’s model gives good
results for simulations with negative grid.

A recent model was proposed by Cardarilli et al. [11]. In their
formulation the “tube constants” (e.g. µ, G) are exchanged by
3rd-order polynomials, then the model (with its many unknowns)
is fitted to measurement data. The presented results, including the
simulation of a guitar amplifier, are very promising. Nevertheless
the formula has lack of physical interpretation, because the poly-
nomial for the perveance, which is the only real constant, has a
high excursion.

Cohen and Helie [12] extended Koren’s model by a more real-
istic grid current, using a piecewise-defined function with a linear
part, a second-order polynomial and a smooth transition. They
performed current measurements in a similar manner, followed by
a bilinear interpolation. Based on these data a fitting is executed,
identifying Koren’s parameters individually for three triodes.

5. NEW TRIODE MODEL

Based on the observations from Section 3 a new triode desription
is deployed. We follow the idea, that the model in general has to be
physically motivated, i.e. the formulations have to follow the tra-
ditional equations as explained in the second section. Furthermore
the model has to be adaptable, so that simulations can be fitted in-
dividually to a selected tube. Last but not least, formulations with
low complexity are desirable, to enable real-time applications.

5.1. Cathode Current

The exponent in equation (4) may differ from the theoretical value
3
2

, as already stated in Section 3.2. This can be explained by the
fact, that the exponent is calculated for simplified and ideally con-
structed triodes and thus may differ from practical ones.

Kniekamp focused in a historic study on the exponent and
specified several counteracting reasons for the deviation [13], say-
ing that the exponent may be both smaller or greater than 1.5. Re-
ich [1] identified the exponent generously to be approximately in
the range 1.2 to 2.5.

In fact, this was already part of other triode models, Koren for
example assumed a fixed exponent of 1.4 in his model [10]. In the
upcoming model the exponent will be parametrized with γ. This
leads to the first approximation for the cathode current

Ik ≈ G · (Veff)
γ , Veff > 0. (5)

Note that the transition for Veff ≤ 0 is not considered in this equa-
tion.

5.2. Grid Current

With a view to the mechanical construction it is obvious that the
relation between grid and cathode can be modeled roughly as a
vacuum diode. The variables may differ considerably since the
grid electrodes’ construction is distinct from the solid anode. But
in general any N-electrode arrangement will show an initial veloc-
ity current and space-charge effects, cf. [2].

From the measurements we found, that the grid current Ig is
highly influenced by the grid voltage, but has only small depen-
dency on the anode voltage. This leads to a simplified approxima-
tion for Ig = f(Vg),

Ig ≈ Gg · V ξg (6)

with the grid perveance Gg and exponent ξ. Similar observations
are specified in [12] and supported by the literature [2, 4]. Note
that equation (6) corresponds to the space-charge law, equation (4),
but with possibly deviant exponent. Near to Vg ≈ −0 the grid
current was measured to resemble an exponential curve. This can
be explained by the initial velocity current, as in equation (1).

5.3. Smooth Transition

To create a smooth transition between piecewise functions various
approaches are possible. For our model we decided to use a com-
bination of exponential function and logarithm. As introduction
we examine a simple function f(x) with

f(x) =

{
x , x > 0

0 , x < 0.
(7)
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Figure 3: Smoothing function.

Obviously there is a knee at x = 0. To smoothen this discontinuity
we consider a second function

g(x) = log(1 + ex) (8)

showing the same tendencies as equation (7) for greater values of
|x|. With increasing x the result tends to g(x) ≈ log(ex) = x,
while the exponential and thus the function value approaches zero
in −x direction.

The curve shape can furthermore be adapted towards the linear
function using an additional factor C, leading to

h(x) = log(1 + eC·x) · 1
C
. (9)

This relation is illustrated in Figure 3, where equations (7), (8)
and (9) are plotted (adaption factor was chosen C = 2).

With this mathematical trick the smoothing of our modeling
equations comes to mind. The idea is not new, by taking a closer
look to Koren’s model, we figure out equation (8) in the expression
for the anode current. Evidently equation (9) with the extension is
more flexible.

5.4. Final Equations

The derivations for the cathode and the grid current are now as-
sembled and the smoothing is applied to our formulations for Ik
and Ig . Enhancing equation (5) and equation (6) yield the final
formulations:

Ik = G ·
(

log

(
1 + exp

(
C ·
(
1
µ
· Va + Vg

)))
· 1

C

)γ
(10)

Ig = Gg ·
(

log
(

1 + exp
(
Cg · Vg

))
· 1

Cg

)ξ
+ Ig0, (11)

with the perveancesG andGg , exponents γ and ξ and the adaption
factors C and Cg . For the grid current a constant Ig0 is added due
to stability reasons. The anode current subsequently has to be the
difference of both, giving

Ia = Ik − Ig. (12)

These equations still reveal the well-known physics but with some
degree of freedom. Furthermore, they are continuously differen-
tiable and have no discontinuities.

5.5. Fitting to the Measurements

The model equations feature four free parameters for the cathode
current (G, C, µ, γ) and four for the grid current (Gg , Cg , ξ, Ig0).
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Figure 4: Fitting of equation (10) to measured Ik.
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Figure 5: Fitting equation (11) to measured Ig .

Using a curve fitting algorithm like sftool1 it is now possible
to adapt the parameters to the measurement data. Figure 4 shows
both measurement data and fitting curve of the cathode current for
a 12AX7 triode, displayed as a 3-D plot. The surface represents the
analytically computed characteristics according to equation (10)
while the measurements are given as black dots. The influence of
the grid voltage on the current is obvious. Figure 5 displays the
same for the grid current, revealing that Ig is almost independent
of Va, as mentioned before. It can be asserted that the measure-
ment dots align well with the surfaces for both plots.

The fitting results for three systems are given in Table 1. For-
tunately, G, µ and γ reflect the standard values that can be found
in the books in a satisfying approximation.

The 3-D plots are nice for getting an idea of the dependencies,
although parametric curves allow for a better inspection of the re-
sults. In Figure 6 the complete characteristics of a measured triode
are compared to the results from the fitting. The influence of grid
and anode voltage on the currents is clearly visible and accurately
replicated by the model.

1Surface Fitting Toolbox for MATLAB, The Mathworks
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Figure 6: Complete characteristics of a 12AX7 triode. In black: simulation results, ◦: measurement data from a RSD tube. Plots on the
left: grid family for Va =100 V, 200 V and 300 V. Plots on the right: plate family for Vg =−2 V, −1 V, 0.1 V, 1 V and 2 V.

RSD-1 RSD-2 EHX-1
G 2.242E-3 2.173E-3 1.371E-3
µ 103.2 100.2 86.9
γ 1.26 1.28 1.349
C 3.40 3.19 4.56
Gg 6.177E-4 5.911E-4 3.263E-4
ξ 1.314 1.358 1.156
Cg 9.901 11.76 11.99
Ig0 8.025E-8 4.527E-8 3.917 E-8

Table 1: Individually fitted parameters for 12AX7 triodes.

5.6. Parasitic Capacitances

The electrodes and their mechanical assembly lead to parasitic ca-
pacitances which have to be taken into account for a correct dy-
namic behavior. As in other existing tube models we assume the
standard values that can be found in the data sheets, i.e. Cak =
0.9 pF, Cgk = 2.3 pF and Cag = 2.4 pF for 12AX7.

6. RESULTS

6.1. Comparison with other Models

The proposed model has to be compared to the existing approaches.
Figure 7 shows again the family characteristics of the new model

(black curves) and the measurements of one tube (circles). The
dotted curves show the characteristics of Koren’s model [10]. The
curves have generally the same progression. Differences are found
for the grid current (lower plots) and for the shape of the anode
current for positive grid voltages.

This observation is not surprising. The new model was indi-
vidually fitted to the measurement data, so the black curves should
align better with the circles than the general Koren model. More
meaningful is the comparison to other individual models. We de-
cided to examine the individual model proposed by Cohen and He-
lie [12]. It is based on Koren’s formula, but with a different grid
current where a piecewise-defined function with three subdomains
is suggested. To achieve an equitable comparison the equations
were fitted in a similar manner to the same measurement data. The
results are displayed in Figure 7 as dashed curves. The improve-
ment due to the individualization is clearly visible and the curves
align better with the measurements.

Regarding our approach a deviation remains for high anode
voltages and negative grid voltage (see upper left plot), where the
standard Koren model interestingly performs best. Besides, the
shape for very low anode voltages (Va < 20 V) is not captured
correctly.

However, in this comparison the proposed equations allowed
better fitting results and achieved a good alignment with the mea-
surements. The same observation was made for the other tested
triodes.
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Figure 7: Comparison of different triode models. Plots on the left: grid family for Va =100 V and 300 V. Plots on the right: plate family
characteristics for Va =−2 V, 0.1 V and 2 V. Shown are Koren’s approach (dotted), Cohen and Helie (dashed) and the new model (black).
The discrete measurement points are marked with ◦.
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Figure 8: Common-cathode amplifier stage.

6.2. Application: Common-Cathode Amplifier Stage

To check to what extent the model equations replicate real triodes
when used within a circuit simulation, a common tube amplifier
stage was prototyped. The same tubes as those used in the fitting
procedure were operated in this test circuit and the responses to
various excitation signals were measured.

Figure 8 depicts the schematic of the chosen amplifier stage.
This common-cathode amplifier can be found in almost all pream-
plifiers designs. We skip a detailed circuit analysis and are content
with the information, that this represents an inverting amplifier giv-
ing a high gain. The operating point is a bit negative, but for higher

input amplitudes the grid will be temporarily positive. Several pa-
pers analyzed this simple but representative circuit and discussed
qualified simulation techniques [9, 12, 14, 15].

For the simulation of the circuit a state-space model was im-
plemented. The state-space representation has turned out to be
a practical tool for the simulation of nonlinear circuits [16]. We
skip the details of the implementation and refer to a recent study
dealing with this method [17]. The state-space representation gets
along with four state variables, two for the shown capacitors Cout

and Ck and two for the parasitic capacitances of the triode. In fact,
in Section 5.6 we introduced three capacitances (Cak, Cgk and
Cag) but they are not independent and thus can be reduced to two.

6.2.1. Waveforms

A comparison of time signals is given in Figure 9, where the simi-
larity for different frequencies and input amplitudes is checked. As
expected, the waveforms for higher input amplitudes are distorted.
The measured and simulated outputs align well and only small dif-
ferences can be observed. All measurements and simulations were
performed with a sampling frequency fs = 96 kHz.

6.2.2. Harmonic Spectra

Waveform comparisons give only limited information on how good
a simulation performs. In addition, the harmonic content of the
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Figure 9: Waveform comparison of measurement (gray) and simulation (dashed black) for different input signals (solid black). First row:
sinusoidal excitation with 500 Hz and 2 V, 4 V and 8 V. Second row: 4 V sine burst for frequencies 500 Hz, 1 kHz and 2 kHz.

output is computed both for reference system and simulation. The
exponential sweep technique [18] was used to measure the intro-
duced distortion. Figure 10(a) shows the harmonic distortions of
the discussed circuit for a 4 V measurement signal. The results of
the simulation are given in 10(b). As the plots illustrate, a satisfy-
ing similarity is achieved. Differences are visible at high frequen-
cies, where the simulation is a bit flatter.

6.2.3. Guitar Sound

Some sound clips of electric guitar playing are recorded with the
circuit and simulated. The comparison supports the good confor-
mance of the results. The clips are available on our homepage
http://ant.hsu-hh.de/dafx2011/tubemodel

6.3. Limitations

The measured type of triode 12AX7 is known as a linear tube [9].
Keeping guitar amplifier distortion in mind this may confuse at
first. But the classification linear or nonlinear regime depends on
the course of the amplification factor µ. A typical example for a

nonlinear triode is the 12AT7, which can be found in audio circuits
(e.g. phase inverter stages) as well. In addition to the 12AX7 mea-
surements, one 12AT7 triode was checked. It was found that the
fitting results are not as good as for the 12AX7 tubes. Especially
the assumption that Ig is almost independent of Va is not valid
anymore. As a second limitation we have to respect a lower bound
for the anode voltage. When operating the triode model in the re-
gion with Vg > 0 and small anode voltages, say Va < 20 V, the
results are obviously not correct. For real triodes the anode current
will decrease rapidly when approaching Va = +0 V, an effect that
is not reproduced by the presented formulations.

7. DISCUSSION AND OUTLOOK

The proposed equations are able to characterize the behavior of
real triodes in a good accordance. One advantage over other de-
scriptions is that the equations can be educed from the fundamental
laws to a large extent.

Though there are some restrictions as identified by the com-
parisons. As already stated, the shape for very low anode voltages
(Va < 20 V) is not captured correctly. But normally the 12AX7
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Figure 10: Frequency domain analysis of the common-cathode amplifier. Smoothed harmonic spectra for a sweep with 4 V amplitude.
Shown are the fundamental (black), odd (dashed gray) and even order harmonic responses (solid gray).

triode will not be operated in this region, because the internal re-
sistance approaches a finite value for all anode voltages. Hence
this shortcoming is considered to be marginal.

As a future prospect more tubes have to be inspected with even
higher resolution of the discrete measurement points to improve
the quality of the fittings. Furthermore the model has to enhanced
so that nonlinear triodes are comprised, too.

8. CONCLUSION

A new model for triodes of type 12AX7 was presented, featur-
ing a good replication of the grid current and physically-motivated
formulations. The equations are mainly based on the Langmuir-
Child’s law and can be calculated separately for cathode and grid
current.

Free parameters within the formulations were used to perform
an individual fitting to measurement data of practical triodes. It
was shown, that the equations are able to characterize the proper-
ties of real tubes in good accordance.

To prove the suitability for the simulation of audio circuits,
the model was embedded in a state-space description of a typical
tube preamplifier. The simulation results for different input ampli-
tudes and frequencies were compared to reference measurements
and showed a good match. The derived equations are simple, con-
tinuously differentiable and applicable for real-time simulations.
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ABSTRACT

This paper presents a framework for the estimation of the faders
gain of a mixing console, in the context of broadcast radio pro-
duction. The retrieval of the console state is generally only pos-
sible through a human-machine interface and does not permit the
automatic processing of such information. A simple algorithm is
provided to estimate the faders position from the different inputs
and the output signal of the console. This method also allows the
extraction of an additional unknown input, present in the mix out-
put. An exhaustive study on the optimal parameter setting is then
detailed, that shows good results on the estimation.

1. INTRODUCTION

The transition of the broadcast technical craft from analog to digi-
tal audio casting is an important imminent change for radio stations
in France. Indeed, the forthcoming revolution of the radio media is
the emission of associated interactive visual content that provides
a live complement to the audio content. The automatic production
of additional multimedia content implies an increased control on
the whole media production process. Such feature requires the up-
stream knowledge of the audio media produced and emitted, which
is not possible with the actual broadcast model state.

Interfacing with a mixing console is a typical example of this
lack. Typically, several inputs of the console are active and ded-
icated to various audio streams (i.e. jingles, advertisements, lin-
ers...) but only a small part of them is actually present in the mix
output emitted by the station. This type of material is highly pro-
prietary and an open machine interface is rarely provided to check
the state of the controls. However, knowing the exact content of
the output is essential to be able to generate data associated.

A typical example of this issue is the displaying of the album
covers of a musical playlist, on a multimedia stream coupled with
the audio stream. Succeeding musical tracks are assigned to differ-
ent channels of the console, and mix-faded. The track faders posi-
tion determine the song that is actually heard. The blind identifica-
tion of audio tracks is commonly proceeded through fingerprinting
techniques. The contributions in the field are numerous, both from
the industrial actors [1][2] the academic world [3]. However, most
audio fingerprinting methods are inefficient in the presence of sev-
eral mixed tracks, and these techniques could only detect the pres-
ence of the tracks, not their respective gains. This article shows
how a simple signal-based method answers this problem.

Our scope of interest is widened by considering the eventual
presence of an additional unknown input in the mix process. In-
deed, the estimation of known sources mix logically allows the
deduction of the unknown source contribution. We will see that

∗ This work was done during my PhD period at the radio station RTL.

the proposed system is able to extract this source from the output,
and give an extensive study on the integrity of the signal extracted.
This issue is indeed relevant in our use-case since the speakers
microphones are usually directly connected to the mixing console
with no possibility to retrieve the signal independently, while oth-
ers pre-recorded sources are directly accessible to a program.

The definition of the mix estimation problem and the proposed
algorithm are presented in Section 2, followed by the description
of the experimental protocol of our study in Section 3. An analysis
of the results and refining of the parameters will follow in section
4, and Section 5 concludes this work.

2. MIX ESTIMATION

2.1. Definition of the problem

The problem stated is the estimation of the fader gains of a mix-
ing console from the known inputs and output. The inputs of the
console are fed with pre-recorded sounds, e.g. jingles, liners or
musical tracks. The output is directly retrieved from the mixing
console. An important issue, is the effect of the track filters (mod-
elled as Finite Impulse Response filters) applied on each input of
the mixing console. The inputs considered in the estimation pro-
cess are thus previously filtered with the corresponding impulse
response, that is measured using Golay codes [4] on each input.
The two objectives are the estimation of the fader gains in a dy-
namic context, and the estimation of an unknown additional input,
that contains a signal that is not directly retrievable.

Figure 1: Architecture of the system.

The system architecture is summed up in figure 1. The following
notations are used in the remainder of this article:
Xi

n =
[
xi(n), . . . , xi(n−N + 1)

]T is the N sample column
vector for the ith input at instant n,
Xn =

[
X1

n, . . . , XI
n

]
is the input matrix a scenario involving I

known inputs, at instant n,
Yn = [y(n) . . . y(n−N + 1)]T is the output column vector.
Un is the additional unknown voice input vector, at instant n,
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An =
[
a1n, . . . , a

I
n

]T
models the fader gain values at instant n.

The mixing console effect is modeled by Yn = Xn An + Un.

2.2. Algorithm

The mix estimation is solved with least mean squares. An is con-
sidered as the projection of the output Yn on the space generated
by the input matrix Xn. Let Xn

† denote the pseudo-inverse of
Xn, then:

Ân = Xn
†Yn =

(
Xn

T Xn

)−1

Xn
T Yn (1)

The faders gain vector Ân is estimated on frames of N samples,
with a hop size of R samples between frames. The delay induced
by the mixing process in the output can be rendered by the RIF fil-
ters applied to each input, and is thus ignored in our formalization.

The fader gain for each track i is thus described by a sequence
Ai =

[
ai0 a

i
R . . . a

i
k·R
]
, sampled at 1/R. The upper Figure 2

shows an example of estimated gain sequences (Âi)i=1,...,I for
an added noise of 20 dB Signal to Noise Ratio, that models the
Un signal. To reduce the distortion induced by the added noise,
a post-process consisting of a median filter on F samples, is ap-
plied. Median filtering is a robust, fast, and very common way to
smoothen estimation curves [5]. The lower Figure 2 illustrates the
drastic effect in the estimates. The choice of the filter size, fixed
to F = 20 samples in the figure, must meet a compromise in the
reduction of distortions between static and transient parts.
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Figure 2: Estimated Âi sequences with added noise 20 dB SNR,
with N = 2000 and R = 500. (up) no post-processing (down)
median filter, 20 sample window.

The unknown track is then estimated, with the estimated mix gain:

Ûn = Yn −Xn Ân (2)

The remainder of this article focuses on the influence of pa-
rametersN , R and F on the estimation, for different Mix to Noise
Ratios (MNR) or Mix to Added voice Ratio (MAR), where Mix
denotes the mix of the known inputs : Xn An.

3. EXPERIMENTS

3.1. Corpus

The evaluation corpus consists of excerpts of radio broadcast news
shows, and thus mainly filled with speech, with a possible back-
ground liner. The audio tracks are monophonic with 16 bits quan-
tization, sampled at 16 kHz. Each result is computed on a 20 min-
utes mix simulation.

Four tracks are used for the known inputs Xi (I = 4). The
additional signal U is either a Gaussian noise or another excerpt
of the broadcast news. Since different speech signals are more
correlated than music and speech signals, our experiment is more
constrained than the original requisites. We have also tested the
unknown track extraction with the musical known inputs from the
RWC music genre database [6], but this brings no significant im-
provement.

3.2. Fade simulation

As stated earlier, the mix estimation process behaves differently on
static and transient parts of the fader gain sequences (Ai). Indeed,
the correct estimation of the transient is only done through a linear
interpolation between successive frame values. The gain values
are thus prone to more distortions on fadings.
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Figure 3: Example of measured fade curves (solid) and modeling
by a sigmoid curve (dashed)

The way humans move faders is quite variable, as shown in the
solid curve examples of Figure 3, acquired from a mixing console.
However, the first two human fadings are quite similar to a sigmoid
curve, defined by S(t) = 1/(1 + e−αt). This model is used here
for the artificiel fading transitions. Because of the fast convergence
on the edges, it helps modelling a fast and continuous transition
between two values.

In this experiment, the four tracks gain are changed alterna-
tively at random intervals (around 15 s) and follow a sigmoid fade
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curve during a random interval around 0.5 s. The mean duration
of the total fade intervals on each 20 minute mix test is 1 minute.

3.3. Evaluation

For the evaluation of the mix estimation process, the criterion is
the mean gain distortion on all tracks (expressed in dB) :

Gdist = 10 log10
1

I

∑

i

‖Âi −Ai‖2
‖Ai‖2 (3)

Since this problem is also a source separation problem (with
high prior knowledge), the criteria presented in [7] for Blind Source
Separation scoring are also relevant in this context, especially for
the unknown track estimation. They give a more specific measure
for separation than the usual Signal to Noise Ratio.
Let M be the mixed signal without the unknown track U, the es-
timate Û can be projected on U and the mixed signal M, with
εartif the residual of the projection:

Û = 〈Û,U〉U + 〈Û,M〉M + εartif , (4)

where 〈·, ·〉 denotes the inner product. The Signal to Distortion
Ratio (SDR) is a global measure of the separation quality, while the
Signal to Interference (SIR) and Signal to Artifacts (SAR) ratios
respectively measure the amount of unknown track and artefacts
remaining in the separated mixed signal. They are defined as:

SDR = 10 log10
‖〈Û,U〉U‖2

‖〈Û,M〉M + εartif‖2
(5)

SIR = 10 log10
‖〈Û,U〉U‖2
‖〈Û,M〉M‖2

(6)

SAR = 10 log10
‖〈Û,U〉U + 〈Û,M〉M‖2

‖εartif‖2
(7)

The SIR helps particularly in measuring the proportion of mixed
signal kept in the estimation of the unknown track.

The same criteria are also defined on the restriction to the parts
containing fades (see section 3.2): GF

dist, SDRF, SIRF, SARF.

4. RESULTS

4.1. Mix without unknown input

Table 1 shows the gain distortion Gdist in the unnoised situation
(i.e. Un = 0 ∀n) for different median filter length (F ) and win-
dow size (N ) values. Not surprisingly, the mix estimation is more
accurate when the median filter is longer and the window more
narrow. A negligible gain distortion of -62 dB is measured for the
best case (F = 100 and N = 50). When restricted to fade inter-
vals, GF

dist is a few dB higher for all values of F and N but still
remains very low in the best case (GF

dist = -58 dB).

4.2. Robustness to distortions

Naturally, the gain distortion increases when noise is introduced in
the mixed signal, and the parameters effect is different. The upper
Figure 4 shows the gain distortion measured with F varying from
0 (no filtering) to 100, and N between 50 and 8000, for a SNR
of 10dB. The figure clearly shows the correlation between the two

filt / N 50 200 500 2000 8000
0 -39.5 -34.3 -28.8 -27.9 -15.3
5 -45.1 -41.8 -34.1 -29.8 -15.3
15 -51.8 -52.1 -44.0 -29.8 -14.4
50 -58.9 -54.0 -44.0 -29.2 0.4
100 -62.5 -54.0 -44.0 -7.9 7.3

Table 1: Gain distortion Gdist for different configurations of F
and N , without unknown input.

parameters optimal values: the minimal gain distortion Gdist re-
mains stable when the product F · N is constant. Indeed, Eq. 1
gets more over-determined when N increases, and F must conse-
quently be lowered to avoid over-smoothing of the gain curves. A
global minimum is observed around N = 2000 and F = 15, with
Gdist = −20.0 dB.
On the contrary, the gain distortion on the sole transitions (Figure
4) show a much more localized minimum. The minimum peak is
also reached for N = 2000 and F = 15 with GFdist = −15.9
dB, but decreases strongly outside these values, even when keep-
ing F ·N constant. This shows the higher sensitiveness of the gain
estimation on fadings.
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Figure 4: Gain distortion for different F and N values, with an
added noise of 10dB SNR.

The same experiment is followed for 20 dB and 5 dB SNRs.
Figure 5 compares Gdist (solid) and GF

dist (dashed) for these three
SNR values, with different F and a window length of N = 2000
samples. Gdist is minimized in most cases for F = 15. For short
median filter lengths, the gain distortion is lower on fading inter-
vals than on the whole signal for SNR of 20dB and 10dB. This re-
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veals the distortion induced in the fading gain by over-smoothing.
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Figure 5: Evolution of Gdist (solid) and GFdist (dashed) with the
median filter length (N = 2000), for different SNR values.

4.3. Unknown input estimation

In this next experiment, the scope of evaluation is restricted to the
fading intervals. The previous experiment has provided some clues
to calibrate F and N . If this noise is replaced by a speech track,
the minimal gain distortion differs only by a few dB, and is still
observed in most cases for N = 2000, as shown in table 2(a),
where each column sums up the optimal configuration for a given
Mix to Additional track Radio (i.e. MAR = ‖M‖2 / ‖U‖2). The
gain estimation is evaluated for different values of MAR ranging
from 20 dB to -5 dB. For low MAR values (i.e. a stronger added
signal) the gain distortion is much higher, and reaches -7dB in
the best case for a -5dB MAR. The best configuration is clearly a
median filter length of 30 samples and a window of N = 2000.

MAR (dB) 20 10 5 0 -5
F 30 50 30 30 30
N 1000 500 2000 2000 2000
GF

dist (dB) -22.3 -16.0 -13.8 -10.0 -7.0
(a) Optimal N , F and gain distortion GFdist

F 5 5 10 5 5
N 500 2000 500 500 500
SIRF (dB) 48.9 51.8 51.4 50.1 56.0

(b) Optimal N , F and Signal to Interference Ratio SIRF

F 10 10 15 10 10
N 1000 1000 1000 1000 2000
SARF (dB) 18.2 22.9 24.3 25.1 26.8

(c) Optimal N , F and Signal to Artefacts Ratio SARF

Table 2: Optimal values on fading intervals for different MAR.

The Signal to Interference Ratio, presented above, evaluates
the separation of the unknown track U by quantifying the pro-
portion of the mixed signal M present in the estimation Û. N
varies from 500 to 4000, and the median filter length F between
5 and 50. The SIRF criterion on the sole fading intervals helps
judging the separation capability for the different configurations.
Table 2(b) shows, for each MAR value, the optimal N and F val-
ues, along with the maximum SIRF. The latter criterion increases
when the MAR gets higher, which shows that theGdist criterion is

not relevant in evaluating source separation since it has an opposite
behaviour. The SIRF is maximized to 56dB with -5dB MAR.

Nevertheless, the artefacts are a much important part of the in
noise induced in the source separation, than the interference. Table
2(c) shows the optimal Signal to Artifacts Ratio measured in the
same experiment. The latter increases as well when the unknown
track energy increases, and reaches 26.8 dB for a -5dB MAR, with
F = 10 and N = 2000. Since the SARF is 30 dB lower than the
SIRF, the latter is considered negligible, and the global distortion
measure SDRF is considered equal to SARF. The optimal N and
F are thus very close to the values estimated in Section 4.2 above.

A last study is done on the step lengthR. For each MAR value,
the SARF score is measured for R ∈

[
N
8
N
4
N
2

]
. A systematic

improvement is observed with R = N
8

and F ′ = 4F . Table 3
shows the gain measured on the SARF evaluation criterion, when
compared to R = N and F ′ = F .

MAR (dB) 20 10 5 0 -5
SARF (dB) 24.3 26.5 27.4 28.4 28.9
∆SARF (dB) 6.1 3.6 3.1 3.3 2.1

Table 3: Gain on the Signal to Interference Ratio on fadings SARF

with a window hop of R = N
8

and F ′ = 4F (where F is the
optimal value with R = N ) for different MAR values.

5. CONCLUSION

We have presented here an efficient and very simple algorithm for
the estimation of a mix with the prior knowledge of the input and
output signals. The optimal gain distortion is -20dB on the whole
signal and -16dB on the gain fading transitions. The extraction of
an added unknown track has shown very reliable since the global
signal to distortion measured on the estimation reaches 28.9dB,
this distortion is mostly due to artefacts induced by the algorithm.

The major weakness of our algorithm, though, lies in the need
of a prior knowledge of the filters applied on each track by the
mixing console. An interesting perspective would be the dynamic
estimation of the filters response coupled with the mix estimation.
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ABSTRACT

In this paper we present an original method mixing temporal and
spectral processing to reduce the phasiness in the phase vocoder.
Phasiness is an inherent artifact of the phase vocoder that appears
when a sound is slowed down. The audio is perceived as muf-
fled, reverberant and/or moving away from the microphone. This
is due to the loss of coherence between the phases across the bins
of the Short-Term Fourier Transform over time. Here the phase
vocoder is used almost as usual, except that its phases are regu-
larly reset in order to keep them coherent. Phase reset consists in
using a frame from the input signal for synthesis without modify-
ing it. The position of that frame in the output audio is adjusted us-
ing cross-correlation, as is done in many temporal time-stretching
methods. The method is compared with three state-of-the-art algo-
rithms. The results show a significant improvement over existing
processes although some test samples present artifacts.

1. INTRODUCTION

Time-stretching of an audio signal is a process that increases or
reduces the length of the signal while preserving its acoustic qual-
ity. In other words it reduces or increases the playback speed of
the sound without changing its perceived content, as opposed to a
change of the sampling frequency that causes a downward or up-
ward frequency shift.

Many algorithms have been developed to achieve such a trans-
formation. They generally belong to one of three categories [1]:
time-domain, frequency-domain and model-based algorithms, al-
though some methods combine several approaches (time and fre-
quency, frequency and model).

Time-domain methods such as SOLA (synchronized overlap-
add), WSOLA (waveform similarity-based synchronized overlap-
add), SOLAFS (synchronized overlap-add, fixed synthesis), TD-
PSOLA (time-domain pitch-synchronous overlap-add) [2, 3, 4]
and their variants are usually applied to monophonic signals, for
instance speech and singing recordings. The basic principle of
these methods is to segment the signal into overlapping frames (i.e.
blocks of consecutive audio samples) and either duplicate (drop)
some frames or increase (reduce) the shift between each frame, in
order to extend (compress) the duration of the signal.

Frequency or spectral-domain algorithms are most often based
on the phase vocoder [5]. Compared to time-domain approaches,
the phase vocoder has the advantage to work with both mono and
polyphonic signals. Besides it theoretically overlaps frames per-
fectly in phase with each other. However in practice it produces a

This work is supported by a public-private partnership between Uni-
versity of Mons and EVS Broadcast Equipment SA, Belgium.

sound that can be perceived as muffled, reverberant and/or moving
away from the microphone [6, 7]. This distortion is called phasi-
ness [8] and the accepted explanation for its presence is a loss of
coherence between the phases across the bins of the Short-Term
Fourier Transform over time, also called loss of vertical phase co-
herence. Different methods have been proposed in order to atten-
uate this artifact in [6, 7, 9].

Model-based approaches transform the audio signal into a set
of frame-adaptive parameters that are decimated or interpolated to
synthesize a time-scaled version of the sound. Linear Prediction-
based analysis/synthesis, Harmonic plus Noise Model [10], Spec-
tral Modeling Synthesis [11] and Sine + Transient + Noise Model
[12] are good examples.

Some methods combine several approaches, as an enhanced
version of SOLA [13] where a phase vocoder is used to modify
the phases of each frame so that they overlap properly instead of
adapting their position in the output audio signal. Another ex-
ample is [14] which concatenates groups of time-domain frames
with groups of frames generated by the phase vocoder. Besides
STRAIGHT [15] could be considered as a mixed method to a cer-
tain extent.

In this paper we propose a new approach where a SOLA-like
algorithm is used to periodically adapt the position of some frames
in a phase vocoder (as opposed to using a phase vocoder to adapt
the frames of SOLA in [13]). These frames are analysis frames
used without phase modification which in turn causes a phase reset
of the vocoder. This reduces the phasiness observed in audio sig-
nals without requiring any phase locking. We named this method
PVSOLA (Phase Vocoder with Synchronized Overlap Add).

Phase reset or time-domain frame insertion has already been
introduced by Karrer [16], Röbel [17] and Doran et al. [14]. Karrer
resets the phases of the vocoder during silent parts, so that the
distortion that it might cause is inaudible. Röbel preserves the
transient components of a signal by resetting the phase-vocoder
whenever a transient event is detected. Doran et al. do not abruptly
reset the vocoder, instead they progressively alter the phases of the
synthesis frames in order to regain coherency with the input signal.
When the output and input signal become eventually in phase, a
group of frames from the input is directly inserted in the output
which is equivalent to a reset of the phase vocoder.

We review the principle of an STFT-based phase vocoder in
Section 2 with the description of two possible approaches and dif-
ferent phase locking methods. Then we introduce an implemen-
tation of our method in Section 3 and we discuss its results and
future developments in Sections 4 and 5.
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2. PHASE VOCODER

The underlying hypothesis of the phase vocoder is that a signal
x(n), sampled at frequency Fs, is a sum of P sinusoids, called
partials [18]:

x(n) =

P∑

i=1

Ai cos(
n

Fs
ωi + φi) (1)

each with its own angular frequency ωi, amplitude Ai and phase
φi. These 3 parameters are presumed to vary relatively slowly
over time so that the signal is quasi-stationary and pseudo-periodic
(e.g. speech and music). By segmenting the signal into overlap-
ping frames to compute a Short-Term Fourier Transform (STFT),
it is possible to use and modify the spectral amplitude and phase of
each frame to either time-shift them (Section 2.1) or to interpolate
new frames from them (Section 2.2).

2.1. Frame shifting

The most common implementation of the phase vocoder found
in the literature [5, 7, 18] uses different sizes for the shift be-
tween frames (hopsize) during the analysis and the synthesis steps.
The ratio between these two hopsizes equals the desired slow-
down/speed-up factor. This means that to change the speed by a
factor α with a synthesis hopsize Rs the analysis hopsize Ra must
be:

Ra = αRs (2)
Since the relative position of each frame in the output signal

is different from that of the frames in the input signal, a simple
overlap-add of the frames to generate that output will cause phase
discontinuities. The main idea behind the phase vocoder is to adapt
the phase of each partial according to the new hopsize Rs so that
all the frames overlap seamlessly. Roughly speaking the adapta-
tion needs to keep constant the variation of phase over time.

For each bin k of the STFT the phase variation between input
frames i and i − 1 is compared to the expected phase variation for
that bin (a function of k and Ra). The difference between these
two values (the heterodyned phase increment) is converted to the
range ±π (Equation 6), divided by α and added to the theoretical
phase variation for bin k in the output signal (a function of k and
Rs). Finally this value is added to the phase of output frame i − 1
to obtain the phase of output frame i (Equation 7). Note that the
input frame 0 is reused as output frame 0 (Equation 3) and that the
spectral amplitudes are not modified (Equation 4).

Y (0) = X(0) (3)
|Y (i)| = |X(i)| (4)

Ω = {0, . . . , k
2π

L
, . . . , (L − 1)

2π

L
} (5)

∆φ(i) = [∠X(i) − ∠X(i − 1) − RaΩ]2π (6)

∠Y (i) = ∠Y (i − 1) + Rs(Ω +
∆φ(i)

Ra
) (7)

where X(i) and Y (i) are the Discrete Fourier Transforms (DFT)
of the ith input and output frames. X(i), Y (i), Ω and ∆Φ(i) are
L-sample vectors with L the length of a frame. []2π denotes the
conversion of the phase to the range ±π [18].

Once the DFT of a frame has been calculated the synthesis
frame samples are computed by Inverse Discrete Fourier Trans-
form (IDFT) and the frame is added by overlap-add to the output
signal.

2.2. Frame generation

Another implementation of the phase vocoder was proposed by
Dan Ellis in [19]. Contrary to the previous method it uses the
same hopsize between the frames at analysis and synthesis time.
Obviously when doing time-stretching the number of frames used
to synthesize the output is different from the number of frames ex-
tracted from the input. Frames have to be dropped or created one
way or another. In the algorithm developed by Ellis all frames are
generated by interpolating the spectral amplitudes and accumulat-
ing the phase variations between the analysis frames.

The first step sets the initial synthesis frame spectrum Y (0)
equal to the initial analysis frame spectrum X(0):

|Y (0)| = |X(0)| (8)
∠Y (0) = ∠X(0) (9)

For the following synthesis frames the synthesis frame indices
j are linearly mapped to the analysis indices i using Equation 10:

i = αj (10)

where i is generally not an integer value. For instance if the speed
factor α is 0.5 (2× slower), Y (7) corresponds to a frame position
in the original audio equal to α × 7 = 3.5 (i.e. located between
X(3) and X(4)).

The spectrum Y (j) of the jth synthesis frame is a function of
the amplitude and phase variations of its “surrounding” analysis
frames as well as ∠Y (j − 1):

λ = i − bic (11)
|Y (j)| = (1 − λ)|X(bic)| + λ|X(bic + 1)| (12)
∆φ(i) = [∠X(bic + 1) − ∠X(bic)]2π (13)
∠Y (j) = ∠Y (j − 1) + ∆φ(i) (14)

where bic is the integer value of i (the largest integer not greater
than i). Finally the IFFT of each Y (j) is computed and the sam-
ples are overlap-added into the output signal.

2.3. Phase locking

The methods presented in Section 2.1 and 2.2 are applied indepen-
dently to each bin k of the spectrum in order to keep intact the
phase constraints along the time (or horizontal) axis of the spec-
trogram. As a consequence there is no constraints with regard to
the vertical axis: if there is a dependency between bins k − 1, k,
and k + 1 in the input signal it is lost in the process. This causes
the apparition of the phasiness artifact [8].

In order to correct this problem several algorithms have been
proposed. In [6] Puckette uses the phase of the sum of the spectral
values from bins k−1, k, and k+1 as the final phase value ∠Y ∗(i)
for bin k:

∠Y ∗
k (i) = ∠(Yk−1(i) + Yk(i) + Yk+1(i)) (15)

Laroche et al. [7] proposed a somewhat more complex ap-
proach: the peaks in the spectrum are detected and the phases of
their corresponding bins are updated as usual by the phase vocoder.
The other bins located in the region of influence of each peak have
their phases modified so as to keep constant their phase deviation
from the peak’s phase. As a result there is a horizontal phase lock-
ing for the peaks and a vertical phase locking for all the other parts
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of the spectrum. A refinement of this method is to track the tra-
jectories of the peaks over time and use the previous phase of each
peak to compute the new one. This is important if a peak changes
from one bin to another to avoid its phase being based on the phase
of a previous non-peak bin. However tracking peaks over time is
not always straightforward (peaks can appear, disappear, split or
merge which increases the complexity of the task).

For small lengthening ratio Dorran et al. [14] recover phase
coherence by slightly adjusting the phase of each synthesis frames
so that after a few frames it converges to an almost perfect over-
lap with the analysis frame. From that point on a group of frames
from the original signal can be added directly to the output signal
without any phase transformation and therefore resulting in a (lo-
cally) perfect-quality audio signal. The phase gradual adjustment
is calculated in order to be perceptually undetectable by a human
ear.

3. PVSOLA

The new method presented in this section comes from an experi-
mental observation we made on the phase vocoder (using [19]) and
on the phase-locked vocoder (using Identity Phase Locking [7] as
implemented in [18] ):

Phasiness in the vocoder does not appear (or is not
perceived) immediately. It takes a few frames before
becoming noticeable.

A simple experiment to observe this phenomenon is to alter a
phase-locked vocoder so that the phase-locking happens only once
every C frame. The other frames are processed with a normal
phase vocoder. For small values of C (typically 3 to 5 frames),
the difference in phasiness with a fully locked signal is barely no-
ticeable at all (some artifact/ripples may appear in the spectrogram
though). For larger values of C phasiness becomes audible in the
vocoder output. We propose the following explanation for this be-
havior: the loss of vertical coherence is a slow phenomenon, it
is not instantaneous, and the spectral content also vary relatively
slowly (hypothesis of quasi-stationarity in Section 2). Therefore
every time a peak is detected and locked its neighboring bins un-
dergo some kind of phase reset: their final phase is only a function
of the change of the peak’s phase and their phase difference rel-
atively to the peak’s original phase. As for the peak, since the
signal varies slowly it can be assumed that its position remains
more or less coherent from one frame to another (or even across 3
to 5 frames) even if it changes of bin (the bin change is never an
important jump in frequency).

3.1. Method overview

Based on these observations we propose to combine a time-domain
and a frequency-domain approach. The method consists in a pe-
riodic reset of a phase vocoder by copying a frame directly from
the input into the output and using it as a new starting point for the
vocoder. The insertion point for the frame in the output is chosen
by means of a cross-correlation measure.

3.2. Implementation details

We propose the following framework: first we generate C synthe-
sis frames (f0, . . . , fc−1) using a phase vocoder. Each frame fi is

L-sample long and is inserted in the output signal by overlap-add
at sample ti with:

ti = iRs (16)
where ti is the position at which the first sample of the synthesis
frame is inserted and Rs is the hopsize at synthesis (note that we
choose Rs = L/4 as is usually done in the literature). The last
frame generated (fc−1) is inserted at position tc−1, the next one
(fc) should be inserted at tc. Now instead of another vocoded
frame we want to insert a frame f∗ extracted directly from the
input audio in order to naturally reset the phase of the vocoder but
we know that this would cause phase discontinuities.

In order to minimize such discontinuities we allow to shift the
position of f∗ around tc in the range tc ± T (T is called the tol-
erance). The shift is obtained by computing the cross-correlation
between the samples already in the output and the samples of f∗.
However some samples of the output are “incomplete”, they still
need to be overlap-added with samples that would have been gen-
erated in the next steps of the phase vocoder (i.e. samples ob-
tained by overlap-adding frames fc, fc+1, . . .). As a result a frame
overlapped in another position than tc would cause a discontinu-
ity in the otherwise constant time-envelope of the time-scaled sig-
nal. Besides the cross-correlation would be biased toward negative
shifts around tc. To overcome these problems additional frames
(fc, fc+1, . . . , fF) are generated by the phase vocoder and tem-
porarily inserted so that tF respects the constraint in Equation 17:

tF > tc + L + T (17)

which means that the first sample of the coming frame fF would be
inserted T samples after the end of fc and that the output signal is
“complete” up to sample tF (no samples would be overlap-added
anymore before that sample in a normal phase vocoder).

Position tc corresponds to a position uc in the input signal:

uc = αtc (18)

The next step consists in selecting a frame f∗ of length L start-
ing at sample uc

1 in the input signal and adding it in the output
signal at position tc + δ with −T ≤ δ ≤ T (we fixed the toler-
ance T = 2Rs). Equation 21 defines χ, a cross-correlation mea-
sure between the frame f∗ (Equation 20) and the output samples o
(Equation 19) already generated:

o = {y(tc − 2Rs), . . . , y(tc + L − 1 + 2Rs)} (19)
f∗ = {x(uc)h

2(0), . . . , x(uc + L − 1)h2(L − 1)} (20)
χ = xcorr(o, f) (21)

where {} stands for a vector of values (a frame), h2(n) is the
square of a Hann window (as defined in Equation 26) and xcorr is
the cross-correlation function. x(n) and y(n) are the original and
time-stretched signal respectively. The optimal value of δ corre-
sponds to the position of the maximum of |χs|, the subset of χ (as
defined in Equation 23) that corresponds to an insertion of f∗ in
the position range tc ±2Rs. Figure 1 shows an example of finding
the offset δ using Equations 22 to 25:

ε = L + 4Rs = 2L (22)
χs = {χ(ε), . . . , χ(ε + 4Rs)} (23)
p = argmax(|χs|) (24)
δ = p − 2Rs (25)

1rounded to the nearest integer
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Figure 1: δ is computed from the position p of the maximum value
of a subset of χ. The dashed lines delimit the subset χs and the
dash-dotted line represents a positioning of f∗ exactly at t = tc.
In this example δ is < 0 and χs(p) > 0. The frame length L is
1024.

Notice that each frame processed through the phase vocoder
undergoes two hann-windowing: one before the DFT and one af-
ter the IDFT before being overlap-added in the time-stretched sig-
nal. Therefore f∗ has to be windowed by the square of a Hann
window (Equation 20) in order to overlap-add properly with the
output signal and the future frames. The Hann window h(n) is
defined as:

h(n) =

{
0.5 − 0.5 cos( 2πn

L
) if n = 0, . . . , L − 1

0 otherwise
(26)

This definition is slightly different from the definition usually
encountered (the denominator in the fraction is L instead of L−1)
for the cumulated windowing would present a small ripple other-
wise as explained in [20].

Then f∗ is multiplied by the sign of χs(p) (in case of a nega-
tive peak) and overlap-added to the output audio (Figure 2).

Before inserting f∗ the output samples between tc + δ and
tc + δ + L − 1 are windowed by a function w(n) so that the over-
all accumulated windowing of the output remains constant (taking
into account the frames yet to come). This also means that the sam-
ples of the output signal beyond tc + δ + L − Rs that have been
generated to compute the cross-correlation are set to zero. The
computation of the envelope w(n) applied to the time-stretched
signal is presented in Figure 3 and Equation 27:

w(n) = h2(n + 3Rs) + h2(n + 2Rs) + h2(n + Rs) (27)

Finally since the frame f∗ has been inserted “as is” the phase
vocoder can be reinitialized to start a new step of the time-scaling
process as if f∗ were its initial frame f0 and tc + δ were its initial
time position t0. Note that each analysis frame used during this
new step must be inverted if χs(p) < 0.

3.3. Discussion

It is important to notice that due to the accumulation of shifts δ
(one for each iteration) a drift from the original speed factor α

Figure 2: Schematic view of the insertion of a frame f∗ at posi-
tion tc + δ. Top: output signal after insertion of additional frames
for cross-correlation computation. Middle: windowed output sig-
nal (solid line) and frame f∗ windowed by the square of a Hann
window (dashed line). Bottom: resulting signal before the next it-
eration. The upcoming windowed frames will add to a constant
time-envelope with this signal.

could occur if no measure is taken to correct it. In our implemen-
tation we sum the values of δ for each phase reset and obtain a
drift ∆. When ∆ exceeds ±Rs the number of frames synthesized
in the next iteration will be C ∓ 1 and the value of ∆ will change
to ∆ ∓ Rs. Theoretically ∆ could even exceeds ±2Rs, in which
case the number of frames synthesized will be C ∓ 2 and ∆ will
become ∆ ∓ 2Rs.

Another interesting fact is that if we set C = 0, the result-
ing algorithm is very close to a SOLA-like method except that the
additional frames used for the cross-correlation are still generated
by a phase vocoder. On the contrary C = ∞ changes the method
back into a non-locked phase vocoder.

Finally in Section 3.2 we take the first sample of a frame as
the reference for positioning. One might use the middle sample of
each frame instead. This will not create any significant difference
with the method proposed above.

4. RESULTS

This method can be applied to any phase-vocoder algorithm. For
the following tests we implemented a modified version of the al-
gorithm from [19]. We performed both formal and informal asses-
ments presented respectively in Section 4.1 and 4.2.

4.1. Formal listening tests

We use sentences selected from the CMU ARCTIC databases [21]
among the 4 US speakers, namely clb, slt, bdl and rms (two female
and two male speakers). 50 sentences are randomly picked for
each speaker and each sentence is processed by 4 different algo-
rithms: a phase-vocoder, a phase-locked vocoder, a time-domain
method (SOLAFS) and our method PVSOLA. Each process is ap-
plied with two speed factors: α = 1/1.5 and α = 1/3 (i.e. 1.5
and 3 times slower).
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Figure 3: Schematic view of the computation process for the
weighting function w(n) that will be applied to the output signal
after tc + δ. Top: in a standard phase vocoder, the squared Hann
windows would sum to a constant value except for the last sam-
ples because there are frames not yet overlap-added after tc. We
want to reproduce that behavior at tc + δ so that f∗ overlap-adds
seamlessly. Bottom: The time envelope is the sum of three squared
Hann windows with a shift Rs between each one.

For the two phase vocoders we use the implementation avail-
able in [18] and for SOLAFS we use the implementation from
[22]. We empirically set L = 512 samples and Rs = L/4 for
the vocoders and PVSOLA. In our informal tests SOLAFS gener-
ally provided better quality with L = 256 so we kept that value.
The parameters specific to PVSOLA are C = 3 and T = 2Rs.

PVSOLA is compared to the other three methods via a Com-
parative Mean Opinion Score (CMOS) test [23]. Participants are
given the unprocessed audio signal as a reference (R) and they
are asked to score the comparative quality of two time-stretched
versions of the signal (both of them with the same speed modi-
fication). One is PVSOLA, the other is randomly chosen among
the three state-of-the-art algorithms. The two signals are randomly
presented as A and B. Each listener takes 30 tests, 10 for each con-
current method. The question asked is: “When compared to refer-
ence R, A is: much better, better, slightly better, about the same,
slightly worse, worse, much worse than B ?”

Each choice made by a listener corresponds to a score between
±3. In case A is PVSOLA, “much better” is worth 3 points, “bet-
ter” 2 points and so on until “much worse” which means -3 points.
On the contrary when B is PVSOLA, the scale is reversed with
“much worse” worth 3 points and “much better” -3 points. In short
when PVSOLA is preferred it gets a positive grade and when it is
not it gets a negative one. 16 people took the test (among which
9 are working in speech processing) and the results are shown in
Table 1 and Figure 4 and 5.

From these results one can see that for a speed slowdown fac-
tor of 1.5 our method is globally preferred except for SOLAFS
with female voices where both methods are deemed equivalent.
Besides SOLAFS performs relatively better than the phase-locked
vocoder which in turn performs better than the phase vocoder. This
is an expected result as time-domain methods usually give better
results when applied to speech and the phase-locked vocoder is

Table 1: CMOS test results with 0.95 confidence intervals for fe-
male (clb and slt) and male (bdl and rms) speakers. PVSOLA is
compared to the phase vocoder (pvoc), the phase-locked vocoder
(plock) and SOLAFS.

female
1/α 1.5 3
pvoc 2.03 ± 0.3 0.66 ± 0.43
plock 0.97 ± 0.41 1.86 ± 0.3
solafs 0.14 ± 0.32 1.21 ± 0.27

male
1/α 1.5 3
pvoc 2.49 ± 0.32 1.05 ± 0.47
plock 1.78 ± 0.29 1.71 ± 0.3
solafs 1.13 ± 0.36 1.77 ± 0.27

Figure 4: Results for the CMOS test for female speakers clb and
slt. The dark and light gray bars represent the mean CMOS score
for a speed ratio of respectively 1.5 and 3. 0.95 confidence inter-
vals are indicated for information.

Figure 5: Results for the CMOS test for male speakers bdl and rms.
The dark and light gray bars represent the mean CMOS score for
a speed ratio of respectively 1.5 and 3. 0.95 confidence intervals
are indicated for information.
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supposed to be better than the phase vocoder.
For the higher slowdown factor 3, our method is again ob-

served to outperform other approaches, notably better than SO-
LAFS in both tables and better than the phase-locked vocoder for
female voices, but it has lost ground to the normal phase vocoder
which has a better score than the two other approaches. After the
test we discussed this with the listeners and we could establish
that it was not a mistake. Indeed with this time-stretching ratio
every method produces more artifacts (frame repetition for SO-
LAFS, metallic sound for the phase-locked vocoder, phasiness for
the phase vocoder and some sort of amplitude modulations for PV-
SOLA). The listeners said that in some cases they “preferred” the
defect of the phase vocoder to that of PVSOLA for a certain num-
ber of sentences of the dateset. It is still a minority of files for
which this happens since the overall result is still in favor of PV-
SOLA but this has to be analyzed further.

4.2. Informal tests and discussions

We applied the algorithm to various signals: speech, singing voice,
mono and polyphonic music and obtained improved results over all
other methods for monophonic signals (speech, singing and mu-
sic) while the algorithm suffers from audible phase mismatches
for polyphonic signals.

Several values for C and L have been tried and the best trade-
off seems to be C = 3 and L = 512 samples for a sampling
frequency Fs = 16 kHz (i.e. L = 32 ms). As for other sampling
frequencies (in singing and music data) we set L so that it also cor-
responds to about 30 ms. Nevertheless we noticed that in general
the algorithm is not very sensitive to the value of L (between 20
and 40 ms). For C = 3 and a reasonable speed factor (between
1 and 3 times slower) we generally notice an important reduction
of the phasiness. We generated some test samples for even slower
speed factor (× 5) with mixed results (some good, others present-
ing many artifacts).

For larger values of C perceptible phase incoherencies appear
in the time-stretched signals probably because the phases of the
different partials are already out-of-phase with each other. It seems
that the cross-correlation measure can help to match some of these
partials with the ones from the input frame f∗ but not all of them
thus creating artifacts that resemble an amplitude modulation (the
audio sounds “hashed”, sometimes a beat appears at a frequency
corresponding to CRs). Note that even for values of C ≤ 3 these
mismatches may still appear but to a lesser extent, they are often
almost inaudible. However discussions with listeners have shown
that in some worst-case scenarios they can become a real inconve-
nience as explained in section 4.1.

As a side-effect of the algorithm, transients tend to be well-
preserved contrary to what happens with time-domain (transient
duplication) or phase vocoder-based algorithms (transient smear-
ing). Apparently f∗ can be advantageously positioned so that the
transient is preserved due to the relatively large value of T . Al-
though this may prove interesting it is not systematic and has yet
to be investigated.

The main drawback of our method lies in its computational
complexity when compared with time-domain or phase vocoder
approaches. Indeed not only do we compute a cross-correlation
every C frame but we also generate extra frames for its compu-
tation that will be eventually dropped and replaced by new ones.
Roughly speaking we measured that our MATLAB implementa-
tion was three to four times slower than a phase vocoder. A pro-

filing of the process shows that the most time-consuming task is
by far the cross-correlation computation (about 40%). However
results of benchmarking within MATLAB must always be taken
with care since some operations (such as selecting a frame in a
signal) are not well-optimized. We estimate that a C implementa-
tion of PVSOLA could be less than two times slower than that of
a phase vocoder.

5. FUTURE WORK

We plan to work on different aspects of PVSOLA that can be im-
proved:

• in [13] Röbel proposes to modify a cross-correlation to take
into account only the partials and ignore the noisy compo-
nents. We could use this method to refine the positioning of
the frames f∗ and reduce the artifacts of PVSOLA.

• For the moment we developed and implemented our algo-
rithm as a SOLA-modified phase vocoder. A major change
would be to use a WSOLA-like approach to the selection
of f∗. Indeed we could select a frame from the input sig-
nal that would be optimal for an insertion at tc instead of
trying to find the best position tc + δ for a given frame.
This would suppress at the same time the need for addi-
tional frames (used for the cross-correlation computation)
and for occasional additions or removals of frames when
|∆| > Rs (see Section 3.3). We are currently working on
this topic.

• The results on polyphonic sounds are not as good as those
on monophonic sounds. We plan to investigate this problem
as well.

• PVSOLA has only been tested on a standard phase vocoder.
Using a phase-locked vocoder could make it possible to in-
crease the optimal value for C thus reducing the computa-
tional load.

6. CONCLUSIONS

This paper presented a new approach to modify the length of an
audio signal without changing its perceived content. The method
proposes a combination of a time-domain and a frequency-domain
process. It consists in a periodic reset of a phase vocoder by copy-
ing a frame directly from the input into the output and using it as
a new starting point for the vocoder. The insertion point for the
frame in the output is chosen by means of a cross-correlation mea-
sure. Informal listening tests have highlighted a reduction of the
phase vocoder’s phasiness and formal listening tests have shown
that our method was generally preferred to existing state-of-the-art
algorithms. Both formal and informal tests have pointed out that
under certain circumstances the quality of the time-stretched audio
could be perceived poorly because of discontinuities in the signal.
Various suggestions have been made to improve this situation as
part of future work or ongoing research.

7. EXTERNAL LINKS

Examples of audio time-stretching with PVSOLA are available at:
http://tcts.fpms.ac.be/~moinet/pvsola/
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ABSTRACT

IRCAM has a long experience in analysis, synthesis and transfor-
mation of voice. Natural voice transformations are of great inter-
est for many applications and can be combine with text-to-speech
system, leading to a powerful creation tool. We present research
conducted at IRCAM on voice transformations for the last few
years. Transformations can be achieved in a global way by mod-
ifying pitch, spectral envelope, durations etc. While it sacrifices
the possibility to attain a specific target voice, the approach al-
lows the production of new voices of a high degree of naturalness
with different gender and age, modified vocal quality, or another
speech style. These transformations can be applied in realtime us-
ing ircamTools TRAX.Transformation can also be done in a more
specific way in order to transform a voice towards the voice of a
target speaker. Finally, we present some recent research on the
transformation of expressivity.

1. INTRODUCTION

Founded by Pierre Boulez in 1977, IRCAM, the Institute for Re-
search and Coordination Acoustic / Music, is one of the world’s
largest public research centers dedicated to both musical expres-
sion and scientific research. It is a unique location where artistic
sensibilities collide with scientific and technological innovation. It
has extensive experience in analysis, transformation and synthesis
of sounds and in particular of speech dating back to its beginnings
[1, 2, 3, 4], and has continued until today. For the last years, re-
search in speech was mostly oriented towards voice transforma-
tions and Text-to-Speech synthesis (TTS). For instance, IRCAM
develops software SUPERVP that includes treatments specifically
designed for speech [5, 6, 7, 8], the software DIPHONE STU-
DIO [9], which use the concept of acoustic units, PSOLA and
SINOLA [10]. It recently proposed the ircamTools commercial
plug-in TRAX which offers a novel approach to voice synthesis
through gender and age sound transformations. IRCAM is also
developing TTS systems by unit selection [12, 13, 14] and HMM-
based speech synthesis [15, 16]. Other studies related to speech in-
clude the modeling of the prosody [17] and the independent mod-
eling of glottal source and vocal tract which allows to treat them
separately.

∗ Part of the research presented in this paper was supported by FEDER
Angelstudio : Générateur d’Avatars personnalisés ; 2009-2011

Voice transformations, TTS and their combined use have a
great potential for artistic creations. Regarding the transforma-
tion of voice, IRCAM has worked on French films such as
“Farinelli” by G. Corbiau, “Vatel” by R. Joffé, “Vercingétorix”
by J. Dorfmann, “Tirésia” by B. Bonello, “Les Amours d’Astrée
et de Céladon” by E. Rohmer, but also for “Jeu d’enfants” by Y.
Samuell, “The Last Dragon” by M. Schultz. In the film industry,
transformations can be useful to convert the actor’s voice into an-
other that is more suitable for the role, it can allow the use of one
actor to achieve several voices in dubbing or animation movies,
modification of accentuation of recorded speech, or creation of an-
imal voices, to mention a few applications. In the music field,
IRCAM has created a synthetic voice for the opera “The Mask of
Orpheus” by H. Birtwistle using the software CHANT [18]. A real-
time synthesis of spoken and sung choruses [19] has been devel-
oped in the Max software platform used particularly in the opera
“K” by P. Manoury at Opera Bastille. IRCAM has also worked
and still works on several projects including Multimedia voice. For
instance, in “Les Variations Darwin”, the stage director J. F. Peyret
worked with IRCAM on an order of the Theatre National de Chail-
lot. His project used the automatic generation of text and speech
processing in real time, with music by A. Markeas. Similarly, IR-
CAM has worked with director E. Genovese on the transformation
of voice actors from the “Comédie francaise” and sound environ-
ments for the staging of “le privilège des chemins” and with the
composer J. Harvey on “Mortuos Plango, Vivos Voco” [20] and
lastly on “Speaking”.

In this paper, we will focus on voice transformations. How-
ever, for the interested reader, we note that recent research on
HMM-based speech synthesis [15, 16] combined with advanced
modeling of the prosody [17] are promising on a compositional
perspective and will definitely be of interest for composers in the
next years.

The paper is organized as follows, in Section 2, we introduce
the basic tools that are used for transformations, in Section 3 we
present the transformations of type and nature. In Section 4, we
introduce the transformation towards a target voice. In Section 5,
we present transformation of expressivity. Finally we conclude
and give further directions in Section 6.

2. SIGNAL TRANSFORMATION

Acoustically, the vocal organ consists of the vocal tract (mouth
and nose cavities) as a resonance chamber and the larynx (the vo-
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cal folds (glottis), the false vocal folds and epiglottis) as the prin-
cipal sound producing mechanism, thus called the voice source.
A model relating the physics of the voice and the emitted signal
is necessary for changing the speech signal. A number of signal-
centered methods have been developed, the most successful ones
probably being the PSOLA method [21], harmonic plus noise
methods (HNM) [22], STRAIGHT [23] and the phase vocoder
[7, 8, 24]. While all these methods can perform transposition
and time stretching of the signal, only the latter two principles
allow finer modification of the signal in the frequency domain.
SUPERVP - our improved version of the phase vocoder is under
continuous development for musical applications at IRCAM, and
serves as the engine of AUDIOSCULPT, a powerful graphically in-
teractive software for music modification [26]. However the opti-
mal model is probably one than separates the glottal source (as far
as possible) from the vocal tract. In [27], we recently proposed a
new model in which the glottal source is separated into two com-
ponents: a deterministic glottal waveform Liljencrants-Fant (LF)
model and a modulated Gaussian noise.

We first present the phase vocoder and the improvements that
have been made in 2.1, then we introduce the glottal source mod-
eling in 2.2 which will be the basic tools used for the different
transformations described in the following of this paper.

2.1. The phase vocoder and improvements

The basic phase vocoder [28] is roughly a series of band filters,
in practice implemented as successive Short-Time Fourier Trans-
forms (STFTs), that reduce the signal into amplitudes and phases
in a uniform time-frequency grid. Combined with resampling and
changing of the time step between analysis and synthesis, this
method allows for high-fidelity time stretching and pitch transpo-
sition as well as modification of the amplitude of each point in the
grid, and thus an enormous potential for transformations.

A well-known artifact of the phase vocoder is the introduc-
tion of “phasiness”, in particular for speech, the result sounding
strangely reverberant or with a lack of presence of the speaker. Im-
provements added to our implementation of the phase vocoder and
constituting SUPERVP are: detection and processing of transients
[25], waveform preservation for single-source processing [7, 8],
robust spectral-envelope estimation [5], and dynamic voicing con-
trol based on spectral-peak classification [29].

2.2. Glottal source model

Recently, we proposed an new glottal source and vocal-tract sep-
aration method called Separation of Vocal-tract and Liljencrants-
Fant model plus Noise (SVLN [27]). In this method, the glottal
excitation is separated into two additive components: a determin-
istic glottal waveform modeled by the LF model [30] and a noise
component modeled by a Gaussian noise. The parametrization by
only two parameters - the shape parameter Rd and the noise level
σg - allows an intuitive control of the voice quality. Rd character-
izes the slope of the glottal spectrum and can be seen as a measure
of the relaxed or tensed quality of the glottis. For instance, if this
slope drops sharply, this will be reflected perceptually as a relaxed
voice. On the contrary, if the slope drops slowly and the glottal
spectrum has a lot of treble, this will result in a rather aggressive
voice and therefore perceived as a tensed voice. An estimate of
the LF model [27, 31] is used to extractRd and σg parameters and
the vocal tract filter (VTF) is estimated by taking the estimate of

the glottal source into account. The VTF parameters are thus in-
dependent of the excitation parameters and the glottal source may
be changed, keeping the VTF untouched which can be of inter-
est for voice transformations in expressive speech synthesis. The
speech model is the following: the signal is assumed to be station-
ary in a short analysis window (≈ 3 periods in voiced parts, 5ms
in unvoiced parts). In the frequency domain, the voice production
model of an observed speech spectrum S(ω) is (see Fig. 1):

S(ω) = (Hf0(ω) ·GRd(ω) +Nσg (ω)) · C c̄(ω) · L(ω) (1)

Hf0 is a harmonic structure with fundamental frequency f0. GRd

is the deterministic excitation, i.e. an LF model [30]. This model
is defined by: the fundamental period 1/f0, 3 shape parameters
and the gain of the excitation Ee. To simplify the LF control, the
parameter space is limited to a meaningful curve and a position de-
fined by the value of Rd [30]. Nσg is a white Gaussian noise with
standard deviation σg . C is the response of the VTF, a minimum-
phase filter parametrized by cepstral coefficients c̄ on a mel scale.
To avoid a dependency between the gains Ee and σg on one hand
and the VTF mean amplitude on the other hand, a constraint is
necessary. GRd(ω) is normalized by GRd(0) and Ee is therefore
unnecessary. Finally, L is the lips radiation. This filter is assumed
to be the time derivative (L(ω) = jω). The estimation method for
each of the parameters can be found in [27] This method and in

0 1000 2000 3000 4000 5000 6000
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

G(ω)

Noise Level σ
g

VUF

Frequency [Hz]

A
m

pl
itu

de
 [d

B
]

0 1000 2000 3000 4000 5000 6000
−60

−40

−20

0

20

40

60

VUF

Frequency [Hz]

Figure 1: The mixed excitation model on the left: GRd (solid line)
and the noise level σg (dashed line). The speech model on the
right: the VTF (dashed line); L (dotted line); the spectrum of one
speech period (solid line). Both plots show in gray the source (H ·
G+N) or the speech spectrum S(ω) respectively.

particular the estimation of the Rd parameter but also the Glottal
Closure Instant (GCI) detection algorithm which is deduced from
this glottal model [27, 32], allow an intuitive control of the voice
quality which is of great interest for expressive speech transforma-
tions or to quickly synthesize different speaker personalities with
various voice qualities from the same voice [33]. RecentlyRd esti-
mation and GCI detection have been implemented into SUPERVP
which provides a wide range of voice transformations as we will
see in the following.

2.3. Basic signal analysis and transformations

We now describe some of the analysis and the transformations
which will be used in the following of the paper. First, the funda-
mental frequency f0 is an important component in the transforma-
tions, as is a robust decision of whether the signal is voiced or not
[34]. Another important property of the speaking voice is the fact
that the harmonics in voiced segments of the signal are masked by
noise above a certain frequency, which may vary from below f0 to
half of the sampling rate depending of the voice and the phonatory
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setting applied. This voiced/unvoiced frequency will be denoted by
VUF in the following. A robust estimation of the spectral envelope
is obtained by the cepstrally based true-envelope estimator [35].
Compared to LPC-based methods, it has the advantages of not be-
ing biased for harmonic signals and that its order may be adapted
automatically to the local f0. The fact that the true-envelope truly
follows the spectral peaks of the signal, equips us with the control
necessary for detailed filtering in time and frequency depending
on the time-frequency characteristics of the signal. As long as the
time variation is done with care to avoid audible discontinuities,
the results keep a high degree of naturalness. Finally, as we de-
scribed in the Section 2.2 the Rd parameter and the detection of
GCI is an other important component in the transformations [33].

When it comes to the basic transformations, by (pitch) trans-
position, we mean changing the local f0 of the signal by a cer-
tain factor while conserving the spectral envelope (as far as possi-
ble). The transposition of the spectral envelope is an independent
parameter although both are done in the same operation. Time-
frequency filtering has already been mentioned, and an other basic
transformation is time stretching, which does not touch the fre-
quency dimension. Finally, voice quality (breathy, harsh voice)
can be transformed by modifying the glottal source characteristics
via the Rd parameter, and GCI marks allows to introduce jitter
(e.g. creaky voice).

3. TRANSFORMATION OF TYPE AND NATURE

Transformation of the voice of a given person (source voice) to the
one of another person (target voice), referred to as speaker con-
version, has been the subject of persistent efforts in many research
labs, including IRCAM as we will see in Section 4. However,
it is sometimes not necessary to reach a specific voice target. In
this way, an alternative approach, which has been adopted by S.
Farner in [36], rather than trying to attain a specific target voice,
favors the quality of the modified sound by controlling the trans-
formation conditions. He showed that it is nevertheless possible
to change the identity of the source voice by changing its apparent
size, gender and age, or making the voice breathy, softer, rougher
or less happy, or even reducing it to a whisper. We first present
in Section 3.1 what distinguishes voices according to voice phys-
iology and phonatory settings. In Section 3.2 we present the cor-
puses which were recorded to set up the different transformations
presented in Section 3.3 which were implemented into TRAX, a
transformation plugin presented in Section 3.4.

3.1. Differences between voices

Apart from variation in natural pitch range, different voices are
distinguished and recognized by their timbre that depends on the
physiology of the voice and the phonatory settings. The term tim-
bre is often defined as the quality of a sound other than the pitch,
duration, and loudness. For the voice we often use the term voice
quality for grouping timbre-related qualities like dark, bright, soft,
rich, noisy, pure, rough, etc.

3.1.1. Voice physiology

The specific configuration of the voice organ, such as the length
and shape of the vocal tract and the vocal folds, varies from per-
son to person and gives them their individual pitch range and tim-
bre. Nevertheless, there are general differences depending on the

gender and age of the person [37, 38, 39], although it might be
difficult in some cases to guess the gender and age merely from
the person’s voice. The most important differences are the natu-
ral vibration frequency range of the vocal folds (perceived as pitch
and measured as f0), the spectral distribution of the glottal source
(for instance measured as spectral tilt), and the shape of the vocal
tract (specific resonances and anti-resonances called formants and
anti-formants).

Iseli et al. [39] have reported pitch means and ranges for male
and female voices of ages ranging from 8 to 39 years: about 250
Hz for boys, decreasing to about 125 Hz from the age of 11 to 15
years, and about 270 Hz for girls, descending to about 230 Hz for
adult women. Similar values were already published by Peterson
and Barney [37] but without distinguishing boys and girls or spec-
ifying the age. However, they included average frequencies for the
three first formants F1, F2, and F3 of men, women, and children
for ten English vowels [37]. Averaging their formant frequencies
over all vowels, we find that F1 increases about 14% from a child
voice to a woman’s voice, and about 33% to a man’s voice. The
increase is maybe slightly higher for F2, and about 18% and 38%
for F3.

Finally, the aged voice presents a new set of characteristics:
decreased intensity, breathiness, relatively high pitch (especially
for men), lower flexibility, and perhaps trembling [40].

3.1.2. Phonatory settings

The voice can take many different phonatory settings (in addition
to those necessary for making the phones of a language). For ex-
ample, the vocal tract may be shaped to make a dark or bright color
or sound nasal. Also interesting are the possibilities of the larynx,
which has a great repertoire of voice qualities. Based on numerous
studies by several researchers, J. Laver has made a comprehensive
discussion and summary of the phonatory settings of the larynx
and their relation to the perceived voice quality [41]. He argues
for the existence of six basic phonatory settings: modal voice and
falsetto (orthogonal mechanisms), whisper and creak (combinable
with each other and with the first category), and breathy and harsh
voice. Although these are phonatory settings, such vocal quali-
ties may also be provoked by the physical state of the voice such
as fatigue, injury, and illness. J. Esling et al. have later specified
the contribution to phonation of the false vocal folds and of the
constrictor muscles further above, as summarized in [42]. This
helps explaining constricted and unconstricted phonation modes
and characterizes harsh, creaky and whispery voices as constricted
phonation modes and modal voice, falsetto and breathy voice as
unconstricted ones.

3.2. Recording of voice qualities

In addition to considerations of the physiology and the acoustics
of the voice, one male and one female actor were recorded saying
10 sentences (in French) while faking different voice qualities de-
pending to their abilities. The voice qualities included soft, tense,
breathy, hoarse, whispering, nasal and lisping voices, as well as the
voice of an old person, a child, a drunk or the effect of a stuffed
nose.

Comparison with their normal voice, which was also recorded
(at 48 kHz and 24 bits), gave important spectral information for
the transformations, as discussed below.
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3.3. Voice Transformations of type and nature

Transformations of type and nature of the voice were grouped into
three categories: transformation of physical characteristics of the
speaker (size, gender and age), transformation of voice quality
(modification of the glottal source to make the voice breathy, whis-
pering, rough, soft, tense, loud etc.), and transformation of speech
style (modification of the prosody; liveliness, speech rate, etc.).

3.3.1. Transformation of size, gender and age

While there are general differences between voices of different
gender and age, there are also considerable differences within each
category. This makes it difficult to determine absolute parameters
for successful transformation of the voice, and even though the pa-
rameters would be correct, the perception of gender or age may
be disturbed by the fact that the speech style does not correspond
to the voice. Nevertheless, with the pitch values given in Section
3.1.1 as reference, modification of pitch to change gender and age
may simply be achieved by a transposition of the source signal to
the given target pitch.

But merely increasing the pitch of a man’s voice does only
make a man speak in falsetto, or as Mickey Mouse if the spectral
envelope is transposing together with f0 and the harmonics, for
instance. The vocal tract should be modified independently by
transposing the spectral envelope according to an average of the
ratios of the formants of men, women and children given in Section
3.1.1 In order to achieve other voices, such as a teenaged boy or
girl, intermediate values were chosen.

In an interactive system, such as TRAX, a transformation plu-
gin presented in Section 3.4, the operator can in addition be given
the possibility to optimize the parameters for each voice. In some
cases it may indeed be interesting to play with the ambiguity of the
gender of the voice and thus choose an intermediate setting, as we
did with Céladon’s voice when he disguises himself as a woman
in the film “Les amours d’Astrée et de Céladon” by E. Rohmer,
2007.

When it comes to aged voices, the characteristics mentioned
in Section 3.1.2 are converted into transformations. A convincing
old voice can be achieved by the following four actions: trem-
bling is implemented as a slowly fluctuating transposition factor,
the pitch is slightly raised (together with the spectral envelope to
give a brighter timbre), the speech rate is slowed down, and the f0
ambitus is decreased. Additionally, breathiness may be added, as
described below.

Finally, no literature was found on transformation of size, but
we can simply extrapolate our knowledge about gender and age
transformation. The approach is intuitive, as when we read a book
aloud for a child: raising the pitch and making the vocal tract
smaller (transposing the spectral envelope upwards in frequency)
make us sound like a small dwarf, and speaking with a low pitch
and making the mouth cavity large (downwards spectral-envelope
transposition) simulate the voice of a giant, for instance. Adding
breathiness may be an efficient addition to a deep dragon’s voice,
for instance.

3.3.2. Whisper

When we whisper, the vocal folds are separated enough not to
vibrate but are still sufficiently close to produce audible turbu-
lence. Recordings showed that the spectral envelope of whisper
and voiced speech are comparable at high frequencies (above the

estimated VUF) but differ at low frequencies for voiced phones.
While the formant frequencies have approximately the same posi-
tions, the spectral tilt was flat or even positive below the VUF.

To transform voiced speech to whisper, a source of white noise
was therefore filtered by the spectral envelope estimated from the
original signal, except for some modification at low frequencies:
Firstly, the spectral tilt was neutralized and even inverted below
about 3 kHz, depending of the voice. The choice of 3 kHz was an
empiric compromise because using the VUF as cut-off frequency
for the inversion tended to create audible discontinuities. Sec-
ondly, fricatives (unvoiced phones such as /f/, /s/, /θ/, /

R
/) should

not be touched by this transformation as they depend on turbu-
lence created at constriction further downstream. Since these noisy
sounds have the energy concentrated at higher frequencies (in the
range 3-6 kHz depending on the sound [24]), preserving the frica-
tives was indirectly achieved by the measure described above by
allowing only to increase the low-frequency spectral tilt.

3.3.3. Breathy voice

A breathy phonation is obtained by reducing the force with which
the vocal folds are pressed together. The vocal folds vibrate, but
the closing movement is not complete or sufficiently soft for air
leakage to cause turbulence noise in addition to harmonics. The
effect of this on the spectrum is an increasing spectral tilt of the
harmonic parts of the signal (i.e., an attenuation of high-frequency
harmonics) accompanied by an addition of aspiration noise above
about 2 kHz [43].

To render a voice breathy, we proceed in 2 steps: first, the
voice must be softened by passing it through a lowpass filter, then
noise must be added. Of course, the noise must change with the
signal, which is exactly the case for the spectral envelope. An ap-
proach similar to that of whisper is thus followed, and the noise is
attenuated at low frequencies to avoid it to interfere with the origi-
nal signal. However, just as with whisper, the fricatives should not
be touched. It is therefore important to modulate the lowpass filter
with the voicing coefficient. The original, lowpass-filtered signal
is then mixed with the whisperlike noise at a ratio that depends on
the desired degree of breathiness.

As we have stated at the end of Section 2.2 Rd estimation
have been recently implemented into SUPERVP so that it is now
also possible to change the vocal quality (e.g. whisper, breathy) by
modifying the Rd parameter.

3.3.4. Transformation of speech style

Differences between gender and age are also seen in terms of
speech style. Speech style is much more difficult to address from
a global point of view because it requires a prosodic analysis and
processing. It was shown, however, that the dynamic range of the
pitch, the pitch ambitus, is a speech-style attribute which varies
from speaker to speaker and seems generally greater for children
and teenagers than for adults, and even smaller for aged people.
Changing the ambitus was efficiently achieved by exaggerating or
attenuating the natural variations of f0 by dynamically transpos-
ing the signal in proportion to the log-f0 deviation from the es-
tablished median f0. The median f0 was chosen rather than the
mean f0 because the median is invariant of the method used for
this transformation. Another speech-style attribute is the speech
rate. Slowing down the speech to get an aged person, for instance,
was done by dilating the signal by some 20 to 50% without chang-
ing the pitch or spectral envelope. Changing the ambitus and the
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speech rate together has surprising effects: dullness may well be
achieved from a neutral recording by decreasing the speech rate
and the ambitus. Conversely, the opposite transformation of the
same neutral recording gives the effect of eagerness.

3.4. ircamTools TRAX

The study presented in the Section 3.3 led to VOICEFORGER, a li-
brary dedicated to voice transformations of type and nature based
on SUPERVP. In collaboration with the company FLUX which
designed the graphical interface, IRCAM, recently proposed the
ircamTools commercial plug-in TRAX based on VOICEFORGER.
Most of the transformations of TRAX features the interactive de-
sign of sound transformations using either real time sound input or
sound files loaded into the application. Through the use of an in-
tuitive interface, the effect of all parameter modifications applied
to sound transformations can be heard in real time. TRAX is a

Figure 2: The ircamTools TRAX graphical interface by Flux (See
[11] for online demos).

tool designed for voice but also music sonic transformations al-
lowing independent transposition of pitch and timbre (spectral en-
velope). It offers precise control over all transformations (transpo-
sition, transposition jitter, component remixing, filtering and gen-
eralized cross synthesis). It features a creative set of presets. All
parameter settings can be saved and recalled.

For single voice sounds there exist presets that allow for high
quality transformations of the gender and age of the speaker. These
presets can be fine tuned to the specific characteristics of the input
voice. For musical sounds an additional mode for transient detec-
tion and preservation is available. When transient detection is en-
abled, the component remixing object allows for the independent
remixing of the sinusoid, noise and transient components. Finally,
transformations can be stored either as user defined presets or as
SUPERVP command lines. Using command lines enables the pos-
sibility to apply batch mode transformation to many sound files at
once using the settings that have been designed with TRAX.

4. SPEAKER CONVERSION

When the desired target voice is specific, it is possible to use voice
conversion techniques. The aim of Speaker Conversion - a typi-
cal application of voice conversion technique (VC) - is to modify
the speech signal of a source speaker to be perceived as if it had
been uttered by a target speaker [44]. It can be of interest on a per-
formative perspective. For instance, it could be used to exchange
voice of speakers or singers or to convert an actor’s voice towards

the voice of an disappeared celebrity or towards the voice of a fa-
mous singer. The overall methodology for speaker conversion is
to define and learn a mapping function of acoustic features of a
source speaker to those of a target speaker. Several approaches
have been proposed such as vector quantization [45], neural net-
works [46] or multivariate linear regression [47] among others sta-
tistical methods. One of the most popular statistical method, pro-
posed by Stylianou and al. [48], is based on a Gaussian Mixture
Model (GMM) that defines a continuous mapping between the fea-
tures of source and target voices.

Research on speaker conversion have been initiated at IR-
CAM in [49]. We recently proposed in [50] a new method for
spectral conversion called Dynamic Model Selection (DMS) based
on the use of several models in parallel, assuming that the best
model may change over time according to the source acoustic fea-
tures. We first recall the GMM-based spectral conversion method.
Then, we introduce the DMS method in Section 4.2.

4.1. GMM-based spectral conversion

Stylianou and al. [48] proposed to model the source speaker acous-
tic probability space with a GMM. The cross-covariance of the tar-
get speaker with source speaker and the mean of the target speaker
were then estimated using least squares optimization of an overde-
termined set of linear equations. Kain extended Stylianou’s work
by modeling directly the joint probability density of the source and
target speaker’s acoustic space [51]. This joint probability density
is estimated on a parallel corpus in which source speaker utter-
ance and target speaker utterance have been temporally aligned.
This method allows the system to capture all the existing corre-
lations between the source and target speaker’s acoustic features.
The conversion is finally performed at each frame n on the ba-
sis of the minimum mean-square error (MMSE) : the converted
feature vector ŷn is the weighted sum of the conditional mean
vectors Ey

k,n in which the weights are the posterior probabilities
p(un = k|xn;φk) of the source acoustic feature vector belonging
to each one of the mixture components (un = k):

ŷn = E[yn|xn] =
KX

k=1

p(un = k|xn;φk)E
y
k,n (2)

where xn is the source feature vector at the frame n, un the
index of the mixture component at the frame n and φk is the
GMM parameters set which consists of the weight p(un = k),

the mean vector µ̄z
k =

»
µ̄x
k

µ̄y
k

–
and the covariance matrix Σz

k =»
Σxx

k Σxy
k

Σyx
k Σyy

k

–
for all mixture components k. The conditional

covariance matrix can also be evaluated, giving a kind of confi-
dence measure for the conditional mean vector for each n ∈ N
which can be use to renormalize the variance of the converted
speech parameters. Although this type of method is relatively
efficient, conversion performance are still insufficient regarding
speech quality: the frame by frame conversion process induces in-
appropriate spectral parameter trajectories and the converted spec-
trum can be excessively smoothed. So improvements are still nec-
essary to make it usable for instance for artistic applications which
are demanding considering quality.
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4.2. Dynamic model selection

In classical speaker conversion methods, a single model is selected
during the training step and used for the conversion. This model is
selected among others according to the spectral distortion obtained
from the conversion of a development corpus or by using methods
from the models selection research field. Information Criteria such
as BIC [52] have been designed for this purpose. A good model
will balance goodness of fit and complexity, so it should have nei-
ther a very low bias nor a very low variance. A model with a too
large variance due to overparametrization will give poor perfor-
mance on data different or far from the training data because of the
high variance of the local estimators resulting in overfitting. The
model undergoes oscillations that are both very large and whose
features strongly depend on the exact positions of the points lead-
ing to a model with a huge variance and very large response errors.
However, the same model will give excellent conversion perfor-
mances on datas similar or close to the training ones. The Dy-
namic Model Selection (DMS) method proposed in [50] consists
of using several models in parallel assuming that the best model
may change over time according to the source acoustic features.
To do so, a set of potential best modelsM including GMMs with
increasing number of components is built during the training step.
However, the increase of the number of components of a Gaussian
mixture is limited by the increasing complexity of the model due
to the large number of parameters associated with the covariance
matrices. One way to solve this problem is to use diagonal struc-
tures, but the performances are then sacrified because the latter are
unable to model the underlying second order statistics.

Mixture of Probabilistic Principal Component Analyzers (PP-
CAs) is a method proposed by Tipping and Bishop [53] to solve
the inflexibility of GMMs by performing a pseudo-local Principal
Component Analysis (PCA) on each mixture component. Mod-
eling covariance structure with a mixture of PPCAs provides an
entire range of covariance structures that incrementally includes
more covariance information. Mixture of PPCAs can be seen as
a more general case of the GMMs for spectral conversion. It can
be used in order to define models with increasing number of mix-
tures while keeping a reasonable model complexity. For the DMS
method, several joint models including GMMs with full covari-
ance matrices and mixture of PPCAs are estimated. Then, a set of
best potential models - denotedM - is selected according to the
BIC criterion (the best models being the ones with the lowest BIC
values).

During the conversion step, at each frame n ∈ N , the most ap-
propriate model is chosen according to the likelihood of the source
datas given each model as

M̂n = arg max
M∈M

p(xn|M) (3)

with

p(xn|M) =

KX
k=1

p(un = k)N (xn; µ̄
x
k,Σ

xx
k ) (4)

the values of p(un) µ̄
x
k , Σxx

k and K, depending on the model M .
In this way, we aim to use a general model with low complexity if
the values are far from training data and a more complex and pre-
cise model if the source data are closer to training data, leading to a
better conversion. An example of model selection along a segment
of a speech utterance is given on Figure 3: complex models are
used on stable spectrum parts while simpler and general models
are used in transition parts.
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Figure 3: Example of Dynamic Model Selection along a segment
of a speech utterance. On the left the set of potential models. In
bold line: selected models at each frame n, in light lines: LSF
representation of the source spectral envelope.

Subjective tests presented in [50] showed that the method is
promising as it can improve the conversion in terms of proximity
to the target and quality compared to the method based on a sin-
gle model. In further work, we will focus on other criteria than
the likelihood for the selection of the best model during the con-
version. Finally, speaker conversion as been recently implemented
into SUPERVP allowing realtime speaker conversion.

5. TRANSFORMATION OF EXPRESSIVITY

We finish this short review of voice transformations at IRCAM
by presenting latest reasearch which have been done on the trans-
formation of expressivity in speech. This research has been ini-
tiated at IRCAM in [55]. We proposed and designed a system
of transformation based on Bayesian networks trained on expres-
sive corpuses. This system has yielded interesting results of trans-
formation and its design was accompanied by the development of
several descriptors including those concerning the degree of artic-
ulation for the expressivity. The study has been continued, which
led to a second system that we briefly describe in this review. The
general objective is to convert the prosody of a neutral speech into
an expressive one. The proposed system, does not require any tran-
scription or phonetic alignment of the input speech since it relies
only on the acoustical data. In Section 5.1, we present the expres-
sive corpuses and introduce the prosodic model in 5.2. We then
describe the training procedure of the transformation associated to
a given expressivity change in the prosodic’s parameter space in
Section 5.3. The last part details the generation of prosodic trajec-
tories and the implementation of the prosodic transformations. We
conclude by giving some perspectives for further work.

5.1. Expressive corpuses

We first describe the expressive corpuses that have been recorded
for the training of the models of transformation. Two actors - one
man and one woman - have recorded 100 utterances. These utter-
ances were of different lengths with different number of syllables,
different size of prosodic phrases and different number of breaks
in order to get a broad coverage of various prosodic structures. In
this work, only the first 4 basic emotions described by P. Ekman
[56] were considered: joy, fear, anger and sadness. Thus, different
corpuses were recorded with different intensities of emotions. The
corpuses were segmented automatically by IRCAMALIGN[57], a
automatic French speech segmentation software. This alignment
was only used to establish a matching between neutral and expres-
sive prosodic trajectories during the training. On the other hand,
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an annotation of the prominences was performed on the neutral
corpus.

5.2. Prosodic model

Prosodic modeling is achieved at the syllable level. To do so an
automatic syllable segmentation has to be performed. The algo-
rithm is introduced in the next Section 5.2.1. In Section 5.2.2, we
present the different prosodic descriptors.

5.2.1. Syllable segmentation

A preliminary step of the prosodic modeling is to segment the
speech into syllables. This segmentation is performed automati-
cally from the acoustic data. The syllable detection is based on the
Mermelstein algorithm [58]. The detection principle is to identify
the energy dips that correspond to the boundaries of syllabic nuclei
as illustrated on Fig. 4. However, the detection score was greatly
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Figure 4: Detection of syllable nuclei

improved by deriving the syllable loudness from the True envelope
spectrum [25].

5.2.2. Prosodic descriptors

We followed the 5-dimensional model of prosody proposed by
Pfitzinger in [59], and extract the following descriptors on a sylla-
ble basis:

• Intonation characterizes the fundamental frequency curve.
It is calculated from the syllable segmentation. Discrete
Cosinus Transform (DCT) is used with a high order (7 co-
efficients) across the syllable. The first three factors are
used to model the main speech gestures (mean, slope, cur-
vature). The higher order coefficients are used primarily for
modeling the effects of vibrato. We can then analyze the
corpuses and characterized them in terms of these descrip-
tors. A Principal Component Analysis (PCA) was made
on DCT coefficients on the prominent syllables which are
likely to reveal significant prosodic gestures. One can thus
infer a dictionary of prototypical forms of the first principal
component according to the different emotions as presented
in the Figure 5. Registry information provides information
on the intra-or extroverted nature of the involved emotion.

• Speech rate is based on the measure of the syllable rate and
on the ratio between different durations of speech elements,
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Figure 5: First principal component on DCT computed on
f0 of prominent syllables according to different emotions:
top left: joy, top right: fear, bottom left: anger, bottom
right: sadness. In blue line: neutral speech, in red line:
expressive speech

e.g. between the duration of voiced part and unvoiced part,
or between duration of active speech compared to breaks.

• Voice quality is mainly based on the relaxation indexRd in-
troduced in Section 2.2. Rd measures the relaxed or tensed
quality of the glottis to which we added estimates of jit-
ter, shimmer and harmonic to noise ratio (Voiced/Unvoiced
Frequency VUF). We also use the algorithm for detecting
GCI also presented in Section 2.2. These marks indicate
the times of closure of the glottis and allow to compute a
measure of jitter. A fast evaluation shows that the neutral
and sadness have a small amount of jitter compared to joy
and anger.

• Articulation is described by estimating the dilatation coef-
ficient between the frequency spectrum of neutral speech
compared to the one of expressive speech. This coeffi-
cient is estimated by minimizing the log-spectral distance
between the original and the dilated spectrums. The value
of this coefficient is fixed arbitrarily for the moment and
will be automatically estimated in the future.

5.3. Learning transformation functions

The principle of the system is to apply a relative transformation
of the prosodic parameters for each syllable. This relative trans-
formation depends on the context of each syllable. Since the cor-
puses are aligned, it is possible to define transformation vectors
between each syllable of the neutral and expressive speech. In the
current implementation, two separate transformation vectors are
estimated:
• A transformation vector in the joint space of f0 DCT coef-

ficient and duration
• A transformation vector in the joint space of Rd and jitter

parameters.
A context-dependent clustering of these transformation vectors is
the performed according to the following contextual features:
• Position of the syllable in the utterance, categorized in be-

ginning, middle, end of utterance
• Position of the syllable in the prosodic group (segment of

the speech between 2 breaks)
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• Prominent or non-prominent syllable, its kind of promi-
nence, whether it is due to the fact that the syllable is longer
than its neighbours or if it is because it has a f0 peak higher
than that of its neighbors.

A decision tree learning is used to build vector classes as homo-
geneous as possible depending on context. The training is done
by minimizing the distance between the transformation vectors.
Finally, the decision tree will allow to find which transformation
vector to apply to a syllable according to its context, even if the
context has not been observed in the training corpuses.

5.4. Transformation of expressivity

During the transformation step, vectors to use are selected accord-
ing to the context of each syllable using the decision tree. To syn-
thesize the trajectories of f0, the same principle used in HMM-
based speech synthesis is used. Dynamic constraints (first deriva-
tive and second derivative) are taken into account during the esti-
mation of first DCT coefficients that best explains observation data
(maximum likelihood estimation). This can be written as a system
of nonlinear equations which can be solved using weighted least
squares. This allows to generate a smooth trajectory and finally a
sort of gesture on the entire utterance. The same principle is used
to generate the trajectory of f0,Rd and the vowels durations. Jitter
and warping are modeled independently as additional effects.

During the transformation of a neutral speech, the speech sig-
nal is first segmented into prosodic groups (using voice activity de-
tection) and syllables (using our syllable segmentation algorithm
described in 5.2.1). Prominences are then automatically deter-
mined using a duration test. Then a f0 stylization step is done
by calculating the DCT coefficients for f0 on each syllable. The
decision tree is then used to determine which transformation to
apply according to the context of each syllable. The different
curves that are generated are applied using SUPERVP via VOICE-
FORGER. Among these are transposition curves, dilatation curves
for the speech rate, modification curves for Rd which is now in-
tegrated into SuperVP and jitter which is simulated by short-term
transpositions.

Results depend heavily on the speech to transform. It will be
necessary to learn more general transformation models in order to
allow several possible strategies of transformation. A subjective
evaluation of the system needs also to be done. In the longer term
it would be interesting to vary the expressivity along the utterance
and therefore not to have discrete categories such as it has been
considered until now, which could be achieved by representing the
emotions along activation and valence axis.

6. CONCLUSION

Methods for transformation of gender and age, voice qualities
whisper and breathy, and speech style have been presented. With
the commercial plug-in TRAX it is now possible to design and
apply voice transformations in real-time using an interactive inter-
face. Combined with TTS synthesis, it provides a powerful cre-
ation tool which can be used as a performative TTS system. When
the voice target is specific, dynamic model selection can be use for
speaker conversion. It will soon be implemented into SUPERVP
to allow real-time speaker conversion. Finally we presented recent
research on the transformation of expressivity which will surely be
of interest on a performative perspective in the years to come.
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ABSTRACT

A previously existing nonlinear differential equation system mod-
eling the EMS VCS3 voltage controlled filter is reformulated here
in polynomial form, avoiding the expensive computation of tran-
scendent functions imposed by the original model. The new sys-
tem is discretized by means of an implicit numerical scheme, and
solved using Newton-Raphson iterations. While maintaining in-
stantaneous controllability, the algorithm is both significantly faster
and more accurate than the previous filter-based solution. A real
time version of the model has been implemented under the Pure-
Data audio processing environment and as a VST plugin.

1. INTRODUCTION

Within the virtual analog research field, several efforts have been
made to properly simulate the voltage-controlled filters (shortly,
VCF) onboard the monophonic synthesizers of the 60’s, such as
Robert Moog’s transistor-based VCF [1, 2, 3], or the diode-based
VCF designed for the Electronic Music System Voltage Controlled
for Studio with 3 Oscillators, known as VCS3, which is considered
in this paper.

The first discrete time model of the EMS VCS3 VCF was pre-
sented in 2008 [4]. In that model the analog filter network was
accurately represented through a nonlinear differential equation
system, that was later discretized by means of an esplicit scheme
using a fourth-order Runge-Kutta method. A similar system was
reproposed in 2010 [5], where a passive digital filter network di-
rectly coming out from the analog structure was computed using
fixed-point iterations. This computation was proven to be efficient
enough to run in real-time meanwhile allowing variation at sample
rate of the VCF control parameters, typically the cutoff frequency
and feedback gain.

In this paper, an evolved simulation of the previous system [5]
is proposed. Specifically, the system equations are reformulated
in order to avoid the expensive computation of transcendent func-
tions, hence obtaining a quasi-polynomial system which is then
discretized using an implicit scheme and Newton-Raphson itera-
tions. Overall, the speed improvement is of an order of magnitude.
Moreover, due to the improved numerical behavior, the simula-
tion computes accurate solutions for large values of the control
parameters, i.e. where the fixed-point method failed to converge in
reasonable time causing noticeable artifacts in the output.

By considering a specific VCF analog circuitry, obviously this
study has not the generality of recently proposed techniques for the
simulation of generic electrical networks [6, 7]. However, some
of the employed recipes like the removal of transcendent func-
tions and the specific implicit scheme design can be applied to

other nonlinear systems, that need to be accurately simulated in
real time.

This poster is organized as follows. In Sec. 2, the nonlinear
differential state-space representation of the VCS3 VCF is shortly
reviewed. Then, in Sec. 3, some algebraic manipulations are car-
ried out to obtain an equivalent description containing polynomial
functions, which substitute the hyperbolic tangent used in the orig-
inal formulation. The resulting system is discretized with an im-
plicit method that is proposed in Sec. 4, and whose implementation
details are discussed. Finally, Sec. 5 shows some results that prove
the improved performance of the proposed solution compared to
the previous model.

2. MODEL

The VCF is a parametric filter, whose cutoff frequency and reso-
nant behavior can be controlled respectively by varying the char-
acteristic value of the nonlinear resistive components and the feed-
back gain. The behavior of the original circuitry can be described
with a good approximation by the following differential equations
system [5]:




v̇C1 =
I0
2C

(
tanh

vIN − vOUT
2VT

+ tanh
vC2 − vC1

2γ

)

v̇C2 =
I0
2C

(
tanh

vC3 − vC2

2γ
− tanh

vC2 − vC1

2γ

)

v̇C3 =
I0
2C

(
tanh

vC4 − vC3

2γ
− tanh

vC3 − vC2

2γ

)

v̇C4 =
I0
2C

(
− tanh

vC4

6γ
− tanh

vC4 − vC3

2γ

)

vOUT = (K + 1/2) vC4

(1)

In this standard space-state representation, vIN and vOUT are
respectively the voltage input and output signals; K is the feed-
back gain (ranging between 0 and 10 in the VCS3 synthesizer)
and I0 is a bias current setting the resistance values, hence the
cutoff frequency of the filter. The state variable vector vC =
[vC1 , . . . , vC4 ] corresponds to the voltages through the four capac-
itors present in the electrical network. The other terms in Eq. (1)
are the constants η = 1.836, VT = 26 mV, γ = ηVT = 48
mV, and C = 0.1 µF. The system has a fixed point at the origin,
corresponding to null charge at the capacitors [5].

3. NONLINEAR SYSTEM REFORMULATION

The main complexity in the model expressed by Eq. (1) is that any
accurate system solution requires the computation of several hy-
perbolic tangents. This computation, especially on modern hard-
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ware, can be several order of magnitudes more expensive than mul-
tiplying. Thus, it would be beneficial to rewrite equations contain-
ing only polynomial functions.

In order to do so1, we exploit the self-similarity of the deriva-
tive of the hyperbolic tangent: d/dt tanh(t) = 1 − tanh2(t).
Then, we proceed by assigning the values of the nonlinear terms
in (1) to the new auxiliary state vector x = [x1, . . . , x5]:





x1 = tanh
vC2 − vC1

2γ

x2 = tanh
vC3 − vC2

2γ

x3 = tanh
vC4 − vC3

2γ

x4 = tanh
−(K + 1/2)vC4

2VT
x5 = tanh

vC4

6γ

. (2)

The only auxiliary variable which does not capture a portion
of (1) directly is x4. Even if it is possible to set this variable to
one argument of the hyperbolic tangent, doing so would require to
include (hence to numerically compute) the derivative of the input
signal vIN . Since assumptions on the smoothness of the input
signal cannot be made, it is preferable not to include incoming
signals’ derivatives into the system, as they are sensitive to noise
and prone to amplification of the high frequencies.

Rather, we use the addition formula for the hyperbolic tangent
and rewrite the term as

tanh
vIN − vOUT

2VT
=

ṽ + x4
1 + ṽx4

,

where ṽ = tanh(vIN/2VT ). In this way we are still left with
one transcendent function in the system: since it includes only
the signal vIN , its (possibly parallel) computation across the input
buffer can be decoupled by the solution of the system.

The system nonlinearities cause a bandwidth expansion on the
signal, so that oversampling is necessary to avoid aliasing [5]. A
good compromise between aliasing reduction and computational
cost is the use of 8x upsampling, as shown in Fig. 1.

Taking the time-derivative of the new state vector x, we obtain
the following equations:





ẋ1 =
v̇C2 − v̇C1

2γ
(1− x21)

ẋ2 =
v̇C3 − v̇C2

2γ
(1− x22)

ẋ3 =
v̇C4 − v̇C3

2γ
(1− x23)

ẋ4 =
(K + 1/2)v̇C4

2VT
(1− x24)

ẋ5 =
v̇C4

6γ
(1− x25)

. (3)

Finally, substituting into (3) the expressions for the previous state

1This transformation is generally applicable whenever the nonlineari-
ties are compositions in their own of exponential functions.

∫ ↓ 8

tanh
vIN ṽ

x3 x5

1

2VT

−(K + 1/2)I0
2C

vOUT

↑ 8 N-R

SOLVER

Figure 1: Block diagram illustrating the computational stages re-
quired before and after the nonlinear system solver: upsampling,
nonlinear map, system solving, downsampling and integration.

vC yields the following quasi-polynomial nonlinear ODE system:




ẋ1 =
I0
4Cγ

(
x2 − ṽ − x4

1− ṽx4

)
(1− x21)

ẋ2 =
I0
4Cγ

(x3 − 2x2 + x1) (1− x22)

ẋ3 =
I0
4Cγ

(−x5 − 2x3 − x2) (1− x23)

ẋ4 =
I0(K + 1/2)

4CVT
(−x5 − x3) (1− x24)

ẋ5 =
I0

12Cγ
(−x5 − x3) (1− x25)

. (4)

In this system all functions are polynomial, except for a divide in
the first equation due to the need to avoid the derivative of the input
signal.

We can recover vOUT from the relation v̇C4 = (−I0/2C)(x5+
x3). Since in (1) vOUT is proportional to vC4 , numerical integra-
tion (see Fig. 1) is required as a final inexpensive step to compute
the solution, furthermore preserving the passivity of the continuous
integrator if the trapezoidal rule is used for the discretization [5],
as we will do through Eq.( 6).

4. NUMERICAL SOLUTION

We discretize (4) using standard techniques from numerical anal-
ysis [8]. The system can be written in vectorial form as

ẋ = f(ṽ,x), (5)

where f is a nonlinear vectorial function. Time discretization is
performed with the Adams-Moulton 1-step method (i.e., the trape-
zoidal rule):

xn+1 = xn +
T

2

[
f(ṽn,xn) + f(ṽn+1,xn+1)

]
(6)

which is numerically equivalent to the bilinear transformation [5].
The resulting numerical equation is implicit, since at each step we
need to solve a nonlinear system of equations. More precisely, we
have to find the zeroes of the vectorial function

F (ξ) = xn +
T

2
[f(ṽ,xn) + f(ṽ, ξ)]− ξ

= F0,n +
T

2
f(ṽ, ξ)− ξ.

(7)

The term F0,n has been highlighted in the expression so that
at each time step it can be updated efficiently with the recursive
relation

F0,n+1 = 2xn+1 − F0,n. (8)
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The system (7) is solved using Newton-Raphson iterations,
which guarantee second-order convergence in our case. At every
time step we start with the initial guess ξ0 = xn, then we update
iteratively the linear solution

JF (ξi) δξi = −F (ξi)

ξi+1 = ξi + δξi ,
(9)

where JF (ξi) is the Jacobian ofF at the i-th iteration, furthermore
related to the Jacobian of f by the relation JF = T

2
Jf − I.

Convergence is checked against the L∞ norm of the residual
vector δξi using a threshold of 10−8, accurate enough for single-
precision floating point computations. In [5] a different condition
was employed, based only on the output value. Conversely, check-
ing all the values of the state vector can provide more accurate
results especially during the simulation of transients.

The computation of the term F and the Jacobian JF can be
simplified if we split the terms of the system (4) into a vector of
coefficients

c =




I0/(4Cγ)
I0/(4Cγ)
I0/(4Cγ)

I0(K + 1/2)/(4CVT )
I0/(12Cγ)


 ,

plus two vectors, respectively containing the differences and the
quadratic terms in (4):

t =




x2 − ṽ−x4
1−ṽx4

x3 − 2x2 + x1
−x5 − 2x3 − x2
−x5 − x3
−x5 − x3



, d =




1− x21
1− x22
1− x23
1− x24
1− x25



.

For sake of compactness, we have dropped the discrete-time index
n in the previous equations. By (9), F can be computed from (7)
using the obvious relation

f(ṽ,x) = c ∗ t ∗ d, (10)

while the Jacobian of f is written in terms of the new vectors as

Jf =

−




2c1(d1+t1x1) −c1d1 0 c1d1fv 0

−c2d2 2c2(d2+t2x2) −c2d2 0 0

0 −c3d3 2c3(d3+t3x3) 0 c3d3
0 0 c4d4 2c4t4x4 c4d4
0 0 c5d5 0 c5(d5+2t5x5)




(11)

where fv = (ṽ2 − 1)/(1− ṽx4)2.
Note that the linear system described by this Jacobian matrix

does not have any particular structure. For this reason, we have
to employ general linear solvers such as LU decomposition with
pivoting or QR factorization. In our tests, LU with pivoting was
slightly less accurate, occasionally requiring an extra iteration to
converge, but generally 25% faster than QR decomposition.

5. DISCUSSION

The model has been implemented both as an offline Matlab simu-
lation, as a C++ external running under the PureData [9] real-time
audio processing environment and as a VST [10] Plugin. For the
real-time versions, we have employed the library libresample [11]

for accurate upsampling and downsampling, and the Eigen pro-
cessing library [12] for linear system solving and parallelized vec-
tor computations. The real-time model requires less than 10%
CPU power on an Intel Core2 Duo@2.4Ghz laptop, independently
of the VCF parameter values.

The main advantage of the new algorithm resides in signifi-
cantly faster, and parameter-independent computation times com-
pared to the previous reference model [5]. We can give a rough
quantitative comparison considering the approximate number of
MPOS (multiplication per input sample) required by either im-
plementation. At every step the previous algorithm requires the
computation of 5 hyperbolic tangents, plus 4 discrete-time inte-
grations and 10 multiply-and-accumulate (MAC) operations. If
we approximate the cost of each hyperbolic tangent to 50 MPOS2,
then the cost for each fixed-point iteration amounts to about 280
MPOS. Since the average number of iterations is between 10 to 50,
we can estimate the total cost per (upsampled) time step as rang-
ing between 3000 and 15000 MPOS. In [5] some examples of the
number of iterations required for different control values are given.

As opposed to the previous procedure, the proposed algorithm
instead requires to compute just one hyperbolic tangent. Since this
function can be precomputed on the input buffer at 1/4 the sam-
pling frequency, in parallel to the system integration, the cost of
this computation is around 5 MPOS. Building the right-hand term
F as by (10) requires roughly 20 MPOS, including the divide, and
the same cost is required for the computation of the Jacobian ma-
trix (11). LU pivoting takes about 120 MPOS, resulting in a total
cost of 165 MPOS per iteration. Finally, thanks to the better nu-
merical behaviour of the Newton-Raphson method, only 3-6 iter-
ations are usually required for convergence. Therefore, the total
cost of the proposed algorithm is between 500 and 1000 MPOS,
about one order of magnitude less than the fixed-point model.

As a by-product, the new model is more accurate for high val-
ues of the control parameters, especially the cutoff frequency. In
fact, iteration upper bounds are inevitably reached by the fixed-
point solver under these conditions [5]. The effect is illustrated in
Fig. 2, where the cutoff frequency is linearly increased across the
simulation. It can be easily noticed that the previous solver (left
plots) behaves inappropriately around cutoff values amounting to
10 KHz, when the number of iterations starts to reach the upper
bound set to 100 iterations. Within ranges of the control parame-
ters that do not cause iteration explosion, both models introduce a
relative error below -80 dB at every step, in ways that their output
differences are inaudible.

6. CONCLUSION

We have transformed the equations proposed for the simulation of
the VCS3 VCF, by deriving a quasi-polynomial system allowing
an implicit integration based on Newton-Raphson iterations. Com-
pared to the previous one, the new solution is significantly faster
as well as more accurate when high values of control parameters
are used, meanwhile enabling full controllability of the parameters
at sample rate without artifacts.
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2Benchmarked on an Intel Core2Duo@2.4Ghz with gcc 4.6.
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Figure 2: Comparison of the proposed model (right) versus the previous implementation (left). The input signal is a sinusoidal sweep
ranging from 0 to 20 KHz, while the cutoff frequency is varied between 10 and 20KHz. The feedback gain is kept constant (K = 1) during
the simulation. Sampling frequency set at 176400 Hz.
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Keynote 3 - Fourier + 200 - Patrick Flandrin

Exactly 200 years ago, Joseph Fourier wrote his fundamental essay on heat diffusion, introducing mathematical tools that
have been Ñ and still are Ñ central in the development of signal analysis and processing. Many variations around FourierÕs
seminal approach have then been proposed, especially for the sake of facing time-varying and/or nonstationary situations. The
purpose of this talk is to present and illustrate some recent methodological advances in such directions, from wavelet-like
transforms to sparse time-frequency distributions and oscillations-based empirical mode decompositions.

Patrick Flandrin is a CNRS Senior Researcher, working in the Physics Department of ENS de Lyon, France. His research
interests are mostly in nonstationary signal processing (time-frequency/time-scale methods), scaling processes and complex
systems. He published over 250 journal or conference papers in those areas, contributed several chapters to collective books
and authored one book. He has been awarded the Philip Morris Scientific Prize in Mathematics (1991), the SPIE Wavelet
Pioneer Award (2001), the Prix Michel Monpetit from the French Academy of Sciences (2001) and the Silver Medal from
CNRS (2010). Fellow of IEEE (2002) and EURASIP (2009), he has been elected Member of the French Academy of Sciences
in 2010.
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ABSTRACT

Interactive navigation within geometric, feature-based
database representations allows expressive musical performances
and installations. Once mapped to the feature space, the user’s
position in a physical interaction setup (e.g. a multitouch tablet)
can be used to select elements or trigger audio events. Hence
physical displacements are directly connected to the evolution of
sonic characteristics — a property we call analytic sound–control
correspondence. However, automatically computed represen-
tations have a complex geometry which is unlikely to fit the
interaction setup optimally. After a review of related work,
we present a physical model-based algorithm that redistributes
the representation within a user-defined region according to
a user-defined density. The algorithm is designed to preserve
the analytic sound-control correspondence property as much as
possible, and uses a physical analogy between the triangulated
database representation and a truss structure. After preliminary
pre-uniformisation steps, internal repulsive forces help to spread
points across the whole region until a target density is reached.
We measure the algorithm performance relative to its ability to
produce representations corresponding to user-specified features
and to preserve analytic sound–control correspondence during
a standard density-uniformisation task. Quantitative measures
and visual evaluation outline the excellent performances of the
algorithm, as well as the interest of the pre-uniformisation steps.

1. INTRODUCTION

1.1. Background

In this study, we focus on interactive musical performances and
installations based on navigation within a sound database. The
user selects database elements and triggers events (for instance
the playback of a sample) by physical navigation in an interaction
setup, which is mapped to a geometric database representation.

Sound databases may include data as diverse as full-length
recordings, samples, sound grains (used for instance by corpus-
based concatenative synthesis methods [1]) or even non-audio el-
ements such as synthesizer presets. In most cases, it is possible to
build feature-based data representations by automatic and quanti-
tative measuring of each database element’s sonic characteristics.
They can be quantified using sound descriptors for instance [2], or
the parameters of a synthesizer preset. Such representations are
closely related to the field of content-based music information re-
trieval, which has attracted much attention in the past years as it
allows greater insight on the data than usual keywords classifica-
tion.

Besides simplifying the process of working with large
databases, feature-based representations have one important prop-
erty: they guaranty that the elements’ positions in the database
representation are connected to their sonic characteristics. To il-
lustrate this property, we consider the example of the CataRT soft-
ware [3], a corpus-based concatenative synthesizer which provides
screen-displayed, 2D representations of sound grains databases,
obtained by computing their sound descriptor values (cf. figure 1).
In this example we have used Spectral Centroid1 and Periodicity2

descriptors. We use the computer mouse as an interaction setup:
a simple way to control the synthesis is to trigger the playback
of a grain when the point representing it on the screen is hovered
by the mouse cursor. Because our representation is feature-based,
small mouse movements result in playing similar-sounding sam-
ples, while larger movements allow the user to pick grains with
greater sonic differences. Furthermore, a gesture along a coor-
dinate axis results in keeping constant one characteristic of the
selected grains, while controlling the remaining property (for in-
stance playing grains of same brightness but of different harmonic
characters). We use the name analytic sound–control correspon-
dence to define this property.

Spectral Centroid

P
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ty

Figure 1: Database representation using Spectral Centroid and
Periodicity descriptor values.

Common descriptions of sound data use a large number of
features, which yield high-dimensional database representations.
Such representations are usually not suited for physical navigation,
which is usually performed in two or three dimensions. Hence new

1The Spectral Centroid (measured in Hertz) is defined as the center of
gravity of the FFT magnitude spectrum. It is closely related to the percep-
tion of brightness.

2The Periodicity measures the harmonic character against the noisy
character of the sound.
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database representations have to be used for this purpose; they can
either be obtained by dimensionality reduction methods or by di-
rect selection of the features the user wants to control.

Our study adresses a problem relative to the use of a 2D in-
teraction setup, though it can virtually be extended to any number
of dimensions. Exemples of such interaction setups are XY con-
trollers, multitouch tablets, or even the floor of an exhibition room
combined with a position tracking device (in this case, selection
would be performed by the user’s displacements in the room).

1.2. Problem

Each interaction setup has its own fixed geometry: it would be
a rectangle for a XY controller, a disk for the Reactable [4], or
any possible shape for an exhibition room. It is very unlikely that
the mapping between this geometry and the geometry of the 2D
database representation obtained by dimensionality reduction or
feature selection will be optimal (in a user-defined sense). Hence
we need a flexible way to adapt the representation geometry to
that of our interaction setup, while preserving as much as possible
the analytic sound–control correspondence property — one of the
strengths of feature-based representations.

To illustrate this problem, consider that we want to sonify an
exhibition space using our previous example database and a 2D
representation. Our interaction setup is the floor of the exhibition
space. A camera is used to perform position tracking of the visi-
tors, so that each visitor’s physical navigation in the room create
a path through the database representation. A sample is triggered
each time this path intersects a sample’s position. It is as if we had
mapped the database representation to the surface of the room, and
a sample was triggered each time a visitor’s position intersected a
sample’s position. Suppose that we seek full sonification of the
exhibition space, i.e. that we care to use all the interaction space
that is available to us for controlling the samples, and that we want
higher sample density near the top-right corner of the room. Fig-
ure 2 shows two sonifications achieved with different representa-
tions, which are superposed to the room blueprint.

before after

Figure 2: Examples of sonification of an exhibition space using a
2D database representation.

On the left, the representation shown in figure 1 has been used.
Simple transformations such as symmetries and scaling obviously
preserve analytic sound–control correspondence. Though we have
been able in this case to put a high density region near the top-
right corner, we obviously cannot obtain by these means a new
representation that fits perfectly the boundaries of the room. In
all cases a large amount of “silent” zones will be left, in which
no samples can be triggered. Clearly, manually moving points so
that we obtain a representation that roughly fits the room geome-
try when superposed to its blueprint is not a good solution to our
problem, as it would be very difficult for us to ensure that the new

representation retains some aspects of the analytic sound–control
correspondence property. Furthermore, moving points manually
gets more and more difficult as the database size increases.

On the contrary, a geometric algorithm might take care of au-
tomatically finding a new representation that suits our geometric
constraints, while preserving analytic sound–control correspon-
dence as much as possible. The right part of figure 2 shows a
database representation obtained with unispring, an algorithmic
solution we have provided to this problem (detailed in section 3).
Besides having been able to make the new representation fit the
geometry of the room, we have kept a higher density region near
the top-right corner, as required by the sonification design we had
in mind.

1.3. Algorithmic Solution

We present in section 3 unispring, a physical model-based algo-
rithm which allows to spread the original representation points
within a user-defined region. The expected data point density can
be specified using the mathematical framework detailed in sec-
tion 3.1.

The algorithm was designed to preserve analytic sound–
control correspondence as much as possible; an evaluation of its
performance is presented in section 4.

2. RELATED WORK

2.1. Previous Work

We had previously addressed the problem of locally controlling the
density of a database representation using mass spring damper-
based algorithms. They helped avoiding overlapping points by
pushing them appart, and have been used in a dimensionality-
reduction algorithm [5]. Other analytic sound–control correspon-
dence preserving algorithms were also developed [6], but proved
to be less efficient than the solution detailed in this article.

2.2. Data Visualisation Methods

Dynamic visualisation methods, such as zoom and pan, allow ac-
curate selection of individual points in high-density regions. These
approaches might also adjust the number of points to display ac-
cordingly to the zoom level, in order to avoid data overlap. How-
ever, such methods apply when the user interacts with the help of a
visual feedback of the database current state, which is not always
the case (as shown for instance in section 1.2).

On a more fundamental level, also note that our aim was not to
provide dynamic data display, but geometrically transforming the
representation of the data to obtain an optimal, “static” interface
for navigation. By static, we mean that this interface is determined
once by the user, and doesn’t require further adjustments in the
course of the interaction process.

2.3. Dimensionality Reduction

Dimensionality reduction algorithms such as PCA [7], weighted
PCA [8] or MDS [5] can be used to obtain 2D representations from
original high-dimensional feature-based representations. Another
approach is to project the representation onto a plane by select-
ing the two features users will be able to control. Dimensionality
reduction methods might be helpful in cases where it is unclear
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which features to control, or when it appears that no pair of fea-
tures amongst those immediately available by data analysis will
provide satisfactory results in terms of expressivity. The latter
case might particularly be true for applications using sounds of
very different natures, such as those contained in a collection of
field recordings for instance. However, note that projection by se-
lection of two features naturally maps their perceptual meaning to
the two degrees of freedom the user interacts with. By taking care
of preserving the analytic sound–control correspondence property,
our algorithm also preserves this perceptual meaning.

2.4. The distmesh Algorithm

The distmesh algorithm, available as a Matlab toolbox [9], gen-
erates unstructured triangular meshes using a physical algorithm.
It is based on a simple mechanical analogy between a triangu-
lar mesh and a 2D truss structure, or equivalently a structure of
springs. It provides a mathematical framework that allows the user
to specify the internal geometry of the mesh as well as the region
over which it has to be generated. Whereas distmesh is aimed at
generating a mesh over a blank region, the physical algorithm part
of unispring (detailed in section 3.3) adapts the physical model
used in distmesh to relocate previously existing points (the initial
feature-based database representation).

3. THE UNISPRING ALGORITHM

The unispring algorithm works in two parts. It starts by per-
forming a pre-uniformisation of the 2D initial database representa-
tion (3.2), before iteratively applying a physical model-based algo-
rithm (3.3). The algorithm spreads the representation points within
a user-defined region, inside which the local density can be speci-
fied.

3.1. User-specified Features

The user-defined region is represented by its signed distance func-
tion, which gives the distance from any point in the plane to the
closest region boundary. This function takes negative values inside
the region and equals zero on its boundary. Analytic computation
of the signed distance function is possible for simple regions, such
as square and circular ones. For more complex regions, the func-
tion has to be computed numerically. We provided support for
polygonal regions, using an iterative method implemented in [10].

The user can specify the final data point density by providing
a desired length function h(x, y). If (x, y) are the coordinates of
the middle of two points, h(x, y) gives a target distance between
these points that should be reached after applying the algorithm.
The resulting distances are in fact proportional to those specified
by h(x, y), which actually gives the relative distance distribution
over the region. Density-uniformisation can thus be obtained by
providing any uniform length function.

3.2. Pre-uniformisation

The pre-uniformisation steps provide equally spaced coordinate
values on each axis. Since the expected final density of data points
is user-specified, the pre-uniformisation steps can be seen as a way
to provide a “neutral” distribution of data points that will allow
more efficient action of the subsequent physical algorithm.

• step 1: on each coordinate axis,

– step 1a: sort the coordinate value list (xi)1≤i≤N

(resp. (yi)1≤i≤N ). For each position i, get the po-
sition n(i) in the sorted list.

– step 1b: fill output coordinate value list (x′i)1≤i≤N

such as x′i = n(i) (resp. (y′i)1≤i≤N ).

• step 2: normalize the resulting coordinate values so that all
data points lie inside the user-specified region.

Figure 3 shows the intermediate database representation ob-
tained after applying steps 1 and 2 to the representation shown in
figure 1.

Spectral Centroid (modified)
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Figure 3: Database representation using pre-uniformised Spectral
Centroid and Periodicity descriptor values.

3.3. Physical Algorithm

The uniform algorithm takes as input the coordinate lists
(x′i)1≤i≤N and (y′i)1≤i≤N obtained by pre-uniformisation, and
outputs new coordinate lists (x′′i )1≤i≤N and (y′′i )1≤i≤N . It works
according to a physical analogy: a Delaunay triangulation of the
data point distribution is performed, which defines a truss struc-
ture where edges of the triangles (the connections between pairs
of points) correspond to bars, and points correspond to joints of
the truss.

Each bar of the truss structure has a force-displacement re-
lationship f(l, l0) depending on its current length l and its un-
extended length l0 (which is computed using the desired length
function). To help points spread out across the whole user-defined
region, only repulsive forces are allowed:

{
f(l, l0) = k(l0 − l) if l < l0
f(l, l0) = 0 if l ≥ l0 (1)

Points that move outside the user-defined region during the
algorithm iteration are moved back to the closest boundary point.
This corresponds to the physical image of external reaction forces
on the truss structure, that act normal to the boundary; hence points
can move along the boundary, but not go outside.

The 2D truss structure obtained by triangulating the distribu-
tion bounds each point to its initial closest neighbors. Repulsive
forces computed along the structure bars are not likely to cre-
ate very large internal movements: hence we expect each point
to keep the same neighborhood throughout the process. Whether
large displacements should happen, they are handled by retriangu-
lating the current set of points so that subsequent algorithm itera-
tions can still rely on a valid physical analogy of the distribution
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as a truss structure. With such properties, the algorithm is likely
to produce representations that retain some aspects of the analytic
sound–control correspondence property.

• step 3: perform a Delaunay triangulation of the points dis-
tribution.

while !exit

• step a: update data point positions.

• step b: move points that went outside the user-defined re-
gion to the closest boundary point.

• step c: if all points have moved less than a significant dis-
tance, exit = true.

• step d: if points have moved more than the maximum al-
lowed distance in respect to the previous triangulation, per-
form a Delaunay triangulation of the distribution.

Figure 4 shows various distributions obtained after apply-
ing the unispring algorithm to the representation shown in fig-
ure 1. They provide examples of square, circular and polygonal
user-defined regions with uniform point densities, as well as non-
uniform user-defined point density (shown in the case of a square
region).

Figure 4: Database representations obtained with the unispring
algorithm. From left to right, top to bottom: square, circular and
polygonal user-defined regions with uniform point densities; non-
uniform user-defined point density within a square region.

4. EVALUATION

4.1. Objectives

The aim of the evaluation process was to measure the algorithm
performance relative to its expected features: redistribution of data
points inside a user-defined region with internal user-defined den-
sity, and as much preservation as possible of the analytic sound–
control correspondence property. Our methodology combines
graphical results with quantitative measures.

Subjective visual appreciation of the algorithm action is a sim-
ple yet efficient way to make sure the final representation is con-
strained into the user-defined region. Evaluation was carried out
using a square region.

The algorithm ability to produce a representation correspond-
ing to the user-defined point density is evaluated in the standard
case of a density-uniformisation task. The algorithm performance
is assessed using a measure λ based on the normalized standard
error of the 1-nearest-neighbors distance distribution [11]. For a
set of N points (Pi)1≤i≤N , we define λ by

λ =
1

γ̄

(
1

N

N∑

i=1

(γi − γ̄)2
) 1

2

, (2)

where

γi = min
j=1,...,N,j 6=i

PiPj for i = 1, ..., N

and

γ̄ =
1

N

N∑

i=1

γi.

For a perfectly uniform point distribution, λ = 0; hence the
smaller the value of λ, the more uniform the distribution. How-
ever, λ does not measure the algorithm performance in terms of
constraining points into the user-defined region. Hence it is im-
portant to pair this measure with visual inspection of the final rep-
resentation.

How the algorithm preserves analytic sound–control corre-
spondence is estimated using three quantitative measures. To see
if this property is altered, we look at pairs of points: an excep-
tion to the analytic sound–control correspondence property is in-
troduced if at least one pair of points exchange their coordinate
values on one or two axes after applying the algorithm. For in-
stance, if points P1 and P2 have initial x-coordinate values such as
x1 < x2, an exception is introduced if new coordinates are such
that x′′1 ≥ x′′2 . The first two measures used for evaluation con-
sist in the percentage p1 of data point pairs that have exchanged
coordinate values on one axis, and the percentage p2 of pairs that
have exchanged coordinate values on two axes. The third measure
used for evaluation takes into account both p1 and p2 to compute
a “distortion measure” value d that increases as the algorithm in-
troduces more exceptions to the analytic sound–control correspon-
dence property. More weight is given to pairs that have exchanged
both coordinates. In our evaluation, we use

d = 5p1 + 10p2. (3)

During the evaluation process, we refer to the pre-
uniformisation steps of unispring (3.2) as the uniform algorithm,
and the physical algorithm steps (3.3) as the spring algorithm. We
compare these algorithms to the unispring algorithm, as they can
be used independently for density uniformisation inside a square
region (both were initially designed for that purpose [6]). By
construction, the uniform algorithm fully preserves the analytic
sound–control correspondence; but by doing so, we expect its
performances in terms of density-uniformisation to be inferior to
those of other algorithms. Evaluating the spring algorithm alone
allows assessing the interest of the pre-uniformisation steps in
unispring.

4.2. Evaluation Data

The evaluation was performed on five representations, provid-
ing different geometric configurations. They were obtained us-
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ing CataRT sound-descriptors computation capabilities, and man-
ual selection of two features.

• the madeleine representation (2404 points), with Spec-
tral Centroid and Periodicity features, is made of subway
sounds and presents a single-centered point distribution.

• the gaussian representation (2404 points), with 2-centered
Gaussian artificial feature values on each axis, corresponds
to a critical case with two very distinct centers.

• the wave representation (2404 points), with Start Time and
Periodicity features, is made of environmental sounds and
presents no identifiable distribution center.

• the partita representation (388 points), with Spectral Cen-
troid and Note Number features, is made of instrumental
sounds and presents initial coordinate values ranges domi-
nated by the coordinate values of a few marginal points.

• the alarm representation (779 points), with Spectral Cen-
troid and Note Number features, consists of different sam-
ples from the Freesound online library3. Points associated
with the same MIDI notes appear as horizontal lines in the
2D display.

4.3. Graphical Results

Figures 5, 6, 7, 8 and 9 show the original evaluation representa-
tions and the final representations obtained by applying the uni-
form, spring and unispring algorithms. Unsurprisingly, the uni-
form algorithm alone is unable to fulfill the density-uniformisation
task set by the user. The spring and unispring algorithms both
seem to give satisfying results, providing square-shaped represen-
tations.

4.4. Quantitative Measures

Table 1 gives the values of the quantitative measures λ, p1, p2 and
d defined in section 4.1.

By construction, the uniform algorithm fully preserves the an-
alytic sound–control correspondence property (d = 0). How-
ever, this “zero-distortion” action prevents the algorithm from effi-
ciently performing the tasks set by the user : besides failing at pro-
ducing a square-shaped representation, this algorithm is responsi-
ble for higher λ values that any other algorithm, which underlines
its lower performance in terms of density-uniformisation.

In contrast, spring and unispring are associated with lower and
comparable λ values. With λ values respectively equal to 3.7 %
and 3.8 % of the original representations’ λ values on average,
both algorithms successfully performed the density-uniformisation
task. One necessary drawback to this is the introduction of distor-
tion, though in different amounts. Since the absolute values of p1,
p2 and d depend strongly on the initial representation geometry,
algorithms have to be compared based on their action on a single
representation. Reviewing the results representation by representa-
tion we see that the unispring algorithm provides lower values of d,
which means that it is better at preserving analytic sound–control
correspondence. This can also be noted by looking at percentages
p1 and p2, which are lower in the case of unispring.

The mean values of p1 and p2 obtained with unispring are
p̄1 = 24.13 % and p̄2 = 0.49 %. On average, a quarter of data
point pairs have exhanged their coordinates on one axis, but the

3http://www.freesound.org

more preocuppying case of pairs having exchanged their coordi-
nates on two axes only happened for a very few of them. Hence
the algorithm performs well at preserving analytic sound–control
correspondence. This property can be partly accounted for by the
physical analogy on which unispring is based, as explained in sec-
tion 3.3. As spring is also based on the same physical model,
greater performances of unispring confirm the interest of its pre-
uniformisation steps. They prevent the subsequent physical algo-
rithm from having to process high-density regions of points, which
are more likely to create anarchic movements during early itera-
tions.

Pre-uniformisation is a much faster process than the physi-
cal algorithm, which gets iterated many times: consequently, the
spring and unispring algorithms’ speeds can be compared by this
iteration count alone. Using this criteria, the unispring algorithm
proved to be 1.2 times faster on average than spring. Taking only
into account the number of retriangulations happening during the
iteration process (cf. step d in section 3.3), unispring appeared to
be twice faster on average than spring.

5. APPLICATIONS AND FUTURE WORK

5.1. Digital Musical Instrument Interfaces

Interactive corpus-based concatenative synthesis, combined with
a two-dimensional single- or multi-touch control surface, can be
used as a digital musical instrument (DMI) to “play” a sound
database by navigation through the feature space. Here, our al-
gorithm allows to exploit the totality of the interaction surface for
control, while preserving the original analytic sound–control cor-
respondence property and thus the perceptual meaning of the in-
strumental gestures.

The algorithm has been used to lay out more than 2500
sound segments for interaction on a multi-touch surface control-
ling the CataRT system4 in the piece Alarm–Signal performed by
Diemo Schwarz at the Sound and Music Computing Conference,
Barcelona 2010.5

A video documentation can be found in the on-line journal
Musimédiane [12].

5.2. Preset Interpolation

Another prospective application is the layout of many synthesiser
or effect presets on a 2D plane for position-based preset interpola-
tion, where the proximity of the cursor to the position of the closest
presets determines their influence on the sound [13, 14] (see also
pMix6 for Max/MSP).

When a large number of presets is used, manual position-
ing might become unfeasable, and our automatic layout algorithm
could again optimise the interaction space.

5.3. Comprehensive User Interface

The expected final point density has to be provided to the algorithm
in the form of the desired length function h(x, y). We studied sev-
eral ways of making this process more user-friendly, with the aim
of providing automatic calculation of h in the most common cases.

4http://imtr.ircam.fr/imtr/CataRT
5http://mtbf.concatenative.net
6http://www.olilarkin.co.uk/index.php?p=pmix
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Figure 5: Madeleine representation. From left to right: original representation, uniform, spring, unispring algorithm representations.

Figure 6: Gaussian representation. From left to right: original representation, uniform, spring, unispring algorithm representations.

Figure 7: Wave representation. From left to right: original representation, uniform, spring, unispring algorithm representations.

Figure 8: Partita representation. From left to right: original representation, uniform, spring, unispring algorithm representations.

Figure 9: Alarm representation. From left to right: original representation, uniform, spring, unispring algorithm representations.
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Algorithm Measure madeleine gaussian wave partita alarm

none
(reference)

λ 1.7812 0.9876 0.9379 2.0258 1.3090

uniform λ
p1
p2
d

0.6388
0 %
0 %
0

0.5288
0 %
0 %
0

0.7179
0 %
0 %
0

0.7994
0 %
0 %
0

0.8614
0 %
0 %
0

spring λ
p1
p2
d

0.0484
41.8778 %
9.8234 %
3.0762

0.0503
34.1827 %
2.6994 %
1.9791

0.0457
27.4539 %
2.4235 %
1.6150

0.0518
43.1718 %
6.6142 %
2.8200

0.0463
28.2426 %
2.8476 %
1.6969

unispring λ
p1
p2
d

0.0448
21.6047 %
0.54385 %
1.1346

0.0487
28.7839 %
0.88407 %
1.5276

0.0445
16.6518 %
0.46855 %
0.8794

0.0482
33.7426 %
0.17227 %
1.7044

0.0498
19.8733 %
0.36181 %
1.0298

Table 1: Values of quantitative measures λ, p1, p2 and d.

For instance, partially-uniform representations can be obtained by
using

h(x, y) =
1

d(x, y) + d0
,

where d(x, y) is the positive original representation density (com-
puted using kernel density estimation [15] for instance) and d0 a
constant used to modulate the amount of uniformisation. When
d0 becomes much greater than d(x, y) for all x, y, h tends to a
uniform length function providing total uniformisation (3.1). Fig-
ure 10 shows partially-uniform representations obtained with this
method.

Figure 10: Partially-uniform representations obtained by automat-
ically computing h from the initial density. Original representa-
tions used (left to right, top to bottom): madeleine (d0 = 5), gaus-
sian (d0 = 2), wave (d0 = 1), alarm (d0 = 1).

5.4. Task-based User Evaluation

By providing a convenient, user-defined way to redistribute a
database representation, our algorithm could possibly make sound
design tasks easier. To test this hypothesis, we are currently
considering conducting a task-based user evaluation, where users
would be asked to execute basic sound-design actions by interact-
ing with both transformed and original representations.

6. CONCLUSIONS

The unispring algorithm is an efficient solution to transform 2-
dimensional database representations into user-specified represen-
tations. It is based on a physical algorithm whose performances
are increased by pre-uniformisation of the data. The user defines
a region inside which the algorithm redistributes the data points
according to a user-defined length function, which determines the
final distribution density.

Two-dimensional representations provide a convenient frame-
work for interacting with sound, as in many contexts two degrees
of freedom are used for interaction. Automatically extracting
sound features from the database elements allows to create rep-
resentations of large databases in which analytic correspondence
between interaction control and evolution of sound characteristics
can be found. With such representations it is often straightforward
to create a mapping between the interaction setup and the sound
data. However, it is unlikely that the user will consider this map-
ping optimal. Our algorithm allows the user to redistribute the data
points in a way that will suit his needs more, while taking care of
preserving as much as possible the analytic correspondence be-
tween interaction control and sound characteristics.

Our evaluation process provides information on how much this
correspondence is altered by applying the algorithm. With a rea-
sonable mean value of 24.13 % of data points pairs that have ex-
changed their coordinate values on one axis and only 0.49 % of
pairs that have exchanged their coordinate values on two axes, the
algorithm preserves most aspects of the analytic sound–control
correspondence property. The algorithm shows excellent perfor-
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mance when asked to perform the density-uniformisation task used
for evaluation.

Unispring applications may include live performances, sound
installations, sound design or educational courses. In order to
make it easier for users to use the algorithm, we plan to release
its real-time implementation in Max/MSP as an MnM object [16]
by the time of the conference.
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ABSTRACT

A system for the synthesis of backing vocals by pitch shifting of a
lead vocal signal is presented. The harmonization of the backing
vocals is based on the chords which are retrieved from an accom-
panying instrument. The system operates completely autonomous
without the need to provide the key of the performed song. This
simplifies the handling of the harmonization effect. The system is
designed to have realtime capability to be used as live sound effect.

1. INTRODUCTION

The task to synthesize various voices from a solo singing voice
has been realized in many different ways. Some approaches aim
to synthesize a whole choir from a single singing voice. A system
for the synthesis of natural sounding choir voices was presented
in [1]. The singing voice is modified in pitch, time and timbre to
synthesize a number of choir voices. Hence the choir voices are
directly synthesized from the singing voice signal.

Another approach, presented in [2], extracts high level fea-
tures from the singing voice and synthesizes the choir voices using
a database of voices and timbres. The singing voice is morphed
with the database voices to synthesize a choir which contains the
features of the single voice, but also the smooth sound of a choir.

In this paper we present a system which synthesizes backing
vocals. In contrast to the choir synthesis, where the aim is to syn-
thesize a smooth and broad choir, we are more interested in syn-
thesizing a number of distinguishable voices like in a typical band
with one lead singer and one or more backing singers. Both of
the referenced approaches implement systems which require ad-
ditional information on how to harmonize the choir voices. We
present a system which autonomously performs the harmonization
task based on a harmony analysis of an accompanying instrument,
e.g. a rhythm guitar or piano. An overview of the proposed system
is given in Section 2. The signal analysis and feature extraction
part, which includes the pitch detection and the chord detection,
is described in Section 3. The synthesis of the backing vocals
by modification of the singing voice and the harmonization is de-
scribed in Section 4. Section 5 describes the evaluation of the sys-
tem followed by a brief discussion of the performance. In Section
6 we conclude the paper.

2. SYSTEM DESCRIPTION

The presented system consists of three main blocks, i.e. the pitch
detector, the chord detector and the voice synthesizer, as shown in
Fig. 1. Two input signals are required for the processing. One
input is the singing voice signal (Voice), which is fed to the pitch

Voice

Pitch
Detector

Chord
DetectorInstrument

Voice
Synthesizer

Backing
Vocals

Figure 1: System overview.

detector for pitch extraction and to the voice synthesizer. The other
input is the accompanying instrument signal (Instrument), which
is fed to the chord detector. The singing voice pitch and the chord
information are fed to the voice synthesizer. The voice synthesizer
processes the singing voice input signal in respect of rules for the
harmonization. The particular blocks are described in more detail
in the following sections.

3. SIGNAL ANALYSIS

The signal analysis section of the system consists of a pitch detec-
tor and a chord detector. The focus of this paper is on the chord de-
tection particularly the multipitch detection required for the chord
detector.

3.1. Pitch Detection

It is important to have robust information of the current lead vo-
cal pitch to enable the succeeding blocks to work properly. We
chose the YIN algorithm as presented in [3] for the pitch detec-
tion, because it returns robust and accurate results for monophonic
harmonic signals [4].

3.2. Chord Detection

The task of the chord detector is to analyze the polyphonic instru-
ment signal to extract multiple pitches and to derive from these
pitches the corresponding chord symbol representation. The ex-
traction of multiple pitches requires to reduce the rich harmonic
signal produced by a musical instrument to the pitches. For most
instruments the pitches can be expressed as the fundamental fre-
quencies F0.
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3.2.1. Multipitch detection

The multipitch detection algorithm is based on an approach pro-
posed by Tolonen [5]. The Tolonen system is the auditory moti-

Pre-whitening

Highpass
at 1 kHz

Half-wave rect.
Lowpass filt.

Periodicity
detection

Lowpass
at 1 kHz

Periodicity
detection

+

SACF
Enhancer

Enhanced
SACF

Input

Figure 2: Tolonen’s multipitch detector [5].

vated system as shown in Fig. 2. The input signal is filtered by
a whitening filter and split into two bands. The periodicity of the
lower frequency band is calculated as main indicator of the fun-
damental frequencies. The signal in the higher frequency band is
half-wave rectified and lowpass filtered. This models the mechani-
cal to neural transduction of an inner hair cell according to Meddis
[6]. The output of the model has an ac and a dc component. The
ac component is of the same frequency as the input signal and the
dc component is a monotonic saturating function of signal level,
which provides the envelope of the signal. The periodicity of the
higher band emphasizes the lower band’s periodicity. The peri-
odicities are calculated using the Fourier transform, which allows
magnitude compression and speeds up the computation compared
to the time domain autocorrelation. The sum of both paths builds
up the sum autocorrelation function (SACF).

The Tolonen system continues with the SACF Enhancer which
removes redundant and spurious information by stretching the SACF
and subtracting the stretched SACF from the original one.

We replace this block and come up with a different approach
to remove redundancy to be able to obtain the fundamental pitch
candidates. Starting from the SACF we calculate a threshold as

th =
α

L

L−1∑

l=0

max (SACF(l), 0), (1)

which is the mean of the first L = 700 lag values l of the SACF,
where the SACF is truncated to have only positive values. The
constant α lowers the threshold by scaling the truncated mean. We
used a factor ofα = 0.4. The SACF values below the threshold are
omitted and the lagsM of the peaks above the threshold are further
considered. As the next step we group the peaks into harmonically
related periods and calculate a rating value K for each group as

K =

4∑

i=0

2i ·max(SACF(mi)), (2)

with
⌊
2iM − (0.7 · 2iM)

1
3

⌋
≤ mi ≤

⌊
2iM + (0.7 · 2iM)

1
3

⌋
.

(3)

mi describes an observation range to find the actual peak location
near 2iM in the SACF, because the multiples must not be exact in-
teger multiples. Starting from low lag values for each peak lag M
above th the group of corresponding subharmonics is considered
and the weighting factor is determined according to (2). The lag
of the highest peak of the group with the highest value of K is re-
garded as most prominent pitch period candidate. The j-multiples
of M are removed from the SACF with j ∈ {1, 2, 3, 4, 6, 8}. The
pitch period determination is an iterative process with the number
of iteration steps given by the maximum number of determinable
fundamental pitches.

The schedule of the algorithm to distinguish the most promi-
nent F0 is as follows:

1. calculate SACF of a 4096 samples time frame at fs = 44.1
kHz

2. calculate threshold th

3. find maxima above th with maximum lags M

4. for each M search for multiples, i.e. subharmonics

5. sum the weighted values of the group of harmonically re-
lated maxima to get a rating of harmonicity

6. select the highest rating value as F0-candidate

7. eliminate the corresponding maxima of the F0-candidate
from the SACF

8. continue iterating from step 3 with the remaining peaks

9. stop if desired number of F0-candidates is retrieved

Figure 3 shows an example of the removal process. In Fig. 3a
the peaks of the SACF are shown. The group with the highest rat-
ing valueK starts from l = 112. The peaks used for calculation of
K are marked by circles. All corresponding lag values belonging
to this group are marked by stars. The highest peak of the group is
taken as the fundamental pitch candidate of this group, in this case
the peak at l = 225. The marked peaks are removed as shown in
Fig. 3b and the peaks of the second group, with lag values corre-
sponding to l = 178, are marked. This procedure is repeated for
the third group with lag values corresponding to l = 74 (see Fig.
3c). We end up with three lag values which represent the periods
of the F0-candidates. Figure 4a shows the SACF over time of an
example G major chord, played on a guitar. In Fig. 4b the results
of the F0-candidate retrieval is shown. We see that this method is
prone to octave errors, but mapping theses candidates to the corre-
sponding tones of the 12-tone chroma vector shows that we obtain
a robust pitch class representation of the chord. In Fig. 4c the
discrete chromagram of the detected tones is shown.

3.2.2. Chord classification

The multipitch detection and pitch class determination, respec-
tively, is the fundamental component of the chord detection. Once
the chord tones are detected, as described in Section 3.2.1, a map-
ping from multiple tones to the corresponding chord representation
is done. This mapping can be a quite complex task considering the
amount of possible chords which could occur. The classification of
chords can be done using statistical models, e.g. hidden Markov
Models (HMM), as presented in [7, 8]. A realtime implementa-
tion of the HMM classifier is possible with a modified Viterbi [9]
at a high computational cost adding some latency. We require a
low complexity algorithm and therefore we applied a classifica-
tion known as pattern or template matching [10, 11, 12, 13], which
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(a) SACF iteration 1.
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(b) SACF iteration 2.
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(c) SACF iteration 3.

Figure 3: The three iteration steps of SACF peak removal are
shown. The dashed line shows the peak detection threshold th, the
stars indicate the peaks of the most prominent harmonics group
and the circles indicate the peaks used for K calculation.

is applicable in a frame-by-frame manner. The detected tones are
represented by a bit mask which is a 12 × 1 vector having a 1
where a note is present and a 0 else. With the tones ordered as
[c,c#,d,d#,e,f,f#,g,g#,a,a#,b], the G major chord of the example
sample would be represented as [0,0,1,0,0,0,1,0,0,0,1]. The classi-
fication is done by calculating the hamming distance between the
bit mask of the detected tones with the template bit masks of the
possible chords. The bit mask with the minimum hamming dis-
tance is regarded as the chord candidate. We simplify the chord
detection by restraining the possible chords to two triad modes,
major and minor, with the common 12 key notes per octave. This
leads to a total of 24 possible chords that can be detected.

3.2.3. Validation of proposed system

The comparison of the Tolonen system with the proposed modi-
fied system was done on recorded clean guitar samples. The test
set included 14 samples of standard chords (major and minor, in
different keys). Each sample presents one chord which was struck
once and let ring to fade out. The compared quantities include
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(c) Chromagram of the detected F0-candidates.

Figure 4: Results of the chromagram determination for G major
guitar chord sample.

the error of the detected chords (chord error), the amount of not
detected tones (tone false negative) and the amount of wrongly de-
tected tones (tone false positive). The errors were calculated as the
mean frame error. For the tone detection we were not interested
in the correct octave of the played note and therefore we did not
consider octave errors as false detection. The robustness of both
systems was increased in the same way by temporal smoothing of
the detected tones and the detected chords.

error type Tolonen proposed system
chord error 30.8% 2.5%
tone false negative 5.8% 1.5%
tone false positive 87.5% 12.2%

Table 1: Comparison of Tolonen approach to proposed system.

The test results show that the investigated tone detection er-
rors could be reduced with the proposed modified Tolonen system.
Consequently the chord detection error was reduced as well.

4. VOICE SYNTHESIZER

Now that we have detected the pitch F0 of the singing voice and
the chord of the accompanying instrument we can continue with
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Figure 5: Background vocal synthesizer.

the synthesis of the backing vocals. The block diagram of the
background vocal synthesizer is shown in Fig. 5. The synthe-
sizer consists of a Voice Control block, which performs the control
of the pitch shifting factors of the Pitch Shifter blocks. The Voice
Control and the approach used for the pitch shifting are described
in the following sections.

4.1. Pitch Shifter

The pitch shifters used are based on the Pitch Synchronous Over-
lap Add (PSOLA) pitch shifting algorithm [14, 15, 16, 17]. A
block diagram of the PSOLA stages is shown in Figure 6. The al-

PSOLA
Analysis

Grain
reassign-

ment

PSOLA
Synthesis

x

F0

α

y

mi

hi

mk

hk

Figure 6: Block diagram of PSOLA algorithm.

gorithm segments the input signal x into short overlapping grains
hi with a length of twice the fundamental period time 1/F0 in
the analysis stage. The time instants marking the center of each
grain are the analysis pitch marks mi. Hence the time difference
between two succeeding pitch marks represents on pitch period.
The pitch is then shifted by a factor α in the grain reassignment
stage by repositioning these grains, either reducing the distance in
combination with occasional repetition of some grains to increase
the pitch or expanding the distance in combination with omitting
some grains to decrease the pitch. The pitch marks mk indicate
the time instants with the corresponding reassigned grains hk for
the overlap and add synthesis of the output signal y.

A robust pitch mark positioning algorithm which achieves high
quality results is used as presented in [18]. The pitch mark posi-
tioning algorithm of the PSOLA analysis stage receives the funda-
mental pitch F0 from the pitch tracker described in Section 3.1.
The pitch marks are positioned based on a center of energy ap-
proach, which ensures robust segmentation of the grains and re-
duces the occurrence of artifacts. The algorithm allows the po-
sitioning of the pitch marks in a frame-based manner to enable
realtime application.

4.2. Voice Control and Harmonization

The task of the Voice Control block is to set the pitch shifting fac-
tors for the backing vocals synthesis in a way that a musically cor-
rect harmonization is achieved. We regard a harmonization as cor-
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Figure 7: Harmonization example for an A major chord. The upper
plot shows the pitch contours of the recorded lead vocals (black
curve) and a higher and lower synthesized backing vocal (gray
curves). The lower plot shows the corresponding pitch shifting
factors α.

rect if the synthesized voices match the chord harmonies. At this
stage of the work this means no dissonant voicings are desired.

4.2.1. Harmonization

There are numerous approaches to harmonize additional voices to
the lead vocals. In offline processing the voice leading for the syn-
thesized voices can be manually provided as score transcription.
This allows the user to individually adjust every note of each voice
and hence offers the most creative possibilities.

An approach towards semi-autonomous harmonization is to
provide the key of the song and to define the note interval of the
synthesized voice related to the singing voice. This enables to syn-
thesize the backing vocals with the correct pitch of the notes from
the scale corresponding to the provided key. The major drawback
of this approach is that it still requires to manually provide addi-
tional information about the musical content.

We achieve a completely autonomous harmonization without
the requirement to supply information about the musical context.
The musical information is determined using the chord detector
which provides the instantaneous chord information. To make the
valid note determination more robust the detected chords are ob-
served over several frames. This ensures that short failures of the
chord detection do not disrupt the harmonization of the backing
voices. The harmonization starts by relating the singing voice to
the current chord harmony. This can be regarded as a quantization
of the singing voice pitch F0Lead to the chord notes. We consider
an example of a singer accompanied by a guitar with an A major
chord being the played harmony.The upper plot of Fig. 7 shows
the lead vocal pitch contour of the example as black curve. On
the right hand side the chord notes for the example A major chord
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Figure 8: Block diagram of PSOLA algorithm with modulation of
the synthesis pitch marks.

are marked with a black bar, i.e. A, C# and E. The pitch shifting
factors for the backing vocals are calculated as the ratio between
the singing voice pitch and the intended backing vocal pitch as

αBack1 =
F0Back1

F0Lead
, (4)

αBack2 =
F0Back2

F0Lead
. (5)

The pitch shifting range is limited to synthesize voices which are
close to the singing voice, because high pitch shifting factors result
in disturbing artifacts. This leads to adding a backing voice which
is pitched one chord tone higher than the lead vocal pitch and a
backing voice one chord tone lower. The resulting pitch shifting
factors are shown in the lower plot of Fig. 7. The corresponding
pitch contours of the resulting backing vocals are shown by the
gray curves in the upper plot of Fig. 7.

4.2.2. Humanization

To reduce artifacts and achieve a natural sounding synthesis the
pitches of the backing vocals are slightly modulated. The PSOLA
algorithm allows to efficiently realize a pitch modulation for vi-
brato simulation and a temporal modulation for varying delay sim-
ulation using the same modulation function but with different sets
of parameters. This can be accomplished by modulating the syn-
thesis pitch mark positions as shown in Fig. 8.

The pitch mark modulation function Pmod is given as

Pmod(t) =
Amod

2
· (1 + sin (2πfmod · t)) . (6)

A relatively high modulation frequency fmod of 5-10 Hz in
conjunction with a relatively low modulation depth Amod in ms
results in a perceivable pitch modulation. In contrast a relatively
low modulation frequency of 1 Hz or lower in conjunction with a
higher modulation depth results in a varying delay. The effect of
the later case is shown in Fig. 9. The example shows the synthesis
pitch mark modulation for Amod = 45 ms and fmod = 1 s. The
upper plot shows the synthesis pitch marks mk and the resulting
modulated synthesis pitch marks m̂k. The lower plot shows the
modulation function Pmod(t).

5. EVALUATION AND DISCUSSION

The described harmonization system is intended to support a lead
singer of a small group or a solo artist with backing vocals. The
current system is applicable for the typical singer songwriter kind
of musical style. The development of the particular system mod-
ules was done in Matlab. The Matlab implementation of the al-
gorithms was already done in a realtime manner. This allowed to
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Figure 9: Example of varying delay simulation by PSOLA synthe-
sis pitch mark modulation.

port the algorithms to C++ functions to use them as VST plugins
without much effort.

For evaluation we used a test song with a male singer accom-
panied by an acoustic guitar. The tracks were available as separate
lead vocal and guitar signals. An objective assessment of such
system’s performance is hard to realize. Therefore a subjective as-
sessment of the harmonization results was conducted by a group
of musicians having experience in that style of music. The synthe-
sized backing vocals were found to be in good accordance with the
guitar harmonies.

There are some artifacts perceivable as glitches which are mainly
caused by wrong lead vocal pitch detection. These artifacts could
be further reduced by smoothing of the pitch transitions. The hard
assignment of the lead vocal pitches to the chord harmonies may
also lead to glitches. An algorithm which allows a soft decision
region could resolve this problem.

Some audio clips of the harmonization results can be found at
http://ant.hsu-hh.de/dafx2011/harmonization.

6. CONCLUSIONS

We presented a system which harmonizes backing vocals based
on the detected chords of an accompanying instrument. We pro-
posed a modification of the Tolonen multipitch detector. The re-
sults show that the accuracy of multiple pitch detection and con-
sequently of the chord classification for recorded guitar samples
could be increased. The harmonization is operating completely
autonomously, which means no key has to be manually provided.
The developed algorithms operate in realtime which allows the use
of the harmonization as live effect. The achieved harmonization
results are quite promising but there is room for further improve-
ment.

Future work will concentrate on the autonomous harmoniza-
tion, since the presented voice leading approach is rather simple
compared to how a real musician could harmonize. Also the chord
detection will be extended to be able to detect seventh chords to
improve harmonization capabilities.
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ABSTRACT

We present a novel method to adjust the perceived width of a phan-
tom source by varying the deterministic inter channel time differ-
ence (ICTD) in a pair of signals over frequency. In contrast to
given literature that focuses on random phase over frequency, our
paper considers a deterministic approach that is open to a more
systematic evaluation. Two allpass structures are described, finite
impulse response (FIR) and infinite impulse response (IIR),for
phase-based phantom source widening and evaluated in a formal
listening test. VaryingICTD over frequency essentially alters the
inter-aural cross correlation coefficient at the ears of a listener and
in this way provides a robust way to control the auditory source
width. The subjective evaluation results fully support ourobserva-
tions for both noise and speech signals.

1. INTRODUCTION

Two loudspeakers emitting the same sound simultaneously will
create the illusion of a phantom source, a sound localized inbe-
tween. A long lasting problem in the field is the manipulationof
the perceived phantom source width. Up until now, the main ways
to manipulate it were the so-called pseudo stereo or decorrelation
approaches.

Purely phase-based decorrelation techniques were comprehen-
sively studied in the work of Kendall [1], which gives an overview
of already convincing perceivable effects, using random phase val-
ues for different frequencies. Improvements and variations were
described in [2, 3]. The control of a random phase is nevertheless
a challenging task and evaluation results verify the difficulty inher-
ent in reducing the variability in the perceptual outcome ofsuch a
process.

Pseudo stereo can be achieved by various kinds of implemen-
tations, which essentially introduce fluctuations in the frequency
dependent level and phase differences of a pair of playback sig-
nals. Schröder [4] and Orban [5, 6] describe the Lauridsen net-
work which produces a pair of spectrally complementing comb
filters. Gerzon [7] discusses that previous work on Lauridsen net-
works suffers from phasing, a serious side-effect. He proposed
various alternative strategies to reduce this effect: a) frequency

∗ Contributions: Franz Zotter developed two allpass structures yielding
frequency dependentICTD for decorrelation. Georgios Marentakis pro-
posed to investigate ASW control through frequency dependent panning.
Matthias Frank and Georgios Marentakis designed the evaluation study ex-
ecuted by Matthias Frank. Georgios Marentakis and MatthiasFrank exe-
cuted the statistical analysis. Alois Sontacchi contributed his expertise on
the field of signal decorrelation, perceptual evaluation and in the presenta-
tion of research.

varying amplitude panning, b) a modified Lauridsen network with
a delayed channel, and c) unitary feedback delay networks.

Of the techniques proposed by Gerzon, frequency varying am-
plitude panning is very close to observations made independently
by Blauert and Lindemann. In their work, they mention [8] that
panning of individual frequency bands in specific directions, or
the rapid interchange of the panning directions of the frequen-
cies within a signal, reduces the inter-aural cross correlation co-
efficient (IACC) and increases the phantom source width, i.e., au-
ditory source width (ASW). They also verify the inverse relation
between IACC and ASW for headphone listening by combining
uncorrelated noise sources. The IACC is the maximum of the nor-
malized inter-aural cross correlation function within a maximum
time shift of±1ms [9]. Despite the evaluation using headphones,
their work is fundamental when creating a pseudo-stereo or decor-
related signal pair out of a single monophonic sound.

The main focus of this work is to revise phase-based ap-
proaches that neither suffer from phasing nor require special skill
in designing random variables by taking into account the obser-
vations by Blauert and Lindemann [8] and Gerzon [7]. To this
end, we establish the relationship between the phase of an allpass
filter and its frequency dependent group delay. Using the group
delay differences in a pair of allpass filters enables the determinis-
tic control of ICTD. Suitable implementations are provided for
both FIR and IIR filter designs. Eventually, the target phaseis de-
termined by an accurately reproducible frequency dependent inter
channel time difference (ICTD). This approach is equivalent to a
frequency dependent time delay panning in stereophony. Theper-
ceived phantom source widening using the presented algorithms is
evaluated and verified by a listening experiment and relatedto the
IACC, using a setup illustrated in Fig. 1.

60∘2m

H1

H2

Cond. 1

Cond. 2-8

mono input

Figure 1: The setup used in the evaluation experiment.
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2. ALLPASS STRUCTURES FOR DETERMINISTIC ICTD

Decorrelation [1] designs are usually done by means of a random
allpass phaseφ[k] in the discrete Fourier transform (DFT) domain.
Introducing random phase in a signal cannot be done without con-
straints imposed to maintain acceptable sound quality.

Assuming an arbitrarily designed phase pairφ1, φ2, the out of
phase signals are easily avoided by forbidding these valuesin the
design, i.e.φ2 − φ1 6= (2l + 1)π, l ∈ Z.

Another issue is to ensure that the magnitude response stays
unity between the frequency binsk, cf. [1], or similarly, that the
impulse response does not suffer from cyclic time-domain aliasing.
The difference of the random phase in successive bins is therefore
subjected to a limitation|φ[k] − φ[k − 1]| < ∆φmax. After this
limitation, the achievable effect is mainly controlled by this limit
and the DFT-lengthN . In [3] it is even proposed to make this
limit depending on the Bark frequency to improve some perceptual
qualities.

This phase limitation is quite interesting for the determinis-
tic design as there is an underlying meaning that is useful. The
(cyclic) group delay in one frequency bin can be estimated us-
ing the first backward difference of the phaseτ [k] = N

2π fs
∆φ[k],

with the signal sampling frequencyfs. Hence, the limitation of the
phase change over successive bins is observed to limit the group
delay, implicitly. But it also means that the group delayτ [k] could
be designed as a random variable to construct the phase

φ[k] =
2π fs

N

k
X

k′=0

τ [k′]. (1)

Nevertheless, the limitation of frequency dependent random
group delays might not be enough as a design parameter for inter-
esting effects influencing the phantom source image. For instance,
the group delay should change often enough over frequency to
avoid angular shifts of the phantom source. On the other hand,
too frequent changes might cause impulse responses of inconve-
nient length. Therefore, a cosine function is proposed to design
the group delay.

2.1. Deterministic FIR allpass design

The presented study favors a deterministic FIR allpass design that
is reproducible and has a controllable variation of theICTD over
frequency.

As the simplest choice of its deterministic behavior, a positive
and negative cosine contour with adjustable frequency period ∆f
and peak valuêτ can be chosen as the group delay of the transfer
functionsH1, H2

τ1,2(ω) = ∓τ̂ cos(ω/∆f), (2)

with the angular frequency variableω = 2πf . This yields, with
τ2 − τ1, an adjustable inter channel time delay

ICTD(ω) = 2 τ̂ cos(ω/∆f). (3)

By the negative integral of the group delay overω, the sinusoidal
phaseφ(ω) = ±τ̂∆f sin(ω/∆f) of the allpass decorrelation
filters are obtained, withj =

√−1,

H1,2(ω) = e± jτ̂∆f sin(ω/∆f). (4)
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Figure 2: Impulse, magnitude, phase, and group delay responses
of the deterministic FIR allpass pair.

It is not surprising that the structure of the correspondingimpulse
response is similar to an FM-spectrum with its Bessel functions
Jm(µ) of various ordersm and the modulation depthµ. For the
two allpass functionsh1(t) andh2(t) with opposing time delays,
the following impulse responses are obtained

h1,2(t) =
∞

X

m=−∞
J±m(τ̂∆f) δ

„

t − m

∆f

«

. (5)

The corresponding inter channel time delay is adjustable with re-
gard to the frequency period∆f/2 in which the sign of theICTD
alternates its magnitude between−2 τ̂ ≤ ICTD ≤ 2 τ̂ . The FIR
implementation is made causal by introducing a suitable time de-
lay. Its length is limited as Bessel functions vanish with large |m|
and small̂τ∆f . Fig. 2 shows the impulse, magnitude, phase, and
group delay responses of the system. In order to avoid opposite
inter channel phase, the phase argument of one channelφ needs to
be restricted to±π/2, i.e.

τ̂∆f <
π

2
. (6)

2.2. IIR allpass design

As an alternative IIR implementation of the phantom source widen-
ing effect, an implementation with third-octave structurecan be
defined. Let us assume two cascade chainsl = 1, 2 containing
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Figure 3: Group delay responses of the2nd order IIR allpass chain
elements for the channel 1 and 2 and the achievedICTD.

third-octave2nd order allpass filters

Hl(s) =
8

Y

k=−8

Hk,l(s), l = 1, 2. (7)

The allpassk in the cascadel is, for simplicity, described in the
Laplace/Fourier domain as a complex continuous-time filter

Hk,l(s) =
s − jωk,l − σk,l

s − jωk,l + σk,l

˛

˛

˛

˛

s=jω

= e
j2 arctan

ωk,l−ω

σk,l . (8)

We may use a reference angular frequencyω0 = 2π 1kHz in order
to define the center frequencies of the filtersωk = 2k/3 ω0 and
their bandwidthsσk = ∂

∂k
ωk = ωk/Q with Q = 1/ ln 21/3. Two

identical cascades do not create anyICTD yet, but only require
slight modifications to do so.

A frequency varyingICTD is obtained when the center fre-
quencies of both chains are shifted alternatingly towards lower and
higher frequencies by some factorsǫ−1 or ǫ, respectively. Defined
accordingly, the allpass parameters of the chainl are

ωk,l = ǫ(−1)k+l

2k/3 ω0, (9)

σk,l = ωk,l/Q. (10)

For good results,ǫ should be bounded1 ≤ ǫ < 21/6 to avoid
frequencies with opposite inter channel phase.
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Figure 4: Group delay response of the allpass chain and its equal-
ization with 150 2nd order IIR allpasses, and the compensated
group delay curve.

10 15 20 25

−0.2

0

0.2

h 1, h
2

t [ms]

h
1

h
2

125 250 500 1k 2k 4k 8k
−1

0

1

|H
1|, 

|H
2|, 

[d
B

]

|H
1
|

|H
2
|

125 250 500 1k 2k 4k 8k
−1000

−500

0

φ 1, φ
2 [r

ad
]

φ
1

φ
2

125 250 500 1k 2k 4k 8k
12
14
16
18
20
22

τ 1, τ
2 [m

s]
f[Hz]

τ
1

τ
2

Figure 5: Impulse, magnitude, phase, and group delay responses
of the deterministic IIR allpass chain pair out of third-octave2nd

order allpasses and their 150 element group delay compensation.

A closer insight into the proposed structure is obtained by re-
garding the group delay. The negative derivative of the phase is
easy to calculate for one elementk, and, in sum, yields the group
delay introduced by the cascadel

τl(ω) =
8

X

k=−8

2σ2
k,l

σ2
k,l + (ωk,l − ω)2

. (11)

The ICTD is the difference between the group delays of both
cascades

ICTD(ω) = τ2(ω) − τ1(ω). (12)

Essentially, this achieves the desired effect, see bottom dia-
gram in Fig. 3, but the group delay distortion of a third-octave
allpass cascade is clearly audible and slightly annoying for speech
and transients. An equalizer for the group delay has been designed
to avoid this in the proposed implementation, see Fig. 4. This is a
150 element allpass chain, designed to compensate for the group
delay curve

τeq(ω) = τc − τ1(ω) + τ2(ω)

2
(13)

up to a constant offsetτc. For more details on the design of all-
pass chains of2nd order elements with specific overall dispersion
behavior see [10]. Fig. 3 shows the group delay responses of all
the IIR cascade elements, its sum, the dispersion compensation
allpasses and the overall obtainedICTD.
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Description IACC IACCE3

C1 real source 0.886 0.875
C2 phantom source 0.824 0.815
C3 IIR allpass 0.741 0.725
C4 FIR allpass,̂τ = 3ms,∆f = 200Hz 0.715 0.690
C5 FIR allpass,̂τ = 1ms,∆f = 1200Hz 0.528 0.559
C6 FIR allpass,̂τ = 3ms,∆f = 400Hz 0.598 0.554
C7 FIR allpass,̂τ = 6ms,∆f = 200Hz 0.571 0.521
C8 FIR allpass,̂τ = 3ms,∆f = 600Hz 0.394 0.468

Table 1: Description of the tested conditions.

In Fig. 5 the resulting impulse, magnitude, phase, and group
delay responses are given. In this implementation, the parts of the
impulse responses lying below 200Hz and above 7kHz were left
untreated and come without delay for simplicity of illustration.

3. EVALUATION

We created eight conditions (described in Table 1) that correspond
to the discussed techniques and evaluated them in a formal listen-
ing test. The first two conditions were control conditions, included
to verify that the manipulations yield a larger source widthrelative
to an untreated phantom source (C2) and a mono source (C1). The
IIR condition C3 does not have many degrees of freedom thus it
was evaluated in a single condition. C4-C8 are more versatile and
were tested with various parameter settings for∆f andτ̂ .
The IACC for our eight conditions was computed from dummy
head recordings using a B&K 4128C in the real listening test setup.
For completeness, a recent measure proposed in [11], theIACCE3

was also computed.IACCE3 is the mean of theIACC computed
in 3 octave bands (500Hz, 1KHz and 2KHz) for the first 80ms.

3.1. Method

Participants were seated according to Figure 1 and were facing
forward, i.e. the participants were facing the centre of thesound
event. They were presented with all possible pairwise comparisons
of the eight experimental conditions and indicated which sound
in a pair (A, B, or none) is wider by pressing the corresponding
buttons on a keyboard. They could listen and switch between the
sounds in a pair at will.

The test was divided into two parts with different stimuli: 5s of
pink noise in the first and speech in the second part. For the second
part, a mono sample of 22s male English speech was used from
the EBU SQAM CD [12]. Stimuli were presented at 65dB(A) for
noise and 65Leq(A) for speech. Before each part, a short train-
ing phase was conducted to familiarize the participants with the
comparison task and the stimuli. Each of the (8 choose 2 =) 28
paired comparisons was rated twice by one participant, yielding a
number of56 comparisons for each part; a total number of 112
comparisons per participant for both parts. The order of presenta-
tion and the location of each stimulus within each pair (A, B)was
randomized.

3.2. Setup

Three Genelec 8020 loudspeakers were placed at -30◦, 0◦, and
+30◦, 2m from the participants’ head, see Figure 1. The size of

C1 C2 C3 C4 C5 C6 C7 C8
C1 -/- 91/84 91/100 95/84 100/100 100/100 95/100 100/95
C2 9/16 -/- 82/91 86/68 95/100 100/95 100/100 100/100
C3 9/0 18/9 -/- 75/48 91/77 91/93 100/100 100/100
C4 5/16 14/32 25/52 -/- 68/66 91/93 86/98 100/100
C5 0/0 5/0 9/23 32/34 -/- 77/86 86/89 100/95
C6 0/0 0/5 9/7 9/7 23/14 -/- 48/50 91/75
C7 5/0 0/0 0/0 14/2 14/11 52/50 -/- 82/70
C8 0/5 0/0 0/0 0/0 0/5 9/25 18/30 -/-

Table 2: Relative frequency dominance matrix containing the aver-
age percent of times participants responded that a column iswider
than a row for both noise/speech stimuli; numbers are rounded in-
tegers of the relative votes in %.

the playback room was approx.11m × 11m × 5m. The aver-
age reverberation timeRT60 was 470 ms. Although with refer-
ence to ITU-R BS.1116-1 [13] the room is large, it still is within
the recommended reverberation time limits. In addition, partici-
pants were seated within the effective critical distance ofthe setup,
which was calculated to be 2.76m. 11 participants (4 female,7
male) participated in the listening test (age range: 23-32 years,
median: 27 years). All participants were part of a trained listening
panel [14, 15] and familiar with the evaluation of source width, as
they had participated in another source width experiment [16].
We tested the following hypotheses: 1. The decreasedIACC or
IACCE3 created by the variation of theICTD over frequency af-
fects the perceived ASW. 2. The effect of the different conditions
is consistent for different input signal types as long as theICTD
variability is distributed over the signal’s bandwidth. 3.The per-
ception of the ASW increases with an increase in the magnitude of
theICTD. 4. The perception of the ASW is affected by∆f .

3.3. Results

Participants responded consistently throughout the experimental
trials. Only11% of the repetitions for noise and14% for speech
contained a different response. Most of this variation was observed
when they compared pairs C3/C4, and C6/C7. Table 2 shows the
relative frequency dominance matrix averaged across all partici-
pants and repetitions. A first indication that the differentcondi-
tions yielded different ASW impressions can be obtained by ex-
amining the percent of the responses in which participants judged
conditionCi+1 to be wider thanCi, i = 1 . . . 7. For noise, all
comparisons yield percent discrimination significantly larger than
chance (p < 0.05) apart from comparison C6/C7 and C4/C5. Re-
sults for speech stimuli were the same with the additional excep-
tion of condition comparison C3/C4.

A more complete picture can be obtained by creating phy-
chophysical scales that take into account the participants’ responses
in all possible pairwise comparisons between the eight conditions.
ASW scales were constructed based on the dataset in Table 2 ac-
cording to Thurstone Case V [17] and the BTL model [18] and
are presented in Table 3. Conditions were ranked in the same way
by both models however the differences between the scale values
of each condition varied. We attribute this discrepancy to the fact
that our experimental conditions were easily distinguishable yield-
ing ceiling effects that are handled differently in the two models.
Although we concentrate our analysis on the Thurstone scales, our
conclusions are supported by both models.
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Thurstone BTL
Noise Speech Noise Speech

C1 0 0 0 0
C2 0.19 0.14 0.0018 0.0043
C3 0.33 0.38 0.0063 0.0256
C4 0.48 0.30 0.0191 0.0183
C5 0.61 0.50 0.0398 0.0692
C6 0.78 0.87 0.2648 0.3972
C7 0.82 0.89 0.1473 0.8785
C8 1 1 1 1

Table 3: Scale values normalized within [0,1] based on Table2,
using the Thurstone and BTL model.
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Figure 6: Thurstone scales for noise/speech: median and 95%CI
using participants’ individual scales compared to scales using an-
swers pooled from all participants, Tab. 2. Scales were normalized
within [0,1].

Thurstone scales for each subject were calculated based on
each individual’s frequency dominance matrix. It is worth not-
ing that the median of the scales from the individuals’ responses
and the scales of the pooled responses constructed in the previous
paragraph were almost identical (see Figure 6). A 2-way (Stimu-
lus x Condition) ANOVA was then performed on the scale values
of each individual as a function of the condition and stimulus type
used in the experiment. Analysis of variance yielded no effect of
stimulus type and only a rather weak interaction between stimulus
and condition, F(7,70) = 2.08,p = 0.057. There was a significant
main effect of condition, F(7,70) = 263.616,p < 0.001. Post-
hoc comparisons using Bonferroni confidence interval adjustment
showed that all conditions yielded significantly differentsource
width perceptions (p < 0.001) with the exception of C3/C4 and
C6/C7. In the latter case no difference was observed for bothnoise
and speech. In the former, a significant difference was observed for
noise but none for speech, attributing partially to the marginally
significant interaction. The significant difference between condi-
tions C4 and C7 indicates that ASW perception depends on the
magnitude ofICTDs. One could try to predict the effect of∆f
from the fact that C4 yielded significantly lower ASW impressions
than both C6 and C8, implying an inverse relationship of ASW to
∆f . However, this is not confirmed when comparing C6 and C7.
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Figure 7: Thurstone scales for answers pooled from all participants
as a function of theIACCE3. Scales were normalized within [0,1],
IACCE3 of the conditions are indicated.

3.4. Discussion

Our hypotheses were in general confirmed by the experimentalre-
sults. Hypothesis 1 stating that the decreasedIACC or IACCE3

as a consequence of adjustingICTDs would yield different ASW
impressions was confirmed by the significant main effect of con-
dition observed in our experiment. The Thurstone scales from the
pooled participants’ responses correlated with IACC atr = 0.95
for noise andr = 0.92 for speech. Similarly,IACCE3 correlated
at r = 0.98 andr = 0.97 with the noise and speech stimuli re-
spectively, yielding a nearly linear relation as is clearlyshown in
Figure 7.
Hypothesis 2 stating that the manipulation of theICTD would ap-
ply to diverse stimuli types was confirmed for the noise and speech
used in our experiment. The ASW scales already presented in Ta-
ble 3 for noise and speech were highly correlated to each other
(r = 0.96). However, further studies are required to fully confirm
this hypothesis for other signal types.
Hypothesis 3 stating that the ASW impression would depend on
the magnitude of theICTD was confirmed by the significant dif-
ference between conditions C4 and C7.
Hypothesis 4 was also confirmed, however, a proper identification
of the effect of∆f will have to be discussed in future studies.

4. CONCLUSION

We have presented methods for phantom source widening using
deterministic frequency dependent time delays. The methods have
been implemented as deterministic FIR and IIR allpass structures.
The presented algorithms are useful new audio effects for spatial
sound imaging with well controllable behavior. However, clearly,
the comprehensive evidence of all perceived aspects and compar-
ison to earlier ideas about pseudo-stereo are outside the scope of
this paper and remain subject to future studies. It is worth noting
that in confirmation of the authors’ subjective impression from lis-
tening to the presented algorithms, participants did not report an-
noyance or timbral deficiencies in the listening experiments. This
however remains to be established in a more formal way in future
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studies.
Importantly, we show that frequency dependentICTD pan-

ning can be successfully used to widen a phantom source. Al-
though our evaluation results are onICTD panning, informal ex-
perimentation shows that the same technique can also be usedwith
frequency dependentICLD panning. Frequency dependent pan-
ning works essentially because it adjusts the inter-aural cross cor-
relation coefficient of the received signal and therefore provides a
robust way to control apparent sound source width. Several issues
remain unresolved however. In particular, it would be interest-
ing to identify when exactly image splitting starts to appear and
the role of different panning envelopes and individual frequencies.
Such undertakings will likely increase our knowledge aboutthe
mechanisms that leads to robust ASW representation in the brain
and assist us in the creation of better ways to control ASW.
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ABSTRACT

We describe techniques for implementing real-time partitioned con-
volution algorithms on conventional operating systems using two
different scheduling paradigms: time-distributed (cooperative) and
multi-threaded (preemptive). We discuss the optimizations applied
to both implementations and present measurements of their perfor-
mance for a range of impulse response lengths on a recent high-end
desktop machine. We find that while the time-distributed imple-
mentation is better suited for use as a plugin within a host audio
application, the preemptive version was easier to implement and
significantly outperforms the time-distributed version despite the
overhead of frequent context switches.

1. INTRODUCTION

Partitioned convolution is a technique for efficiently performing
time-domain convolution with low inherent latency[1]. It is partic-
ularly useful for computing the convolution of audio signals with
long (>1 second) impulse responses in real time, as direct con-
volution becomes too computationally expensive and block-FFT
convolution incurs unacceptable latency.

Much of the existing work on partitioned convolution has fo-
cused on optimizing the computational pieces of the algorithm, i.e.
efficiently implementing FFTs and spectral multiplications[1][2][3]
and finding computationally optimal partitionings[4]. In this pa-
per, we focus on how to most effectively schedule the necessary
computations on a personal computer using a conventional operat-
ing system.

We investigate the performance of two scheduling approaches
for non-uniform partitioned convolution: a multi-threaded, pre-
emptive approach and a cooperative, time-distributed approach. Is-
sues we explore include performance, compatibility with existing
audio hosts, and programming effort.

In Section 2, we cover the basics of non-uniform partitioned
convolution. Sections 3 and 4 cover the implementation of the pre-
emptive and cooperative approaches, respectively, and Sections 5
and 6 present and discuss the performance results and their impli-
cations.

2. ALGORITHM OVERVIEW

Convolution is a mathematical operation commonly used to per-
form finite impulse response (FIR) filtering on a signal:

y[n] =

L−1∑

k=0

x[k]h[n− k] (1)

Where x and y are the input and output signals, respectively, and
h is the length-L impulse response of the FIR filter.

The above direct method of convolving two signals has no in-
herent latency but carries with it a large computational cost per
output sample (O(L) multiply-adds per output sample). Because
of this, real-time convolution with larger impulse responses is usu-
ally carried out using block FFT-based methods, like overlap-add
and overlap-save. These methods take the FFTs of the impulse
response and a buffered portion of the input signal, multiply them
together in the frequency domain, and take the inverse FFT of their
complex product to compute a portion of the output signal [5].
Computing convolution in this way requires significantly less com-
putation (O(logL)) at the expense of increased latency due to
buffering.

2.1. Uniform Partitioned Convolution

In order to obtain a compromise between computational efficiency
and latency, we can partition the impulse response into a series
of smaller sub-filters which can be run in parallel with appropri-
ate delays inserted. Each sub-filter’s output is computed using a
block-FFT method, and the outputs of all sub-filters are summed
to produce a block of the output signal, as shown in Figure 1.

FFT IFFT

delay(N)

delay(N)

Complex Mult

Complex Mult

Complex Mult IFFT

IFFT

FFT

FFT

+

x

y

h3h2h1

Hi = FFT(hi)

L
N

H2

H3

H1

Figure 1: Top – Partitioning of an impulse response into 3 parts.
Bottom – Steps involved in computing the above 3-part uniform
partitioning.

If the original length-L filter is partitioned into sub-filters of
size N , we perform O(logN) operations per sub-filter per output
sample but have reduced the latency from L to N . This scheme
works well but can become infeasible if low latency is required
for filters longer than a second or two. For example, if 1.5ms pro-
cessing latency is desired (64 samples at 44.1kHz), a 92ms (4096
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sample) filter would need to be cut into 64 sub-filters, while a 6sec
(262144 sample) filter would require 4096 sub-filters.

Within this uniform partitioning scheme, we can save previ-
ously computed forward FFTs for reuse in subsequent sub-filters.
Additionally, linearity of the FFT allows us to sum the complex
frequency domain output of each sub-filter before taking the in-
verse FFT, which reduces the number of inverse FFTs required to
one. In Figure 1, these optimizations would be made by replacing
the FFT/IFFTs with a single FFT before the delays and a single
IFFT after the sum as shown in Figure 2. Because we are now
delaying frequency-domain data, Garcia refers to this method of
computing a uniform partitioning as a Frequency-domain Delay
Line (FDL) [4].

FFT

IFFT
delay(N)

delay(N)

Complex Mult

Complex Mult

Complex Mult

H2

H3

H1

+

x

y

Figure 2: Frequency-domain Delay Line (FDL)

Even with this FDL optimization, the computational cost of
uniform partitioned convolution (influenced primarily by the num-
ber of complex multiplications and additions of frequency domain
coefficients) scales linearly with the impulse response length and
its use becomes impractical for very long impulse responses.

2.2. Non-Uniform Partitioned Convolution

Non-uniform partitioned convolution attempts to improve upon the
computational efficiency of the uniformed partitioned convolution
method by dividing the impulse response into partitions of various
sizes. The approach is to use shorter partitions near the beginning
of the impulse response to achieve low latency and longer parti-
tions towards the end to take advantage of increased computational
efficiency. In [1], Gardner describes how to use such a mix of par-
titions sizes to improve efficiency without sacrificing latency.

Gardner suggests a partitioning scheme that increases the par-
tition size as quickly as possible, as shown at the top of Figure 3.
However, Garcia [4] points out that since the FDL optimization
can be applied to each block size used in a non-uniform partition-
ing, it is usually more efficient to use more partitions of a given
size (bottom Figure 3) before moving to a larger partition size [1].
Therefore, we can view a non-uniform partitioning as a parallel
composition of FDLs of increasing block size.

In longer FDLs, execution time is dominated by complex mul-
tiplication and summation. These operations can be optimized by
viewing the complex multiplications as convolutions performed
in the frequency domain and applying techniques described by
Hurchalla [3] for efficiently performing running convolutions with
short to medium length sequences. It is also possible to reduce
FFT-related computations by computing the larger FFTs from the
intermediate values of smaller FFTs [1]. Additional computational
improvements include enhancing FFT and complex arithmetic ef-
ficiency via system-specific optimizations such as using SIMD in-
structions and cache-aware tuning [6].

FDL-based non-uniform partitioned convolution is a very com-
putationally efficient approach to low-latency real-time convolu-

128x2, 256x2, 512x2, 1024x2, 2048x2, 4096x2

128x14,  1024x14

Figure 3: Two non-uniform partitionings of an impulse response
of length 16128 with N = 128. Top – Gardner partitioning with 6
FDLs. Bottom – Optimal Garcia partitioning with 2 FDLs.

tion; however, a real-world implementation of this approach still
leaves many decisions to be made, the most important being: how
should we schedule all of this computation on a conventional op-
erating system? We cover two approaches to scheduling in the
following two sections.

3. PREEMPTIVE IMPLEMENTATION

A non-uniform partitioning consists of multiple FDLs which ex-
ecute concurrently but perform their processing during different
time periods. The shortest period, which should be equal to the
audio callback interval, is associated with the primary FDL. Sub-
sequent FDLs use larger block sizes and therefore have longer pe-
riods. In order to avoid having to process longer FDLs within a
single callback interval, Gardner suggests that longer FDLs be al-
lowed to run for a time interval equal to their period, rather than
within a single callback period. This helps to preserve uniform
processor loading. Figure 4 illustrates processing boundaries in
time (arrivals and deadlines) for a partitioning with 3 FDLs.

Impulse Response Partitioning

FDL 3

FDL 2

FDL 1

Time

Callback

FDL Scheduling Deadlines

Figure 4: Top – Example non-uniform partitioning with 3 FDLs.
Bottom – Scheduling boundaries of FDL tasks. Arrivals/deadlines
are denoted by vertical lines.

3.1. Computation

In order to maintain a dropout-free audio stream, we must ensure
that all of an FDL’s computations are complete by its processing
deadline. In our case, the bulk of the processing time is spent
computing FFTs and performing complex arithmetic. A popular
choice for a portable FFT library is FFTW[7], which performs well
on a wide variety of platforms by performing an “auto-tuning” step
where it measures the performance of many FFT sub-routines and
picks the fastest combination for the target system.
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For longer FDLs (those containing more partitions), the com-
plex multiply-add (Cmadd) routine becomes the computational bot-
tleneck. We implemented several versions of the Cmadd routine,
with the performance of each shown in Figure 5. The slowest rou-
tine uses the built-in complex type defined in GCC’s complex.h
in a simple for-loop. Our “naive” version computes the real and
imaginary components in separate lines of code. The “SIMD”
version makes full use of Intel’s SSE/SSE3 SIMD instructions.
The “naive” and “SIMD” versions were further optimized using 4x
manual loop unrolling (“+unroll”), which reduces indexing arith-
metic and helps the compiler better take advantage of instruction
level parallelism. The “complex.h” version saw no improvment
from loop unrolling. Performance numbers in this section were
produced using Apple’s version of GCC 4.2 and our Mac OS X
10.6 test platform, which consists of a MacBook Pro running a
2.66GHz Intel Core 2 (Penryn) processor. On this platform, the
“SIMD+unroll” routine performed 4x–15x faster than the com-
plex.h routine and 2x–8x faster than the naive routine
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Figure 5: Cmadd routine running time as a percentage of FDL
period

To put the absolute execution times of these routines in per-
spective, for an audio I/O buffer size of 32 samples at 44.1kHz,
the callback interval is 725µs. A first level FDL will do one FFT
and one inverse FFT each of size 64, and it will run the Cmadd
routine once for every partition in the FDL. On our Mac test plat-
form, FFTW’s out-of-box forward and reverse FFT routines take
1.1µs and 0.32µs respectively, while the routines chosen using
“FFTW_PATIENT” auto-tuning take 0.27µs and 0.25µs. The naive
Cmadd routine takes 0.18µs per partition, while the optimized rou-
tine takes 0.075µs. At this block size, the optimized Cmadd rou-
tine allows this first-level FDL to handle more than two times as
many partitions with the same processor load.

Finally, buffering operations in our Linux implementation greatly
benefited from the use of asmlib[8], which includes optimized
memory movement routines (memset, memcpy, etc) which can
perform up to 10x faster than the default versions used by glibc
for properly aligned memory regions.

3.2. Scheduling

As shown in Figure 4, the FDLs run concurrent tasks with differ-
ent execution periods and deadlines. Because of this, we run each

FDL in its own thread, which allows an FDL with an earlier dead-
line to preempt one with a later deadline. However, as we will
discuss later, the inclusion of preemptive multi-threading within
this implementation can cause problems when sharing computing
resources with other audio processing tasks.

In our implementation, we use the POSIX threads (pthreads)
API[9], to create and manage the execution and scheduling of
worker threads. For each FDL, we create a worker thread that is re-
sponsible for executing the FFTs and complex artithmetic required
by the FDL. Synchronization of the worker threads and buffer-
ing/mixing operations are performed in the audio callback thread,
which has the highest priority in the system and should preempt
any other running threads. Since the primary FDL has the same
period as the callback, we have the option of running it in the call-
back thread to avoid unnecessary context switches.

In order to get the worker threads to respect the real-time dead-
lines of one another, we use a fixed-priority scheduling policy with
higher priorities assigned to FDLs with shorter periods. On Linux,
we use the “SCHED_FIFO” real-time policy with a max prioritiy
of 99, and on Mac, we use the “precedence” policy with a max
priority of 63. We avoid using OS X’s “time constraint” policy
(except when running the first FDL in a separate thread from the
callback) because, even though this is the highest-priority policy
recommended for real-time performance, the way that it schedules
multiple threads is unpredictable, and using the precedence policy
yielded much more stable audio output.

3.3. Thread Synchronization

Thread synchronization mechanisms typically rely on operating
system calls, which can adversely affect real-time performance
due to the variability in their execution times. Because of this,
optimizing the synchronization between threads yielded the most
significant performance improvements to our preemptive imple-
mentation.

We use two basic synchronization tasks in this implementa-
tion. In the first sync task, the main thread sends signals to worker
threads telling them when to start. In the second, the worker threads
signal the main thread when they are done. To implement these
operations, we use condition variables (condvars) and mutex locks
from the pthreads library. Condition variables provide a mecha-
nism for a thread to sleep until it receives a signal from another
thread, and mutexes enable a thread to lock a shared memory re-
gion to prevent other threads from simultaneously accessing it.
Signaling and waiting on a condvar require system calls, as does
locking and unlocking a mutex, so we would like to minimize our
use of these routines.

In a naive approach to these sync tasks, each of the worker
threads would have its own condvar to wait on, and the main thread
would have its own set of condvars to wait on (one for each worker
thread). The main thread would signal each of the worker threads
that need to be started during the current callback via their cond-
vars. Then the main thread would wait on the condvars that corre-
spond to the worker threads that have deadlines during the current
callback. Worker threads communicate their completion by sig-
naling the corresponding condvar belonging to the main thread.

The problem with this approach is that if we have T worker
threads, the main thread may need to send up to T condvar signals
or wait on up to T condvars during a single callback. Using system
traces, we measured these condvar operations to take between 3µs
and 40µs (not including actual waiting time), so a few condvar ops
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could fill a significant portion of the callback period, leaving no
time for actual computation or audio I/O.

In order to reduce the number of condvars required, we can re-
organize the synchronization so that all worker threads that need to
be started during a single callback are waiting on a single, specific
condvar. Then only a single broadcast condvar signal is needed
from the main thread to start the workers. Likewise, the main
thread can wait on a single condvar that is signaled by the worker
thread that is last to finish. The problem with this approach is that
in order for the worker threads to keep track of which is last to
finish, they must all access a shared counter. If we protect this
counter with a mutex, lock contention between the threads is in-
troduced which can significantly stall their completion.

To remedy this lock contention problem, we can use atomic
operations (we use the gcc builtin routines [10]), which elimi-
nates all system calls caused by lock contention. If the worker
threads atomically increment the shared counter when they com-
plete, changing the value of the counter and getting its new value
appear to occur instantaneously, negating the need for locks. This
guarantees that the last thread to increment the counter will see the
target counter value and know that it should send the completion
signal to the condvar of the main thread. In addition, using atomic
ops here allows the main thread to simply check if the counter has
reached its target without having to acquire a mutex and before
waiting on a condvar.

These synchronization methods allow us to get close to 100%
CPU utilization on a single core without audio dropouts. Figure 6
shows how this approach works on a machine with 3 processor
cores for a partitioning that uses 3 FDLs with the first FDL exe-
cuting in the main callback thread. The period of the second FDL
is twice that of the callback, and the third FDL has a period four
times that of the callback.

3.4. Processing Multiple Channels

If we simply duplicated the scheduling and synchronization tech-
niques outlined above for every channel when processing multiple
channels, we would end up with a lot of redundant synchroniza-
tion and probably a lot more threads than processor cores. To avoid
this, FDLs belonging to different channels but with the same block
size can be run in the same thread, since these FDLs all have the
same arrivals and deadlines. Then the synchronization operations
are shared amongst the channels, there is no extra synchronization
overhead, and we keep the thread count low.

3.5. Targeting Multi-Core Architectures

The methods described above work fine when running on a sin-
gle processor, because the thread priority assignments discussed
in Section 3.2 will grant the processor to the thread with the most
imminent deadline. When we have more than one processor core
to work with, we can decide which core each thread should run on.
Normally, the operating system will decide this for us, but this can
yield suboptimal performance.

In Linux, we have the option of pinning threads to specific
cores using non-portable (NP) extensions to the POSIX threads
API. If we have at least as many cores as FDL levels, we could pin
each FDL thread to its own core. This should minimize the number
of preemptions and context switches. If we don’t have enough
cores to do this, we could still achieve a significant reduction in
context switching by distributing the FDL threads evenly across
the cores.

When processing multiple channels, another approach would
be to create multiple worker threads per FDL level. This allows us
to put the work belonging to a subset of the channels on each core,
which would yield better load balancing across cores and possibly
better memory locality. Because we would still be running all FDL
levels on each core, there would still be lots of context switching,
as in the single core case. We report on the performance of these
thread pinning approaches in Section 5.

3.6. Choosing the Partitioning

After making all the low-level computational and scheduling de-
cisions, we still have to decide how we will partition our impulse
response(s). The approach in the Gardner paper is to double the
block size every two partitions[1], but this approach fails to take
advantage of FFT reuse and linearity within FDLs. Garcia has pro-
posed a dynamic programming algorithm that determines an opti-
mal partitioning in terms of number of mathematical operations[4];
however, this method fails to take into account actual execution
time on the target system. The actual execution times of FFTs and
Cmadd routines operating on variably sized arrays can vary widely
across hardware architectures and software implementations. This
is why we feel it is important to measure the actual performance
of the FDL work we are doing when choosing a partitioning, not
unlike FFTWs “auto-tuning” stage.

Since we have real-time constraints, we must consider the worst-
case performance of each FDL. In order to estimate the worst-
case performance of an FDL of a certain block size and number
of partitions, we pollute the L2 cache of our target machine prior
to each execution of the FDL. The maximum-observed execution
time then becomes our worst-case estimate.

To determine a best partitioning from these performance num-
bers, we search for the valid combination of FDLs that has the
lowest overall worst-case processor load. The processor load of
each FDL is calculated by dividing its maximum-observed execu-
tion time by its period. We found that it was unnecessary to search
the entire FDL space since – for a specific block size – the search
would always choose the minimum number of partitions required
by the block size of the subsequent larger FDL; therefore, the num-
ber of partitions in each FDL was restricted to powers of two.

4. TIME-DISTRIBUTED IMPLEMENTATION

An alternative implementation strategy for non-uniform partitioned
convolution is to perform all the necessary computation within a
single thread, manually partitioning the work such that the work-
load is spread as evenly as possible across processing frames. This
requires that during each frame, in addition to doing the processing
for the smallest FDL, we also perform a fraction of the processing
for each larger FDL. Implementing this approach required signifi-
cantly more programmer effort and a deeper understanding of the
underlying mathematics than the previously described preemptive
approach, since we cannot rely on existing external libraries (e.g.
FFTW) to perform all of the computational “heavy lifting.” Al-
though our time-distributed implementation isn’t as flexible as the
preemptive version (it only supports partitionings with two FDLs),
it has the benefit of fitting the existing model of plugins executing
within an audio host application, where a plugin is expected to do
its real-time processing within the context of a single high prior-
ity thread. Currently none of the audio host applications we are
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Figure 6: Preemptive-version synchronization walkthrough for a 3-FDL partitioning running on 3 cores.

aware of provide mechanisms for plugins to create and schedule
the execution of additional high priority threads.

Our time-distributed implementation utilizes a technique de-
scribed by Hurchalla in [2] to perform the work associated with
a two level partitioning within the context of a single thread in a
load balanced manner. Hurchalla describes how to apply radix-2
and radix-4 decimation in frequency (DIF), possibly in a nested
fashion, to distribute the computation of a single channel of non-
uniform partitioned convolution with two FDLs (where the sec-
ondary FDL is 4, 8, or 16× the size of the primary FDL) rela-
tively evenly across multiple frames. DIF decomposes an input
sequence into multiple subsequences which have the property that
their FFT coefficients are a subset of the the FFT coefficients of
the input sequence. FFT-based block convolution involves three
steps: calculating the forward FFT of an input sequence, perform-
ing a complex multiplication of the resulting FFT coefficients with
those of a stored impulse response, and finally computing an in-
verse FFT to produce an output sequence. By applying DIF to an
input sequence and performing the three aforementioned steps on
the resulting subsequences during multiple frames, it is possible to
distribute the calculations for the secondary FDL across multiple
callbacks.

When using only a single stage of DIF, the work can be dis-
tributed across frames as shown in Figure 7(a). In this example, a
single stage of radix-2 DIF is used to distribute the work associ-
ated with a secondary partition that is 4× the size of the primary
partition across 4 frames.

During frames 1–4, incoming samples are buffered and a radix-
2 DIF is applied to transform the input sequence Ain into the two
subsequencesA1 andA2. During frame 5, the FFT of subsequence
A1 is calculated and half of the resulting FFT coefficients are mul-
tiplied with those of the impulse response. The second half of the
complex multiplications are performed during frame 6, after which
the IFFT of the resulting coefficients is computed. The same op-
erations are performed on the subsequence A2 during frames 7
and 8. Finally, an inverse DIF is applied to the two subsequences
computed during frames 9–12 and the resulting real sequence is
the output sequence Aout. In this example, the workload is per-
fectly balanced across frames since the same amount of work is
performed for each of the 3 steps (input, intermediate, output) that
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Figure 7: Time-distributed processing walkthrough. (a) Secondary
partition 4x primary partition (b) 8x primary partition

are performed during each frame.
Figure 7(b) illustrates one way to distribute the work for a sec-

ondary partition that is 8× the size of the primary partition by
using two nested stages of radix-2 DIF. During frames 1–8, input
samples are buffered and DIF is applied as in the previous exam-
ple, but the work is spread out over twice as many frames. During
frame 9, the first part of a radix-2 DIF is applied to subsequenceA1

to generate a new subsequence A11. The FFT of this sequence is
computed, and half of the complex multiplications of the resulting
FFT coefficients with the impulse response FFT coefficients are
performed. The second part of the radix-2 DIF is computed during
frame 10 to produce the subsequenceA12. The FFT and half of the
complex multiplications are performed, as for subsequence A11

during the previous frame. During frame 11, the second half of the
complex multiplications started in frame 9 are completed, the IFFT
is computed and half of the inverse DIF is performed. Finally dur-
ing frame 12 the complex multiplications started in frame 10 are
finished and the second portion of the inverse DIF calculation is
concluded, resulting in a complete output sequence corresponding
to the input sequence A1. The same computations are performed
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on the sequence A2 during frames 13–16, and the resulting output
sequence is combined with the one from frames 9–12 to produce
the output sequence Aout during frames 17-24. Unlike the pre-
vious example, in this case the workload isn’t perfectly balanced
because the work associated with the nested forward and inverse
DIF steps varies somewhat across frames. For more details, see
[2].

The time-distributed partitioned convolution implementation
we evaluate in Section 5 uses two stages of radix-4 DIF to de-
compose the input sequence to the secondary FDL into 16 subse-
quences. During each frame of processing, we take the FFT of one
of the input subsequences and perform half of the complex mul-
tiplications with the impulse response FFT coefficients. During
a subsequent frame, we perform the second half of the complex
multiplications and take the inverse FFT of the resulting values.
This enables us to distribute the FFT, complex multiplication, and
inverse FFT steps relatively evenly across 32 processing frames.
We use FFTW to perform the “leaf-level” FFT calculations. Dur-
ing each frame we also do a portion of the forward and inverse
DIF decomposition for the previous block of input and the cur-
rent block of output. This processing is not perfectly distributed
across frames, resulting in a slight imbalance of the work done
from frame to frame. The measured variation in execution time
across frames for this implementation is less than 5 percent.

In [3], Hurchalla describes a method for applying nested short-
length acyclic convolution algorithms to improve the computa-
tional efficiency of the complex arithmetic performed in the fre-
quency domain. The basic idea is to treat each frequency bin in
each partition of the impulse response as a sequence, and to per-
form a running convolution between this sequence and the corre-
sponding frequency bin of the FFT of the input signal. We imple-
mented a basic version of Hurchalla’s scheme, using a single stage
of 3-partition acyclic convolution. These convolution routines, as
well as the routines used to perform the forward and inverse radix-
4 decomposition steps, were hand optimized in assembly using
the SSE extensions to the x86 ISA. While this scheme did reduce
the overall amount of work done (in terms of the total number of
floating point operations executed), we found that the variation in
execution time from frame to frame was greater than when using
a naive implementation of convolution. This resulted in a longer
worse case execution time, which meant that the version of the
code that included the optimized convolution routines was never
able to concurrently process as many independent channels of con-
volution as the version using the naive convolution routines. For
this reason, we do not include an evaluation of the code using this
optimization in the following section. Hurchalla also discusses
various techniques to time distribute work across multiple frames
when working with multiple channels. We did not implement any
of these techniques – when operating with multiple channels, our
implementation processes each channel independently.

5. EXPERIMENTAL RESULTS

In this section we present and analyze performance measurements
of our preemptive and time-distributed implementations of parti-
tioned convolution. The machine used to perform the benchmark-
ing was a Mac Pro with two 2.66 GHz 6-core Intel Xeon “West-
mere” processors and 12GB of memory, running Linux 2.6.35
with low-latency realtime patches applied. We only enabled one
of the two sockets and disabled Hyperthreading for all the ex-
periments described in this section. A 10-channel ethernet audio

interface[11] was used for I/O. This audio device behaves simi-
larly to a Firewire or USB based device but uses Ethernet as its
transport. All experiments were performed at a sample rate of
44.1 kHz using a 64 sample frame size. The impulse response
lengths we considered range from 16,384–524,288 samples (0.4–
11.9 seconds). To make our results as deterministic as possible, we
disabled all frequency scaling mechanisms present in the operat-
ing system, as well as Turbo Boost (hardware based opportunistic
frequency scaling) in the CPU.

Each implementation was written as a standalone application
that takes arguments specifying the number of channels (instances)
of convolution to perform and the impulse responses to use. For
the preemptive implementation the partitioning must be specified
whereas for the time-distributed version it is fixed (two partitions,
the second being 32× the size of the first). All implementations in-
terface with the audio subsystem using the ALSA API (the Linux
audio interface standard) directly – as opposed to using a cross-
platform library (such as PortAudio) or daemon (such as JACK) –
in order to minimize overhead. Communication between the appli-
cation and OS is done through shared regions of memory mapped
into the application’s address space, and the OS notifies the appli-
cation that a new frame of audio is ready by executing a callback
function asynchronously in a high priority thread.

5.1. Single-Core Measurements

For our first experiment, we disabled all but a single core in the
system and recorded the reported CPU utilization (averaged over
one second) for three different configurations executing the same
workload. The workload was 16 independent channels of parti-
tioned convolution, and the three configurations were: preemptive
using two FDLs, preemptive using the empirically derived optimal
partitioning (ranging from 3–5 FDLs), and time-distributed. The
results are presented in Figure 8.

The time-distributed and preemptive two-level implementa-
tions use the same partitioning so we might expect them to exhibit
a similar computational load. This is true for the smaller parti-
tion sizes, but for larger partition sizes with more computationally
intensive workloads, the time-distributed implementation appears
to have a clear advantage. We hypothesize that this is due to the
overhead of context switches and system calls needed for preemp-
tion and synchronziation in the preemptive version. Each context
switch or system call requires a trap into supervisor mode and the
operating system kernel which incurs significant overhead. The
preemptive version using the optimal partitioning scheme outper-
forms all others by a wide margin.

Our second experiment was to measure how many instances
(independent channels of convolution) each implementation was
capable of running without experiencing any missed deadlines or
dropouts. This experiment was also performed using only a sin-
gle core. We increased the number of instances until we reached
the highest point that ran dropout-free for 60 seconds. Figure 9
illustrates the results, which are quite different from what the re-
sults of the previous experiment would suggest. In this case, the
two-level preemptive implementation is able to achieve more con-
current instances without dropouts than the time-distributed ver-
sion. We believe this is due to several factors: the imperfect load
balancing of the time-distributed version, the greater regularity and
predictability of the memory access patterns in the preemptive ver-
sion, and the reduced sensitivity to the timing of callback function
arrivals in the preemptive version. The previous graph reported
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Figure 8: CPU utilization for a single core performing 16 channels
of convolution.

average CPU load over many frames, but what is important in de-
termining the maximum number of sustainable instances without
missed deadlines is the worst-case execution time (WCET) during
any individual frame. For the time distributed version, the WCET
is higher than the average execution time. Whereas the time dis-
tributed version only performs a portion of the computation related
to the secondary FDL during each frame, the worker threads of the
preemptive version process higher-level FDLs to completion (un-
less they are preempted). This results in long streams of memory
accesses with a constant stride, and the code is therefore able to
benefit from the hardware prefetching mechanisms in the mem-
ory hierarchy to reduce the latencies caused by cache misses. The
time distributed version is also more sensitive to variations in exe-
cution time of the callback function, since it must complete all of
its work before the arrival of the next callback. The preemptive
version only has to complete a fraction of the total work associ-
ated with the convolution during the callback since much of the
work is being done in different threads. This means that it is better
able to tolerate jitter in the arrival times of the callback functions.
Once again, the preemptive implementation using the optimal par-
titioning scheme is the clear winner, outperforming the others by a
factor of 4× for the longest impulse response.

5.2. Multi-Core Measurements

Our final experiment was to benchmark the preemptive implemen-
tation running on multiple cores. We assigned a single thread to
process each FDL and pinned each thread to its own core to mini-
mize disturbances from the OS scheduler. Any cores that weren’t
necessary for a given experiment were disabled. Since the optimal
number of FDLs varies with impulse response length, so do the
numbers of cores we used in these experiments. As mentioned in
Section 3.5, we also considered an alternative scheme where chan-
nels (instead of FDLs) were distributed amongst the cores. In this
case, one thread per FDL level was pinned to each core – so for N
FDLs andM cores there would be a total ofN×M threads active
in the system. However, the pin-by-FDL scheme outperformed the
pin-by-channel scheme in all measurements, so we only present
the results from the former here.

A plot comparing the performance of the code running on sin-
gle and multiple-core configurations is presented in Figure 10. By
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Figure 9: Maximum number of independent channels of convolu-
tion possible without dropouts for various implementations run-
ning on a single core. Points are labeled with reported CPU uti-
lization.

using additional cores, we were able to run between 1.3× and 1.7×
as many instances without experiencing dropouts. While our work
partitioning scheme is most likely not optimal (there is significant
variation in the computational load across FDLs), we believe the
factor that ultimately limits the maximum achievable number of
independent instances is memory bandwidth, not computational
crunch. The processor used for these experiments has 12MB of
last level cache and 256KB of private level 2 cache per core. A
524,288 sample impulse response represented as single precision
floating point values occupies 2MB of memory. Clearly for the
large number of concurrent instances we are able to run, the work-
ing set doesn’t fit into the on-chip cache and the latency of DRAM
accesses becomes a bottleneck for achievable performance.
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Figure 10: Maximum number of independent channels of convo-
lution possible without dropouts for single and multi-core cases
(preemptive implementation). Points are labeled with the number
of FDLs used.

6. DISCUSSION

In all of the scenarios we investigated, the preemptive implemen-
tation of partitioned convolution, using an empirically determined
optimal partitioning, outperformed all of the others by a wide mar-
gin. Our motivation for implementing the time-distributed version
was to be able to use it in the context of an audio processing envi-
ronment such as Max/MSP[12] or Pd[13]. However, this is just a
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stop-gap solution, and in the future we hope that audio host appli-
cations will provide mechanisms for plugins or objects to schedule
their execution across multiple concurrent threads.

Another advantage of the preemptive approach lies in the pro-
grammer effort required to implement it. While efficiently manag-
ing the scheduling of multiple threads is not trivial, it affords us the
opportunity to use existing highly optimized libraries to perform
necessary computations without needing to worry about manually
partitioning the work. Optimizing the time-distributed FFT to the
point that it was competitive with FFTW’s FFT routines required
hand tuning assembly code and carefully managing data layout
which was an arduous task. Also, the techniques used to imple-
ment the time-distributed FFT don’t scale well to larger (greater
than 32x) FDL partition sizes, which limits the performance of the
time-distributed partitioned convolution algorithm for very long
impulse response lengths.

6.1. Further Optimizations

Despite the fact that our time-distributed implementation performed
worse in nearly every aspect, this approach still has room for im-
provement – though the obvious improvements, such as taking ad-
vantage of the regularity across channels to more optimally dis-
tribute the computation [2], would take significant programmer ef-
fort and restrict the implementation to specific use cases.

For the preemptive version running FDLs on separate cores,
the computational load on each core is not evenly balanced. We
could attempt to balance the load on each core during our op-
timal partitioning search; however, this is only likely to yield a
slight improvement due to the fact that none of the CPUs approach
100% utilization when dropouts begin to occur. This points to the
fact that the implementation, in its current state, is limited by the
memory bandwidth between the cores as mentioned at the end of
Section 5; therefore, we feel that further multi-core optimizations
would be best geared toward reducing memory traffic and optimiz-
ing cache usage amongst the FDLs.

6.2. The Need to Support Preemption and Multi-threading

Partitioned convolution is but one example of a class of multi-
rate audio processing and analysis tasks, others include score fol-
lowing, rhythm and pitch extraction, and algorithmic composition.
Generally speaking, it can be quite cumbersome (if not impossible)
for the programmer to time-distribute long-running tasks evenly
across multiple short time periods, particularly when those tasks
call external libraries. For this particular case (FFTs) there are
clever tricks that allowed us to accomplish this in a limited man-
ner but other computations (for example, those related to machine
learning algorithms) may not be as amenable to such treatment.

While it is possible for us to spawn worker threads and attempt
to manage them, even while running in the context of existing au-
dio host applications, there is no guarantee that other plugins run-
ning on the host won’t do the same thing. This would result in
pollution of our “thread ecosystem” and force our threads to com-
pete with others for processor time and cache space. Ultimately,
when there are more threads than cores in the system, the respon-
sibility for scheduling the threads falls onto the operating system,
which can only do so well given that it has very limited knowledge
about the relationships and dependencies between threads.

If the audio host itself were able to manage its hardware re-
sources (processor cores and caches) by arranging the execution

of plugin tasks on multiple cores, then plugin programmers and
end users could benefit from improved parallel performance, pro-
grammability, and quality of service. On-going research into the
development of an operating system that enables applications with
real-time constraints running on multi-core machines to more ex-
plicitly schedule and “micro-manage” the execution of their con-
stituent threads is described in [14].
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ABSTRACT

This paper describes research into signal transformation op-
erators allowing to modify the vibrato extent in recorded
sound signals. A number of operators are proposed that
deal with the problem taking into account different levels
of complexity. The experimental validation shows that the
operators are effective in removing existing vibrato in real
world recordings at least for the idealized case of long notes
and with properly segmented vibrato sections. It shows as
well that for instruments with significant noise level (flute)
independent treatment of noise and harmonic signal compo-
nents is required.

1. INTRODUCTION

Signal parameter transformation is one of the main inter-
ests in professional audio applications. Today there exist
numerous methods allowing the independent transforma-
tion of pitch, spectral envelope, and duration achieving in
many cases signal quality that is not distinguishable form a
real recording, and accordingly new possibilities can be ex-
plored. One of the potentially very interesting objectives is
expressive signal transformation. Under this term we will
understand a dynamic signal transformation that has the ob-
jective to add or change the perceived affective state of the
sound. Expressive speech signal synthesis has become an
increasingly active research area [1, 2, 3, 4, 5] and expres-
sive music signal synthesis has already become a reality for
instrument sound signal synthesis [6]1. Compared to the
expressive sound synthesis the topic of expressivity trans-
formation is significantly more complex because we do not

∗ Now with Audionamix, Paris
1This side by side presentation of expressive speech and music synthe-

sis does not intend to imply that expressive effects will be generated by
means of similar means for these two signal classes.

have as much control and information about the sound sig-
nal to be transformed, and moreover, we may have to re-
move an existing expressive parameter variation to be able
to introduce the desired expressivity. For expressive speech
transformation there exist only rather few approaches [7, 8]
that generally start with a neutral input signal.

In the present paper we will investigate into the problem
of manipulating vibrato, which one of the important expres-
sive means for the case of musical input signals. There exist
quite a few studies that are related to the manipulation of
vibrato [9, 10, 11, 12, 13, 14, 15]. A common starting point
for all these studies is the estimation of the fundamental fre-
quency, which is then followed by a separation into a slowly
evolving fundamental frequency contour and the fast orna-
mentation contour representing the vibrato. The approaches
then diverge and establish different control strategies for the
adaption of the partial amplitudes and frequencies. The ob-
jective of vibrato manipulation can be diverse. The most
ambitious case requires independent manipulation of the vi-
brato parameters extent (vibrato amplitude), rate (modula-
tion frequency) and form (contour). While the order-2 sinu-
soidal model introduced in [13] provides theoretical means
to control the vibrato form, to the best of our knowledge,
this has not yet been considered in a practical implementa-
tion. Vibrato rate manipulation can be obtained by means of
pitch shifting the modulated parameter contours using again
either the order-2 sinusoidal model, or by means of the ana-
lytic signal of the modulated parameter [11], or by means of
using time domain OLA techniques combined with resam-
pling.

In the present study we limit ourselves to the problem
of the modification of the vibrato extent. The basic idea
of the method is conceptually simple. It consists of apply-
ing the separation into slowly varying contour components
and modulated ornamentation not only to the fundamental
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frequency but to all other sound parameters as well. The vi-
brato control manipulation will then become a simple mix-
ing of the modulated parameter component. This strategy
can in principle be applied to sinusoidal partial parameters
(amplitude and frequency trajectories) as well as to the com-
plete spectral envelope of the modulated sound. The spec-
tral envelope based method allows to unify the treatment of
the sinusoidal and noise modulations and therefore it will be
used in the following discussion. When compared to meth-
ods using explicit sinusoidal models as for example [13, 14]
the proposed method is simpler yet rather efficient. We note
that nearly all existing studies focus entirely on the effect
of the vibrato on the sinusoidal components. There exist
only very few studies dealing with the effect of the vibrato
on the noise components of the sound [16]. The present
experimental investigation shows that the modulation of si-
nusoidal and noise components that is induced by vibrato is
not synchronous. Therefore, the effect of the vibrato on the
noise component cannot be neglected when a perceptually
convincing removal of the vibrato is desired.

For the experimental investigation we have selected to
use the problem of removing vibrato from a monophonic
music instrument recording. The idea is that removing sig-
nal modulations is perceptively the most critical operation
because any residual modulation will be easily perceived.
Due to the fact that the presence or absence of modulation
can be judged rather easily even when only a low level of
modulation is present the problem allows for relatively sim-
ple perceptual evaluation. Please note as well, that the in-
vestigation is only concerned with the transformation of the
extent of the vibrato ornamentation. Many other problems
exist that should be addressed. Examples are the problems
related to the detection of vibrato [17, 18], the change of
the vibrato rate when time stretching a signal, the coher-
ent transformation of note transitions, and the generation of
concrete pitch and spectral envelope modulation contours if
vibrato should be added to an unmodulated signal.

The organization of the article is as follows. In section 2
the model of vibrato generation is presented and discussed.
Based on this model section 3 introduces dynamic signal
transformation operators that allow to remove the effects re-
lated to vibrato with different levels of refinement. In sec-
tion 4 these operators are experimentally evaluated using a
real world flute signal and section 5 describes the conclu-
sions that can be drawn from the investigation.

2. SIGNAL MODEL FOR VIBRATO
ORNAMENTATION

Vibrato is an expressive ornamentation that is frequently
used in music [19, 14]. The term vibrato is generally under-
stood to refer to a quasi periodic modulation of the pitch or
fundamental frequency. But, as will become clear in the fol-

lowing, pitch modulation without energy and timbre modu-
lation does not exist in real world sound sources. Therefore,
a realistic manipulation of vibrato requires a coherent trans-
formation of timbre and energy modulations as well. We
have selected vibrato for our experimentation with expres-
sive signal transformation because: first it is widely used,
second it includes effects like energy and timbre modulation
and third, due to its periodic nature it is perceptually much
easier to evaluate to access than for example note transi-
tions. Transformation of expressive note transitions are cur-
rently under investigation and will not be addressed in the
present study.

Vibrato is generally produced by means of a periodic
variation of the fundamental frequency of the musical note.
Accordingly, the vibrato signal has a quasi-periodic varia-
tion of the fundamental frequency around a central value.
Perceptually, this modulation does not directly affect the
perceived pitch of the note [19]. The perceived pitch of vi-
brato notes has been investigated repeatedly and has been
found to be given by the a value close to the mean pitch
over a vibrato period [20]. For short vibrato of less than 2
vibrato periods the perceived pitch is affected more by the
end of the pitch evolution [21]

Different signal models including pitch variation with
constant spectral envelope, pitch and amplitude modulation
as well as pitch, amplitude and spectral envelope modula-
tion have been compared in [14, 15]. In a natural physical
musical instrument (including singing voice) the modifica-
tion of the fundamental frequency will necessarily be ac-
companied by amplitude and timbre modulation. On one
hand the partials are moving continuously through the dif-
ferent resonances of the sound source resonator which will
generate an induced timbre modulation. The change of the
pitch will moreover require a reconfiguration of the physi-
cal configuration of the excitation and the resonating parts
leading to a more or less pronounced timbre modulation.
Perceptual experiments have shown that the timbre modula-
tion that comes with the vibrato modulation is perceptually
more important than the fundamental frequency modulation
itself [12] and that vibrato without independent timbre mod-
ulation does not sound natural and physically plausible [14].
An interesting question that arises is related to the modula-
tion of the noise components of the signal. Noise compo-
nents do not necessarily take the same acoustic path and
therefore, we assume in the following that the modulation
of the noise components will not be in sync with the modu-
lation of the sinusoidal components.

Based on the results discussed so far we will establish
our vibrato transformation algorithm taking into account pitch
as well as amplitude and timbre modulation. For each par-
tial we assume a amplitude trajectory that is given by

Ak(n) = exp(S(wk(n), n)), (1)
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where Ak represents the time varying amplitude of partial
k, n is the discrete time, S(w, n) is a quasi-periodically
time-varying spectral envelope obtained from the log am-
plitude spectrum that modulates due to the physical recon-
figuration of the instrument and wk is the quasi-periodically
time-varying frequency of partial k. We note that the exist-
ing amplitude modulation and also potential amplitude esti-
mation errors that may be related to the modulation are ab-
sorbed into the time-varying spectral envelope S. Similarly
for the noise component we assume a time varying distribu-
tion of the log amplitude spectrum given by N(w, n) that
may have a periodic structure in n.

3. VIBRATO TRANSFORMATION

The objective of the present section is to develop an algo-
rithm that allows continuously controlling the vibrato ex-
tent. This control is performed for the part of the note that
is located between attack and release and the region of at-
tack and release are assumed to be known. In the following
experiments the attack and release segments have been ob-
tained by means of manual labeling.
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Figure 1: Vibrato filter transfer function for a vibrato filter
assuming minimum vibrato frequency of 4Hz and 2 filter
length of 2 times the maximal vibrato period.

To achieve this control the time-varying fundamental
frequency and the time varying spectral envelope S or N
will be represented by means of a superposition of a con-
stant and a quasi periodic part. The constant part is de-
rived by means of smoothing the time varying evolution of
w(n) and S(w, n) over the local period of the fundamental
and the quasi periodic part is then the difference between
the original function and the smoothed version. Accord-
ingly, the vibrato control can be achieved by means of syn-

chronously scaling the dynamic part of the fundamental fre-
quency and the spectral envelope as follows

wk(n) = w̄k(n) + αw̃k(n) (2)
S(w, n) = S̄(w, n) + αS̃(w, n). (3)
N(w, n) = N̄(w, n) + αÑ(w, n). (4)

Here w̄, S̄ and N̄ are low pass filtered versions ofw, S(w, n),
and N(w, n) and w̃, S̃, and Ñ are the respective high-pass
residuals that represent the modulated part of the related pa-
rameter. α is the control parameter that can be used to scale
the modulation. Note, that the spectral envelopes are using
log amplitude representation such that the variation is scaled
geometrically. When compared to existing approaches for
manipulation of the spectral envelop modulation the pro-
posed scaling operator has a number of advantages. We dis-
cuss 2 examples. [9] proposed to find the target contour
of the transformed envelope by means of interpolating be-
tween two waveform tables. The two tables were obtained
at the time positions related to the extreme values of the
fundamental frequency that were determined for each vi-
brato period. As interpolation control variable they used
the instantaneous fundamental frequency. [15] uses a sim-
ilar principle interpolating two spectral envelopes obtained
from the extreme positions of the fundamental frequency.
They proposed to control the linear interpolation by means
of a sinusoidal interpolation contour. Both approaches suf-
fer from 2 problems. First, they make a hypothesis about
the form of the fundamental frequency contour, notably that
there exist two robustly identifiable positions that can be
used to anchor the interpolation. Second, and more impor-
tantly, they cannot represent the original signal. Even if no
signal transformation is desired the model would still not
create the unmodified spectral envelope. In contrast to this,
the transformation proposed in eq. (3) will always be a neu-
tral operation for α = 0 and second it will preserve the
local form and evolution of the envelope modulation even
for α! = 0 as well as the phase relations between the mod-
ulations of the fundamental and all the partial amplitudes.

In the following we will assume that the sound sources
are quasi harmonic such that the scaling of the frequency
trajectories can be obtained by means of dynamic transpo-
sition. Accordingly, instead of operating the frequency tra-
jectories of the individual partials only the fundamental fre-
quency trajectory w0(n) needs to be treated2.

3.1. Extracting modulated parameter contours

To achieve the separation between the two parameter con-
tours that are required for each parameter to establish eq.
(3) we propose to use a FIR filter that is given by a stan-
dard window function having at least 2 times the length of

2 Note however, that the same principles could be applied to the indi-
vidual amplitude and frequency parameter contours of a sinusoidal model.

DAFX-3

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-323



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

0 0.5 1 1.5 2 2.5
860
880
900
920
940
960
980

1000
1020
1040
1060

F0 trajectories

time [s]

Fr
eq

 [H
z]

 

 
original
smoothed

Figure 2: Result of vibrato suppression on a real world
vibrato note of a flute signal using vibrato filter shown in
fig. 1. See text for more explanations.

the period of the minimal vibrato frequency. The window is
normalized to have a sum of 1. The advantages of this filter
specification are the facts that

• the filter has linear phase

• the transfer function can be dynamically adapted to
the vibrato frequency such that the zeros of the trans-
fer function are located at the harmonics of the vi-
brato frequency.

In the following we use a Hanning window, but other
window functions may be used. fig. 1 shows the transfer
function obtained by means of using a Hanning window of
0.5s which is 2 times the period of a minimum vibrato fre-
quency of 4Hz. The minimum amplitude rejection above
the vibrato frequency limit is 30dB. Note that fundamental
frequency variations of about 3Hz are already attenuated by
about 20dB.

The application of the vibrato suppression filter to a flute
vibrato of about 6Hz is shown in fig. 2. In this example the
limiting parts of the smoothed f0 trajectory have been re-
placed by constant values for the range of values where the
window is not completely inside the trajectory. The resid-
ual that results after subtracting the smoothed F0 trajectory
from the original F0 trajectory is shown in fig. 3. The sam-
plerate of the F0 trajectory in the present and all following
cases is 100Hz.

3.1.1. Determining the target F0 contour

In the following section the relation between the original
and smoothed fundamental frequency trajectories will be
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Figure 3: The vibrato residual obtained by means of sub-
tracting the smoothed f0 trajectory from the original trajec-
tory shown in fig. 2. See text for more explanations.

used to derive the signal transformations that are necessary
to obtain a convincing control of the vibrato extent. To
achieve the control of the vibrato extent the control param-
eter α is used and a segmentation of the fundamental fre-
quency sequence into segments with and without vibrato is
assumed [17]. The segments with vibrato are collected into
a group of segments that are accessed individually by means
of index k. This parameter α is then used to obtain the target
fundamental frequency for segment k as follows

Fk,target(n, α) = (Fk(n) − ¯Fk(n))α+ ¯Fk(n), (5)

where Fk(n) is the original fundamental frequency trajec-
tory, ¯Fk(n) its smoothed counter part and Fk,target(n, α)
the fundamental frequency target trajectory. Accordingly,
by means of setting α = 1 the fundamental frequency is
kept unchanged, with α = 0 the vibrato is removed, α =
−1 the vibrato is inverted and with α = 2 the vibrato extent
can be amplified.

3.2. Signal transformation

In this section a number of vibrato transformation algorithms
will be developed that provide an increasing level of refine-
ment with respect to the effects that can be taken into ac-
count. The idea here is to experimentally evaluate the dif-
ferent strategies on the perceptually most demanding trans-
formation that removes the vibrato completely (α = 0). The
different strategies will then be evaluated on a short exam-
ple such that the required level of refinement for high quality
vibrato control can be determined.

The transposition to be used to transform the pitch of
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the sound signal is given by

Tk(n) =
Fk,target(n, α)

Fk(n)
(6)

3.2.1. PS: preservation of spectral envelope

The first level of refinement consists of the application of
the dynamic transposition specified in eq. (6) under preser-
vation of the spectral envelope. This preservation is done
by means of estimating the spectral envelope with the spec-
tral envelope estimator proposed in [22, 23]. The related
transformation operator is denoted as PS(α). This opera-
tor allows to take into account the timbre modulation that
is induced by the modulation of the fundamental frequency
assuming that the spectral envelope does not change with
the modulation of the fundamental frequency.

3.2.2. PSCS: correction of spectral envelope modula-
tion

In case that the modulation of the spectral envelope is per-
ceptually significant after vibrato modification a refinement
of the previous model is needed that allows to remove the
modulation of the spectral envelope. This can be achieved
by means of smoothing the spectral envelope. Similar to the
procedure described for calculating the transformed funda-
mental frequency the PSCS(α) operator calculates the tar-
get spectral envelope by means of eq. (3). The extraction of
the non modulated part S̄(w, n) of the spectral envelope is
done similar as for the F0 trajectory besides that here we use
a simple rectangular window having the length of approx-
imately the spectral vibrato period. Again the modulated
part of the spectral envelope S̃(w, n) is obtained as residual
after subtraction S̄(w, n) from the original envelope. Note,
that the demodulation proposed here for spectral envelope
smoothing will at the same time remove amplitude modu-
lations and timbre modulations related to local deformation
of the spectral envelope.

3.2.3. PSCTRT/PSCTNRT: correction of timbre modu-
lation with and without residual transformation

The PSCS operator allows taking into account the modula-
tion of the spectral envelope. In the experimental investi-
gation we found, however, that noise and harmonic compo-
nents do not follow the same modulation pattern. Accord-
ingly, the smoothing of the spectral envelope will not re-
move the modulation in the non harmonic parts of the spec-
trum. To be able to handle 2 different modulation patterns in
the noise and harmonic spectrum two variants for correction
of timbre modulation have been developed. Both versions,
the PSCTRT(α) as well as the PSCTNRT(α) operator es-
tablish a separation of the signal into harmonic components

and residual noise. This separation of harmonic and non
harmonic signal components is done with a standard har-
monic sinusoidal model [24]. The harmonic component of
the sound is treated with the PSCS(α) operator. The target
envelope for the noise component is again calculated using
eq. (3) but in the case the noise envelope is calculated us-
ing a small order AR model of the residual. In the present
experiment we use an AR order of 20. The separation into
modulated and non-modulated noise filter is done strictly
equivalent to the method discussed above. The difference of
the PSCTRT and the PSCTNRT operator is then that the for-
mer transposes the residual with the harmonic signal when
the fundamental frequency modulation is removed and the
latter extracts the residual before transposition such that the
residual signal is not transposed. The difference is expected
to be important when the residual signal contains sinusoidal
components that may or may not be modulated with the fun-
damental frequency.

4. EXPERIMENTAL RESULTS

In this experimental evaluation the different versions of vi-
brato manipulation operators have been applied to differ-
ent signals, e.g. singing, cello, and flute. In the following
the results obtained for the flute signal will be presented
because for this signal a version with and without vibrato
was available. Moreover, for the flute signal a strong noise
component is present such that all the different strategies
for the treatment of timbre modulation can be evaluated.
All signal transformations have been performed with an en-
hanced phase vocoder implementation that has been devel-
oped at IRCAM. Results obtained are not bound to this tech-
nology however, and many other approaches can be used
to achieve the same results. The separation of sinusoidal
and residual components has been performed using a har-
monic sinusoidal model using a parameter estimation based
on quadratically interpolated amplitude of spectral peaks
[25] without any bias correction [26].

In the top row of fig. 4 the spectrogram of a short extract
of two original flute signals played by the same player on the
same flute with and without vibrato is shown. The pitch of
both notes is approximately at 950Hz. The 4 spectrogram
displayed below are extracts of the signals transformed us-
ing the 4 vibrato modification operators defined above. In
the center left position the result of operator PS(0) is dis-
played3. The fundamental frequency modulation has been
removed but all partials as well as the noise still present a
clear amplitude modulation. Perceptually this modulation is
rather strong leading to a very unsatisfying result. In the fig-
ure in center right position the results after additional trans-
formation of the spectral envelope modulation by means of

3For sound examples please visit http://anasynth.ircam.fr/
home/english/media/dafx11-demo-vibrato-removal
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Figure 4: Experimental results for vibrato removal using the different operators described in the text. The top left figure
shows a spectrogram of 2 seconds of a flute signal with vibrato, on the top right the same flute playing the same note without
vibrato. The bottom 4 figures show the spectrogram of 4 different vibrato extent transformation operators introduced in the
text. See there for detailed explanations.

DAFX-6

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-326



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

the PSCS operator is shown. The amplitude modulation
of the partials is significantly reduced. Note however, that
the amplitude modulation of the noise is now significantly
stronger. This is clearly visible for partials 3 and 7 that in
the spectrogram of the original signal with vibrato both ex-
hibit a strong amplitude modulation while the surrounding
noise does not or hardly modulate in amplitude. After trans-
formation the noise modulation around these 2 partials is
significantly increased. Partial 5 in contrast does not suffer
from this effect because partial and surrounding noise have
approximately similar amplitude modulation.
The last row of fig. 4 shows the results obtained with the
complex operators that separate harmonic and residual com-
ponents and separately treat the spectral envelope modula-
tion of both components. Both operators achieve a signal
with a spectrogram that is very close to the flute signal with
no vibrato in the top right figure. Both operators suffer
from partial tracking problems in the areas where partials
disappear in noise. This effect is perceptually weak, how-
ever, when carefully listening with headphones it can be per-
ceived. It should be noted however, that it is easy to imagine
a situation where this effect becomes a perceptual problem
in which case a more complex transformation operator al-
lowing for partial reconstruction would be required. The
PSCSRT operator exhibits a slight modulation of the noise
resonance that is located between partials 1 and 2 which is
due to the fact that this operator applies the dynamic trans-
position that is required to remove the frequency modulation
to both residual and harmonic component. In the informal
listening tests with expert listeners this difference is hardly
perceivable.

5. CONCLUSIONS

The present paper investigated into the problem of modifi-
cation of the vibrato extent assuming that segments with vi-
brato are marked by a preceding analysis. The proposed sig-
nal operators are entirely based on spectral envelope smooth-
ing operations, and therefore they are conceptually relatively
simple. Especially they do not require a manipulation of in-
dividual partial parameters. Despite this simplicity the op-
erators did allow us to achieve perceptually very convincing
results when applied to vibrato manipulation. They have
been evaluated on a task dealing with the removal of vi-
brato from a flute signal. The results demonstrate that for
the flute signal the most complex operator is required to
achieve optimal and natural results because the harmonic
and noise envelope components do not follow the same am-
plitude modulation pattern. The requirement for the addi-
tional complexity that is related to the separate treatment of
noise and sinusoidal modulations depends on the signal -
it can be avoided if the noise component is weak. Further
studies are needed that deal with the connection of the mod-

ified vibrato to the neighboring note transitions. In the near
future we will investigate into generative instrument spe-
cific models that relate vibrato and timbre modulation and
we will investigate into signal transformation operators that
allow manipulating the vibrato rate.
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ABSTRACT

In this paper, we present a revised model of the plectrum-string
interaction and its interface with the digital waveguide for simu-
lation of the harpsichord sound. We will first revisit the plectrum
body model that we have proposed previously in [1] and then ex-
tend the model to incorporate the geometry of the plectrum tip.
This permits us to model the dynamics of the string slipping off
the plectrum more comprehensively, which provides more physi-
cally accurate excitation signals. Simulation results are presented
and discussed.

1. INTRODUCTION

The harpsichord is a plucked string keyboard instrument which
was first invented probably around the late 14th century [2]. A
predecessor of the piano, its popularity reached its peak in the
17th century, becoming one of the most important keyboard in-
struments of the Baroque era. The harpsichord became "obsolete"
rather quickly after the maturation of the piano, but the 20th cen-
tury early music movement has since renewed significant interest
towards the instrument. Figure 1 shows the mechanism in which
the harpsichord strings are sounded. When the key is played, the
harpsichord jack is guided to move vertically upwards and a flexi-
ble plectrum mounted at the end of the jack plucks the string.

General harpsichord physics have been discussed in [3, 4, 5]
discussing the various components of the harpsichord. More spe-
cific studies such as the soundboard vibration modes or attack tran-
sients can be found in [6, 7, 8, 9, 10, 11]. The dynamics of the
harpsichord, generally thought to be nonexistent, has been stud-
ied in greater detail in [12] and has shown actually that a limited
amount of dynamics and timbral changes exist.

The interaction between the harpsichord plectrum and string
is an aspect much less studied. A theoretical model was first pro-
posed by Griffel [13], prompting further studies and a modified

Figure 1: Harpsichord key and jack.

plectrum model proposed by Giordano and Winans II [14]. In
contrast, the finger-string interaction has been studied and mod-
eled in more detail in both the guitar [15, 16, 17, 18, 19] and con-
cert harp [20, 21]. For the guitar, differences in radiated sound
due to changes in guitar plectrum parameters have been reported
in [22, 23], and a guitar plectrum-string interaction model can be
found in [24].

A more thorough harpsichord plectrum has been recently pro-
posed by the authors [1, 25], which excites both transverse motions
of the strings and allows for interfacing with digital waveguides
[26, 27]. In this paper, we extend our model to incorporate the
plectrum tip geometry, describing the final stages of the string slip-
ping off the plectrum more completely, important in synthesizing a
more accurate string excitation signal. The physical-based excita-
tions provide controllability and expressivity that can complement
existing models using a sampled excitation database [28].

In Section 2 we present our improved plectrum model, which
includes a review of our previous plectrum body model and the
new plectrum tip model. In Section 3 we discuss the plectrum-
string interaction, where the interaction at the plectrum body and
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tip are treated differently. In Section 4, we detail the interfacing
between our plectrum model with the digital waveguide. Simula-
tion results are discussed in Section 5, and in Section 6 we draw
our conclusions.

Figure 2: Force exerted on plectrum.

2. PLECTRUM MODEL

In this section, we will first review the plectrum body model. We
will then extend our plectrum model so that it incorporates the tip
geometry of the plectrum, important for an accurate description of
the string during slip-off from the plectrum.

2.1. Model Assumptions

For our model, we shall assume that

• the strain is small within the plectrum (still allows for large
end deflection)

• the plectrum is an isotropic elastic material

• the plectrum has a uniform rectangular cross section

• the plectrum only bends in a plane so that there is no twist-
ing motion

• there is no friction between the string and plectrum

• the force exerted on the plectrum is always perpendicular to
the surface in contact

• the force is concentrated only at one point

• the plectrum mass is ignored, and thus the plectrum and
string are assumed to be quasi-static, neglecting any oscil-
lations from the plectrum’s inertia.

2.2. Plectrum Body

The harpsichord plectrum is modeled as a thin rectangular rod
clamped at one end and free on the other end. When a clamped rod
is subject to an external force ~F , it results in a bending moment ~M
due to the internal stresses. The general equilibrium equation for
a bent rod is given by

d ~M

dl
= ~F × ~t (1)

where dl is an infinitesimal element of the rod, and ~t is a unit
vector tangential to the rod. Under the assumptions in the previous
section, the bending moment can be written as

M = EI
d~r

dl
× d2~r

dl2
(2)

whereE is the Young’s Modulus, I is the second moment of inertia
(or area moment of inertia), and ~r is the radius vector from a fixed
point to the point considered on the rod. Defining a coordinate
axis such that the x-y plane denotes the plane of the bent rod and φ
as the angle between the horizontal and ~t , shown in Figure 2, the
equation is simplified to

EI
d2φ

dl2
+ F = 0 (3)

Imposing the correct boundary conditions at the free end, we
can solve for the deflection angle along the length of the plectrum,

φ(l) =
F

EI
(Ll − 1

2
l2) (4)

φ0 ≡ φ(l = L) =
1

2

FL2

EI
(5)

where L is length of the plectrum. The parametric shape of the
plectrum x(l) and y(l) can be found as

{
x(l) =

∫
cosφ dl

y(l) = −
∫

sinφ dl
(6)

For small-angle approximations (φ� 1), this reduces to the com-
monly seen cantilever beam loading equations. A bent harpsichord
plectrum, however, undergoes significant deflection, and these can-
tilever beam equations do not agree well with the general solution
(6). A revised approximation that the authors have proposed is
given by




x(l) = l − 1

2

(
F

EI

)2(
L2l3

3
− Ll4

4
+
l5

20

)

y(l) = −
(
F

EI

)(
Ll2

2
− l3

6

)

+
1

6

(
F

EI

)3(
L3l4

4
− 3L2l5

10
+
Ll6

8
− l7

56

)

(7)

which gives good agreement even up to end deflection angles φ of
45◦.

2.3. Plectrum Tip

Figure 3: Force exerted on plectrum tip.

In order to account for the geometry of the end of the plectrum,
we will model the plectrum tip as a circular tip with diameter equal
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to that of the thickness of the plectrum. We will go through deriva-
tions similar to that of the previous section 2.2. Also keeping in
mind that an exerted force on the tip of the plectrum must still be
perpendicular to the surface, as in Fig 3, equation (3) becomes

EI
d2φ

dl2
+ F (cos θ) = 0 (8)

where θ denotes the angle and position on the tip the force is ap-
plied. The deflection angles become

φ(l) =
F (cos θ)
EI

(Ll − 1

2
l2) (9)

φ0 ≡ φ(l = L) =
1

2

F (cos θ)L2

EI
(10)

Similarly, for the revised approximation of the plectrum shape, all
the F terms are replaced with F (cos θ). Note that when θ = 90◦,
there is no bending moment on the plectrum, and the plectrum
becomes unbent with zero deflection φ(l) = 0. In the case of the
harpsichord plectrum and string, this represents the moment when
the string slides past and leaves the plectrum. It is also clear from
the figure that θ will not be larger than 90◦, as this would imply
that the plectrum is bent upwards instead.

3. PLECTRUM-STRING INTERACTION

In this section, we will discuss the interaction between the harpsi-
chord plectrum and string while they are in contact when the string
is plucked. Assuming small string displacements, a segment of the
string with mass ∆m and length ∆z that is in contact with the
plectrum follows the equations of motion,





(∆m)
∂2xs(t)

∂t2
= K

∂2xs(t)

∂z2
(∆z) + Fp_x

(∆m)
∂2ys(t)

∂t2
= K

∂2ys(t)

∂z2
(∆z) + Fp_y

(11)

where xs(t) and ys(t) denote the transverse string segment dis-
placements, K is the tension of the string, Fp_x and Fp_y are the
x and y components of the plectrum force F exerted on the string
segment, and z is the coordinate along the string, perpendicular to
both xs(t) and ys(t). The time when the string is sliding along
the main plectrum body and when it is slipping off the tip must be
treated differently.

3.1. Sliding Along Plectrum Body

As shown in Figure 4, the clamped end of the plectrum moves
with the harpsichord jack, constrained to move only in the verti-
cal direction. Its position is denoted by (xj(t), yj(t)). During
the phase where the string is sliding along the plectrum body, the
string is at a distance L′ < L from the clamped end. Using our
revised approximation of equation (7) evaluated at the location of
the string l = L′, we have





xs(t)− xj(t) = L′ −
(
F

EI

)2
L′5

15

ys(t)− yj(t) = −
(
F

EI

)
L′3

3
+

(
F

EI

)3
L′7

105

(12)

Figure 4: Plectrum and string interaction along main plectrum
body.

The deflection angle at l = L′ is given by equation (5), and there-
fore the components of the plectrum force are given by





Fp_x = F sin
(
FL′2

2EI

)

Fp_y = F cos
(
FL′2

2EI

) (13)

If we know the motion of the harpsichord jack, the transverse
string segment displacements can be calculated using equations
(11) to (13).

3.2. Slip-off

Figure 5: Plectrum and string interaction at plectrum tip.

As shown in Figure 5, as the string slides past the end of the
plectrum body, labeled in the figure as point (xe, ye), it proceeds
to slip off the tip. While the string is on the plectrum tip, it is
a distance L′′ = L + ∆ from the clamped end of the plectrum,
where ∆ is the additional length correction from the tip. However,
∆ is on the order of the thickness of the plectrum, which is much
smaller than the length of the plectrum. To reduce the complexity
of the problem, we will first make the approximation that the force
F is applied at the point (xe, ye). Using the plectrum tip model
of section 2.3, the deflection of the plectrum at (xe, ye) is given
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by




xe(t)− xj(t) = L−
(
F (cos θ)
EI

)2
L5

15

ye(t)− yj(t) = −
(
F (cos θ)
EI

)
L3

3
+

(
F (cos θ)
EI

)3
L7

105
(14)

From the geometry in Figure 5, we also find that
{
xs(t)− xe(t) = rc [sin(θ + φ0)− sin(φ0)]

ys(t)− ye(t) = rc [cos(θ + φ0)− cos(φ0)]
(15)

where rc is the radius of curvature of the tip, equal to half the
plectrum thickness. Combining these two expressions with equa-
tion (10), we have the plectrum deflection at the location of the
string which accounts for the additional length correction of the
plectrum tip:




xs(t)− xj(t) = L

(
1− 4φ2

0

15

)
+ rc [sin(θ + φ0)− sin(φ0)]

ys(t)− yj(t) = −2Lφ0

3

(
1− 4φ2

0

35

)

+rc [cos(θ + φ0)− cos(φ0)]
(16)

Note that if θ = 0, this expression reduces to equation (14), which
represents the string just at the edge of the plectrum body. Simi-
larly, the components of the plectrum force are now





Fp_x = F sin(θ + φ0)

Fp_y = F cos(θ + φ0)

(17)

and therefore the the transverse string segment displacements can
be calculated once again.

4. DIGITAL WAVEGUIDE INTERFACE WITH
PLECTRUM MODEL

For segments of the string not in contact with the plectrum, the
equations of motion (11) are reduced to the wave equation





∂2xs(t)

∂t2
= c2

∂2xs(t)

∂z2

∂2ys(t)

∂t2
= c2

∂2ys(t)

∂z2

(18)

where c =
√
K/µ is the string wave propagation speed, K is the

string tension defined earlier, and µ = (∆m)/(∆z) is the linear
mass density. D’Alembert’s traveling-wave solution to the wave
equation is well-known and can be expressed as

{
xs(z, t) = x−(z + ct) + x+(z − ct)
ys(z, t) = y−(z + ct) + y+(z − ct) (19)

where x− and y− represent the traveling waves in the −z direc-
tion and x+ and y+ in the +z direction. In the discrete-time do-
main, traveling waves are simulated efficiently by means of digital

Figure 6: Harpsichord string synthesis model.

waveguides. The harpsichord synthesis model is represented by
the block diagram in Figure 6. Pairs of digital waveguide delay-
lines are implemented on both sides of the plucking junction. In
addition, our plectrum model excites both the horizontal and ver-
tical transverse modes of string vibrations, and the two modes can
be coupled both at the nut and the bridge.

Figure 7: Sum of forces at the plucking point.

The length of the segment of string in contact with the plec-
trum ∆z is much smaller than the length of the string Ls and can
be effectively reduced to a single point. As shown in Figure 7 for
the transverse vertical y component, the equilibrium of the sum of
the forces on the plucking point gives

~Fp_y + ~Fleft + ~Fright = 0 (20)

For small displacements, the y component of the left and right
string forces can be approximated as





Fleft_y ≈ −K ∂ys
∂z

∣∣∣∣
z−p

Fright_y ≈ K ∂ys
∂z

∣∣∣∣
z+p

(21)

As with the traveling wave solution (19) of string displacements,
the left and right string forces can also be decomposed as left and
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right traveling “force waves.” Defining the force wave as

f∓(z ± ct) ≡ −K∂y∓(z ± ct)
∂z

(22)

the traveling wave decomposition of the forces gives
{
Fleft_y = f−left(z + ct) + f+

left(z − ct)
Fright_y = −f−right(z + ct)− f+

right(z − ct)
(23)

Further relating the spatial and time partial derivatives of the
force waves, we have expressions for the “Ohm’s Law” for travel-
ing waves





f− = −K∂y−

∂z
= −K

c

∂y−

∂t
= −Rv−

f+ = −K∂y+

∂z
=
K

c

∂y+

∂t
= Rv+

(24)

where R = K/c =
√
Kµ is the wave impedance of the string,

and v− and v+ are the traveling velocity wave components of the
transverse string velocity. Rewriting equation (20) in terms of the
traveling force waves and also using the Ohm’s Law for traveling
waves,

(f−left + f+
left)− (f−right + f+

right) + Fp_y = 0 (25)

R(−v−left + v+left)−R(−v−right + v+right) + Fp_y = 0 (26)

In addition, at the plucking point, the left and right transverse
string velocities must be continuous,

v−left + v+right = v−right + v+right ≡ v (27)

where v is defined as the transverse velocity of the plucked point.
Equations (26) and (27) allow us to solve for the outgoing velocity
waves v−left and v+right in terms of the incoming velocity waves
v−right and v+left:





v−left = v−right +
Fp_y

2R

v+right = v+left +
Fp_y

2R

(28)

Figure 8: Plectrum plucking junction.

This plucking junction is shown in the diagram of Figure 8.
The transverse displacement waves can be evaluated using a Back-
ward Euler method:

{
y−left(n) = y−left(n− 1) + v−left(n)T

y+right(n) = y+right(n− 1) + v+right(n)T
(29)

where T is the sampling interval. The transverse x displacement
follows an identical derivation. When the string slides off the plec-
trum, Fp_x = Fp_x = 0, the plucking junction disappears, and the
digital waveguide segments to the left and right of the junction are
effectively combined into one.

5. RESULTS

5.1. Simulation Parameters

Table 1: Delrin harpsichord plectrum and steel string values.

Plectrum Parameters
Length L 6 mm
Width W 4 mm

Thickness H 0.5 mm
Second moment of inertia I 0.029 mm4

Young’s modulus E 5 GPa
String Parameters

Tension T 135 N
Density ρ 7850 kg/m3

Diameter d 0.37 mm
Linear density µ 0.84 g/m

Length Ls 0.5 m

Modern harpsichord plectra are made out of a plastic material
called Delrin. The plectrum and steel string parameters are listed
in Table 1. The sampling frequency was chosen at fs = 100 kHz.
The plectrum width was made to equal that of one spatial sampling
intervalX = 4.0 mm. The harpsichord jack was assumed to move
at a constant velocity vj :

yj(t) = vjt

Referring to Figure 6 of the synthesis model, while the nut was
treated as a rigid termination, we implemented a bridge filter that
consisted of a one-pole filter and ripple filter similar to the one
implemented in [28]. The transverse x and y string vibrations were
not coupled together. That is a direction for future work.

5.2. String Excitation Motion

Figure 9 shows the transverse x and y string motion before the re-
lease of the string off the plectrum, plucked at the midpoint with
a jack velocity vj = 0.02 m/s. Clearly noticeable is a sharp steep
rise in the horizontal displacement just prior to the release of the
string that is absent in the vertical string displacement. This cor-
responds to the slip-off phase when the string is sliding off the
plectrum tip. An expanded view of the slip-off portion is shown
in Figure 10. This “kick” in the horizontal direction contributes to
the brightness of the synthesized harpsichord tone.

5.3. Plucking Speed

Conventional wisdom has it that regardless of how fast one presses
on the harpsichord key, the dynamics do not change considerably.
Figure 11 shows a graph of the string release amplitude (defined
as A =

√
x2s + y2s immediately before the release of the string

from the plectrum) v.s. the jack velocity, plucked at the midpoint
of the string. Under regular playing speeds of 0.02− 0.1 m/s, the
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Figure 9: Motion of string before release from plectrum, plucked
at the midpoint with jack velocity vj = 0.02 m/s.
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Figure 10: Expanded view of the slip-off of of Figure 9.

amplitude does not vary more than 10%, a difference not readily
audible from our simulations. At higher playing speeds, there is a
significant increase and drop in the release amplitude, but these are
unphysical in the realm of harpsichord playing. In Figure 11 this
"peak velocity" occurs at around 2 m/s. For longer bass strings,
simulations show a lower the peak velocity but it remains well
above reported playing speeds.

5.4. Plucking Point

Many harpsichords have more than one set of strings (called reg-
isters) for the same note, where the jacks pluck at different loca-
tions along the string. While Italian harpsichords generally had
their plucking locations closer together for uniformity of sound,
harpsichords built north of the Alps had their strings plucked at lo-
cations further apart to create differences in timbre [2]. It is well-
established that plucking closer to the nut excites more harmonics
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Figure 11: String release amplitude v.s. jack velocity, plucked at
the midpoint.

and contributes to a nasal quality to the sound. Our simulations are
consistent with this.

As discussed in [1], playing on harpsichord registers which
pluck closer to the nut not only results in changes in timbre but
also a decrease in volume. The string is released earlier, and the
player experiences a “lighter” touch, as the harpsichord jack does
not travel as far before the string is plucked. Figure 12 shows simu-
lation results between the plucking location and string release am-
plitude. As expected, the largest amplitude occurs when plucked
at the midpoint and decreases as the plucking point moves closer
toward the nut.

6. CONCLUSION

This paper extends the previous harpsichord plectrum model pro-
posed by the authors to incorporate the plectrum tip geometry. In-
terfacing with a digital waveguide, the complete plucked string
motion, especially the final slip-off, is more accurately described.
This is crucial in generating the string excitation signals to cre-
ate realistic plucked harpsichord tones. Future work can include
bridge coupling between the two transverse string vibrations and
modeling of the lute stop.
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ABSTRACT

Finite difference time domain (FDTD) approaches to physical
modeling sound synthesis, though more computationally intensive
than other techniques (such as, e.g., digital waveguides),offer a
great deal of flexibility in approaching some of the more interest-
ing real-world features of musical instruments. One such case, that
of brass instruments, including a set of time-varying valvecompo-
nents, will be approached here using such methods. After a full
description of the model, including the resonator, and incorpo-
rating viscothermal loss, bell radiation, a simple lip model, and
time varying valves, FDTD methods are introduced. Simulations
of various characteristic features of valve instruments, including
half-valve impedances, note transitions, and characteristic multi-
phonic timbres are presented, as are illustrative sound examples.

1. INTRODUCTION

The brass family is probably the most studied, among all the musi-
cal instruments, from the perspective of pure musical acoustics,
and a full list of references would be quite long; for a general
overview of the state of the art in brass instrument physics,see
[1, 2].

Sound synthesis through physical modeling has developed along
various lines; some formulations are based around the now-standard
time-domain picture of the brass instrument as a nonlinear exci-
tation coupled to a linear resonator [3], where the tube itself is
characterized by its reflection function—among such methods are
digital waveguides [4]. If wave propagation is consolidated in de-
lay lines, and if loss and dispersion effects are modelled aslumped,
such methods can be extremely efficient. See [5] for recent work
on methods related to the waveguide formalism.

Finite difference time domain methods [6], based on direct
time/space discretization of the acoustic field, though notas ef-
ficient as such structures, allow a very general approach to bore
modelling, in particular when more realistic features typical of
such instruments are incorporated. One such feature, the action
of the brass instrument valve, will be described here; as will be
seen, though such effects, necessarily time varying, lead to compli-
cations in terms of algorithm design, the resulting computational
structure, and associated computational costs, are altered little.

A model of a brass instrument, including a linear model of the
bore, a simple excitation mechanism, and valve junctions ispre-
sented in Section 2, followed by a description of a simple FDTD
scheme in Section 3. Simulation results are presented in Section
4. Synthetic sound examples, created in the Matlab environment,
are available at

http://www2.ph.ed.ac.uk/~sbilbao/brasspage.htm

x

S(x)

Figure 1:An acoustic tube, of cross-sectionS(x).

2. BRASS INSTRUMENT MODELS

2.1. Lossless Tubes

Lossless wave propagation in an acoustic tube of variable cross
section is described by the following well-known pair of equations:

pt +
ρc2

S
(Sv)x = 0 (1a)

vt +
1

ρ
px = 0 (1b)

Here,p(x, t) andv(x, t) are the pressure deviation (from atmo-
spheric) and particle velocity, respectively, at coordinates x ∈
[0, L] and t ≥ 0 along a tube of lengthL m. Subscriptsx and
t indicate partial differentiation with respect to a spatialcoordi-
nate and time, respectively.S(x) is the surface area of the tube at
locationx, ρ is the density of air, in kg/m3 andc is the speed of
sound, in m/s.

When combined into a single second order equation inp, Web-
ster’s equation [7] results. In the interest of keeping the door open
to the simulation of distributed nonlinear wave propagation (see
[8]), the first order system above will be retained here. Webster’s
equation, and its variants, are the starting point for physical mod-
eling sound synthesis both in speech [9], including the well-known
Kelly-Lochbaum model [10] as well as in brass instruments [11].
The coordinatex will here be taken to be distance along the bore
axis—see Figure 1; in a more refined model, it could representa
coordinate normal to isophase surfaces of one-parameter waves,
for which there are many choices (see [12]), but the system above
remains of essentially the same form.

In this article, since the final structure will be composed ofa
number of interconnected tubes, system (1) above represents wave

DAFX-1

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-337



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris,France, September 19-23, 2011

propagation in a single such tube, of lengthL.

2.2. Lip Model

It is not the purpose of this paper to investigate lip models,which
have seen a great deal of theoretical work—see, e.g., [2] foran
overview. A standard model is of the following form:

d2y

dt2
+ g

dy

dt
+ ω2(y − H) =

Sr∆p

µ
(2)

In this simple model, the lip displacementy(t), is modelled in
terms of a single mass/spring/damper system, driven by a pressure
difference∆p across the lips, defined as

∆p = pm − p(0, t) (3)

wherepm(t) is the blowing pressure, and wherep(0, t) is the pres-
sure at the entrance to a tube, the behaviour of which is defined by
(1). ω is the angular lip frequency (a control parameter) ,g is a loss
coefficient, andµ is the lip mass (which is sometimes modelled as
frequency dependent in the case of lip reed models [13, 14]).Sr

is the effective surface area of the lips, andH is an equilibrium
opening distance. Further closing relations are

um = wy

√
2|∆p|

ρ
sign(∆p) (4a)

ur = Sr
dy

dt
(4b)

S(0)v(0, t) = um + ur (4c)

whereum is volume flow at the mouth,ur is flow induced by the
motion of the lips, and wherew is the channel width.

The model above is sometimes simplified by assumingur = 0
[2], or extended through the incorporation of an inertia term [13];
other varieties, including more degrees of freedom for lip motion
are also available [14].

2.3. Bell Radiation

A simple model for radiation at the bell, relating particle velocity
v(x = L, t) andp(x = L, t) is of the following form:

Zcv = α1p + α2m p =
dm

dt
(5)

where the parametersα1 andα2, and the characteristic impedance
Zc are defined by

α1 =
1

4(0.61332)
α2 =

c

0.6133r
Zc = ρc (6)

wherer is the radius of the bell opening.m = m(t) is an extra
lumped variable, reflecting the reactive character of the boundary
condition. Such a condition corresponds to a rational (and pos-
itive real) approximation to the impedance of an unflanged tube.
Such rational approximations are used frequently in speechsyn-
thesis [9]; this particular crude approximation matches fairly well
with more refined approximations used in brass instrument mod-
els [15], and could be improved significantly using a higher order
rational approximation [16](with the important constraint that pos-
itive realness is preserved).

Figure 2: Representation of a junction between an input tube, a
default section of tube and a bypass section.

2.4. Valve Junctions

A valve in a brass instrument allows for changes in the effective
length of an instrument, through the introduction of an alternate
length of tubing. In the most general case of a partly open valve,
wave propagation is thus possible both through a short default sec-
tion of tubing, and a bypass section.

Consider a junction of three tubes, as illustrated in Figure2.
Assuming lossless flow, the pressures at the junction in all three
tubes are assumed equal, i.e.,

p(in) = p(d) = p(b) (7)

where the superscripts(in), (d) and(b) refer to the input, default
and bypass sections, resepctively. The volume velocities sum to
zero, i.e.,

S(in)v(in) = S(d)v(d) + S(b)v(b) (8)

whereS(in) is the surface area of the input tube at the junction,
and whereS(d) andS(b) are the overlapping surface areas of the
tubes at the junction. For consistency,v(in) is positive when flow
is in the direction of the junction, andv(d) andv(b) are negative.

S(d) andS(b) are dependent on the valve state. Because, in
either the fully open or closed state, there is not a sizeablediscon-
tinuity in the tube cross section, it is useful to parameterize these
areas as

S(d) = q(d)S(in) S(b) = q(b)S(in) (9)

for given valuesq(d)(t) andq(b)(t), which depend on the current
state of the valve at timet. When the tube valve is undepressed,
q(d) = 1 andq(b) = 0, and when depressed,q(d) = 0 andq(b) =
1.

For a multivalve instrument, then, a single valve is charac-
terised by its location along the bore, the lengths of the default and
bypass tubes and its valve state. It can be assumed that the region
of the instrument over which the valves are placed is cylindrical, as
is the bypass tube, but this is by no means necessary in the FDTD
framework.

2.5. Viscothermal Losses

Boundary layer effects in the horn lead to losses which may not
be neglected, as they dominate bell radiation losses over the range
of playing frequencies for a typical brass instrument—and have a
great effect on the impedance curve for the instrument, and thus
its playability. They are usually modelled in the frequencydomain
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through a transmission line formulation (see, e.g., [17, 15], for two
slightly different models), and, when converted to the time/space
domain, lead to a form similar to (1), but involving new terms:

pt +
ρc2

S
(Sv)x + fp

t
1
2

= 0 (10a)

vt +
1

ρ
px + gv

t
1
2

= 0 (10b)

Here, fractional derivative terms have appeared—the accompany-
ing spatially-varying coefficients are

f(x) = 2(α − 1)

√
ηπ

νρS(x)
g(x) = 2

√
ηπ

ρS(x)
(11)

Here,α is the ratio of specific heats for air,ν is the Prandtl number,
andη is the shear viscosity coefficient. See [17] for precise values
for these constants. Higher order terms (which play a role only for
very thin acoustic tubes) have been neglected here; under further
simplification, and after the reduction of the system above to a
single second order equation (inp), a form similar to the Webster-
Lokshin equation results [18]; the Webster-Lokshin formulation
has been used previously in a brass sound synthesis framework
[5].

3. FDTD SCHEMES

3.1. Simple Scheme for the Lossless System

System (1) is of the form of a pair of variable transmission line
equations (or telegrapher equations [19]), and as such, is analogous
to 1D electromagnetic wave propagation, the usual startingpoint
for FDTD methods [20, 21]). An interleaved scheme of the form

pn
l − pn−1

l +
λZc

S̄l

(
Sl+ 1

2
v

n− 1
2

l+ 1
2

− Sl− 1
2
v

n− 1
2

l− 1
2

)
= 0 (12a)

v
n+ 1

2

l+ 1
2

− v
n− 1

2

l+ 1
2

+
λ

Zc
(pn

l+1 − pn
l−1) = 0 (12b)

is appropriate.pn
l is an approximation top(x, t) at x = lh, and

t = nk, for integern andl, and for a grid spacingh and time step

k; fs = 1/k is the sample rate. Similarly,v
n+ 1

2

l+ 1
2

is an approxima-

tion tov(x, t) atx = (l+ 1
2
)h, andt = (n+ 1

2
)k, again for integer

n and l. The functionsSl+ 1
2

andS̄l are approximations toS(x)

andx = (l + 1
2
)h andx = lh, respectively. The characteristic

impedanceZc is as defined in (6), and the numerical parameterλ,
or the Courant number [6] is defined as

λ = ck/h (13)

It is possible to show, using either frequency domain or energy
techniques [22] that a necessary stability condition for the scheme,
if S̄l is chosen as̄Sl = (Sl+ 1

2
+ Sl− 1

2
)/2, is

λ ≤ 1 → h ≥ ck (14)

Generally, it is best to chooseh, givenk (fixed by the sample rate,
which is chosen a priori) as close to this bound as possible, to min-
imize numerical dispersion, and maximize output bandwidth. See
[8] for more on the subject of accuracy. In the special case that
λ = 1, the system above becomes equivalent, upon the introduc-
tion of wave variables, to the Kelly-Lochbaum model [10], and,
furthermore, whenS is constant, to a digital waveguide [4].

S̄ S S̄ S S̄ S S̄ S S̄ S S̄ S S̄

p p p p p p p

p p p p p p p

p p p p p p p

v v v v v v

v v v v v v

h

x

x
h

k
t

Figure 3:Top: acoustic tube, for which approximations to the sur-
face areaS andS̄ are made at alternating grid locations. Bottom:
interleaved time/space grid for pressurep and velocityv.

For a tube of lengthL, it is convenient (though by no means
necessary) to chooseh such thatN = L/h is an integer, while
satisfying (14). In this case,pn

l runs over integersl = 0, . . . , N ,

taking on values at the endpoints of the tube, andv
n− 1

2

l+ 1
2

at the in-

terleaved values, froml = 0, . . . , N − 1. One implication of such
a choice, in a network composed of many such tubes (such as a
brass instrument) is that one will have a different grid spacing, and
associated value of the Courant numberλ for each tube segment.

3.2. Termination Conditions

Discretization of the termination conditions is similar tothe case
of reed wind instruments, discussed in [22], and is reviewedonly
briefly here.

At the bell termination of the final tube segment, the update is

pn
N − pn−1

N +
λZc

S̄N

(
SN+ 1

2
v

n− 1
2

N+ 1
2

− SN− 1
2
v

n− 1
2

N− 1
2

)
=0 (15)

which requires access to the virtual valuev
n− 1

2

N+ 1
2

. An approxima-

tion to the radiation boundary condition (5), namely

v
n− 1

2

N+ 1
2

+ v
n− 1

2

N− 1
2

=
α1

Zc

(
pn

N + pn−1
N

)
+

α2

Zc

(
mn + mn−1)

pn
N + pn−1

N =
2

k

(
mn − mn−1

)

allows the closure of the system, where an extra update in a time
seriesm = mn is required. The above boundary condition may
be shown to be numerically passive [22], and thus there is no risk
of numerical instability.

For the lip model, the various dependent variables may be re-

placed by time series, i.e.,yn, ∆pn, u
n+ 1

2
m , u

n+ 1
2

r , approximating
the various functions at interleaved multiples ofk, the time step.
The only time-dependent equations are (2) and (4b), which may be
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approximated directly as

1

k2

(
yn+1 − 2yn + yn−1) +

g

2k

(
yn+1 − yn−1)

+
ω2

2

(
yn+1 + yn−1) − H =

Sr∆pn

µ
(16)

u
n+ 1

2
r =

Sr

k

(
yn+1 − yn

)
(17)

3.3. Tube Boundaries

Consider now a junction of three tubes, as described in Section 2.4.
In the FDTD setting, with each of the schemes for the three tubes
(impinging, default and bypass) is associated a distinct Courant
numberλ(in), λ(d) andλ(b), all of which should be chosen as close
to unity as possible. Furthermore, as pressure values calculated by
the three schemes at the junction are coincident, it is straightfor-
ward to translate condition (7) to the discrete setting (suppressing
time indeces), as

p
(in)
N = p

(d)
0 = p

(b)
0 = p(J) (18)

wherep(J),n is the common pressure at the junction, and where
p
(in),n
N is the pressure in the impinging tube at its right end, and

wherep
(d),n
0 andp

(b),n
0 are the pressure in the default and bypass

sections.
The updates (12a) require access to values of the velocity grid

functions at virtual locations not on the respective grids,i.e.,v(in)

N+ 1
2

,

v
(d)

− 1
2

andv
(b)

− 1
2

. These can be set according to the flow boundary

condition (8) as

S
(in)

N− 1
2

v
(in)

N− 1
2

+ S
(in)

N+ 1
2

v
(in)

N+ 1
2

= (19)

S
(in)

− 1
2

v
(d)

− 1
2

+ S
(d)
1
2

v
(d)
1
2

+ S
(b)

− 1
2

v
(b)

− 1
2

+ S
(b)
1
2

v
(b)
1
2

The conditions (18) and (19) may be combined to give a single
update for the junction pressurep(J),n as

p(J),n − p(J),n−1 = (20)

β(J)

(
S

(in)

N− 1
2

v
(in),n− 1

2

N− 1
2

− S
(d)
1
2

v
(d),n− 1

2
1
2

− S
(b)
1
2

v
(b),n− 1

2
1
2

)

whereβ(J) is given by

β(J) =
2Zc

S
(in)
N (1/λ(in) + q(b)/λ(b) + q(d)/λ(d))

(21)

whereq(b) andq(d) follow from the current valve state, as in (9).
The above explicit update for the junction pressure should sug-

gest the analogous update in a scattering framework (such aswave
digital filters [23] or digital waveguides [4]). Conversely, it may
also be seen that the explicit updating, often claimed to be abene-
fit of such approaches, is in fact characteristic of direct (i.e., non-
scattering) methods as well.

3.4. Filter Designs and Viscothermal Losses

The fractional derivative terms in (10), though standard infre-
quency domain analysis of acoustic tubes [15] pose some numeri-
cal challenges in the FDTD setting, as they do in scattering based
approaches. A simple approach (among many; see [24, 5] for other

examples) which has been described recently in [8], is to employ
an FIR filter design. To approximate the termp

t
1
2

in (10a), one
may employ, generally,

p
t
1
2
(x, t) ≅

M∑

m=0

ampn−m
l (22)

for some suitably chosen parametersam (perhaps through a fre-
quency domain optimization procedure), and for a chosen order
M . In order to get reasonable accuracy at low frequencies, theor-
derM must be chosen to be moderately high—between 20 and 40,
at a typical audio sample rate, such asfs = 44100 Hz. A similar
approximation may obviously be used for the termv

t
1
2

in (10b).
Scheme (12) may thus be generalized to

pn
l − pn−1

l +
λZc

S̄l

(
Sl+ 1

2
v

n− 1
2

l+ 1
2

− Sl− 1
2
v

n− 1
2

l− 1
2

)

+ kfl

M∑

m=0

ampn−m
l = 0 (23a)

v
n+ 1

2

l+ 1
2

− v
n− 1

2

l+ 1
2

+
λ

Zc
(pn

l+1 − pn
l−1)

+ kgl+ 1
2

M∑

m=0

amv
n+ 1

2
−m

l+ 1
2

= 0 (23b)

wherefl andgl+ 1
2

are approximations tof(x) andg(x) from (11)

at locationsx = lh andx = (l + 1
2
)h, respectively.

It is important to point out that the orderM of the approxima-
tion will determine the memory requirement for the algorithm as
a whole, and has a strong impact on computational complexity—
see Section 3.5. It would thus be advantageous to employ rational
filter designs of potentially much lower order.

3.5. Computational Costs

The computational cost of the scheme for the entire system isde-
termined by the total length of tube,Ltotal, which is made up of
contributions from the main bore, as well as the bypass tubes. For
a Courant number of 1 in all the sections (this is the worst case),
the total number of grid points will beN(fs) = Ltotalfs/c, and
thus the total memory requirement, to hold both pressure andve-
locity variables, will be

memory requirement = 2NM (24)

whereM is the order of the approximating filter for viscothermal
losses. The combined addition+multiplication count per second
will be

operation count/sec. = N(4M + 6)fs (25)

At fs = 44100, for a total tube length ofL = 1 m, and for
M = 20, the floating point operation rate is on the order of 500
Mflops. This is not cheap, compared with, e.g., a digital waveguide
implementation, but neither is it exorbitant, by the standards of to-
days microprocessors. On the other hand, using such a schemein
a time-varying setting (i.e., employing valve transitions) requires
only O(1) additional operations per time step, and is thus of neg-
ligible cost.
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4. SIMULATION RESULTS

In this section, simulation results are presented for a given bore
profile corresponding to a Smith-Watkins trumpet, with a Kelly
Screamer mouthpiece. The bore profile is shown in Figure 4.
Valves are located at67.3, 72 and75 cm along the bore from the
mouthpiece end, and the bypass tube lengths are 27 cm, 20 cm and
15 cm, respectively; the default tube lengths are all 2 cm.

4.1. Simulated Impedances

As a preliminary check of the validity of this method, a compari-
son between a measured input impedance curve for a trumpet, and
one computed using an FDTD method, running at 44.1 kHz, is
shown in Figure 4. The curves match well over most of the play-
ing range of the instrument, with some deviations apparent above
1 kHz—these are due to the particular simple choice of radiation
impedance made here, which underestimates loss at high frequen-
cies, and which could be easily rectified by using a higher order
rational approximation.
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Figure 4: Bore profile, top, for a trumpet, including the mouth-
piece, and input impedance magnitudes, bottom, from measure-
ment (black) and simulation (grey).

4.2. Half-valve Impedances

As an example of the behaviour of this numerical method, it isin-
teresting to examine simulated impedance curves, under different
half-valve configurations, as illustrated in Figure 5.

4.3. Valve Transitions

In its simplest use, the system described here should be capable of
effecting simple changes in pitch. See Figure 6 for a spectrogram
of sound output when a single valve is depressed in the model,
where the bore profile is that of a trumpet. In this case, the lip
parameters and blowing pressure are kept constant, but in a true
playing situation, however, one would expect that various param-
eters (and especially the blowing pressure and lip frequency) are
varied simultaneously. Depending on the precise trajectories of
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Figure 5: Input impedance magnitudes, for a trumpet, under par-
tially closed valve conditions. Successive plots show impedance
magnitudes at varying degrees of simultaneous closure of all three
valves (with 100% corresponding to a fully depressed state).

these control signals, one expects a wide variety of possible note
transitions, and also situations where the note transitiondoes not
occur, and there is rather a noise like timbre, warble, or multi-
phonic results—see Section 4.5.
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Figure 6:Spectrogram of sound output for a typical valve transi-
tion, for a trumpet bore, with a single valve (effecting a change in
pitch of a semitone).

Figure 7: Spectrogram of sound output under a constant linear
sweep of the lip frequency, for a trumpet, when all valves areun-
depressed (top), and half depressed (bottom).

4.4. Glissandi

From Figure 5, illustrating impedance curves under partially closed
valve conditions, one may note that when all valves are approxi-
mately half open, the resonances over the middle of the playing
range become more sparse, and are relatively wide. Under such
conditions, a player may more easily effect a glissando thanin
the case when valves are all in an either fully depressed or unde-
pressed state. See Figure 7, showing spectrograms illustrating a
typical gesture under both conditions.

4.5. Warbles and Multiphonics

The irregularity of the impedance curve for an instrument with
all valves partially depressed, leads to a wide variety of possible
behaviours.

See Figure 8, showing spectrograms of sound output, for a
trumpet with all valves half depressed, and for slightly different
lip frequencies. At 320 Hz, the instrument produces a pure tone,
at 350 Hz, a warble at a sub-audio rate, and at 400 Hz, a noise-like
timbre. As can also be observed, note onset times vary consider-
ably with frequency.

4.6. Sound Examples

Sound examples are available on the author’s website at

http://www2.ph.ed.ac.uk/~sbilbao/brasspage.htm

Figure 8: Spectrograms of sound output, for a trumpet, when all
valves are half depressed, under different lip frequencies. Top: 320
Hz, middle, 350 Hz and bottom, 400 Hz.

5. CONCLUSIONS AND FUTURE WORK

At the level of the model itself, numerous refinements are possi-
ble, which do not alter the basic computational structure described
here. Among these are a closer attention to the precise definition
of Webster’s equation (and an appropriate choice of spatialcoordi-
nate), as mentioned in Section 2.1, and an improved model of the
radiation impedance, as described in Section 2.3; such refinements
lead to relatively minor improvements, in terms of agreement be-
tween experiment and simulation (which is already quite good for
the model presented here), and may not lead to any disceribleben-
efits in synthesis.

The incorporation of nonlinear effects as described recently
in [8], on the other hand, is anticipated to be of major perceptual
significance, and requires a more involved treatment (perhaps re-
sorting to finite volume methods [25], and employing artificial vis-
cosity in order to prevent numerical oscillation near the formation
of a shock front); even in this case, however, the basic structure of
the scheme remains little changed.

As far as the scheme itself is concerned, though the lossless
scheme (12) performs very well indeed, the discrete-time approx-
imation to viscothermal losses is rather crude, and leads toa com-
putational bottleneck, both in terms of memory and the over-all op-
eration count. A better approach would perhaps be to use a rational
filter approximation; while not problematic in the linear case, such
IIR filters, when used to approximate viscothermal losses, will
generally exhibit large variations in the coefficient values them-
selves, and may be difficult to employ in conjunction with a fully
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nonlinear model of wave propagation.
Because the scheme is uniform over the entire length of the

bore (i.e., grid points are treated equally, and there is nota de-
composition into variable length components, or lumping ofloss
or dispersion effects), programming complexity is quite low for
such methods; indeed, in the Matlab code written by the author,
the update for the bore in the run time loop may be written in four
lines. It is also very well suited to parallelization in a multicore or
GPGPU environment.

One aspect of synthesis which has not been discussed here
in any detail is that of control. The determination of lip parame-
ters, such as frequency and mass, necessarily time varying,during
a playing gesture already presents a difficult experimentalchal-
lenge; when the extra layer of valve control is also present,the
challenges become formidable. Such difficulties are to be expected
in any complete physical modeling synthesis framework, andare,
in many ways, a measure of the maturity of physical modeling
synthesis—beyond building the instrument, one must also learn
how to play it. It is thus hoped that the synthesis algorithm pre-
sented here will also be useful in scientific studies of brassinstru-
ment playing, and such work is under way at the University of
Edinburgh.

6. ACKNOWLEDGMENTS

Thanks to Shona Logie, John Chick and Arnold Myers, at the Uni-
versity of Edinburgh, for providing measurements of bore profiles
and impedance curves for various brass instruments.

7. REFERENCES

[1] A. Chaigne and J. Kergomard,Acoustique des Instruments
de Musique, Belin, Paris, France, 2008.

[2] N. Fletcher and T. Rossing,The Physics of Musical Instru-
ments, Springer-Verlag, New York, New York, 1991.

[3] M. McIntyre, R. Schumacher, and J. Woodhouse, “On the
oscillations of musical instruments,”Journal of the Acousti-
cal Society of America, vol. 74, no. 5, pp. 1325–1345, 1983.

[4] J. O. Smith III, Physical Audio Signal Procesing, Stan-
ford, CA, 2004, Draft version. Available online at
http://ccrma.stanford.edu/˜jos/pasp04/ .

[5] R. Mignot and T. Hélie, “Acoustic modelling of a convex
pipe adapted for digital waveguide simulation,” inProceed-
ings of the 13th International Digital Audio Effects Confer-
ence, Graz, Austria, September 2010.

[6] J. Strikwerda, Finite Difference Schemes and Partial Dif-
ferential Equations, Wadsworth and Brooks/Cole Advanced
Books and Software, Pacific Grove, California, 1989.

[7] P. Morse and U. Ingard,Theoretical Acoustics, Princeton
University Press, Princeton, New Jersey, 1968.

[8] S. Bilbao, “Time domain modelling of brass instruments,” in
Proceedings of Forum Acusticum.

[9] L. Rabiner and R. Schafer,Digital Processing of Speech Sig-
nals, Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

[10] J. Kelly and C. Lochbaum, “Speech synthesis,” inPro-
ceedings of the Fourth International Congress on Acoustics,
Copenhagen, Denmark, 1962, pp. 1–4, Paper G42.

[11] D. Berners, Acoustics and Signal Processing Techniques
for Physical Modelling of Brass Instruments, Ph.D. thesis,
Department of Electrical Engineering, Stanford University,
1999.

[12] T. Hélie, “Unidimensional models of acoustic propagation in
axisymmetric waveguides,”Journal of the Acoustical Society
of America, vol. 114, no. 5, pp. 2633–2647, 2003.

[13] D. Keefe, “Physical modeling of wind instruments,”Com-
puter Music Journal, vol. 16, no. 4, pp. 57–73, 1992.

[14] S. Adachi and M. Sato, “Time-domain simulation of sound
production in the brass instrument,”Journal of the Acoustical
Society of America, vol. 97, no. 6, pp. 3850–3861, 1995.

[15] R. Caussé, J. Kergomard, and X. Lurton, “Input impedance
of brass musical instruments—comparison between experi-
ment and numerical models,”Journal of the Acoustical So-
ciety of America, vol. 75, no. 1, pp. 241–254, 1984.

[16] F. Silva, P. Guillemain, J. Kergomard, B. Mallaroni, and
A. Norris, “Approximation forms for the acoustic radiation
impedance of a cylindrical pipe,”Journal of Sound and Vi-
bration, vol. 322, pp. 255–263, 2009.

[17] D. Keefe, “Acoustical wave propagation in cylindricalducts:
Transmission line parameter approximations for isothermal
and nonisothermal boundary conditions,”Journal of the
Acoustical Society of America, vol. 75, no. 1, pp. 58–62,
1984.

[18] T. Hélie and D. Matignon, “Diffusive representations for the
analysis and simulation of flared acoustic pipes with visco-
thermal losses,”Mathematical Models and Methods in Ap-
plied Sciences, vol. 16, no. 4, pp. 503–536, 2006.

[19] D. Cheng, Field and Wave Electromagnetics, Addison-
Wesley, Reading, Massachusetts, second edition, 1989.

[20] A. Taflove, Computational Electrodynamics, Artech House,
Boston, Massachusetts, 1995.

[21] K. Yee, “Numerical solution of initial boundary value prob-
lems involving Maxwell’s equations in isotropic media,”
IEEE Transactions on Antennas and Propagation, vol. 14,
pp. 302–307, 1966.

[22] S. Bilbao, Numerical Sound Synthesis: Finite Difference
Schemes and Simulation in Musical Acoustics, John Wiley
and Sons, Chichester, UK, 2009.

[23] A. Fettweis, “Wave digital filters: Theory and practice,” Pro-
ceedings of the IEEE, vol. 74, no. 2, pp. 270–327, 1986.

[24] J. Abel, T. Smyth, and J. O. Smith III, “A simple, accu-
rate wall loss filter for acoustic tubes,” inProceedings of the
6th International Digital Audio Effects Conference, London,
UK, September 2003, pp. 254–258.

[25] R. Leveque, Finite Volume Methods for Hyperbolic Prob-
lems, Campbridge University Press, Cambridge, UK, 2002.

DAFX-7

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-343



Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-344



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

PHYSICAL MODEL OF THE STRING-FRET INTERACTION

Gianpaolo Evangelista
Digital Media,

Linköping University
Norrköping, Sweden

firstname.lastname@itn.liu.se

ABSTRACT

In this paper, a model for the interaction of the strings with the
frets in a guitar or other fretted string instruments is introduced.

In the two-polarization representation of the string oscillations
it is observed that the string interacts with the fret in different ways.
While the vertical oscillation is governed by perfect or imperfect
clamping of the string on the fret, the horizontal oscillation is sub-
ject to friction of the string over the surface of the fret.

The proposed model allows, in particular, for the accurate eval-
uation of the elongation of the string in the two modes, which gives
rise to audible dynamic detuning. The realization of this model
into a structurally passive system for use in digital waveguide syn-
thesis is detailed.

By changing the friction parameters, the model can be em-
ployed in fretless instruments too, where the string directly inter-
acts with the neck surface.

1. INTRODUCTION

Accurate physically inspired synthesis of musical instrument re-
quire realistic models of all the parts of the instrument that sig-
nificantly contribute to the production of the characteristic timber
and its evolution, together with sufficiently general models of the
interaction of the player with the instrument [1].

This work is a piece of a broader project whose aim is to
closely emulate the playing of a guitar, with extension to other
instruments in the family of plucked strings. In previous papers,
the author, together with other researchers, introduced models for
the plucking of the string, both with finger and plectrum, for the
collisions of the string with the neck and other objects and for the
synthesis of harmonic or flageolet tones [2, 3, 4, 5, 6, 7]. The mod-
els were introduced for immediate application in digital waveguide
synthesis of the guitar, but they are also usable in other type of syn-
thesis techniques such as finite difference time domain (FDTD).

In this paper, the issue of modeling the fret-string interaction
is considered, which influences the sound produced by the synthe-
sis algorithm. Disregarding longitudinal modes, a guitar string is
represented by coupled wave equations, each pertaining to a po-
larization mode, i.e. to one of the orthogonal axes in the planes
transversal to the string. In a fretted instrument, when a player’s
finger pushes the string against the frets in order to produce the
desired tone, perfect or near perfect clamping only occurs in the
direction normal to the fret surface.

In the horizontal direction, i.e. in the direction parallel to fret
and tangent to this – in many electric guitars the fret is curved –
the string is free to move but subject to friction on the fret surface.
As a result, not only the two polarization modes show different

x

z y

Figure 1: Coordinate system aligned with the string rest position.

decay times but also their fundamental frequencies differ and vary
with time, due to the unequal elongation of the string. In fretless
instruments the dynamic is similar but the string is pushed directly
against the neck. As a result, clamping is less perfect in the vertical
direction and the string is still free to move but subject to friction
on the neck surface in the horizontal direction. Furthermore, the
direct contact with the finger of the player introduces a consid-
erable amount of damping and collisions with the neck are more
likely due to smaller string to neck distance.

A new model for the fret-string interaction is presented in this
paper, which is based on recent advances in modeling friction with
dynamic systems [8, 9]. From the equations governing the string
motion in the contact area with fret or neck we derive a structurally
passive junction to be included as a fret-string interaction module
in a pair of double rail digital waveguides, one for each polariza-
tion mode.

2. FRETBOARD FINGERING

In this paper we choose the coordinate system shown in Figure 1
where the x axis is directed from nut to bridge along the string
rest position. The y axis representing the horizontal direction is
parallel to the frets, while the z axis is orthogonal to the other two
axes and represents the vertical direction. In order to fix our ideas,
we assume that the instrument is designed for a right-hand player,
where strings are plucked with the right hand and the player pushes
fingers of the left hand on the strings against the fretboard.

In conventional fretted instrument, frets are spaced on the fin-
gerboard in order to achieve equally tempered tuning. This is
achieved by placing the active (topmost) edge of the fret at co-
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to nut to bridge

x

z

Figure 2: Side view of the vertical shape of the string when pressed
against frets by a player’s finger.

ordinates
xn = Ls

(
1 − 2−n/12

)
, (1)

where Ls is the length of the string and n the fret number counted
from nut to bridge [10].

Since the bridge is taller than the nut, the neck of the instru-
ment, which supports the fretboard, appears as slightly tilted with
respect to the string rest position. As a result, when the player
pushes the string against the fretboard, the string rests on two frets
(or one fret and the nut for the lowest fingered tone n = 1), as
shown in Figure 2. The leading fret is the one closest to the bridge
(rightmost) and is responsible for tuning by reducing the length of
the active portion of the string (from fret to bridge). The trailing
fret (leftmost) further blocks residual vibrations from reaching the
inactive portion of the string. Occasional collisions with other frets
may also occur if the string is vigorously plucked in the vertical di-
rection.

Fingering on the fretboard produces a deflection of the string
that slightly modifies the string length. Characteristics influencing
the intonation of fretted guitar tones are described in [11]. The
player does not need to push the finger all the way against the fin-
gerboard: in order to produce proper tones it suffices that the string
rests quite firmly on the leading fret. This is generally achieved
by placing the finger as close as possible to the leading fret. The
frequency of the tone slightly depends on how much the string is
pushed towards the fingerboard.

With respect to the vertical polarization mode, the string ap-
pears as clamped to the fret. In the horizontal direction, however,
the string is quite free to slip over the fret, as shown in Figure 3.
The motion is subject to friction force in the direction opposite to
velocity and to the restoring tensile forces of the string along the y
direction. The horizontal oscillations of the string are further cou-
pled to the finger behind the leading fret, which essentially acts as
an elasto-plastic spring damper. Residue oscillations further travel
toward the trailing fret, subject to further friction, and toward the
nut and back. However, the amplitude of oscillation in this trailing
path is negligible due to the damping and clamping introduced by
the finger pressing the string towards the neck.

3. FRICTION MODEL

In order to simulate the stick-slip motion of the string over the fret
in the horizontal polarization mode, a suitable model for the fric-
tion is necessary. A sufficiently general scheme is derived from
[8, 12], where the effect of friction is modeled as a dynamic sys-
tem, know as the Lu-Gre model, which generalizes the Coulomb
model of friction. In this model, the surfaces are thought of as
being randomly coated by elastic bristles, which deflect as two
contacting surfaces are set in relative motion.

An extension [12] of the bristle based model has been previ-
ously used in sound synthesis to capture the dynamics of the vio-

!"

#

$
%

Figure 3: Top view of the guitar fretboard showing string-fret fric-
tion force in the horizontal polarization mode of the string.

lin bow [13] or to model general friction interactions among rigid
bodies [14] with modal synthesis. Here we apply a similar model
to the string-fret interaction and provide a realization for use in
digital waveguide simulation of the string.

Although remarkable generalizations of the frictionmodel have
been introduced [9], which allow us to capture subtle phenomena
such as friction hysteresis, our aim is to obtain a simple system
capturing the main characteristics of the string-fret interaction at
reasonable computational costs. Unlike in friction driven sound,
the friction noise in the fret-string interaction is not a main audible
feature but friction does contribute to the dynamics of the string,
which is audible through modulation of the elongation and slow-
down of the string. Its inclusion contributes to a more naturally
sounding model.

3.1. Bristle-Based Friction Models

Following [12], the average deflection ξ of elasto-plastic bristles
can be modeled by the following first order differential equation:

dξ

dt
= vrel

(
1 − α(vrel, ξ)

ξ

ξss(vrel)

)
(2)

where vrel denotes the relative velocity of the contacting surfaces
(the string and the fret in our case). The function α(v, ξ) al-
lows us to capture the elasto-plastic behavior of the bristles for
large displacement. In a simplified model (Lu-Gre) one can let
α(vrel, ξ) = 1.

The function ξss(v) provides the limit value for the deflection
in steady state where the relative velocity v, instanciated by vrel

in (2), and the average bristle deflection are constant.
The friction force ff can be written in terms of bristle dis-

placement and relative velocity as follows:

ff (ξ, ξ̇, vrel) = σ0ξ + σ1
dξ

dt
+ σ2vrel (3)

where σ0 represents the stiffness of the bristles’ spring, σ1 is a
damping coefficient and σ2 is the viscous friction coefficient and
ξ̇ = dξ

dt
.

In the Lu-Gre parametrization one provides ξss(v) as follows:

ξss(v) =
sign(v)

σ0

(
fc + (fs − fc) e−(v/vs)2

)
(4)

where fc is the magnitude of Coulomb friction force, fs is the
magnitude of the static friction (stiction) force and vs is the Stribeck
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Figure 4: Typical steady state friction force versus velocity.

velocity, which controls the characteristics of the Stribeck effect
where friction continuously decreases as relative velocity increases
in the low velocity regime. A typical plot of the steady state fric-
tion force versus velocity is shown in Figure 4.

The bristle model is sufficiently general to capture most of
the phenomena associated to friction. In particular, due to the
dependency of the force on the relative velocity of the contact
surfaces, the model is able to produce stick-slip motion, continu-
ously switching from static to kinetic friction according to velocity
regimes.

4. DIGITAL WAVEGUIDE SIMULATION OF
FRET-STRING INTERACTION

In this section we consider the friction model reviewed in Section
3.1 to simulate the behavior of the string pressed against the fret
in the vertical z direction but free to move in the horizontal y di-
rection. We will first derive the continuous time system describing
the string-fret interaction and then provide a discrete version of
the model based on bilinear transform. Furthermore, we provide a
scheme to compute the solution of the nonlinear difference equa-
tion describing the string-fret node, which is based on the so-called
K-method [15].

4.1. Continuous Time String-Fret Node

Let us denote by uy(x, t) and uz(x, t), respectively, the value of
the string displacement at time t and position x along the string for
the y and z polarization modes.

Disregarding nonlinear [16] and dispersive effects [17, 18], the
wave equation holds for segments of the string not in contact with
other objects such as the plectrum or the player’s finger and the
fret. Assume that the only object in contact with the string is the
fret, touching the string on a segment of width ∆ and centered at
coordinate xf , then for a string of length Ls we have

c2 ∂2u

∂x2
=

∂2u

∂t2
; x ∈

]
0, xf − ∆

2

[
∪

]
xf + ∆

2
, Ls

[
, (5)

where u(x, t) denotes any of the two polarization displacement
uy(x, t) or uz(x, t), while c =

√
K0/µ is the propagation veloc-

ity,K0 is the tension of the string, and µ is the linear mass density,

!"# !
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Figure 5: String segment subject to tensile forces f− and f+ and
friction ff against the fret. For the y polarization, the tensile
forces are projected along the y direction, obtaining f−

y and f+
y .

The resultant f = f−
y + f+

y of the projected tensile forces is con-
sidered as acting at the point xf .

and they are all assumed to be constant. Here we have disregarded
all propagation losses along the string, as these can be consolidated
at one of the extremities and embedded in the bridge model [19].

The solution of (5) can be written in D’Alembert form as a
superposition of a left-going u− and a right-going u+ wave:

u(x, t) = u−(x, t)+u+(x, t) = ul(t+x/c)+ur(t−x/c), (6)

where ul(x/c) = ur(x/c) = u(x, 0)/2 for a static initial dis-
placement condition.

For the vertical polarization mode uz the portion of the string
in contact with the fret can be largely assumed to be clamped
in normal playing conditions. In this case the left-going wave
u−

z is perfectly reflected at the fret back towards the bridge, i.e.,
u+

z (xf , t) ≈ −u−
z (xf , t). As already remarked, the same is not

true for the horizontal polarization mode uy . On the string-fret
contact segment, which we will also refer to as the fret zone shown
in Figure 5, the equilibrium equation of the string with the bristle
based dynamic system modeling friction (2) is enforced:

µ∆
∂2uy

∂t2
= f(t) − ff (ξ, ξ̇, vy)

x ∈
]
xf − ∆

2
, xf + ∆

2

[
,

(7)

where the force f(t) is the resultant of the transversal component
of the tensile force of the string acting at the extreme points of the
contact segment and ff (ξ, ξ̇, vy) is the friction force (3). The ve-
locity vy is the relative velocity of the string over the fret, which
coincides with string displacement velocity in the y-polarization
mode. It is therefore convenient to rewrite (7) all in terms of
vy(x, t) =

∂uy

∂t
:

µ∆
∂vy

∂t
= f(t) − ff (ξ, ξ̇, vy)

x ∈
]
xf − ∆

2
, xf + ∆

2

[
.

(8)

At small string displacements, for the tensile force we have:

f(t) = K0

(
∂uy

∂x

∣∣∣∣
x=xf+

∆
2

− ∂uy

∂x

∣∣∣∣
x=xf − ∆

2

)
. (9)
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Figure 6: Block diagram representing the friction node for the sim-
ulation of string-fret interaction.

Since from (6) we have

∂u

∂x
=

1

c

(
v−(x, t) − v+(x, t)

)
(10)

where
v−(x, t) = ∂u−

∂t

v+(x, t) = ∂u+

∂t

(11)

then (9) can be rewritten as follows:

f(t) =
K0

c

(
vin

y (t) − vout
y (t)

)
, (12)

where we have defined vin
y as the velocity wave entering the fret

zone and vout
y as the velocity wave leaving the fret zone, i.e,

vin
y (t) = v−

y (xf + ∆
2

, t) + v+
y (xf − ∆

2
, t)

vout
y (t) = v+

y (xf + ∆
2

, t) + v−
y (xf − ∆

2
, t).

(13)

Assimilating vy(xf , t) to vout
y (t), i.e., shrinking the system (8) to

a point, while retaining the finite mass µ∆, we obtain the string-
fret node equation:

µ∆
dvout

y

dt
=

K0

c

(
vin

y (t) − vout
y (t)

)
−σ0ξ−σ1

dξ

dt
−σ2v

out
y (t),

(14)
where we have substituted (3) and (12) in (7) after establishing that
vrel = vout

y . A block diagram of the string-fret interaction node is
shown in Figure 6.

The bristle displacement function ξ in (14) must satisfy equa-
tion (2). Defining a state vector

x =

[
vout

y

ξ

]
, (15)

equations (14) and (2) can be put in the form of a nonlinear state
space system:

{
ẋ = Ax + bvin

y + eφ
φ = ρ(x)

, (16)

where

A =
−1

µ∆

[
σ2 + K0

c
σ0

0 0

]

b =
K0

cµ∆

[
1
0

]

e =

[ − σ1
µ∆

1

]
(17)

and

ρ

([
vout

y

ξ

])
= vout

y

(
1 − α(vout

y , ξ)
ξ

ξss(vout
y )

)
(18)

is a scalar function of the state vector.
In the form (16) the system describing the string-fret node is

ready for suitable discretization required in digital simulations of
strings.

4.2. Discrete Time Computation of the String-Fret Node

In this section we carry out the discretization of the system (16)
using the bilinear transformation. This method has the advantage
of preserving passivity of the system, which prevents the introduc-
tion of instability due to numerical approximation of the deriva-
tives. We will also show how to handle the delay-free loops in the
computation.

The system in (16) is characterized by first order derivatives.
In Laplace transform a differentiator is equivalent to multiplication
by the Laplace variable s. By bilinear transformation, s is replaced
by 2(1−z−1)/T (1+z−1), where T is the sampling time interval.
Accordingly, a first order differential equation of the type

η̇(t) = f (η(t), t) (19)

is led by bilinear transformation to the recurrence

η(n) = η(n − 1) +
T

2
[f (η(n), n) + f (η(n − 1), n − 1)] ,

(20)
where we dropped the factor T in the arguments of the functions.

Using this rule, it is easy to discretize the system (16). The
discrete version of equation for the first state component expresses
the current value of the output velocity vout

y (n) in terms of past
values of vout

y , present and past values of the input velocity vin
y ,

present and past values of φ and present and past values of bristle
deflection ξ. The discrete version of the equation for the second
component of the state becomes the recurrence:

ξ(n) = ξ(n − 1) +
T

2
(φ(n) + φ(n − 1)). (21)

This recurrence can be substituted in the first state component re-
currence in order to remove the dependency from the present value
of ξ, obtaining

vout
y (n) = c1v

out
y (n − 1) + c2ξ (n − 1)

+c3

[
vin

y (n) + vin
y (n − 1)

]
+ c4 [φ(n) + φ(n − 1)]

(22)
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where
c1 =

2 µ ∆c − Tcσ2 − TK0

2 µ ∆c + Tcσ2 + TK0

c2 = − 2Tcσ0

2 µ ∆c + Tcσ2 + TK0

c3 =
TK0

2 µ ∆c + Tcσ2 + TK0

c4 = − Tc
(
σ1 + T

2
σ0

)

2 µ ∆c + Tcσ2 + TK0
.

(23)

We are then left with a recurrence for vout
y that depends on known

values, except for that of φ(n). Yet, the equation for φ requires the
value of vout

y (n) in order to be computed, which is a delay-free
loop of the system. This delay-free loop must be properly handled
in order to be able to find the solution, as described next.

Substituting the recurrence for vout
y (n) and that for ξ(n) in the

vector argument of the function ρ in (16), one obtains an equation
of the type

φ(n) = g(φ(n), n), (24)
where g is a known function, which is built from ρ by isolating
the dependency on φ and reducing all other dependencies to an
explicit dependency on time index n. This equation can be solved
by finding, at any sample index n, a local zero of the function

ζ − g(ζ, n), (25)

which can be achieved by means of Newton-Raphson root finding
method. Look-up tables for the roots can be precalculated in order
to ease real-time computation [15]. The root ζ of (25) is assigned
to φ(n) and all other quantities are known in order to compute
vout

y (n) and ξ(n), which describes how to handle the delay-free
loop in the computation.

4.3. Fret Junction in Digital Waveguides

The discrete time realization of the fret-string interaction block il-
lustrated in the previous section is directly usable as a block in
digital waveguides for the synthesis of strings based on velocity
waves. The block is only included in the waveguide simulating
the horizontal y-polarization mode. The input velocity vin

y is ob-
tained by summing the input velocities v+

in and v−
in from the two

rails of the waveguide. The output velocity vout
y obtained from

the fret-string system is equally fed to the two rails of the waveg-
uide. In order to force the output velocity at the fret contact point,
a scattering junction of the type

[
v−

out

v+
out

]
= Sc

[
v−

in

v+
in

]
+

vout
y

2

[
1
1

]
(26)

where
Sc =

1

2

[
+1 −1
−1 +1

]
(27)

is included, similar to what described in [6] in order to force after-
collision displacement.

As this paper is part of a larger project for the accurate simu-
lation of the guitar, and as in our system displacement waves are
preferred for their ease of use in the detection of string-neck or
string-fret collisions, differentiator and integrator blocks have to
be introduced in order to obtain the input velocity. These blocks
can be realized, respectively, by directly taking the first order dif-
ference of the incoming signal and by a discrete time leaky inte-
grator.

u(n,m)

mf

z−1

z−1

nu
t

z−1 z−1

z−1

z−1

z−1z−1

fret
junction

z−1
u+(m,n)
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parameters
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u+ (n)in u+   (n)out

Figure 7: Inclusion of a fret junction in a digital waveguides for
string displacement waves (horizontal polarization).

A valid alternative is to use a differentiator and an integrator
derived by applying the bilinear transformation to the analog dif-
ferentiator and integrator, similar to what described in Section 4.2.
The bilinear differentiator is given by the following recurrence:

v(n) = −v(n − 1) +
2

T
(u(n) − u(n − 1)) (28)

while the bilinear integrator is

u(n) = u(n − 1) +
T

2
(u(n) + u(n − 1)) (29)

as in (20). Bilinear integrator and differentiator also have the ad-
vantage of being inverse of each other.

The insertion of the fret junction in a displacement wave based
digital waveguide is shown in Figure 7.

The parameters of the underlying friction model are the mag-
nitudes fc of the Coulomb and fs of the stiction force, the Stribeck
velocity vs, together with bristles’ stiffness σ0, damping σ1 and
viscous friction coefficient σ2. Also, the elasto-plastic map func-
tion α(vrel, ξ) needs to be specified. In first approximation we
disregarded elasto-plastic phenomena and enforced a simplified
Lu-Gre model setting α(vrel, ξ) = 1.

The string-fret friction parameters can and should be measured
accurately from the string-fret friction characteristics. String-fret
friction measurement will be the object of further studies. A spe-
cial laboratory set up is required in which a free piece of guitar
string is pulled, at several constant velocities, over a single fret.
The friction force is measured by means of a miniature accelerom-
eter.

In our preliminary experiments we used reference values for
these parameters as follows. For the σ parameters we let σ0 = 105

N/m, σ1 = 300 Ns/m and σ2 = 10−3 Ns/m. For the stiction
force we used a 50% increment of the Coulomb force level, i.e.,
fs = 1.5 × fc, where forces are measured in Newtons N .

The Coulomb force can be estimated as the the friction co-
efficient for metal, about 0.5, times the normal force at the fret.
However, we found that the value of the friction coefficient for
metals is too high for the simulation of the string. This is due to
the fact that both string and fret are rounded and smooth surfaces,
more resembling ball bearing than flat surfaces in contact. Indeed
the string is also allowed to roll over the fret to some extent, gen-
erating torsional effects on the string. Large friction coefficients
tend to stop the string and / or introduce noise that is not typical of
this type of interaction.

The normal force at the fret can be estimated from the vertical
component of the tensile force due to the bending of the string at
the fret, given by the force F1,z as shown in Figure 8. This force
is essentially given by the slope of the string at the fret times the
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Figure 8: Components of the tensile force due to the bending of the
string by the player’s finger near the fret.

string tension K0. It consists of two components: a static compo-
nent due to the bending of the string by the finger and a dynamic
one due to string motion in the vertical z polarization. The dy-
namic component introduces non-linear coupling of the z and y
polarizations. However, in usual playing modes, all dynamic vari-
ations can be disregarded as they only provide a very minor varia-
tion of the normal force due to the largely bent string at the fret.

Finally, for the Stribeck velocity we used a reference value of
vs = 10−3 m/s.

The fret junction must be completed by a model of the player’s
finger placed next to the fret. An accurate model can be derived
from the damped spring-mass system presented in [7] for the finger
plucking where, in the case of the finger over the fret, the coordi-
nates of the fingers are static. However, the effect of the finger
behind the fret has no dramatical influence on the sound. Thus, a
simpler reflector with damping can be suitably employed in normal
playing conditions. A further completion of the model requires the
inclusion of a second fret junction corresponding to the trailing fret
on which the string is resting. However, this is quite unnecessary
provided that one suitably blocks the oscillations on the right por-
tion of the string to propagate to the left portion of the string with
respect to the fret.

The dynamic model of friction contributes to provide an ac-
curate simulation of the deflection of the string over the fret in
the horizontal polarization. The string simulation is completed by
a tension modulation module that allows us to obtain the pitch-
bending characteristic of plucked guitar tones, which is otherwise
absent in the wave equation as one assumes there that the tension is
constant. Alternate implementations of tension modulation meth-
ods can be found in [20, 21].

5. CONCLUSIONS

In this paper we have considered the sliding of the string over the
fret as a phenomenon to be modeled for the accurate synthesis of
fretted string instruments. We provided a discrete model derived
from bristle based models of friction. The continuous time model
is described by a nonlinear state-space system, which is discretized
by means of the bilinear transformation. The computation requires
the solution of a nonlinear equation, which can be achieved by
Newton-Raphson root finding method.

The acoustical results are very realistic and require very mod-
erate amount of friction, as controlled by the friction coefficient in
the Coulomb force, which is a parameter of the model. High fric-
tion coefficients tend otherwise to stop the string too early in the
vertical polarization and introduce unnatural noise.

Sound examples can be found at http://staffwww.itn.
liu.se/~giaev/soundexamples.html.
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ABSTRACT

Data hiding consists in hiding/embedding binary information
within a signal in an imperceptible way. In this study we pro-
pose a high-rate data hiding technique suitable for uncompressed
audio signals (PCM as used in Audio-CD and .wav format). This
technique is appropriate for non-securitary applications, such as
enriched-content applications, that require a large bitrate but no
particular robustness to attacks. The proposed system is based on a
quantization technique, the Quantization Index Modulation (QIM)
applied on the Integer Modified Discrete Cosine Transform (Int-
MDCT) coefficients of the signal and guided by a PsychoAcoustic
Model (PAM). This technique enables embedding bitrates up to
300 kbps (per channel), outperforming a previous version based
on regular MDCT.

1. INTRODUCTION

Data hiding consists in imperceptibly embedding information in a
media. Theoretical foundations can be found in [1], and the first
papers and applications dedicated to audio signals were developed
in the 90’s (e.g. [2, 3]). The main use (and probably original use)
of data hiding for audio signals is the Digital Rights Management
(DRM): the embedded data are usually copyrights or information
about the author or the owner of the media content (in this case
data hiding is referred to as watermarking). For such applications,
the size of the embedded data is usually small, and a crucial issue
is the robustness of the watermark to malicious attacks. There-
fore, researches have long focused on enhancing the security and
robustness of the data hiding techniques, at the price of limited
embedding bitrate.

Data hiding is now used for non-securitary applications as well
(e.g. [4]). In this paper we focus on “enriched-content” applica-
tions where data hiding is used to transmit side-information to the
user, in order to provide additional interaction with the media. In
this context, the specifications of data hiding are different from se-
curity applications (and somewhat opposed): here, a high embed-
ding bitrate is generally required to provide substantial interactive
features. Therefore, the technical issue is usually to maximize the
embedding bitrate under the double constraint of imperceptibility
and robustness. However, in contrast to security applications, ro-
bustness is here of a lesser importance because the user has no
reason to impair the embedded data.

In this paper, we focus on high-rate data hiding for uncom-
pressed audio signals (e.g. 44.1kHz 16-bit PCM samples, such as
audio-CD, .wav, .aiff, .flac formats), with potential application to

∗ This work was supported by the French National Research Agency
(ANR) in the context of the DReaM project (ANR 09 CORD 006).

enriched-content musical processing. For example, the so-called
Informed Source Separation techniques developed in [5, 6] use
embedded data to ease the separation of the different musical in-
struments and voices that form a music signal. In the present study,
the embedding constraints are inaudibility and compliance with
uncompressed format (16-bit time-domain PCM).

The system presented here is an improved version of the sys-
tem previously presented in [7]. As in [7], it is a quantization-
based embedding scheme, the quantization technique being the
Quantization Index Modulation (QIM) applied on the Time-
Frequency (TF) coefficients of the signal, and the computation of
the embedding capacities is guided by a PsychoAcoustic Model
(PAM) to ensure inaudibility. However, the TF transform used
in the present study is the IntMDCT (Integer Modified Discrete
Cosine Transform, [8]), which is an integer approximation of the
MDCT [9] used in our previous study [7]. The interest of this
transform is to provide directly the embedded signal in the PCM
format. For the same reason, it was used in [10]. However, in
[10] the PAM and the capacities have to be recomputed at the de-
coder using the lead bits principle. In the present study we keep
the two-step embedding process of [7] that avoids such recompu-
tation. Altogether, the combination of such two-step embedding
process with the IntMDCT yields a significant gain for the embed-
ding bitrate.

The paper is organized as follows: Section 2 is a general
overview of the system while Section 3 presents in more details
the core blocks of the system. Section 4 shows experiments and
results, and finally conclusions and perspectives are discussed in
Section 5.

2. GENERAL OVERVIEW OF THE SYSTEM

In this section we present the main principles of the data hiding
system. The functional blocks will be detailed in the next section.
The system consists of two main blocks (see Fig. 1): an embedder
used to embed the data into the host signal x, and a decoder used
to recover the data from the embedded host signal xw; the decoder
is “blind” in the sense that the original signal is assumed to be
unknown from the decoding part.

2.1. Embedding

The embedding is performed in the Time-Frequency (TF) domain.
Therefore–at the embedder–the time-domain input signal x is first
transformed in the time-frequency (TF) plan (Block ¬). Instead of
using the MDCT (as in [7]), the transform used here is its integer
approximation, the IntMDCT [8]. The embedding process con-
sists in quantizing the IntMDCT coefficients X(t, f) (Block ¯
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Figure 1: Block diagram of the system. Left of the dashed line is the embedder, right is the decoder. LF (resp. HF) stands for low frequency
(resp. high frequency) and .w denotes vector carrying embedded data.

and °) using specific sets of quantizers SC(t,f), following the
QIM technique described in [11] (see Section 3.2). Once the Int-
MDCT coefficients are embedded, the signal is transformed back
in the time-domain using the integer inverse MDCT (IntIMDCT,
Block ±). The resulting embedded signal has integer values. Thus
there is no need to perform the time-domain 16-bit PCM quantiza-
tion and take into account the effects of the resulting noise on the
embedding performance, as opposed to what was done in [7] (see
Section 3.1).

For each frame t and for each frequency bin f , the PAM
(Block ) provides a masking threshold M(t, f) used to compute
the embedding capacity C(t, f) (Block ®), i.e. the maximum size
of the binary code to be embedded in that TF bin under inaudibil-
ity constraint. The embedding capacity C(t, f) determines at the
same time how much information is embedded (at TF bin (t, f))
and how it is embedded and retrieved. Consequently, the set of ca-
pacity values C(t, f) must be known at the decoder and they have
either to be estimated from the transmitted signal at the decoder
(as in [10]), or to be transmitted within the host signal x as a part
of the embedded data themselves (as in [7]). We keep the line of
[7] and propose the following process:

• At the embedder, after IntMDCT transform, the IntMDCT
coefficients are separated into a “low-frequency” part (de-
noted LF on Fig. 1 and thereafter, accounting for 15/16 of
the spectrum) and a “high-frequency” part (denoted HF , ac-
counting for 1/16 of the spectrum, see Section 3.4).

• Low frequencies are used to embed the “useful” side-
informationm that is to be transmitted within the host audio
signal x. For this aim, the capacities CLF (t, f) are maxi-
mized under inaudibility. This is the core of the proposed
method that will be described into details in Section 3.4.

• Then, high frequencies are used to embed the values of the
resulting capacities CLF (t, f) which totally configure the
data hiding process in the low-frequency region. To do this,
the values of CHF (t, f) must be known at both the embed-
der and the decoder. Hence they are set to fixed values (i.e.
independent of frame index and signal content), exploiting
the fact that in the highest frequency region the human hear-
ing system is quite inefficient. Because the high-frequency
capacities do not depend on t, they are denoted CHF (f).

2.2. Decoding

The decoding process somehow consists of the reverse operations:
the embedded signal xw is first transformed in the TF domain
(Block ²) and the resulting IntMDCT coefficients are separated

into high and low frequencies subvectors, similarly to the embed-
der. As the capacities CHF (f) are known to the decoder, the in-
formation embedded in the high-frequency region is first extracted
(Block ³), resulting in decoded CLF (t, f) values. This latter in-
formation is then used to decode the “useful” information m em-
bedded in the low-frequency region (Block ´).

Note that if the synchronization is not treated in this paper, at
least several basic schemes are usable, like for example checksums
as used in [10].

3. DETAILED PRESENTATION

3.1. Time-frequency transform

The choice of the MDCT in [7] was mainly guided by the fact that
it is a TDAC (Time Domain Aliasing Cancellation) transform. It
also has the perfect reconstruction property, it is critically sampled
and its coefficients are real, which enables an easy use of quan-
tization techniques. In the present study, we use the integer ap-
proximation of the MDCT, the IntMDCT, in order to get rid of the
noise introduced on the MDCT coefficients by the time-domain
16-bit PCM quantization [7]. We use a frame length of 2048 to
have a sufficient frequency resolution while fitting music signals
dynamic.

The principle of the integer approximation is to decompose the
MDCT matrix in a product of matrices that are either permutation
matrices or block diagonal 2 × 2 Givens Rotations matrices. The
permutation matrices and their inverses maps directly from integer
to integer and the 2 × 2 Givens Rotations can be approximated
using the Lifting Scheme (see for example [8] for a detailed expla-
nation).

3.2. Embedding technique

The Quantization Index Modulation (QIM) is a quantization-based
embedding technique introduced in [11]. The scalar version of the
technique is used here1, which means that each IntMDCT coeffi-
cient X(t, f) is embedded independently from the others.

The embedding principle is the following. If X(t, f) is the
IntMDCT coefficient at TF bin (t, f) that has to be embedded
with C(t, f) bits, then a unique set SC(t,f) of 2C(t,f) quantizers
{Qc}0≤c≤2C(t,f)−1 is defined with a fixed arbitrary rule. This im-
plies that for a given value C(t, f) the set generated at the decoder
is the same as the one generated at the embedder. The quantization
levels of the different quantizers are intertwined (see Fig. 2) and

1Note that in this particular case the technique is similar to the improved
LSB embedding scheme.
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Figure 2: Example of QIM using a set SC(t,f) of quantizers for
C(t, f) = 2 with their respective gray code index and resulting
global grid. The binary code 01 is embedded into the IntMDCT
coefficient X(t, f) by quantizing it to Xw(t, f) using the quan-
tizer indexed by 01.

each quantizer is indexed by a C(t, f)-bit codeword c. Because
the quantizers are regularly intertwined and because the IntMDCT
coefficients are integer-valued, the quantization step of each quan-
tizer is given by:

∆(t, f) = 2C(t,f). (1)

Embedding the codeword c into the IntMDCT coefficient X(t, f)
is simply done by quantizing X(t, f) with the quantizer Qc in-
dexed by c (see Fig. 2 for an example). In other words, the
IntMDCT coefficient X(t, f) is replaced with its closest code-
indexed quantized value Xw(t, f):

Xw(t, f) = Qc (X(t, f)) . (2)

At the decoder, the set of quantizers SC(t,f) is generated (and is the
same as the one generated at the embedder) using the C(t, f) de-
coded values in low-frequency and fixed values in high-frequency.
Then, the quantizer Qc with a level corresponding to the received
embedded coefficient Xw(t, f) is selected, and the decoded mes-
sage is the index c of the selected quantizer. As the IntIMDCT di-
rectly yields a PCM signal (due to the integer-to-integer mapping
of the IntMDCT and IntIMDCT), there is no noise introduced by
the conversion (in contrast to [7] when using the MDCT).

Obviously if one wants to transmit a large binary message, this
message has to be previously split and spread across the different
IntMDCT coefficients according to the local capacity values, so
that each coefficient carries a small part of the complete message.
Conversely, the decoded elementary messages have to be concate-
nated to recover the complete message.

3.3. Psychoacoustic model

The PAM used in our system (Block ) is directly inspired from
the PAM of the MPEG-AAC standard [12]. The output of the PAM
is a masking threshold M(t, f), which represents the maximum
power of the quantization error that can be introduced while ensur-
ing inaudibility. The calculations are made in the time-frequency
domain, however the transform used for the PAM computations is
not the IntMDCT but the FFT. The main computations consist in

a convolution of the FFT power spectrum of the host signal with
a spreading function that models elementary frequency masking
phenomenons, to obtain a first masking curve. This curve is then
adjusted according to the tonality of the signal, and the absolute
threshold of hearing is integrated. After that, some pre-echo con-
trol is applied, resulting in the FFT masking threshold. The pre-
echo control implemented is quite simple and only consists in tak-
ing the minimum of the computed masking threshold and the pre-
vious frame masking threshold multiplied by a constant K > 1.
Taking a value close to 1 will yield a good pre-echo control but
will limit the PAM efficiency (in term of embedding rate), while
taking too big a value will lead to a poor pre-echo control (in this
study K = 2). From the FFT spectrum and FFT masking thresh-
old a signal-to-mask ratio (SMR) is computed (for each frequency
bin f ), and this SMR is then used to obtain the IntMDCT mask-
ing threshold M(t, f) (by simply computing the ratio between the
IntMDCT power spectrum coefficients and the SMR coefficients).
This masking threshold M(t, f) is then used to shape the embed-
ding noise (under this curve), so that it remains inaudible. The
masking threshold can also be translated by a factor of α dB so
that the total payload matches exactly the size of the signal to be
embedded m.

3.4. Capacities computation

The computation of the capacities C(t, f) is the core of the pro-
posed method. As the compliance to the PCM format is already
ensured by the use of the IntMDCT, the problem is to optimize
the embedding bitrate under inaudibility constraint. In the present
study, this constraint is that the power of the embedding error in
the worst case remains under the masking threshold M(t, f) pro-
vided by the PAM. As the embedding is performed by uniform
quantization, the embedding error in the worst case is equal to half
the quantization step ∆(t, f), which is directly related to C(t, f)
through (1). The inaudibility constraint in a given TF bin can thus
be written as:

(
∆(t, f)

2

)2

< M(t, f). (3)

For the low-frequency region of a given frame t, we simply com-
bine (1) and (3) to obtain:

CLF (t, f) <
1

2
log2 (M(t, f)) + 1. (4)

Since the capacity per coefficient is an integer number of bits, and
we want to maximize this capacity, we choose:

CLF (t, f) =

⌊
1

2
log2 (M(t, f)) + 1

⌋
. (5)

where b.c denotes the floor (rounding down) function. Experimen-
tally, the resulting values are always lower than 15. Thus we can
code those values with 4-bit codewords (from 0 to 15). However,
embedding the high-frequency region with as many 4-bit code-
words as there are frequency bins in the low-frequency zone is not
achievable. For this reason, embedding subbands are defined as
groups of adjacent frequency bins where the capacities C(t, f) are
fixed to the same value. The capacity value within each subband is
given by applying (5) using the minimum value of the mask within
the subband. In order to respect the inaudibility constraint in the
high-frequency region, the capacities CHF (f) are fixed to 1 or 2
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Figure 3: Audio quality as a function of embedding bitrate for a
set of tracks used for the tests.

bits. In the present study the 1024 IntMDCT coefficients of each
frame are split into 32 bands of 32 coefficients, and the last 2 sub-
bands form the high-frequency zone.

4. RESULTS

The performance of the proposed data hiding system is evaluated
in terms of audio quality of the embedded signal as a function
of the embedding rate. The audio quality is estimated using the
Perceptual Evaluation of Audio Quality (PEAQ) algorithm [13]
and double-checked by informal listening tests. The PEAQ algo-
rithm compares the embedded signal with the original signal, and
provides a comparative score, called Objective Difference Grade
(ODG). Grades range from 0 for inaudible effect to -4 for se-
vere degradation. The tests were performed on twelve 10-second
excerpts of 44.1-kHz 16-bit musical signals of different musical
styles (classic, jazz, rock, pop. . . ).

Fig. 3 shows some results and as we can see, the embedding
bitrate is quite dependent of the audio content–as was already the
case in [7]–thanks to (or due to) the PAM. When performing a
comparison with the previous system [7], for the same ODG the
embedding bitrate is quite higher for the new version (by about 50
kbps). It is also significantly higher than the 140 kbps announced
in [10]. In particular, while maintaining inaudibility of the em-
bedded data, bitrates up to 300 kbps can be reached for some very
energetic signals (like pop music or jazz-rock). For less energetic
signals (classical music) bitrates about 200 kbps are obtained. We
can also see that in many cases the embedded data are inaudible
with the system of the present study while it is not the case with
the previous system of [7]. For most listeners, this is the case for
example for an embedding rate of 375 kbps for the jazz track used
in Fig.3.

5. CONCLUSION AND PERSPECTIVES

In this paper we presented a data-hiding technique for uncom-
pressed audio signals that yields embedding bitrates of up to 300
kbps per channel for 44.1-kHz 16-bit music signals (depending on
audio content). This represents more than 40% of a channel origi-
nal rate and a significant gain over previous results obtained in [7]

and [10]. This technique can be used for “enriched-content” ap-
plications, as for instance the informed source separation system
presented in [5, 6].

As compressed signals are now widely used, in future works
we plan to look at the joint compression and watermarking prob-
lem by adapting the principles presented in this paper to com-
pressed signals, for instance the scalable MPEG4-SLS format
which also uses the IntMDCT.
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ABSTRACT

This paper presents a data-driven approach to the construction of
mapping models relating sound features and blowing pressure in
recorder playing. Blowing pressure and sound feature data are
synchronously obtained from real performance: blowing pressure
is measured by means of a piezoelectric transducer inserted into
the mouth piece of a modified recorder, while produced sound is
acquired using a close-field microphone. Acquired sound is ana-
lyzed frame-by-frame, and features are extracted so that original
sound can be reconstructed with enough fidelity. A multi-modal
database of aligned blowing pressure and sound feature signals is
constructed from real performance recordings designed to cover
basic performance contexts. Out of the gathered data, two types of
mapping models are constructed using artificial neural networks:
(i) a model able to generate sound feature signals from blowing
pressure signals, and therefore used to produce synthetic sound
from recorded blowing pressure profiles via additive synthesis; and
(ii) a model able to estimate the blowing pressure from extracted
sound features.

1. INTRODUCTION

Studying and modeling instrumental music performance can be
considered among the most challenging topics in the field of compu-
ter-aided analysis and generation of musical sound. In instrumen-
tal music practice, the performer transforms a musical score into
control parameters used for driving sound production. Indeed,
modeling how instrumental control signals are related to sound
production appears as a pursuit with different application possi-
bilities (e.g. performance, sound synthesis).

Regarding sound synthesis, the naturalness of synthetic sound
greatly relies on how input controls are represented and mapped
into sound features, both for the case of physical models or in
spectral-domain sample-based frameworks. In general, physical
models suffer from a lack of appropriate input control parame-
ters while systems combining spectral modeling with pre-recorded
samples do not explicitly consider instrumental gestures [1].

When aiming at low-intrusiveness measurement of instrumen-
tal gesture parameters, the idea of inferring instrumental control
parameter signals from recorded sound appears as an attractive al-
ternative. Indirect acquisition of instrumental gesture parameters
in music playing represents a broader access to computationally
studying music performance.

In this paper we present our recent work on sound-instrumental
gesture mapping in recorder playing. Mapping models relating

sound features and blowing pressure are constructed from real data
acquired in practice scenario, by means of a low-intrusiveness pres-
sure acquisition system and a close-field microphone. On one hand
a first mapping model able to generate sound features from blow-
ing pressure is used to generate synthetic recorder sound from
blowing pressure profiles using additive synthesis. On the other
hand, a second mapping model is able to estimate the blowing
pressure from features extracted from acquired recorder sound.

The rest of the paper remains as follows. Section 2 provides
background and related work. In Section 3 we outline data acqui-
sition, while Section 4 presents a spectral-domain representation
used for analysis and re-synthesis of recorder sound. The con-
struction and evaluation of mapping models is outlined in Section
5. Finally, Section 6 concludes by summarizing results and point-
ing out future directions.

2. BACKGROUND

Within the woodwind instrument family, the recorder can be con-
sidered as one of the simplest instruments, mainly due to the fact
that its geometry fixes a number of input control parameters that
for other instruments of the family are controllable by the per-
former (like for instance the distance between the mouth and the
labium, which are not fixed for the transverse flute). Although
the influence of the configuration of the mouth and the vocal tract
has traditionally been a very controversial issue to which research
efforts have been devoted [2], we assume here that only two con-
trol parameters enable the performer to achieve sound modulations
during performance: the speed of the air jet (derived from the
blowing pressure), and the fingering. Each fingering introduces
distinct set of minima in the acoustic impedance that correspond
to resonances. Blowing pressure, as opposed to fingering, presents
a continuous nature while allowing the control of dynamics, timbre
and fundamental frequency. By adjusting his blowing pressure, the
performer is also able to select which impedance minimum con-
trols the oscillation, and so cans reach different notes while keep-
ing the same fingering. In this work, we will focus on blowing
pressure in the first oscillation mode assuming a fixed fingering.

During performance, blowing pressure is exponentially related
to fundamental frequency [3], and linearly related to dynamics, as
it has been shown also for the transverse flute [4, 5]. With regards
to timbre in particular, Fletcher [4] pursued a study of the ampli-
tude and of the harmonics as a function the intensity of pressure
exerted by musicians, and showed two main phenomena (both re-
lated and expressed qualitatively): (i) the amplitudes of the second
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and third harmonics, as related to the amplitude of the fundamen-
tal harmonic, increase with blowing pressure; and (ii) the high fre-
quency content grows with blowing pressure. In this work we are
aiming at providing model able to represent such relations in a
flexible manner.

In general, there exist two main approaches for the acquisi-
tion of instrumental gesture parameters from real performance:
direct acquisition and indirect acquisition. While direct acquisi-
tion methods are devised to measure the actual physical parame-
ter from sensors conveniently placed in the instrument (and thus
providing relatively straightforward and reliable measuring capa-
bility), indirect acquisition is based on the analysis of acquired
sound signals and the extraction of parameters from which the ac-
tual instrumental control parameters used for produced such sound
[6]. Given that intrusive measurement setups often keep perform-
ers from playing naturally for a prolonged period of time, the idea
of being able to estimate instrumental gesture parameters (in this
case blowing pressure) represents a motivation for our modeling
approach to data-driven estimation of blowing pressure from sound
features.

Conversely, it is also possible to find a mapping function that
goes from control gestures to sound features. A first study [7]
shows how statistical methods for non-linear prediction can be
used for sound synthesis. A probabilistic inference technique (cluster-
weighted modeling) is used to map performance controls of a bowed
monochord to the amplitude of the first 25 harmonics of the sound.

A similar approach is used in [8] where a timbre model based
on neural networks is presented. The neural networks are able
to predict harmonic and residual spectral envelopes corresponding
to violin bowing controls. The model is coupled to an additive
synthesizer that fills the envelopes with harmonic and noisy con-
tent in order to produce synthetic violin sounds. This method has
been successfully implemented for real time synthesis of violin
sounds [9] where the spectral model is driven by bowing parame-
ters captured using an ad-hoc control interface.

This approach for generating synthetic instrument sounds of-
fers the possibility of substituting the habitual physical models
by trained generative models, resulting particularly attractive for
excitation-continuous musical instruments, such as bowed strings
or wind instruments.

3. DATA ACQUISITION

Basically, data acquisition consisted in the synchronous acquisi-
tion of blowing pressure and sound signals from a real recorder
practice scenario. A set of scripts was designed in order to cover a
number of performance contexts when constructing a multi-modal
database including aligned sound feature signals and blowing pres-
sure signals. The scripts consisted on (i) a series of scripts cover-
ing different fingerings, articulations, note durations, and dynam-
ics; and (ii) recording repetitions of a long crescendo (increasing
blowing pressure) for each fingering. While sound was acquired
by means of a close-field microphone attached to the body of the
instrument, a special measurement system was designed for ac-
quiring blowing pressure while maintaining a low impact on the
performer’s comfortability.

The mouthpiece block of an alto recorder was modified by
enabling the connection of a pressure sensor without altering the
timbre of the original instrument, as described in [10], leading to
a significant reduction of the intrusiveness as compared to using a
plastic catheter in the mouth of the musician [5, 11].

4. SOUND ANALYSIS

Acquired recorder sound is analyzed in the spectral domain with
the aim of extracting a lower-dimensionality sound feature rep-
resentation that enables (i) training a model able to learn mapping
functions between extracted spectral parameters and blowing pres-
sure, and (ii) to use such lower-dimensionality representation for
reconstructing the original sound with enough fidelity so that those
parameters can be used for synthesis purposes.

4.1. Some observations on the spectrum of the recorder sound

It was a good exercise for us to observe the time-varying spectra
of a number of the crescendo recordings in the database, along
with blowing pressure and fundamental frequency. Apart from the
expected correlation between fundamental frequency and blow-
ing pressure (as well observed in all the other recordings) [3], the
overall amplitude of both harmonic and stochastic components in-
creases with blowing pressure, having mid-range harmonic com-
ponents to raise more prominently. Up to the expected change of
oscillation mode starting to take place at higher pressure values
(and in agreement with [12]), a differentiated behavior is observed
for odd and even harmonic components, as it happens in other in-
struments of the same family [4]. This behavior leads to foresee a
representation of odd and even harmonics independently. There-
fore, we decided to represent each sound frame by the fundamental
frequency, the noise floor, and the odd and even harmonic compo-
nents. In this work we did not focus on higher modes of oscilla-
tions or chaotic, multiphonic transition states between oscillation
modes.

4.2. Spectral-domain representation

In a first step, the audio signal is divided into overlapping frames
and, for each of the frames, it is decomposed into deterministic
(harmonic) and stochastic (residual) components via the spectral
modeling synthesis (SMS) technique [13]. The algorithm imple-
mentation is based on a spectral peak-picking and tracking algo-
rithm making use of the two-way mismatch (TWM) fundamental
frequency estimation algorithm [14]. Given that notes have been
segmented and fingerings (pitch values) have been annotated, oc-
tave errors are easily avoided by restricting the possible values of
fundamental frequency candidates.

In the past, it has been shown that directly using harmonic
amplitudes and frequencies in a timbre modeling pursuit leads to a
highly complex and often inaccurate model [7], so with the idea of
representing each frame by a reduced number of parameters, spec-
tral envelope approximation is applied in a second step to each of
the two extracted components. Given (i) our observations on the
harmonic envelopes of recorded sound, (ii) the different modeling
errors obtained during spectral envelope prediction (see next Sec-
tion), and (iii) perceptual quality of obtained sound, it resulted best
for our modeling and re-synthesis purposes to split the harmonic
component into two different subcomponents: the odd harmonic
envelope and the even harmonic envelope.

The next step is to approximate the spectral envelopes into
consideration. Aiming at a compact representation of the harmonic
spectral envelopes, harmonic peaks of each of the two sets (odd
and even) are first interpolated by using a piecewise Hermite func-
tion. As for the stochastic spectral envelope (noise floor), a similar
procedure is carried out starting from spectral peaks. Two example
of the three envelopes are represented in Figure 1.
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Figure 1: Spectral evolution of an E5 crescendo with its odd har-
monic envelope (BLUE), even harmonic envelope (GREEN) and
residual envelope (RED). Left: resulting spectrum for a blowing
pressure of 197 Pa. Right: resulting spectrum for a blowing pres-
sure of 1513 Pa.

Finally, each of the interpolated envelopes is encoded as a set of
15 mel-frequency cepstral coefficients (MFCCs), which for our ex-
periments resulted to be a good compromise between size and fi-
delity. Out of the encoded three envelopes plus the value of fun-
damental frequency, it is possible to satisfactorily reconstruct the
original sound via additive synthesis.

5. MAPPING MODELS

From encoded spectral envelopes and acquired blowing pressure
signals, two frame-by-frame mapping functions are built for each
fingering by means of artificial neural networks, using Matlab’s
neural network toolbox functions newcf and newff. The first
model translates blowing pressure into sound features (spectral
shape plus fundamental frequency), while the second one realizes
the inverse mapping. Models are evaluated by means of 10-fold
cross-validation. In both cases, separating harmonic envelopes
into odd and even components led to obtain lower prediction er-
rors; therefore our decision (also based on early observations by
Fletcher [12]) to split harmonics and work from separated envelopes.

5.1. Mapping blowing pressure to sound features

A generative spectral model predicts, from the blowing pressure
signal given in a frame-by-frame fashion, the three spectral en-
velopes (odd harmonics, even harmonics and residual) and funda-
mental frequency required to reconstruct sound. The prediction
is carried out using two neural networks working in parallel. A
first two-layer cascade-forward backpropagation network takes as
input the blowing pressure and its derivative, and predicts the fun-
damental frequency plus the 15 MFCCs corresponding to each of
the three spectral envelopes (2 inputs to 46 outputs). This network
is trained with a subset of the training dataset which is composed
of frames with harmonic structure. Since this model provides a co-
herent prediction for harmonic frames, an additional binary-output
network (three-layer feed-forward backpropagation, 2 inputs to 1
output) capable of predicting harmonic state (whether a frame is
voiced or not) was used as an activation to the first network. This
last network was trained using the full dataset.

The results of spectral envelope prediction showed a highly
robust and reliable performance, reaching a averaged correlation
coefficient of 0.95 in the MFCC space. In Figure 2 it can be ob-
served how predicted envelopes (dashed lines) almost match actual
envelopes (continuous lines) for one frame of the signal. With re-
spect to the prediction of fundamental frequency, in some cases we

0 5000 10000 15000
−160

−140

−120

−100

−80

−60

−40

−20

0

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

 

 
Original odd envelope
Original even envelope
Original residual envelope
Predicted odd envelope
Predicted even envelope
Predicted residual envelope

Figure 2: Example of spectral envelope prediction for a frame of
sound in E5.

observed a maximum absolute error of 5Hz for some fingerings in
the lower register. An averaged correlation coefficient of 0.83 was
obtained when evaluating the performance of the second network.
A preliminary additive synthesizer was implemented. It takes as
input the note durations and fingerings from a segmented perfor-
mance of a known score, together with the blowing pressure pro-
files from a previous recording of the same score. The synthe-
sizer predicts envelopes and fundamental frequency and generates
sound by means of additive synthesis: the harmonic sequence is
generated from the fundamental frequency, partial amplitudes are
set to the values in predicted harmonic spectral envelopes, and fi-
nally the residual component is generated as white noise filtered in
the spectral domain by attending to the predicted residual spectral
envelope. Although produced sound is perceived as very realis-
tic, when subjectively comparing it with original sound, transients
show in general a worse behaviour, mainly because only harmonic
frames were used for the training. Example sounds can be listened
on-line1.

5.2. Estimating blowing pressure from sound features

The second model is able to estimate blowing pressure value from
the MFCCs and fundamental frequency extracted for a given frame.
A two-layer cascade-forward backpropagation network is trained
with data from analyzed frames (46 inputs to 1 output) of each fin-
gering in the database, leading to one different model per fingering.
An averaged correlation coefficient of 0.91 was obtained for all
fingerings. Figure 3 shows a prediction example: it is compared
a recorded blowing pressure profile (red line) with the predicted
signal (dashed blue line) of blowing pressure of one of the record-
ings, legato articulation. It can be observed that predicted signal
suffers from fluctuations, however general shape is preserved and
types of articulation can be identified.

6. CONCLUSION

We have presented the construction of mapping models relating
sound features and blowing pressure in recorder playing. The

1http://ccrma.stanford.edu/~esteban/
recsyntspec.html
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Figure 3: Comparison between the real blowing pressure (RED)
and the predicted blowing pressure (BLUE) for E5.

models are built using artificial neural networks, which have been
trained from blowing pressure and sound features extracted from
real performance data. Blowing pressure is acquired by means of
a low-intrusive-ness pressure acquisition system based on a me-
chanical modification of the block of an alto recorder, to which a
pressure sensor was attached in a low-invasive setup that allowed
to play naturally. A first mapping model is trained to generate,
given a blowing pressure signal, spectral envelopes (odd and even
harmonic, plus noise floor) and fundamental frequency, so that
sound can be faithfully synthesized via additive synthesis. A sec-
ond model is able to estimate the blowing pressure from audio
attributes extracted from acquired recorder sound. Both models
showed a fairly good performance. For the case of sound fea-
ture predictoin, an additive sound synthesizer was implemented
as a proof-of-concept system able to generate realistic sound from
blowing pressure and fingering information. Sound quality was
evaluated only qualitatively by the authors and collaborators, but
more formal subjective studies are to be carried out along with a
number of improvements.

Results on spectral-domain sound generation from instrumen-
tal gesture controls shed light on the idea of using gesture-driven
spectral models for enhancing sample-based sound synthesis, or
even in real-time applications as in [9] where a Max/Msp allowed
a real-time synthesis from a virtual instrument interface. The spec-
tral envelope representation based on separating odd and even har-
monics as two different envelopes showed to be a good approach
for this instrument. Regarding Some improvements need to be car-
ried out, especially for the case of transient modeling, for which
the performed worse: time-domain signal analysis and synthesis
from blowing pressure could result to be crucial, or even a hybrid
model combining simple physical models (for transient parts) and
spectral models (for steady-state parts). Another possibility would
be to use this synthesis framework with automatically generated
gesture parameter signals, as it was carried out in [1] for the case
of violin bowing.

Preliminary achievements obtained for blowing pressure es-
timation showed promising possibilities for indirect acquisition
from microphone in real performance contexts, leading to the eas-
ier construction of multi-modal databases more suited to study
higher-level playing styles. Automatic detection of fingering infor-
mation [15] is a very interesting addition to future developments
of the system.
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ABSTRACT

Passive nonlinear filters provide a rich source of evolving spectra
for sound synthesis. This paper describes a nonlinear allpass fil-
ter of arbitrary order based on the normalized ladder filter. It is
expressed in FAUST recursively in only two statements. Toward
the synthesis of cymbals and gongs, it was used to make nonlinear
waveguide meshes and feedback-delay-network reverberators.

1. INTRODUCTION

Many musical instruments have important nonlinear effects influ-
encing their sound. In particular, cymbals and gongs exhibit evolv-
ing spectra due to nonlinear coupling among their resonant modes
[1]. One effective method for efficiently synthesizing such sounds
is using the digital waveguide mesh [2, 3] terminated by nonlin-
ear allpass filters [4]. The mesh models linear wave propagation
in 2D, while the nonlinear allpass provides nonlinear coupling of
the modes of vibration in a way that conserves signal energy, and
therefore does not affect damping (which is introduced separately
via lowpass filters at selected points in the mesh). Thus, nonlinear
allpass filters provide a valuable tool for nonlinear mode combina-
tion while preserving stability and keeping decay-time separately
controllable.

2. PASSIVE NONLINEAR FILTERS

2.1. First-Order Switching Allpass

The passive nonlinear filter described in [4] was based on the idea
of terminating a vibrating string on two different springs k1 and
k2, as shown in Fig. 1. The switching spring-constant creates a
nonlinearity in the string-spring system. Importantly, the switch-
ing from one spring to the other only occurs when the spring dis-
placements are zero, so that energy is not affected. (The potential
energy stored in a spring ki displaced by xi meters is given by
kix

2
i /2 [5].)
In an ideal vibrating string with wave impedance R, terminat-

ing the string by an ideal spring ki provides an allpass reflectance
at the end of the string for traveling waves [5]. That is, reflected
displacement waves y−(t) at the termination are related to the in-
cident waves y+(t) by

Y −(s) = Y +(s)Hi(s)

∗ CCRMA visiting researcher from Saint Étienne University, France,
supported by the ASTREE Project

k1

. . .
k2

Figure 1: Vibrating string terminated by two different springs k1
and k2. Only one spring is active at a time.

where Hi(s) is the (Laplace-domain) transfer function of the all-
pass filter

Hi(s) =
s− ki/R
s+ ki/R

.

Replacing the ideal string by a digital waveguide [5] and digitizing
the spring reflectance Hi(s) via the bilinear transform [5] yields
the digital reflectance

Hi(z) = − ai + z−1

1 + aiz−1
, ai =

ki − 2Rfs
ki + 2Rfs

where fs denotes the sampling rate in Hz. While the digital re-
flectance remains an allpass filter due to properties of the bilinear
transform, energy conservation is only approximately obtained,
except when the allpass state variable happens to be exactly zero
when the coefficient ai is switched from a1 to a2 or vice versa.

2.2. Delay-Line Length Modulation

Since allpass filters are fully characterized by their time-delay at
each frequency, the switching allpass of the previous section can
be regarded as a form of nonlinear delay-line length modulation
in which the delay line switches between two allpass-interpolated
lengths (different at each frequency in general).

Delay-line length modulation has been used previously to sim-
ulate nonlinear string behavior. For example, the length modula-
tions due to tension variations have been addressed [6]. Addition-
ally, it has long been recognized that the highly audible nonlinear-
ity of the sitar is due to the continuous length modulation caused
by its curved bridge [1]. Similarly, the tambura nonlinearly modu-
lates its string length between two lengths via a cotton thread near
the bridge [1]. In digital waveguide models such as Sitar.cpp
in the Synthesis ToolKit (STK) [7], delay-line length is modu-
lated without careful regard for energy conservation; this normally
works out fine in practice because lengthening a delay-line is en-
ergy conserving when the new samples are zero, and shortening
the delay-line is typically a bit lossy and never energy-creating.
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3. NONLINEAR ALLPASSES OF ARBITRARY ORDER

We propose to extend the nonlinear switching allpass in two ways:

1. Any order allpass can be used (not just first order).

2. Any kind of coefficient modulation can be used (not just
switching between two values at zero crossings of some
state variable).

Our method is based on the Normalized Ladder Filter (NLF) [8].
Such filters can be derived from digital waveguide filters by using
normalized traveling waves in place of ordinary physical traveling
waves [5], where the normalization is chosen so that the square
of the traveling-wave amplitude equals the power associated with
that sample in the waveguide network.

Figure 2 shows the first-order NLF allpass as it is typically
drawn [9, 5].

y+(n)
c

c

−ss

y−(n) z−1

Figure 2: First-order normalized ladder allpass filter, with coeffi-
cients c = cos(θ) and s = sin(θ), θ ∈ [−π, π].

Figure 3 shows the same filter as it is depicted in the block
diagram rendered by “faust -svg” for the FAUST expression

process =
_ <: *(s),(*(c):(+:_)~(*(-s))):_, mem*c:+;

The function allpassnn(1) is equivalent to this in the FAUST
distribution (filter.lib after 2/2/11).

s
*

c
*

+

0

s

-
*

mem

c

*
+

process

Figure 3: First-order normalized ladder allpass filter as drawn by
faust -svg.

A general property of allpass filters is that each delay element
can be replaced by an allpass to produce another allpass (a unit-
circle to unit-circle conformal map of the transfer function). If
the delay element in Fig. 2 is replaced by itself at the output of
another first-order allpass of the same form (Fig. 2), then a second-
order NLF allpass is obtained. This second-order allpass and a
series delay element can then be used to replace the delay element
of Fig. 2 in the same way to produce a third-order NLF allpass,

and so on. Thus, by induction, we may construct an allpass of
arbitrary order as the recursive embedding of first-order allpasses
of the form shown in Fig. 2. This recursive construction works also
for ladder/lattice allpasses of the Kelly-Lochbaum, two-multiply,
and one-multiply forms [9, 10, 5].

In FAUST, NLF allpass filters of arbitrary order are conve-
niently specified by means of the pattern-matching facility:

allpassnn(0,tv) = _;
allpassnn(n,tv) = _ <: *(s), (*(c) :

(+ : allpassnn(n-1,tv))~(*(-s)))
: _,mem*c:+
with {

c=cos(take(n,tv)); s=sin(take(n,tv));
};

This is the full definition of allpassnn() in filter.lib.
Similar two-statement FAUST functions have been added to
filter.lib for ladder/lattice allpasses of the Kelly-Lochbaum,
two-multiply, and one-multiply forms.

Figure 4 shows the block diagram generated for the second-
order NLF allpass specified as allpassnn(2,tv).

4. APPLICATIONS

4.1. Lossless Nonlinear Spectral Expansion

The following FAUST program provides a simple illustration of the
lossless spectral spreading property of nonlinear allpass filtering:

import("filter.lib");
N = 3; // allpass filter order
process = sineswing : nl_allpass
with {

sineswing = 1-1’:nlf2(fl,1):_,!;
M=1024; // FM period in samples
fl = 0.05*SR*(1+cos(2*PI*index(M)/M));
nl_allpass(x) = allpassnn(N,coeffs(g*x),x);
coeffs(x) = par(i,N,x); // signal = coeff
g = 1 : delay(M,M-1) : *(0.1*index(M)/M);

};

In this example, an LFO-frequency-modulated sinusoid is fed to
a nonlinear allpass whose coefficients, all of which are propor-
tional to the input signal, begin increasing according to g after one
FM cycle. Figure 5 shows the spectrogram of the first two FM
cycles (2048 samples). Over the first cycle, there is a pure tone
cycling in frequency between 0.1 and 0 times the sampling rate.
Over the next FM cycle, the nonlinearity range ramps up from 0
to 0.1, and higher-order harmonics appear due to the nonlinearity,
which “brightens” the spectrum. At the same time, signal energy
is unaffected, so the nonlinear allpass may be used in a nearly loss-
less feedback loop, as is common in waveguide string models, for
example. For a proof of the energy invariance property of the non-
linear allpass, see, e.g., [9] for a mathematical derivation, or [5]
for a physical formulation.
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Figure 4: Second-order NLF allpass as drawn by faust -svg.
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Figure 5: Spectrogram of the first 2048 samples.

4.2. Nonlinear Waveguide Mesh

A simple example terminating a square waveguide mesh with non-
linear allpass filters is shown in Figures 6 and 7, generated from
the following FAUST source:

import("effect.lib"); // for mesh_square()
nlmesh(N,NA,x)=mesh_square(N)~(apbank(4*N,x))
with {
coeffs(x)=par(i,NA,x); // e.g.
apbranch(i,x) = allpassnn(NA,coeffs(x),x);
apbank(M,x) = bus(M)
: par(i,M-1,apbranch(i)),

apbranch(M-1) + x;
};
N=2; // mesh order (nonnegative power of 2)
NA=1; // allpass order (any positive integer)
process = nlmesh(N,NA);

The input signal is added into a corner of the mesh, where all
modes are excited.

apbranch(1)(0)

apbranch(1)(1)

apbranch(1)(2)

apbranch(1)(3)

apbranch(1)(4)

apbranch(1)(5)

apbranch(1)(6)

apbranch(1)(7)

x

+

allpassbank(8)(1)(#1)

Figure 7: Nonlinear allpass bank showing mesh corner excitation.
This is an expansion of the block is labeled “apbank(8)(#1)”
in Fig. 6.

4.3. Nonlinear Feedback Delay Network

It was reasoned that the higher-order nonlinear allpass might en-
able structures simpler than a full waveguide mesh for simulating
nonlinearly coupled modes. Thus, another test along these lines
was to insert the nonlinear allpass into each lane of a Feedback De-
lay Network (FDN) reverberator (trivially modifying fdnrev0 in
effect.lib). The nonlinear “reverberator” so obtain was then
tested by listening to its impulse response. While simple cymbals
were not obtainable for the cases tried, some very nice metallic-
plate synthesis was obtained, especially when using small delay-
line lengths in the FDN reverb. An interesting sonic phenomenon
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x

0.5
*

0.5
*

0.5
*

0.5
*

apbank(8)(#1)

process

Figure 6: 2 × 2 square waveguide mesh terminated on nonlinear allpass filters around its rim. The topmost block is labeled
“apbank(8)(#1)” and is expanded in Fig. 7. An interactive (clickable) block diagram may be generated from the above FAUST
code using the utility shell-script faust2firefox distributed with FAUST. The input signal, labeled x on the left, is summed with the
output of the eighth nonlinear allpass filter, as shown in Fig. 7. This corresponds to exciting one corner of the mesh.

obtained was a rising perceptual pitch as the impulse density was
increased. In other words, a faster “drum roll” has a higher spec-
tral centroid. A valuable performable dimension is the amount of
nonlinearity, implementable by a scale factor on the reflection co-
efficients, such as the coefficient g in the example of §4.1. When
g is zero, the allpass reduces to a linear pure delay, and increasing
it from zero gradually introduces the nonlinearity.

4.4. Nonlinear Tubes and Strings

In a companion paper [11], we report on applications of the non-
linear allpass to FAUST implementations of digital waveguide and
modal synthesis instruments. Especially nice results were obtained
for the nonlinearly delay-modulated clarinet and harpsichord.

5. CONCLUSIONS

The nonlinear allpass based on a recursively defined normalized
ladder filter was found to be useful for the nonlinear synthesis of
metallic plates by terminating a waveguide mesh on its rim and
by inserting it in the feedback paths of an FDN reverberator. By
varying the degree of nonlinearity, a useful performance dimension
is obtained.
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ABSTRACT

The Csound audio programming language adheres to the input-
output paradigm and provides a large number of specialized com-
mands (called opcodes) for processing output signals from input
signals. Therefore it is not directly suitable for component model-
ing of analog circuitry. This contribution describes an attempt to
virtual analog modeling and presents a Csound opcode for a triode
stage of a vacuum tube amplifier. Externally it communicateswith
other opcodes via input and output signals at the sample rate. Inter-
nally it uses an established wave digital filter model of a standard
triode. The opcode is available as library module.

1. INTRODUCTION

Like many other musical instruments, electric guitars require an
additional amplifier. However, it is understood among guitarists
that increasing the sound volume is only one of its several pur-
poses. Others are spectral shaping by filter networks and thecre-
ation of nonlinear distortion by overdriving the amplifier elements.
For historical and technical reasons, tube amplifiers are still popu-
lar despite of some obvious practical disadvantages over their solid
state counterparts. Quite a few music genres with dominant elec-
tric guitars have evolved during the last fifty years and mostof
them are inextricably linked to certain tube amplifier models. Al-
though many of these are still produced, vintage objects arehighly
priced collectibles.

As stand-alone electro-acoustic devices, classical vacuum tube
guitar amplifiers are incompatible with the digital world oftoday’s
music production. In the original tube amplifier models, there is no
MIDI control nor are there presets or software updates. Other ob-
vious disadvantages concern weight, size, and waste heat. To pre-
serve the original sound of tube amplifiers and still benefit from
the advantages of digital technology, numerous approacheshave
been developed for imitating the behavior of electrical circuits with
digital signal processing methods. Conventional programsfor cir-
cuit simulation are of limited avail, since the challenge inamplifier
modeling is at least threefold: first the exact replication of nonlin-
ear effects, second the real-time performance, and third the mini-
mization of the latency between sound input and output.

The term virtual analog (VA) has been coined for the substi-
tution of analog circuits by real-time digital hard- and software.
A recent description on virtual analog models in general is given
in [1] while digital techniques for modeling vacuum tube ampli-
fiers are reviewed in [2]. Both articles contain vast references to
earlier literature.

Among the various approaches discussed in [2] are circuit si-
mulation-based techniques which start from the schematic circuit
diagram. One way to proceed is to apply methods from circuit

analysis and to derive a set of coupled nonlinear differential equa-
tions. The skillful implementation of robust numerical solvers
leads to real-time algorithms for the faithful reproduction of am-
plifier sounds. Details can be found e.g. in [3–5] and references
therein.

Another approach for converting a circuit diagram with pos-
sibly nonlinear elements into a digital signal processing algorithm
is the classical wave digital filtering method [6]. Applications to
musical signal processing are described in [7,8] for physical mod-
eling of musical instruments and in [9] for virtual analog model-
ing. Wave digital models for tube amplifiers have been presented
in [10,11] for a triode stage and in [12,13] for the subsequent trans-
former and loudspeaker. The model from [11] is used here for the
implementation of a Csound opcode for a triode stage.

Csound is an audio programming language which provides a
multitude of commands (so-called opcodes) for all kinds of audio
signal generation and processing [14]. In simple terms, theop-
codes accept input signals and parameters and provide output sig-
nals. Circuit modeling, on the other hand, has to consider connec-
tions of ports, rather than inputs and outputs (see [15] for adetailed
discussion). Thus Csound is not directly suitable for modeling the
mutual dependencies between voltages and currents in electrical
circuits. There are – to the knowledge of the authors – no models
for virtual analog audio effects at the component level in Csound.

Sec. 2 briefly reviews the triode model from [11]. Basic con-
cepts of wave digital filters are recalled in Sec. 3, while Sec. 4
introduces the Csound audio programming language. Sec. 5 gives
a short review of different variable types and Sec. 6 discusses some
issues of real-time implementation of linear and non-linear wave
digital filters. The Csound opcode for the triode stage is presented
in detail in Sec. 7 along with an example.

2. TRIODE STAGE

The implemented triode stage is a classical grounded cathode am-
plifier as shown in Fig. 1. Since it is a standard triode amplifying
stage, no details are presented here. They can be found in classical
references e.g. [16–18], or in more recent presentations ofvacuum
tube circuits such as [19] or a monograph on SPICE models [20].

Digital models of this triode stage have been considered in [5]
by analysis of the corresponding nonlinear circuit and in [10, 11]
with wave digital filters. The latter approach is adopted here due
to its versatility for building modular structures.

3. WAVE DIGITAL FILTERS

A standard method to convert continuous-time transfer functions
into discrete-time transfer functions is the bilinear transformation.
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V+

Vi Vo

Vp

Vk

Ri

Rg

Rk

Rp

Ro

Ci

Ck

Co

Figure 1: Standard triode stage (adapted from [10]). It is usually
followed by a gain stage consisting of another triode in the same
envelope.

It is easily derived as the numerical solution of the integrals in
a continuous-time state space structure with the trapezoidal rule.
It could also be used in component modeling for the integrations
involved in the voltage-current law at capacitances and vice versa
the current-voltage law at inductances. However, connecting such
discrete-time models leads to delay-free loops which renders the
resulting discrete-time algorithm as non-computable.

An escape to this situation has been noticed long ago and lead
to a method for designing digital filters (wave digital filters) from
analog counterparts in the early 1970s. A unifying treatment of
theory and application of wave digital filters is given in a classical
paper [6]. Modern descriptions of the wave digital principle as a
tool for numerical integration and modeling are given in [7,21–23].
The use of wave variables for block-based physical modelingis
discussed in [8]. Different wave digital implementations of the
triode model from Fig. 1 have been presented in [10, 11]. The
model from [11] with a purely resistive loadRo provides the basis
for the implementation as a Csound opcode (see Fig. 2).

The fundamental difference between the wave digital model
according to Fig. 2 and the circuit diagram from Fig. 1 is the na-
ture of the variables which connect the individual blocks inFig. 2.
The variables for the description of circuit diagrams like Fig. 1
are voltages and currents, also called Kirchhoff variables. In gen-
eral, they cannot be classified into input and output signals, since a
variation of a voltage implies also a variation of the corresponding
current and vice versa.

Wave variables are computed from and can be converted into
Kirchhoff variables (see [7, 8, 22, 23] for details). However, since
they come in pairs of an incident and a reflected wave, they induce
a natural processing order. A block diagram of the wave digital
implementation from [11] is shown in Fig. 2. The ports with the
two-way arrows indicate wave variables,Vi andVo are input and
output voltages.

4. CSOUND

Csound is an audio programming language which supports the pro-
grammer in such intricate audio issues as sampling rate synchro-

Vi

Vo

grid circuit
Ci, Ri, Rg

cathode circuit
Ck, Rk

plate circuit
Rp, Co, Ro

Triode
a3

b3

Figure 2: Block diagram of the wave digital model from [11]. The
designation of the resistors and capacitors is the same as inFig. 1.
The wave variablesa3 andb3 correspond to Fig. 4.

nization, timing control, and buffer management. It is described
in [14] and in various web resources accessible from [24].

Csound is input-output oriented in the sense that existing high
level commands (opcodes) read samples from an input signal and
write it to an output signal. An excerpt from a generic Csound
program looks like

asig2 opcode1 asig1 parameters
asig3 opcode2 asig2 parameters

The commandopcode1 processes the input signalasig1 and
produces the signalasig2 which then serves as input signal for
opcode2 . These opcodes are processed in a program loop which
is executed at the audio sample rate (see e.g. [14]).

The order of the commands determines the signal flow. It is
shown as a block diagram in Fig. 3 which clearly demonstratesthe
input-output character of the Csound processing paradigm.In con-
trast to Kirchhoff variables, an output signal is not affected when
it is connected to another opcode as an input signal.

asig1 asig2 asig3opcode1 opcode2

Figure 3: Basic Csound signal flow.

5. KIRCHHOFF VARIABLES, WAVE VARIABLES, AND
SIGNALS

Sections 2, 3, and 4 of this article each use a different type of vari-
ables, voltage and current in Sec. 2, wave variables in Sec. 3, and
in Sec. 4 input and output signals represented by the audio sam-
ples inasig1 . . .asig3 . The Kirchhoff variables voltage and
current can be converted into incident and reflected wave variables
and vice versa. However, the communication of these types of
variables with the input-output signals in Csound requiressome
consideration. The relations between these different types of vari-
ables are reviewed in [8], a recent and very detailed accountis
found in [15].

In spite of the different types of variables used in circuit theory,
wave digital filters, and systems theory it is possible to implement
a wave digital model of the triode stage as a Csound opcode. The
reason lies in the design of the analog circuit itself.

The triodes stage is designed for high input impedance. There-
fore the voltageVi can be regarded as an input signal which is
not affected by feeding it to the tube model. On the output side,
the triode stage may be connected to another amplifier stage or a
tone stack. Depending on the input impedance of the subsequent
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load, the plate current may be affected by this connection. This
situation is modeled by including a load resistorRo into the plate
circuit. The voltageVo then serves as the corresponding output
signal. Some implementation issues resulting from this mixed-
variable approach are discussed in Sec. 6.

The assumption of a high input impedance and a resistive load
are reasonable simplifications. More general cases can be modeled
by an input voltage source with finite internal impedance anda
reactive (complex-valued) output impedance.

6. IMPLEMENTATION ISSUES

The implementation of the concepts discussed above in a proce-
dural language like C requires to convert the block diagram from
Fig. 2 into a sequence of computational instructions. Most of these
steps are described in the standard literature on wave digital filters
(e.g. [6]) and are mentioned here only very briefly for the linear
case. Then the nonlinear properties of the triode are discussed.

6.1. Linear Elements

The conversion of electrical circuits with linear elementsinto a
wave digital structure is shown here for the example of the cathode
circuit in Figs. 1 and 2. The parallel arrangement of a resistance
and a capacitance requires a so-called parallel adaptor forthe cor-
rect calculation of the wave variables for the communication with
the triode circuit.

The structure of the required constrained three-port parallel
adaptor and the equations for the calculation of the adaptorcoeffi-
cents are given in [6, Table 6]. The reflection free port is theone
connected to the triode circuit. It is called port 3 and has the wave
variablesa3 andb3. Port 1 with the wave variablesa1 andb1 is
used for the connection of the capacitance model forCk which is
a simple delay element (see [6, Table 1]). Port 2 is used for the
resistanceRk. Its implementation is particularly easy, since a re-
sistance does not reflect any waves. Therefore the incident wave
a2 (w.r.t. port 2) is zero and the reflected waveb2 does not need to
be computed. These considerations lead to the simplified structure
of the cathode circuit from Fig. 4.

a1

b1

a3

b3

z−1

α

Figure 4: Signal flow diagram of the cathode circuit. The wave
variablesa3 andb3 correspond to Fig. 2.

Although the resistanceRk does not reflect any waves, its ef-
fect and numerical value are nevertheless considered in thecalcu-
lation of the adaptor coefficientα. It depends also on the capacity
Ck and on the sampling instantT

α =
R3

R1
=

2

T
RkCk . (1)

Exemplarily the software implementation of the cathode cir-
cuit according to Fig. 4 is shown below in C-style notation.

//Calculate reflected wave
a_1 = state_Ck;
b_3 = alpha * a_1;
//Calculate effects of incident wave
b_1 = a_3 + b_3 - a_1;
state_Ck = b_1;

The grid circuit and the plate circuit from Fig. 2 are implemented
along the same lines.

6.2. Nonlinear Elements

The characteristic sound of a tube amplifier is caused by the non-
linear behavior of the triode. Two effects are important, the grid-
to-cathode diode characteristic and the nonlinearity of the plate
current as a function of the plate voltage and the grid voltage. Both
effects are realized separately in the implementation of the block
Triode from Fig. 2. The connection between these nonlinear pro-
cessing elements and the wave variables at the respective ports is
shown in the detailed triode model in Fig. 5.

6.2.1. Grid-to-Cathode Diode

The grid-to-cathode diode characteristic can be modeled asa non-
linear resistorRd. Two different models have been suggested
in [11] and both are implemented here. The first one simply switches
between two constant resistor values, i.e.

Rd =

{
Rlow if Vgk > 0

Rhigh else
. (2)

The second model is an implementation of the Child-Langmuir
law. The parameters for these models (e.g.Rlow andRhigh) can
be set by the user in a configuration file. Both diode models are
controlled by the grid-to-cathode voltageVgk which is obtained as
the mean of the incoming and reflected waves at the adaptor port
to which the diode is connected.

6.2.2. Plate Current

For the nonlinear plate current, Koren’s model has already been
used successfully in [5, 10]. It expresses the plate currentIpk =
f(Vgk, Vpk) as a nonlinear function of the grid-to-cathode voltage
Vgk and the plate-to-cathode voltageVpk. Substituting this nonlin-
ear function forIpk in the corresponding wave variables

apk = Vpk + R0 Ipk, (3)

bpk = Vpk − R0 Ipk, (4)

gives an implicit relation for the unkown plate-to-cathodevoltage
Vpk and an explicit relation for the reflected wavebpk [10]

0 = Vpk + R0 f(Vgk, Vpk) − apk, (5)

bpk = Vpk − R0 f(Vgk, Vpk). (6)

The implicit relation (5) is solved from an initial guess (e.g. the
previous value) by minimizing the error function

e = Vpk + R0 f(Vgk, Vpk) − apk (7)

in an iterative procedure as suggested in [10]. The secant method
has been used in Fig. 5 with the iteration indexm. For values
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b = Vpk − R0 g(Vgk, Vpk)

while e[m] > ǫ:

△e[m]=
e[m]− e[m−1]

Vpk[m]−Vpk[m−1]

Vpk[m+1]=Vpk[m]− e[m]

△e[m]

Vgk

Vpk

ag

bg ak

bk

apbp

bpk

apk

aNL

bNL

1
2

Figure 5: Nonlinear triode model. The circuit shown here implements the blockTriode from Fig. 2. The ports with the wave variable
pairs(ag, bg), (ak, bk), and(ap, bp) connect to the grid, cathode, and plate circuits, respectively. The grid-to-cathode diode characteristic
discussed in Sec. 6.2.1 is realized by the block connected tothe series adapator and labeled with a diode symbol. The plate current results
from the iterative solution of Koren’s model forVpk in the block connected to the upper parallel adaptor, see Sec. 6.2.2.

within the usual operation range, these nonlinear relations are pre-
calculated and stored in a look-up table.

Nonlinear mappings of audio signals may produce spectral
components above the human hearing range. In discrete-timepro-
cessing, aliasing can fold these components back onto audible fre-
quencies unless oversampling is applied. Also this implementation
of the triode model employs internal oversampling for the evalu-
ation of the nonlinear tube model. The locations for up-sampling
and down-sampling are straight behind the signal inputVi and be-
fore the signal outputVo (see Fig. 2). If required, it is possible to
move the sampling rate conversion closer to the nonlinearities.

7. CSOUND OPCODE

To turn existing C-code into opcodes for Csound, the communica-
tion of the C-code with the Csound programming environment has
to be established. For this purpose, Csound provides a fixed inter-
face [14, chapters 31 and 32]. Using this interface, the wavedigital
model of the triode stage described above has been implemented as
a C-program for real-time operation. The result is a shared library
which has so far been built and tested for UNIX environments.It
supplies a new Csound opcode calledtube for the simulation of
a vacuum tube triode stage.

The tube opcode is ready to use and implements the triode
model with standard values for its parameters (e.g. component
values, load resistance, supply voltage, oversampling rate, param-
eters of the tube nonlinearities, etc.). To provide maximumflexi-
bility for the user, these standard values can also be overriden by
the content of an external configuration file. The Csound opcode
tube is available for download at [25]. A possible use case for
the tube opcode is shown below.

kamp = 0.8;
icps = 440;
ifn = 0;
imeth = 1;
apluck pluck kamp, icps, icps, ifn, imeth;
atube tube apluck, sr, "config.txt";
alp butterlp atube, 5000;
ares butterbr alp, 1200, 50;
out ares;

A dry input signal for the tube stage is generated by the Csound
opcodepluck which is controlled via the parameterskamp for
the amplitude,icps for the oscillation frequency,ifn to choose
an initial buffer content andimeth to control the decay (see [24]).
pluck implements the Karplus-Strong algorithm and generates
the signalapluck .

The sample of a string-like soundapluck and the user de-
fined sample ratesr are fed to the opcodetube , creating the
atube output signal. Optionally the filename of an external con-
figuration file can be handed to the opcode to let the user set the
modeling parameters.

A simple loudspeaker emulation, proposed by [10] is applied
via other standard opcodes, realizing a lowpass filter at 5 kHz and
a notch filter with a bandwidth of 50 Hz at a center frequency of
1200 Hz. At last the resulting sound sample is written to the vari-
ableout , defining Csound’s realtime or filebased output.

8. RESULTS

Although the presented implementation of the triode model can
only judged by listening, a few technical results are reported here.
They concern the nonlinear model for the grid-to-plate current and
its effects on a sinusoidal input signal, the amount of aliasing for
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different sampling rates, and finally a pointer to some listening
examples is given.

8.1. Nonlinear Model for the Grid-to-Plate Current

The basic effect leading to the typical tube behaviour is theabove
mentioned nonlinear current characteristic. The implementation
of the nonlinear model from Sec. 6.2.2 has been evaluated by mea-
suring theVpk-Ipk curves at the port (apk, bpk) from Figure 5.
The results are plotted in Figure 6 together with the theoretical
curves predicted by Koren’s formulas. Visually these curves can-
not be distinguished. An analytical analysis of the absolute differ-
ence showed a maximum deviation of about3 · 10−6mA within
the usual operation range. (Vpk ∈ [0V, ..., 300V] and Vgk ∈
[−3V, ..., 0V])

The resulting spectral effect of the nonlinear behaviour isthe
appearance of additional harmonics. As a demonstration, a sinu-
siodal input signal with a frequency of 440 Hz and a slowly rising
amplitude was generated.

The amplitude increased linearly from zero to full scale in
seven seconds, where full scale corresponds to an amplitudeof 3 V
of the input signalVi in Figure 2. This input signal was processed
with the opcode and then plotted as a spectrogram (44.1 kHz sam-
ple rate, FFT length 2048).

Figure 7 shows on the top the effect of additional spectral com-
ponents, explaining the rich sound of vacuum tube amplifiers. The
envelope of the distorted output signal is plotted on the bottom.
The asymetrical shape of the envelope results from the tube-typical
one-sided clipping whenever the amplitude of the input signal Vi

exceeds the negative bias ofVgk implemented by the cathode re-
sistanceRk in Figure 1.
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Figure 6:Vpk-Ipk characteristic curve, measured in the nonlinear
part of the WDF circuit from Fig. 5. The curves are obtained for
Vgk from −3V to 0V in steps of0.5V.

8.2. Oversampling

Figure 8 shows the spectrum of a distorted5 kHz sine with an
amplitude of2.5 V, sampled at44.1 kHz. The upper graph shows
a dominant peak at the fundamental frequency and further peaks
at the positions of the first three harmonics. But also other peaks
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Figure 8: Spectrum of the response to a5kHz sinusiodal input sig-
nal with an amplitude of2.5V at a sample rate of44.1kHz without
and with four times oversampling.

are visible in the range of -30 to -50 dB. They result from higher
harmonics which are subject to aliasing. This effect of unwanted
spectral components is less distinctive in the graph below where
four times oversampling was used.

8.3. Listening Examples

To meet the actual use of the opcode, simulating the sound of a
tube amplifier, also an acoustical analysis was done. Four sound
clips, trying to demonstrate the different genres shown in Table 1,
were recorded with a ESP LTD F-50 guitar with a common intern
Realtek HD sound card at44.1 kHz. These sound clips were pro-
cessed with the opcode with the example configuration file. Only
the preamplifier gain value was edited to achieve different distor-
tion levels, fitting the muscial genre. The virtual preamplifier maps
the guitar signal to the input signalVi shown in Figure 2.
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Genre gain
Blues 6

Rockabilly 8
Rock 10
Metal 15

Table 1: Available sound examples for the Csound plugintube.
A different preamplifier gain was used for each genre to achieve
typical distortion levels.

9. CONCLUSIONS

The Csound opcodetube provides a real-time model of a triode
stage in a vacuum amplifier. It is based on an existing wave digi-
tal model well documented in the literature. Special emphasis has
been placed on the internal structure of the nonlinear triode cir-
cuit, where variables of different nature (voltages and currents vs.
wave variables) are combined. The opcodetube is available for
download and ready to use with standard values of the model pa-
rameters. Additionaly the model can be modified by editing an
external configuration file.
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ABSTRACT

This paper describes an improvement of thegeneralized reassign-
mentmethod for estimating the parameters of a modulated real
sinusoid. The main disadvantage of this method is decreasedac-
curacy for high log-amplitude and/or frequency changes. One of
the reasons for such accuracy deterioration stems from the use of
the Fourier transform. Fourier transform belongs to a more gen-
eral family ofintegral transformsand can be defined as an integral
transform using aFourier kernel function- a stationary complex
sinusoid. A correlation between the Fourier kernel function and
a non-stationary sinusoid decreases as the modulation of the si-
nusoid increases, ultimately causing the parameter estimation de-
terioration. In this paper, the generalized reassignment is refor-
mulated for use with an arbitrary kernel. Specifically, an adap-
tive polynomial-phase Fourier kernelis proposed. It is shown that
such an algorithm needs the parameter estimates from the original
generalized reassignment method and that it improves the Signal-
to-Residual ratio (SRR) in the non-noisy cases. The drawbacks
concerning the initial conditions and ways of avoiding a close-to-
singular system of linear equations are discussed.

1. INTRODUCTION

The extraction of sinusoidal parameters has been the focus of the
signal processing research community for a very long time. The
reasons for that are numerous: analysis for re-synthesis [1], voice
analysis [2][3][4], music transcription [5], audio coding[6] and
many more.
The classic model for modeling sinusoids implies a static ampli-
tude and frequency within the time of observation [1]. Many re-
finements of this stationary model were developed [7][8][9]yet the
fact that the bandwidth of a modulated sinusoid tends to raise pro-
portionally with the amount of modulation imposed [10][11][12]
rendered a need for estimation of the non-stationary parameters of
sinusoids crucial [13]. Numerous Fourier transform based meth-
ods have emerged [14][15][16][17][18][19]. It has been shown
in [19][20], that the generalized reassignment exhibits superior
accuracy in the linear log-amplitude/linear frequency modulation
context compared to QIFFT [15] and the generalized derivative
method [16] in the linear log-AM/FM case. An additional advan-
tage of the generalized reassignment is the ability to estimate the
modulation parameters of arbitrary order, whereas others (except

∗ Research was funded by ’Slovene human resources development and
scholarship fund’ (’Javni sklad Republike Slovenije za razvoj kadrov in
štipendije’)

method using distribution derivatives [18]) were designedto work
only in the linear log-AM/FM context.
The generalized reassignment [19] algorithm uses values ofthe
Short-Time-Fourier-Transform (STFT) of the signal and itstime
derivatives (up to M-th degree) in order to produce a linear system
of M complex equations. STFT is evaluated at 1 frequency only, a
natural choice for which is the maximum peak frequency. Solving
this system allows the estimation of M complex parameters that
uniquely define the parameters of the sinusoid. A similar algo-
rithm described in [18] only considers 1st degree time derivative
of the signal and acquires the rest of the equations by considering
the values of STFTs at the spectrum peak and the nearby frequency
bins. A comparison of the two in identical test conditions has not
yet been conducted.
In section 2, the general framework of this paper is outlined. Sec-
tion 3 states the generalized reassignment [19] method in the nota-
tion adopted by [18] and removes the restriction of the static ker-
nel, while section 4 introduces the polynomial-phase Fourier ker-
nel in the context of the generalized reassignment. In section 5 the
results of the tests identical to those in [19] are reported,while 6
rounds up the comparison of the method proposed with the gener-
alized reassignment and proposes further work on the topic.

2. GENERAL CONSIDERATIONS

For the purpose of this paper a complex non-stationary sinusoid is
defined identically as in [19]:

s(t) = eR(t), R(t) =

M−1
X

m=0

rmhm(t), (1)

whereR(t) is a complex function, a linear combination of M real
functionshm(t), weighted with complex parametersrm. The real
and imaginary parts ofrm are denoted bypm, qm respectively,
yielding: rm = pm + jqm. A natural choice for functionshm are
monomials:hm(t) = tm. In such setting,p0 corresponds to the
stationary log-amplitude andp1 to the linear log-amplitude mod-
ulation (or first order log-amplitude modulation), whilepi, i > 1
corresponds to thei-th order log-amplitude modulation. Analo-
gously,q0 corresponds to the stationary phase,q1 to the stationary
frequency and parametersqi, i > 1 to the(i − 1)-th degree fre-
quency modulation.
The Fourier transform at a particular frequency can be conveniently
represented as adot product of the signal under investigation with

DAFX-1

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-371



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris,France, September 19-23, 2011

the functionejω:

Tejω0ts(t) = F{s(t), w0} =
Z ∞

−∞
s(t)e−jω0tdt =< s, ejω0t > (2)

Swapping the Fourier kernel function with an arbitrary kernel Ψ
yields:

TΨs =< s,Ψ > (3)

By choosing the kernel function to be completely arbitrary,the
orthogonality of 2 random kernels and unit energy properties are
lost. However, such properties are not required by the algorithm,
so its use is not restricted. An appropriate selection of theset of
the kernel functions is a very different matter and depends on the
family of the signals under study.

3. GENERALIZED REASSIGNMENT USING A GENERIC
KERNEL

The main concept of the generalized reassignment method is based
on the fact the n-th degree time derivative of the signal can be
represented in the following way:

s(n)(t) = (R′(t)s(t))(n−1) (4)

In practice a window functionw(t) is used in order to time limit
and smooth the frame under investigation.
Independently, using the integrationper partes, Leibniz integra-
tion rule and the restrictionw(−T

2
) = w(T

2
) = 0 (required by

the generalized reassignment), the following useful equality can
be produced (for complete derivation see [18][19][20]):

∂

∂t
< s, wΨ >= −(< s, wΨ′ > + < s, w′Ψ >) (5)

The complementing equality can be deduced from 4 by applyinga
dot product with the kernel on both sides of the first time deriva-
tive:

∂

∂t
< s, wΨ >=<

∂

∂t
s, wΨ >=

< R′s, wΨ >=

M
X

m=1

rm < h′
ms, wΨ >⇒

(6)

M
X

m=1

rm < h′
ms, wΨ >= −(< s, wΨ′ > + < s, w′Ψ >). (7)

To computeM − 1 non-stationary parameters, anotherM − 2
time derivatives are required. Its computation can efficiently be
performed by the followingpyramid-likescheme:

< sh, ΨGw >

ւ ց
− < sh, Ψ′

Gw > − < sh, ΨGw′ >

ւ ց ւ ց
< sh, Ψ′′

Gw > +2 < sh, Ψ′
Gw′ > + < sh, ΨGw′′ >,

...

(8)

whereh(t) stands either forh(t) = 1 to calculate right hand side
or h(t) = h′

m(t),m = 1 : M − 1 to calculate the left hand side
of the equation 7.

4. POLYNOMIAL-PHASE FOURIER KERNEL

In [18] it was demonstrated that the estimation accuracy is in-
versely proportional to the kernel-to-signal correlation. Therefor
maximising the correlation should improve the accuracy andsince
the signal is modeled as a non-stationary sinusoid, a natural choice
for kernel function would be the same as the model. The proposed
kernel function follows:

ΨG(t) = eG(t), (9)

whereG(t) is a purely imaginary polynomial of order M:G(t) =

j
PM

m=1 gmtm. Note thatg0 = 0, as any non-zero value would
introduce bias in the phase estimation. From scheme 8 it is clear
that an(M − 1)-th degree time derivative of the kernel function
is required. In the specific case of the polynomial-phase Fourier
kernel the following scheme similar to 8 can be used in order to
calculate the kernel function time derivatives:

Ψ′
G =G′ΨG

ւ ց
Ψ′′

G = G′′ΨG + G′Ψ′
G

ւ ցւ ց
Ψ′′′

G = G′′′ΨG + 2G′′Ψ′
G + G′Ψ′′

G,

...

(10)

The main advantage of such algorithm is less restricted kernel, thus
the selection ofhm(t) functions can therefore be matched with an
appropriate kernel functions to maximize correlation and avoid ac-
curacy deterioration in the case of extreme parameter values.
The algorithm should initially be invoked withG(t) = jω̂t, where
ω̂ is a frequency of the magnitude spectrum peak. This yields an
initial estimate of the polynomialR(t): R̂(t) =

PM
m=1 r̂mtm.

This initial run of the algorithm is identical to generalized reassign-
ment as described in [19]. In the second iteration the kernelfunc-
tion can be adapted to the signal by settingG(t) = jℑ(R̂(t)) =

j
PM

m=1 q̂mtm.
From 8 and 10 the following linear system of equations can be
directly deduced:

< s, ΨGw > < s, Ψ′
Gw > + < s, ΨGw′ > . . .

< st, ΨGw > < st, Ψ′
Gw > + < st,ΨGw′ > . . .

< st2, ΨGw > < st2, Ψ′
Gw > + < st2, ΨGw′ > . . .

...
...

. . .
(11)

Of a particular interest is the term written in bold,< st, ΨGw >.
When the kernelΨG(t) closely matches the target signals(t) then
the productΨ̄G(t)s(t) ≈ 1 and the following can be deduced:

< st, ΨGw >=

Z

ts(t)Ψ̄G(t)w(t)dt ≈
Z

tw(t)dt. (12)

For any symmetric window functionw(t) and t ∈ [−T
2
, T

2
] (T

being its essential time support) the above expression is very close
to 0. Such cases occur when the signal exhibits low or no am-
plitude modulation causing the linear system of equations close
to singular, rendering the algorithm essentially useless.Such a
drawback can simply be avoided by artificially inducing someam-
plitude modulation into the signal and then subtracting it from the
estimate obtained. A very small amount of the amplitude modula-
tion of magnitude around10−10 is sufficient to stabilize the system
and significantly improve the estimates.
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5. RESULTS

The tests conducted were identical to those in [19]. The metric
used was the signal to residual ratio (SRR):

SRR =

P

i his
2
i

P

i hi(si − ŝi)2
, (13)

wheresi, i = 1..N are samples of the original signals(t) (with-
out noise),̂si, i = 1..N are the samples of the estimated signal and
hi, i = 1..N are samples of the weighting function - Hanning win-
dow. A model degree of 3 was chosen and the Hanning2 function
of length 1024 was used as the window function. The test signals
analyzed were real sinusoids sampled at 44100Hz. The parameters
of the test sinusoids were varied in the following way: 10 phase
values in the [0,0.45]π interval, 10 linear log-amplitude modula-
tion values in the [0,0.0045] /frame interval (roughly corresponds
to the [0,200] /s interval), 10 frequency values in the [255,255.9]
bins interval (roughly corresponds to the [10.982, 11.021]Hz) and
10 linear frequency modulation values in the [0,27] bins/frame in-
terval (roughly corresponds to the [0,16.000] Hz/s). The tests were
conducted in 3 separate groups for the original reassignment (la-
beledGEN RM) and the one using the polynomial-phase kernel
(labeledGEN RM PPT). In group 1 (figure 1), the linear fre-
quency modulation was set to 0 while the log-amplitude modula-
tion was varied (x-axis) in the mentioned range. In group 2 (figure
2) the log-amplitude modulation was set to 0 while the linearfre-
quency modulation was varied (x-axis) in the mentioned range. In
group 3 (figure 3), both the FM and log-AM were jointly varied (x-
axis) indouble the range compared to the groups 1 and 2. In the
first part (labeledSNR: Inf dB in the plots) no noise was added to
the signal and in the second part (labeledSNR: 0dB in the plots) a
Gaussian white noise of the energy equal to that of the clean signal
was added. The range of the log-AM/FM for group 3 was doubled
intentionally to examine properties of both algorithms in highly
modulated cases. The frequency range was selected around half of
Nyquist frequency in order to avoid self-interference.
As predicted, in the noiseless case the proposed kernel greatly di-
minishes the effect of the frequency modulation on the parameter
estimation accuracy. For FM only case (figure 2), the kernel adap-
tation procedure leaves the accuracy completely unaffected even
for very high FM values. On the other hand, the presence of AM
does affect the accuracy slightly, as can be seen in the figures 1 and
3, yet the improvement over the original method is significant. In
the SNR: 0dB case, the performance is almost indistinguishable
to the one of the original generalized reassignment.

6. CONCLUSION AND FUTURE WORK

In this paper, an improvement of the generalized reassignment
method was described. The main idea of the improvement is the
use of an adaptive polynomial-phase Fourier kernel in conjunction
with the general reassignment algorithm. The algorithm exhibits
a significant improvement in accuracy compared to the original
method in the case of clean signal, as the effect of frequencymod-
ulation is minimized by the adaptive kernel. For a stationary sinu-
soid, the accuracy is comparable to the original method, however
an increase in accuracy is observed in the case of non-stationary
ones, reaching almost 50dB in the most modulated case (group3).
The method does not improve the analysis of the original algorithm
if 0 dB Gaussian white noise added. The reason for this is the ker-
nel adaptation works in the opposite way to which is desired.This
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Figure 1:Group 1 (AM only)
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is because it uses the estimate of the original method, whichis not
precise enough at such a high noise level, therefore the error in the

DAFX-3

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-373



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris,France, September 19-23, 2011

input parameters corrupts the final estimate.
In group 3, the most modulated case corresponds to 32.000Hz/s
change. This may seem excessive for analyzing real world music
related signals. However, a higher order modulation polynomials
could exhibit even larger linear FM values, as its contribution can
be canceled or balanced out by the second or higher order terms.
So as the kernel is adapted to the sinusoid in question, the energy
concentration of its representation in the transform domain is in-
creased: the bandwidth of the non-stationary sinusoid is reduced.
This is a desirable property in the case of multicomponent signals,
where side-lobes of a sinusoid cause significant interference to the
neighboring partials.
All the measured tests were conducted with Hanning2 window,
which would substantially increase interference in a multicompo-
nent scenario, as its main lobe is wider than that of the Hanning
window. An attempt to construct anL2 window function with a
lower bandwidth should receive some attention, allowing anim-
provement of the method using a model degree of up to 4.
As already mentioned in the previous section, the frequencies un-
der study were varied around half of the Nyquist, therefore the sig-
nal self-interference was minimized. Since the nature of the inter-
partial interference does not resemble that of a Gaussian white
noise, the results presented here cannot be generalized to amulti-
component cases, thus an assessment of the method’s accuracy in
such cases should be conducted.
The algorithm was designed in such a way that it can be iteratively
ran as many times as desired, which raises a question of the conver-
gence in a noisy case. Preliminary tests suggest, that such iteration
converges and improves the result as long as the initial estimates
don’t deviate too much from the true values. Further experiments
are required to further define the region of convergence.
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ABSTRACT

This paper presents a review on techniques for signal reconstruc-
tion without phase, i.e. when only the spectrogram (the squared
magnitude of the Short Time Fourier Transform) of the signal is
known. The now standard Griffin and Lim algorithm will be pre-
sented, and compared to more recent blind techniques. Two im-
portant issues are raised and discussed: first, the definition of rel-
evant criteria to evaluate the performances of different algorithms,
and second the question of the unicity of the solution. Some ways
of reducing the complexity of the problem are presented with the
injection of additional information in the reconstruction. Finally,
issues that prevents optimal reconstruction are examined, leading
to a discussion on what seem the most promising approaches for
future research.

1. INTRODUCTION

The ubiquitous Short Time Fourier Transform (STFT) is a very
efficient and simple tool for audio signal processing, with a rep-
resentation of the signal that simultaneously displays both its time
and frequency content. The STFT computation is perfectly in-
vertible, fast (based on the Fast Fourier Transform (FFT)), and
provides a linear framework well suited for signal transformation.
However, a majority of these modifications act on the magnitude
of the STFT ; in this case phase information is lost, or at least
corrupted. Source separation, for instance, is often based on the
estimation of the time-frequency local energy of the sources, and
the isolated sources are usually recovered trough Wiener filter-
ing [1], i.e. with the phase of the original mixture. Other cases
of adaptive filtering, like denoising [2], usually perform subtrac-
tion in the amplitude domain, once again not taking account of the
phase of the signal. Signal modifications, such as time-stretching
or pitch shifting [3], may also involve changes on the magnitude
of the STFT (adding/removing frames, moving bins) without per-
fect knowledge of the expected structure of the phase. Although
phase vocoder [4] brings some answers to the problem, the overall
quality of the modification is still perfectible.

Furthermore, accurate reconstruction of a signal from its mag-
nitude STFT is also of paramount importance in the domain of
signal representation. Many works are addressing the relation be-
tween magnitude and phase of a Discrete Fourier Transform (DFT)
[5, 6, 7]. Therefore, solving convergence issues of existing algo-
rithms could also give ways of solving the problem of phase and
magnitude dependency in the time-frequency domain. In short,

∗ This work was supported by the DReaM project (ANR-09-CORD-
006) of the French National Research Agency CONTINT program.

being able to reconstruct a signal while only knowing its magni-
tude could bring significant improvements in many situations from
source separation to signal modification.

Here, the key point is that the STFT has an important property:
redundancy of the information. For a real signal, each length-N
analysis window provides N/2 + 1 independent complex coef-
ficients (keeping only components corresponding to positive fre-
quencies), and with the additional constraint that the coefficients at
frequencies 0 andN/2 are real by construction, this amounts toN
real coefficients (in other words, the Discrete Fourier Transform is
an orthogonal transform). However, with the STFT the analysis is
always carried out with an overlap between adjacent analysis win-
dows. In the case of minimal overlap of 50%, a real input signal
of length N provides 2N real coefficients (neglecting here bound-
ary effects). In the common case where the overlap is higher than
50%, this redundancy of information gets even higher. Similarly,
the FFT can be oversampled in frequency (with zero-padding in
time), providing more coefficients per frame.

This brings an important point: the STFT has to verify a so-
called “consistency criterion” [8]. In other words, the set of com-
plex STFT coefficients lives within a subset of the space CN×M ,
but is not isomorphous to it: in general, an array of complex coef-
ficients does not correspond to the STFT of a signal. Now, when
keeping only the magnitude of the STFT, a real input signal of
length N provides N + 1 real coefficients (with 50% overlap):
phase reconstruction from magnitude-only spectrograms may still
be possible [3]. The main issue is whether some crucial informa-
tion has been lost by taking the magnitude, bringing ambiguities
and/or ill-posedness issues. In the case of source separation, for
instance, Gunawan showed [9] that phase reconstruction improved
the quality of the separation. In the case of adaptive filtering, Le
Roux showed [10] that the inconsistency criterion led to an im-
proved estimation of the Wiener filter.

The goal of this article is to provide a state of the art in the
problem of signal reconstruction from spectrograms (the squared
magnitude of the STFT). Its goal is not only to review the benefits
and drawbacks of each of the published methods, but also to dis-
cuss fundamental and sometimes open issues that make this prob-
lem still very active after decades of intense research. The article is
organized as follows: the framework of the STFT will be presented
in section 2, and the unicity of the representation will be discussed
in section 3. The baseline technique for phase reconstruction, the
so-called Griffin and Lim algorithm, will be presented in section 4
and quantification of the convergence will be discussed in section
5. Then, more recent reconstruction techniques will be presented:
blind reconstructions in section 6 and informed ones in section 7.
Finally, issues that arise when trying to achieve perfect reconstruc-
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tion of the signal will be discussed in section 8 and applications of
such phase estimation to digital audio processing in section 9 prior
to the conclusion of the document in section 10.

2. SHORT TIME FOURIER TRANSFORM

Let x ∈ l2(R) be a real, discrete signal, of finite support. On
this support, we define the STFT operator such that S(n,m) =
STFT [x] computed with an analysis window w of length N and
an overlap N − R (i.e., a hop size of R samples between consec-
utive analysis windows):

S(n,m) =

N−1∑

k=0

e−i2π
kn
N w(k)x(k +Rm) (1)

Here, n is the frequency index, and m the time index. Inversion
of this STFT is achieved by the synthesis operator STFT−1 de-
scribed in equation (2) using the synthesis window s which gives
the signal x̃:

x̃(l) =
∑

m

s(l −mR)
∑

n

S(n,m)ei2πn
l−mR

N (2)

If the synthesis and analysis windows verify the energy-
complementary constraint:

∑

m

w(l +mR)s(l +mR) = 1

then perfect reconstruction is achieved: x̃ = x.
However, one might want to have more freedom in the choice

of analysis / synthesis windows, and therefore the STFT−1 op-
erator must include a window ponderation such that x̃(l) =

1
s̃(l)

STFT−1[S], where s̃(l) =
∑
m w(l+mR)s(l+mR) which

is equivalent, up to boundary effects, to constraining the synthesis
window to s(l)

s̃(l)
. In [11], the inverse STFT is also described with

the use of a vector formulation.
The different domains involved and the functions used to pass

from one to another are presented on figure 1. The spectrogramW
is the squared magnitude1 of S and is given by W = SS∗ where
S∗ is the complex conjugate of S. Note that the spectrogram of
a signal is also its autocorrelation and can be used as such for the
interpolation of signals [12]. W is a set of real non-negative num-
bers ∈ RN×M+ . The goal of the reconstruction is then to estimate
S̃(n,m) such that S̃ ∈ SN,M , where SN,M is the subset ofN×M
complex arrays representing co-called “consistent” STFTs, while
keeping S̃S̃∗ = W . Consistency of S is provided by the constraint
I(S) = 0, where I is defined by:

I(S) = S − STFT [STFT−1[S]] (3)

In many applications such as the ones mentioned in the in-
troduction, the array W used for reconstruction might not itself
belong to the set of “consistent spectrograms” (the image of SN,M
by the operator M → |M |2). This might be due to the fact that
the estimation of W is corrupted by noise (for denoising), or the
cross-talk of other sources (for source separation), or because W
is obtained through an imperfect interpolation algorithm (for time-
stretching). In this case, there is no signal x that exactly verifies

1It should be noticed that some authors alternatively refer to spectro-
gram as the set S, i.e. the complex STFT coefficients

Figure 1: Domains involved when processing STFTs and spectro-
grams (expanded from [8]).

SxS
∗
x = W . There, the goal is to find the closest approximation,

that minimizes the norm of I(S) (for some matrix norm, usually
the Froebenius norm). In other words, one looks for the set SN,M
of consistent STFTs that verify SS∗ = W .

Because we are specifically addressing a problem that uses
compact STFTs, we discard techniques involving oversampling of
each DFT [13, 14]: oversampling the DFT, while retaining the
overlapping of the frames, introduces a redundancy of information
that is too large to be handled in most practical cases. Signal re-
construction in those conditions can be considered solved by the
previous studies even in the case of an isolated frame [15]. In this
review, we will focus on techniques that, on the contrary, do not
require specific constraints on the window design, the DFT over-
sampling, or hop size (we just assume that the STFT and inverse
STFT are fixed and well-defined).

When trying to estimate the phase of an STFT from its mag-
nitude only, some problems arise: the unicity of the representation
[16, 12] discussed in section 3, how to quantify the convergence of
the reconstruction (section 5), but also the tendency of reconstruc-
tion algorithms to catch local, non optimal, minima. A notable
issue preventing optimal convergence is the so-called stagnation
of the optimization [17] and will be discussed in section 8.

3. UNICITY OF THE REPRESENTATION

When addressing the problem of perfect reconstruction of a sig-
nal from its spectrogram, the first question that comes in mind is
the unicity of the representation: can two different signals pro-
vide the same spectrogram ? The work of Nawab [12] produced
some practical answers to the problem while only providing suf-
ficient but not mandatory conditions to guarantee the unicity of
x represented by W (n,m). Some other works, such as [16] ad-
dressed signal uniqueness with the use of asymmetric windows
(w(n) 6= w(N − n)), but such window is not suited for analysis
of the spectrogram for the sake of phase linearity amongst other
causes.
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3.1. Sign indetermination

Some simple examples can be given to prove that unicity is
not always verified. This is caused by the sign indetermination
|STFT [x]| = |STFT [−x]|. Take for instance two signals x1

and x2 such as they do not overlap: x1 = 0 outside [N1A;N1B ]
and x2 = 0 outside [N2A;N2B ] with N1B + N < N2A, then
x1 − x2 and x1 + x2 have the same STFT S(n,m).

Therefore, there are at least two signals x and−x verifying the
spectrogram W and the solution can only be unique under some
constraints such as positivity of the signal (for instance in the case
of image processing). But when this sign indetermination happens
between big chunks of an audio signal, this case is either perceptu-
ally insignificant or can be countered by some simple knowledge
on the signal.

However, it will be shown that this sign problem can happen
locally in the reconstructed signal and regardless of its structure,
this phenomenon is called stagnation by Fienup et al. [17] and will
be discussed in section 8.

3.2. Conditions for the unicity of the reconstruction

The important conditions providing unicity in the case of a partial
overlap, that is when hope size isR > 1, are given by Nawab [12]:

1. Known window function w(n)

2. Overlap of at least 50% (R ≤ N
2

).

3. Non zero window coefficients within the interval [0;N ]

4. One sided signal, to define at least one boundary

5. Knowing R consecutive samples of the signal to be recon-
structed starting from the first non-zero sample.

6. Less than R consecutive zeros samples in the signal.

Condition 1 of knowing w(n) can be simply explained. This
was illustrated by Le Roux in [18], with the example of design-
ing an inconsistent STFT H ∈ CN×M so that

∑ |H| > 0 but
STFT (STFT−1(H)) = 0 only for a given analysis/synthesis
window pair. Since each analysis window has a different time-
frequency smearing (see figure 6, in section 6), the information
contained in the spectrogram is directly linked to w. This is espe-
cially true for inconsistent STFTs, of which the spectrogram is a
particular case.

Condition 2 suggests that the amount of data contained by
|S(n,m)| is superior or equal to the one originally present in x,
while condition 3 prevents missing informations due to zeros inw.
Without any a priori on the signal, necessity of those two condi-
tions seems rather natural. Enforcing regularity on the signal (like
the techniques discussed in section 7) can lower those specific con-
ditions.

Condition 4 imposes boundaries to the signal, allowing injec-
tion of some informations for the reconstruction, similar to the ap-
proach of Hayes and Quatiery in [19]. These boundaries were also
used by Fienup et al. [17] but the support of an audio signal is too
big in regard to the analysis window in order for such condition to
be efficient. In fact, much more happens between the boundaries.

Since Nawab’s work was based on successive interpolation of
the signal, conditions 5 and 6 were established in order to know
precisely the first R samples of the signal and continuously inter-
polating the signal without gaps. We feel that condition 5 is not
always necessary, but condition 6 prevents sign indetermination
problems like illustrated in section 3.1.
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Figure 2: Spectrogram differences between two simple signals x0

and xπ/4.

Some examples will be given throughout the paper in order to
show that if the signal is not unique, it often comes down to the
duality of the sign indetermination. We will also show in section 8
that greater issues are preventing the reconstruction and that unic-
ity of the solution can be overlooked until those issues are solved.
However those issues will often be linked to the unicity problem.

3.3. Phase rotation and spectrogram invariance

One common misconception about spectrogram is that it is phase
invariant. Of course, if one were to work with complex signals,
this phase invariance would be verified, but whether this still holds
for real signals (whatever this means) is not so obvious.

For real signals, the only way to appropriately define the phase
of the signals is within the framework of analytic signals. Let us
assume that the signal x under study is the real part of a mono-
component analytic signalH with slowly-varying amplitudeA(t):
x(t) = Re(H) = A(t) cos(ωt), and let us construct the families
of functions xΦ for the same amplitude A and frequency ω, but
with varying absolute phase Φ: xΦ = Re[HeiΦ]. If phase invari-
ance were to hold, the spectrogram |SΦ|2 of xΦ would be the same
as |S0|2 for any value of Φ.

Figure 2 shows the signal, spectrogram and absolute spectro-
gram difference of xΦ for Φ = 0 (left) and Φ = π

4
(right) for three

frequencies (300, 1500 and 4050Hz) at 16kHz sampling frequency
and for an envelopA in the shape of a Hanning window with three
different amplitudes (1, 1

2
and 3

4
). The difference is computed as

| |S0| − |Sπ/4| |2. As one can see, this difference has an energy
far from negligible.

Two interesting remarks can be made: first, the error is spread
throughout the spectrum and not only in the vicinity of the signal’s
frequency. Second, this error is not either concentrated in time
around the onset or offset of the tones: it can be shown as well that
there is a similar error even when the amplitude of the signal stays
constant.

Figure 3, shows the average spectrogram difference C(S0, SΦ)
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Figure 3: Spectrogram differences (equation (4)) for varying Φ in
xΦ.

as defined by

C(S0, SΦ) =

√∑
n,m | |S0(n,m)| − |SΦ(n,m)| |2∑

n,m |S0(n,m)|2 (4)

for varying Φ from 0 to 2π. One can see that the difference is π
periodic due to the sign indetermination of |SΦ(n,m)| and that
most of the time it is inferior to 0.01 (i.e. -20dB).

This small experiment leads to the following rule of thumb:
strictly speaking, the STFT is not phase invariant. However, when
the computation is only made with low precision (less than 20
dB), the standard error criteria on the spectrogram don’t “see” the
phase. When minimizing this error, it appears that the original
signal is indeed the true minimum but within a very flat surface.
However, this fact that STFT is not strictly invariant to phase is
good news: phase information seems to be present to some extent
in the amplitude, but as a second-order effect. We shall see that this
observation is the basis for discussion on the main issues making
phase reconstruction such an intricate problem.

3.4. Perfect reconstruction

While the signal to be reconstructed from W is not necessarily
unique, our goal is to find the most accurate reconstruction in re-
gard to the original signal x. We call perfect reconstruction the
estimation of the signal x̃ with an error of at most the measure er-
ror on x. If x is 16bits sampled, then the error power to achieve is
approximatively equal to the quantification error power, that is to
say approx. -90dB.

Moreover, we will consider perfect reconstruction as the esti-
mation of x or−x. That is, we are implicitly discarding the global
sign problem in the determination of x. We will show in section
8 that local indetermination of this sign can cause convergence is-
sues.

4. ITERATIVE RECONSTRUCTION OF THE SIGNAL:
THE GRIFFIN AND LIM BASELINE ALGORITHM

Based on the Gerchberg and Saxon algorithm [20], Griffin and Lim
proposed the first global approach to solve the problem of signal
reconstruction from spectrograms [3]. Due to the good perceptual
results despite its simplicity for a basic implementation, this recon-
struction algorithm remains the baseline for all subsequent work.
Note that, as in the case of Gerchberg and Saxon reconstruction of
the phase, uniqueness of the reconstruction is not guaranteed.

The approach from Griffin and Lim relies on a two-domain
constraint, similar to the work of Hayes [15]. Before reconstruc-
tion, the spectrogram W of the STFT S is known but the phase

STFT

STFT

S  (n,m)=|S (n,m)|

x(t)~

i >= max ?

yes

no

x(t)~
i

i+1
S (n,m)
|S (n,m)|
i

i
0

-1

Figure 4: The iterative framework of Griffin and Lim [3]

∠S is unknown and can be initialized to 0 or at random values. In
the spectral domain, absolute values of the estimated STFT S̃i are
constrained to |S0| =

√
W at each iteration i, while the temporal

coherence (as defined by equation (3)) of the signal is enforced by
the operator STFT [STFT−1]].

The algorithm is presented on figure 4. First, it is initialized
with S0 =

√
W . At iteration i, the estimated STFT S̃i is computed

and ∠S̃i is given to the original spectrogram so that the resulting
time domain signal xi is computed by inverse STFT of |S0| S̃i

|S̃i|
.

In [3] it is shown that the mean square error between the STFT
of the signal xi and the estimated STFT of amplitude|S0| can be
expressed as a distance:

d(S0, S̃i) =
∑

n,m

| |S0| S̃i|S̃i|
− S̃i |2 (5)

and can be reduced to:

d(S0, S̃i) =
∑

n,m

| |S0| − |S̃i| |2 (6)

It is also demonstrated that the gradient of d verifies
∆d(S0, S̃i) ≤ 0 and that this technique therefore reduces the dis-
tance d at each iteration.

This algorithm presents three main drawbacks:
1. First, its computation requires offline processing, as it in-

volves computation of the whole signal at each iteration,
and computation of both an STFT and an inverse STFT.

2. Second, convergence can be very slow, both in terms of
computation time per iteration and by the number of iter-
ations before convergence.

3. Finally, the algorithm does not perform local optimization
to improve signal consistency, neither does it provide a con-
sistent initialization of the phase from frame to frame.

Griffin and Lim’s algorithm often provides time-domain sig-
nals that sound perceptively close to the original. However, de-
pending on the sound material and the STFT parameters, some
artifacts can be perceived: extra reverberation, phasiness, pre-
echo... Indeed, while looking at the temporal structure of the re-
constructed signals, we can see that they are often far enough from
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the original to produce RMS error above 0dB. Although the corre-
sponding sound quality may be sufficient in many cases, there are
some application scenario where this may be a severe limitation.
For instance, in the context of audio source separation, one may
want to listen to the residual signal without the estimated source
(karaoke effect): obviously a badly estimated time-domain signal
prevents a correct source subtraction from the mix.

5. CONVERGENCE CRITERION

In order to assess the performance of the reconstruction, different
criteria have been proposed. The most common ones are:

1. The spectral convergence C, expressed as the mean differ-
ence of the spectrogram W with the absolute value of the
reconstructed STFT S̃ as expressed by:

C =

√√√√
∑
n,m |

√
W (n,m)−

√
S̃(n,m)S̃∗(n,m)|2

∑
n,mW (n,m)

(7)
The convergence criterion C relates directly to the mini-
mization process of Griffin and Lim’s technique (equation
(6)). This is the distance between the current coherent spec-
trogram and the target spectrogram. Then, when C = 0,
perfect reconstruction is achieved modulo unicity of the so-
lutions.

2. The consistency I of the estimated STFT S̃ as given in
equation (3). Again, I = 0 means an accurate reconstruc-
tion, up to invariants.

3. The signal x to reconstruction x̃ root mean square error
power:

R =

√∑
(x(n)− x̃(n))2

∑
x(n)2

(8)

This criterion, analogous to the inverse of the signal-to-
noise ratio, gives a better view of the reconstruction quality
(we chose error over signal-to-noise ratio in order to ob-
serve the variations of C andR in the same direction). Note
that the computation of R requires the knowledge of the
original signal x. Therefore, it can only be used in (oracle)
benchmarking experiments, and not in (blind) practical es-
timation. In this case, when R = 0 the reconstruction is
strictly equal to the original.

Obviously, the choice of the convergence criterion will have
an effect on the discussion of the results obtained by each method.
Even if R = 0 is equivalent to C = 0, one can easily find very
small values of C associated with high values ofR.

Such issue is illustrated on figure 5 in the simple case of the
DFT. The signal x used to compute figure 5 is a speech signal
sampled at 16kHz and quantized on 16 bits. A random phase delay
Φ(n) is computed, respecting the Hermitian symmetry (Φ(−n) =
−Φ(n)), and making sure that this delay is always an integer in
samples ∀n. Then, the phase of the DFT of x is shifted by Φ(n),
multiplied with an integer factor k, with k ranging from 1 to 20.
This is done through

X̃k(n) = Xk(n)eikΦ(n)

The resulting time-domain signal is called x̃k. The two signals
x and x̃k have the same energy (XX∗ = X̃kX̃

∗
k ), but are ran-

domly delayed across frequencies. The figure displays the conver-
gence criterion (20 log C) and the reconstruction error (20 logR)

0 5 10 15 20
20

10

0

10

phase perturbation

dB

 

 
convergence C
error R

Figure 5: Difference between the C and R criteria used to eval-
uate the signal reconstruction, as a function of the amplitude of a
random delay (integer in samples) on the DFT spectrum.

both in dB between signals x and x̃k. Since there are two possi-
ble solutions (x and −x), R displayed on figure 7 is computed as
min(R|x,R|−x). In this figure, one can see that the two criteri-
ons evolve separately. While C is staying at approx. −14dB, R
is slowing rising to values above 0dB. This illustrates the fact that
C may not be a good indicator of the reconstruction quality, with
respect to the original signal.

6. BLIND TECHNIQUES FOR SIGNAL
RECONSTRUCTION

In this section, we review recent techniques that have been de-
signed to improve Griffin and Lim’s algorithm.

6.1. STFT consistency

STFT consistency of equation (3) can lead to the spectral domain
only formulation of Griffin and Lim’s least square estimation of
the signal. In [8], an extensive work is presented to show how
equation (3) can be used for the estimation of the phase of the
corresponding coherent STFT. For instance, equation (10) gives a
phase estimate Φ at each coordinate (n,m) of the STFT:

I(n,m) = S(n,m)− STFT [STFT−1[S(n,m)]]

I(n,m) =

N
2
−1∑

p=−N
2

Q−1∑

q=1−Q
e
i2π qn

Q α(p, q)S(n− p,m− q) (9)

Φ(n,m) = ∠ (S(n,m) + I(n,m)) (10)

with α(p, q) = − 1
N

∑
k
w(k)s(k)
s̃(k)

e−i2πp
k+qR

N + δpδq

The termα(p, q) is the convolutive kernel applied to the STFT,
that ensures both time domain (coordinate q) and frequency do-
main (coordinate p) coherence of the representation (this is the
equivalent of the so-called “reproducing kernel” in wavelet anal-
ysis). This kernel is directly computed with the analysis and syn-
thesis windows, and is invariant for the whole STFT. The shape of
different kernels α(p, q) is given on figure 6 for four different win-
dow functions. The temporal dispersion of the kernel has a weak
dependency on the window shape, but the frequency distribution
is in direct relation to the spectral leakage of the window function
[21].

The expression of I(n,m) given by equation (9) makes ex-
plicit the consistency criterion given in equation (3). This criterion
is particularly efficient to provide information on the local coher-
ence of the STFT as the phase correction depends directly on the
value of |I(n,m)|

|S(n,m)| . Equation 10 is also the direct application of
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Figure 6: The influence of different windows on the STFT repre-
sentation for an overlap of 75%. (amplitudes in dB)

Griffin and Lim optimization and follows the convergence of dis-
tance d defined in equation (6).

Additional studies in the same line [8] proposed solutions to
lower the computation time while keeping a similar convergence
speed. First, limiting the frequency domain span of the window α
drastically lowers computation time while introducing only mini-
mum error. When using analysis windows with low spectral leak-
age, one can reduce the term p of equation (9) to, for instance, the
range [−2; 2]. This simplification significantly reduces the com-
putation time, at the cost of a small error typically below 0.1%.
Figure 6 presents some shapes of α(p, q) for different analysis and
synthesis windows. We can see that the energy is concentrated
around (0, 0) especially for the half sinus window (used for the
experiments in [8, 22]), allowing further approximation to the fre-
quency bins around 0.

The second simplification is the use of sparseness of the signal
in the time-frequency domain, in order to only update the bins of
high energy. At each iteration, bins of lower and lower energy
are updated. Empirical results shows that such simplification does
not significantly modify the reconstructed signal x̃ at convergence,
while drastically lowering computation time.

When using both simplifications, computation times given in
[8] show a reduction by a factor 10 to 40 over the original Grif-
fin and Lim iterative STFT reconstruction. This method improves
convergence speed but does not significantly improve the final
quality of the reconstruction. Note that both the computation time
and the framework of this technique allow for real-time implemen-
tation, with minimal delay.

R
current frame

Figure 7: Real Time Iterative Spectrogram Inversion for an over-
lap of 75%.

6.2. Real-Time Iterative Spectrogram Inversion

The main drawback of Griffin and Lim’s reconstruction algorithm
is the processing of the whole signal for each iteration, preventing
any use for on-line processing. Zhu and al. [23] proposed two
implementations of the reconstruction, starting with a constraint
of a real-time implementation.

First, the baseline Real Time Iterative Spectrogram Inversion
(RTISI [24]) technique is based on the coherence of preceding re-
constructions in regards to the frame begin reconstructed. This
technique illustrated on figure 7, can be decomposed into two
steps:

1. Consider the m-th frame Sm of the STFT S(n,m) with its
window function wm and the signal x̃m which contains the
weighted sum (equation (2)) of formerly processed frames.
Then, ∠Sm0 is initialized so that:

∠S̃m0 = ∠DFT [wmx̃m]

2. Then, the iterations are done as in Griffin and Lim, but re-
strained to frame m. At each step:

∠S̃mi = ∠DFT [wmx̃m + wmx̃
m
i−1]

x̃mi (l) = s(l)DFT−1[S̃mi ]

This method is especially suited for multiple window length STFT,
in a similar way to the window-switching method of MPEG 2/4
AAC coding [25]. However, RTISI offers results somewhat lower
than Griffin and Lim’s, mainly caused by the lack of look-ahead
and optimization toward the future of the signal.

Therefore, a second method, RTISI with Look-Ahead (RTISI-
LA [26]) was proposed. It is described by the scheme of figure 8.
This method performs phase estimation of RTISI on k frames after
the current one, ensuring that the estimated phase for the frame
soon to be committed in the resulting signal s̃ is both in agreement
with the past and future evolutions of the signal.

Convergence values C obtained for the RTISI-LA algorithm
are usually better than the ones obtained with Griffin and Lim, but
only in the order of 6dB of improvement. This improvement is
mainly based on the emphasis on time coherence of the signal, as
construction is done in both ways (forward and backward). Addi-
tional work from Gnann et al. [27] has focused on the phase initial-
ization and processing order of the reconstruction. By processing
the frame according to their energy and initializing the phase with
unwrapping, one can improve the convergence of the reconstruc-
tion by 1 to 5dB.

Additional work from Le Roux [22] showed the same ten-
dency when adding the phase initialization of RTISI-LA to the
STFT consistency-based reconstruction.

DAFX-6

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-380



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

commit
frame

frames to
commit

already
committed
frames

k

R

ponderation window

Figure 8: Real Time Iterative Spectrogram Inversion with Look
Ahead of k = 3 and 75% of overlap.

6.3. Summary on existing techniques

Existing techniques are gradually introducing more and more con-
straints in the time domain, compared to the first approach of Grif-
fin and Lim. They are still providing results that are close to the
original spectrogram (convergence in the C criterium) but far from
the original time domain signal. This tendency to generate inco-
herent signals in the time domain will be explained in the section 8
addressing fundamental issues shared by these current approaches.

Informal experiments were done using the initialization pro-
posed in condition 5 and 6 of section 3 (knowledge of first sam-
ples of the signal) using the RTISI-LA technique. Unfortunately,
this condition was not able to improve the reconstruction quality.
Indeed, these conditions are neither necessary nor sufficient to per-
form perfect signal reconstruction, with both STFT coherence or
real time spectrogram inversion.

7. INJECTING ADDITIONNAL INFORMATIONS

The three algorithms presented before do not show high accuracy
in the reconstruction of the signal. Reconstruction errors R are
often above zero, and rarely below −6dB. Therefore, injecting
additional information on the signal could be a possible way to
achieve a better reconstruction.

As perfect signal reconstruction involves very small variations
on the spectrograms, much lower than the convergence values C
usually obtained with the previous methods, one solution is to in-
ject additional information during reconstruction. This informa-
tion can be a prior on the shape of the signal, local phase informa-
tion or shape criterion.

7.1. Additional knowledge on the signal spectrum

Alsteris and al. [5] have proposed an extended study on the pos-
sibility of reconstructing the signal while only knowing partial in-
formation of the spectrum and especially the knowledge of phase
sign, phase delay or group delay. Moreover, when a prior on the
position of the poles and zeros of the z-transform of each frame of
the STFT is known, reconstruction can be made using the known
relations between amplitude and phase of a DFT [7].
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Figure 9: Convergence and reconstruction noise level for Griffin
and Lim’s method, with and without knowledge of the sign of the
original phase.

Phase sign, alternatively, has been shown to be a powerful ad-
dition to the spectrogram [28] in order to achieve a reconstruction
of good quality for a very small amount of extra information (only
one bit per bin). However, such information is not always avail-
able, especially in the case of blind source separation when the sig-
nal to be reconstructed is not known well enough. New approaches
such as informed source separation could however benefit from the
information of phase sign.

On figure 9, both convergence C and reconstruction noise R
are shown for the Griffin and Lim reconstruction (512 samples half
sinus window with 75% overlap) with or without knowledge of the
phase sign. The test signal is a music sample of 2 seconds, sam-
pled at 44.1kHz. One can see that phase sign does not improve
the convergence speed of the algorithm in terms of C, but dra-
matically enhances the quality of the reconstruction, as C and R
become strongly correlated. Perceptively, transients are better
reconstructed with less smearing and artifacts.

However, as shown with this example, sign information does
not seem sufficient to achieve perfect reconstruction in practice, as
the reconstruction noise levelsR remain high even after 100 itera-
tions. However, convergence could probably be faster while using
this prior on phase sign for proper initialization of the algorithm.

7.2. Probabilistic inference

Another idea that has been explored is to use some statistical prop-
erties of the signal. The work proposed by Achan [29] uses an au-
toregressive model of the speech signal to be reconstructed, in or-
der to improve the convergence of the algorithm. As mentioned in
the article, the proposed method performs only slightly better than
the classic Griffin and Lim (approx. 2 to 4dB depending on the
model) and resorts to a posteriori regularization of the signal. This
can however be an interesting approach when the class of signals
to be recovered is well defined. Also, the idea beneath this tech-
nique is interesting, as concurrent optimization is done both in the
time and STFT domain, whereas blind techniques only constrain
the STFT domain.
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7.3. Local observations

Spectrograms also possess local properties that can be extracted
with or without a prior in order to recover the original signal:

Nouvel [30] proposed the iterative estimation of local patterns
of the time-frequency diagram, patterns based on a polynomial ex-
pression of the phase, for instance. The algorithm proposed per-
forms better than Griffin and Lim only when there is no overlap.
Missing information is then brought to the reconstruction by the
prior learning of the polynomial coefficients.

Another approach is the Max-Gabor analysis of spectrograms
from Ezzat et al. [31]. It uses local patch of the spectrogram where
local amplitude, frequency, orientation and phases are estimated.
The information are used in order to synthesize the time-domain
signal with Gabor functions. Unfortunately this study does not ad-
dress the quality of the reconstruction by comparing it to Griffin
and Lim as it was not aimed originally at the task of phase recov-
ery.

7.4. Conclusion: usefulness of additional information

In this section we presented some recent techniques that perform
signal reconstruction from spectrogram while having additional in-
formations on the signal to reconstruct. We saw that despite some
advanced models, the proposed algorithms are only slightly better
than the original framework from Griffin and Lim, especially in
terms of the time-domainR error criterium.

Even when using the sign of the STFTs, Griffin and Lim al-
gorithm does not convergence faster, nor better: only the quality
(SNR) improves. This proves that most of the work to improve
the convergencel has to be done on the reconstruction algorithms
themselves, as additional information only serves at improving the
final quality. The issues that are preventing the convergence de-
spite the additional information are discussed in the next section.

8. OVERLOOKED ISSUES

As far as the state of the art goes, a number of issues regarding
signal reconstruction from spectrograms seem overlooked. One
of them is the use of the convergence criterion C which requires
extremely high convergence (difference of approx. -90dB) in order
to achieve a perfect reconstruction of the signal. Other issues are
caused by the way information is spread in the spectrogram or by
the minimization technique of the reconstruction itself.

8.1. Phase information and spectrogram

The first major issue of signal reconstruction from spectrograms is
the effect of phase information in the modulus of the STFT. Be-
cause the STFT is obtained via windowing, one can find at bin
n the contribution of many spectral components added to one an-
other, thus forming a linear system [13, 14, 32]. However, such
system only finds a suitable solution under three precautions:

1. The analysis window has to produce a lot of spectral leak-
age. The Gaussian window is a good example of such win-
dow and is often used.

2. The overlap has to be very high, in order to provide as little
time downsampling as possible in every frequency channel.

3. Usually DFT are oversampled, bringing yet another layer
of redundancy in the STFT
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Figure 10: Spectrogram amplitude difference with or without
phase for two signal x and xt. xt is the signal x translated 20
samples to the left. Spectral difference C between the two frames
is -25dB.

In real analysis conditions, when using windows with a low
spectral leakage and a rather low overlap (usually 50% or 75%),
such an analytic resolution of the system is not possible, mainly
due to the precision of both the data contained in the STFT and the
complexity of the system to solve.

One example is given on figure 10 where the same frame of
two different STFTs of a speech signal sampled at 16kHz and
quantized on 16 bits are displayed: in red, the frame inverse DFT
of a frame of the STFT of original signal x and in black the same
frame of the STFT of xt, the signal x shifted by 20 samples to
the left. On the top row, the inverse DFTs are presented with zero
phase (magnitude only) and on the bottom row the time-domain
inverse DFTs with the original phase information are given. De-
spite the vast difference between the two frames, the zero phase
responses are very similar (differences are barely visible around
samples 160 and 350). Difference C of the two signals on the top
row of figure 10 is -25dB, approx. the convergence limit of Griffin
and Lim’s technique. Although this figure is a good example of
the poor effect of phase on the magnitude of the STFT, it will also
serve well the illustration of stagnation by translation given later.

8.2. Stagnation caused by sign indetermination

Fienup et al. [17] proposed an interesting study on the problems
preventing iterative algorithms such as Griffin and Lim’s to con-
verge toward a unique solution. It described this issues as stagna-
tion, a self explanatory term that illustrates the inability of the algo-
rithm to converge toward an optimal solution because it reached a
local minima of optimization. Although Fienup’s work was based
on image processing, two of the three stagnations described in [17]
can very well be observed on one-dimensional signals.

The first stagnation is linked to the sign indetermination il-
lustrated in section 3. During reconstruction, the algorithm can
be stuck between a mix of the two possible solutions x and −x,
because it converged toward features of both signals. This phe-
nomenon is illustrated on figure 11. On this figure, one can see that
at the beginning the estimated signal x̃ is in phase with x whereas
at the end it is in phase with −x. On the middle on the figure, one
can see a characteristic point when x̃ gets closer to zero, illustrat-
ing an inflection point from one frame to another. Note that the
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Figure 11: The first stagnation: the algorithm estimation (bottom)
is stuck between a mix of x (top) and −x (middle). Estimation
with an half sinus window of 512 sample long, overlap of 75%.

difference between the two local minima is approximately equal
to the window size. Such stagnation is also observed on signals
reconstructed with RTISI-LA and the STFT coherence. Moreover,
this stagnation is not consistent along the frequency axis: a closer
look to the signal presented on figure 11 shows that phase coher-
ence toward x or −x is only true for the first harmonic.

This first stagnation is countered by the knowledge of the sign
of the STFT presented in section 7 and is the main cause of the
very high noise estimation levelsR observed when reconstructing
a signal with either of the three method presented in section 6.
Basically, knowing the sign of the STFT causes the uniqueness
of the solution to be true, avoiding a lot of local minima during
minimization.

An other stagnation, also explained by the sign indetermina-
tion is what Fienup called "fringes". Sadly, this observation is
hard to make on audio signals but is still present during the recon-
struction. Because of this sign indetermination |DFT [x(−n)]| =
|DFT [x(n)]|, frames happen to be estimated in the wrong time
direction. Most of the times, overlap is enough to prevent such
stagnation, which is then the most unlikely to happen.

Solutions to overcome these stagnations proposed in [17] do
not apply well to signal processing, as they were designed for im-
age processing. However, the idea of Monte Carlo method and ar-
tificial boundaries of the reconstruction seem interesting and easily
transposable to the signal domain.

8.3. Stagnation caused by translation

The third stagnation is the translation of the signal. Because the
TFD operator is circular, translation of the signal does not always
drastically change the magnitude of the transform (figure 10) de-
spite the windowing. Therefore, convergence can happen to a
translated version of the original signal: like in figure 12 where
a signal and its reconstruction with Griffin and Lim’s technique
are presented. This problem can be linked to the phase rotation
problem addressed in section 3 but on local portions of the signal.

time
 

 
original
Griffin and Lim

Figure 12: Stagnation by translation for a Griffin and Lim recon-
struction (half sinus 512 sample window, 75% overlap, 200 itera-
tions)

8.4. Different stagnation per frequency band

An other issue of the stagnation is that it happens at different levels
on different frequency bands. Because the coherence of the STFT
is limited (surfaces of figure 6) in both time and frequency, a gap
in energy can cause different patchs of the reconstructed STFT
to present different kinds of stagnation. As music signal often
presents harmonic structure or colored noise, localized energy is
very common.

An illustration of this phenomenon is given on figure 13 where
a speech signal (the original, 16bits and 16kHz, at approx. 200Hz
fundamental) and its reconstruction from its spectrogram (Grif-
fin and Lim, 512 sample half sinus window, 200 iterations) are
showed for different frequency band. The filter bank presents a
passing band of 400Hz and a zero phase to prevent delay to be
inserted between observations.

On the two first bands, from 1600 to 4600Hz, the signal is
well reconstructed and is mainly presenting a small stagnation by
translation. However, the direction of the translation is not the
same for the two bands.

On the bands three to five, one can mainly see a stagnation
by sign indetermination with characteristic inflection points based
around samples 2300 and 2460 for band 3, 2375 for band 4 and
2325, 2495 for band 5. Once again, even if the bands are present-
ing the same type of stagnation, their evolution is different, mainly
dependent on the local frequency.

It can be noted that, as expected, this stagnation issue gets
more and more problematic as frequency increases. At low fre-
quencies, the overlap between adjacent windows represents a
smaller phase increment than at high frequencies. This may give
an insight on why standard phase reconstruction offers a rather
good sound quality despite a low SNR: at high frequencies, the ear
is not so sensitive to the phase but rather to the general energy in
the frequency bands. It may also indicate that algorithms based in
the injection of additional information should have different trade-
offs in terms of precision versus amount of extra information, in
different frequency bands.

9. APPLICATIONS TO DIGITAL AUDIO PROCESSING

In the case of source separation in a linear instantaneous stationary
mixture, one often knows partial information on the source to be
reconstructed, such as its spectrogram (or corrupted spectrogram).
In this case, Gunawan [9] proposed a framework in order to use the
information contained in the mixture Mx of N sources to help the
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Figure 13: Signal Comparison (original in black, Griffin and Lim’s reconstruction in red) for different frequency bands (zero phase filter
bank). Stagnation are not consistent across frequency

phase estimation. While constraining the spectrogram Wj of the
j-th source, one can reconstruct its phase with the following steps:

Ŝk+1
j =

√
Wje

i∠STFT (STFT−1(Sk
j + ek

N
)) (11)

ek+1 = Mx −
∑

j

Ŝk+1 (12)

This way, stagnations such as sign indetermination or trans-
lation are automatically compensated by the error computed on
equation (12). The phase of the mixture is used as an additional
information to constrain the reconstruction. Of course, this study
provides the best results when the target spectrogram of each
source Wj is perfectly known, while in practice the target spec-
trogram is only an estimate. Results are also conditioned by the
number N of sources, with the best results for only 2 sources.

An other study [10] proposed by Le Roux used the spectro-
gram consistency (the fact that S = STFT (STFT−1S)) as a
constraint for the maximum likelihood estimation of a Wiener fil-
ter αj for the j-th source. Such filters are used to perform adaptive
filtering (for instance, in denoising) but usually rely on the energy
ratio between the sources:

αj(n,m) =
Wj(n,m)∑
kWk(n,m)

(13)

Ŝ = αM (14)

By explicitly adding the constraint that

Ŝj − STFT (STFT−1Ŝj) = 0

into the equation, results show an improvement in SNR of around
3dB when applied on speech denoising.

10. SUMMARY AND CONCLUSION

In this paper we presented a state of the art on the question of
signal reconstruction from spectrogram. We especially addressed
the problem of perfect reconstruction and the issues preventing ex-
isting algorithms from converging to one (or one of the possible)
solution.

Unicity is an important question to be asked in this case, but
ordinary conditions are sufficient to guarantee that there is no more
than two possible solutions for the reconstruction, given by the
sign indetermination of the magnitude operator. Still, we saw
that duplicity of the solution is the cause of the stagnation of the
minimization by sign indetermination.

The three current techniques of blind reconstruction (Griffin
and Lim, RTISI-LA and STFT coherence) have been described and
discussed. Although there has been more than 20 years between
Griffin and Lim’s and the two other techniques, overall reconstruc-
tion quality has not significantly improved. Of course, computa-
tion time and implementation (especially in the case of real-time
processing) have been a huge development part of such techniques,
but we feel that most of the work has yet to be focused on the ac-
tual process leading to the optimal convergence of the algorithm in
order to get better than just perceptively close reconstructions.

Given the amount of information present in the spectrogram,
especially with the typical value of 75% overlap, perfect recon-
struction (i.e. reconstructing x from |STFT [x]|with error inferior
the measure error on x itself) should be possible. We raised how-
ever a number of issues preventing convergence of the reconstruc-
tion toward the absolute minima. Those issues, called stagnation
by Fienup [17] are configurations that prevent further minimiza-
tion of the error. Stagnation presented are of two types: stagnation
by sign indetermination (time inversion and signal inversion) and
stagnation by translation. Because music signals are not evenly
distributed on the time-frequency plan, stagnation can occur inde-
pendently on local patches of the spectrogram both in time and
frequency and is therefore difficult to correct.

Future work should then emphasize the resolution of the stag-
nation problems highlighted in this article, either with side infor-
mation or using blind reconstruction. Whereas solving the prob-
lem of sign indetermination should be rather simple as one can
observe sign coherent patches in the reconstructed STFT, phase
translation if more problematic as it produces time delay that varies
for the whole time-frequency domain.
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ABSTRACT

Identifying the acoustical modes of a resonant object can be achieved
by expanding a recorded impact sound in a sum of damped sinu-
soids. High-resolution methods, e.g. the ESPRIT algorithm, can
be used, but the time-length of the signal often requires a sub-band
decomposition. This ensures, thanks to sub-sampling, that the sig-
nal is analysed over a significant duration so that the damping co-
efficient of each mode is estimated properly, and that no frequency
band is neglected. In this article, we show that the ESPRIT algo-
rithm can be efficiently applied in a Gabor transform (similar to a
sub-sampled short-time Fourier transform). The combined use of a
time-frequency transform and a high-resolution analysis allows se-
lective and sharp analysis over selected areas of the time-frequency
plane. Finally, we show that this method produces high-quality re-
synthesized impact sounds which are perceptually very close to the
original sounds.

1. INTRODUCTION

The context of this study is the identification of acoustical modes
which characterize a resonant object, which is of great use when
building an environmental sound synthesizer (see [1] or [2] for
an insight on such synthesizers). Practically, the analysis is made
from recorded impact sounds, where the resonant object is hit by
another solid object (e.g. a hammer). Assuming that the impact
sound is approximately the acoustical impulse response of the res-
onant object, each mode corresponds to an exponentially damped
sinusoid (EDS). The modal analysis thus consists of estimating
the parameters of each sinusoidal component (amplitude, phase,
frequency and damping). These parameters will be stored, and
eventually modified, before further re-synthesis. In this paper, we
consider only the analysis part.

In the past decades, significant advances have been made in
the field of system identification, especially for estimating EDS
parameters in a background noise. Although the so-called high-
resolution methods or subspace methods (MUSIC, ESPRIT) [3, 4]
were proved to be more efficient than spectral peak-picking and
iterative analysis-by-synthesis methods [5], few applications have
been proposed. One can suppose that the high computational com-
plexity of these methods is a major drawback to their wide use: on
a standard modern computer, the ESPRIT algorithm can hardly
analyse more than 104 samples, which corresponds roughly to 200
ms sampled at 44100 Hz. This is usually too short for analysing

∗ The research leading to this paper was supported by the French GIP
ANR under contract ANR-00301, Métaphores Sonores - METASON. See
the project website http://metason.cnrs-mrs.fr/ for more details.

properly impact sounds which can last up to 10 s. Sub-band de-
composition with critical sub-sampling in each band seems to be
a natural solution to overcome the complexity problem, as it has
already been shown in [6] and [7]. Another drawback is that ES-
PRIT gives accurate estimates when the background noise is white,
which is usually not the case in practical situations. This problem
can be overcome by the use of whitening filters. The estimation
of the model order (i.e. the number of modes) is also an important
issue. Various methods have been proposed for automatic esti-
mation of the order, e.g. ESTER [8], but this parameter is often
deliberately over-estimated in most practical situation.

In this paper, we propose a novel method for estimating the
modes with ESPRIT algorithm: we first apply a Gabor Transform
(GT), which is basically a sub-sampled version of the short-time
Discrete Fourier Transform (DFT), to the original sound in order
to perform a sub-band decomposition. The number of channels
and the sub-sampling factor depend on the Gabor frame associated
to the transform. We show that an EDS in the original sound is
still an EDS inside each band, and the original parameters can be
recovered from a sub-band analysis using ESPRIT. Furthermore, if
the number of frequency sub-bands is high enough, it is reasonable
to assume that the noise is white inside each sub-band. We also
propose a method to discard insignificant modes a posteriori in
each sub-band.

The paper is organised as follows: first, in a brief state-of-the-
art, we describe the signal model, the ESPRIT algorithm and the
Gabor transform. Then, we show that original EDS parameters can
be recovered by applying the ESPRIT algorithm in each frequency
band of the Gabor transform. In the next part, we describe an
experimentation on a real metal sound, and show the efficiency of
our method. Finally, we discuss further improvements.

2. STATE OF THE ART

2.1. The signal model and the ESPRIT algorithm

The discrete signal to be analysed is written:

x[l] = s[l] + w[l] (1)

where the deterministic part s[l] is a sum of K damped sinusoids:

s[l] =

K−1∑

k=0

αkz
l
k (2)

where the complex amplitudes are defined as αk = ak e
iφk (con-

taining the initial amplitude ak and the phase φk), and the poles
are defined as zk = e−dk+2iπνk (containing the damping dk and
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the frequency νk). The stochastic part w[l] is a gaussian white
noise of variance σ2.

The ESPRIT algorithm was originally described by Roy et. al.
[4], but many improvements have been proposed. Here, we use the
Total Least Square method by Van Huffel et. al [9]. The principle
consists of performing a SVD on an estimate of the signal corre-
lation matrix. The eigenvectors corresponding to the K highest
eigenvalues correspond to the so called signal space, while the re-
maining vectors correspond to the so called noise space. The shift
invariance property of the signal space allows a simple solution for
the optimal poles values zk. Then, the amplitudes αk can be re-
covered by solving a least square problem. The algorithm can be
described briefly as follows:

We define the signal vector:

x =
[
x[0] x[1] . . . x[L− 1]

]T
, (3)

where L is the length of the signal to be analysed. The Hankel
signal matrix is defined as:

X =




x[0] x[1] . . . x[Q− 1]
x[1] x[2] . . . x[Q]

...
...

...
x[R− 1] x[R] . . . x[L− 1],


 (4)

where Q,R > K and Q + R − 1 = L. We also define the
amplitude vector:

α =
[
α0 α1 . . . αK−1

]T
, (5)

and the Vandermonde matrix of the poles:

ZL =




1 1 . . . 1
z0 z1 . . . zK−1

...
...

...
...

zL−1
0 zL−1

1 . . . zL−1
K−1


 . (6)

Performing a SVD onX leads to:

X = [U1U2]

[
Σ1 0
0 Σ2

] [
V1

V2

]
, (7)

where Σ1 and Σ2 are diagonal matrix containing respectively the
K largest singular values, and the smallest singular values; [U1U2]
and [V1V2] are respectively the corresponding left and right singu-
lar vectors. The shift-invariance property of the signal space leads
to:

U↓1Φ1 = U↑1 , V ↓1 Φ2 = V ↑1 , (8)

where the eigenvalues of Φ1 and Φ2 provide an estimation of the
poles zk. (.)↑ and (.)↓ respectively stand for the operators dis-
carding the first line and the last line of a matrix. Thus, zk can
be estimated by diagonalization of matrix Φ1 or Φ2. The associ-
ated Vandermonde matrix ZL is computed. Finally, the optimal
amplitudes with respect to the least square criterion are obtained
by:

α = (ZL)†x, (9)

where (.)† denotes the pseudoinverse operator.

2.2. The Gabor Transform

The Gabor transform of signal x[l] can be written as:

χ[m,n] =

L−1∑

l=0

g[l − an]x[l] e−2iπlm
M , (10)

where g[l] is the analysis window, a is the time-step and M the
number of frequency channels. (.) denotes the complex conju-
gate. m is a discrete frequency index and n a discrete time-index.
{g, a,M} is called a Gabor frame. For some frames, this trans-
form can be inverted. A necessary condition is a ≤ M (for more
details, see for instance [10]). The signal χ[m,n] for a fixed in-
dexm can be seen as a sub-sampled and band-pass filtered version
of the signal x[l]. As the sub-sampling reduces the length of the
data, we apply the ESPRIT algorithm to each frequency channel
in order to analyse longer signals.

3. ESPRIT IN A GABOR TRANSFORM

In this section, we investigate the application of the ESPRIT algo-
rithm to a single channel of the GT. As the GT is linear, we separate
the contribution of the deterministic part s[l] and the contribution
of the noise w[l].

3.1. Deterministic part

We denote c[m,n] the GT of s[l] in channel m and time index n.
We also note ck[m,n] the GT of the signal zlk associated to the
pole zk:

ck[m,n] =

L−1∑

l=0

g[l − an]zlk e−2iπlm
M . (11)

According to the signal model (2), is can be easily proved that:

c[m,n] =

K−1∑

k=0

α̃k,mz̃
n
k,m, (12)

where the apparent pole z̃k,m can be written as:

z̃k,m = zak e
−2iπam

M , (13)

and the apparent amplitude:

α̃k,m = αk ck[m, 0]. (14)

In other words, the deterministic part of the signal in each channel
is still a sum of exponentially damped sinusoids, but the apparent
amplitudes and phases are modified.

3.2. Stochastic part

Assuming that the time-step a is close to M ensures that the GT
of the noise in each channel is approximately white. Furthermore,
it has been proved that the Gabor transform of a gaussian noise is
a complex gaussian noise [11]. So we assume that the GT of w[l]
in each channel is a complex white gaussian noise.
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3.3. Recovering the signal parameters

As the signal model is still valid, it is reasonable to apply ESPRIT
on c[m,n]. We note cm the vector of GT coefficients in the chan-
nel m and Sm the Hankel matrix built from c[m,n]. Applying the
ESPRIT algorithm to Sm leads to the estimation of the apparent
poles z̃k,m. Inverting equation (13) leads to:

zk = e2iπ
m
M (z̃k,m)

1
a . (15)

Because of the sub-sampling introduced by the GT, it can be seen
from equation (13) that aliasing will occur when the frequency
of a pole is outside the interval

[
m
M
− 1

2a
, m
M

+ 1
2a

]
. To avoid

aliasing, we choose the analysis window g[l] so that its bandwidth
is smaller than 1

a
. That way, the possible aliasing components will

be attenuated by the band-pass effect of the Gabor transform.
We note Z̃Nm the Vandermonde matrix of the apparent poles

z̃k,m (N is the time-length of signal c[m,n]). The least square
method for estimating the amplitudes leads to:

α =
(Z̃Nm)†cm
ck[m, 0]

. (16)

Without noise, according to equation (12), each EDS should
be detected in each channel, which generates multiple estimations
of the same modes. Theoretically, the model order should be set to
K in each channel. However, this is usually a large over-estimation.
Because each channel of the GT behaves like a band-pass filter, an
EDS with a frequency far from m

M
will be attenuated and consid-

ered as noise. Thus practically, the exact number of detectable
components in each channel is unknown. So we set the model or-
der in each channel with the ESTER criterion (see section 4.3 for
implementation details).

4. EXPERIMENTATION

When applied on synthetical sounds that strictly verify the signal
model (1), the full-band ESPRIT algorithm, as well as the ESTER
criteria, estimate the model parameters with an excellent precision
(see [6], [8]). Estimation errors are observed when dealing with
real-life sounds. Therefore this section does not consider the anal-
ysis of synthetical sounds, but focuses on the analysis/synthesis of
a real metal sound m5 (which can be listened to at [12]). m5 has
been produced hitting a metal plate with a drum stick. Observing
its waveform, Fourier transform and spectrogram (Fig. 4a, 4e and
1) one can see that it presents a rich spectral content and significant
lasting energy up to 6 s.

4.1. Analysis with full-band ESPRIT method

Considering the size of the Hankel matrix corresponding the whole
sound (around 150000×150000), only a part of the original sig-
nal can be analysed with the full-band ESPRIT algorithm. Fig. 2
shows the ESTER criteria cost function computed for the 10000
first samples of m5. The optimal model order theoretically cor-
responds to the maximum of this function, which is reached here
for K = 4 modes. This value is obviously not consistent, as one
can see on the spectrogram of m5: the spectral content is obvi-
ously much more complex. A reasonable compromise would be
to choose the maximum order for which the cost function is above
a given threshold. For instance, this threshold can be set to 100.
The corresponding model order is K = 206. After applying the

Figure 1: Spectrogram of m5.

ESPRIT algorithm, 29 EDS appear to have a negative damping,
which will form diverging components at the re-synthesis. Since
they do not describe physical modes, they must be discarded. The
resulting synthesised sound m5_std_esprit ([12]) is unsatis-
fying from a perceptual point of view, and reveals that the damp-
ing behaviour of some modes has been wrongly estimated as well.
Furthermore there is a significant difference in the spectral content
of the original and the re-synthesized sound above 12000 Hz, as
shown by Fig. 3 and 4e.

Figure 2: ESTER criteria cost function computed for the 10000
first samples of the full-band signal m5.

4.2. Analysis with ESPRIT in a Gabor transform

The chosen Gabor frame consists in a Blackman-Harris window of
length 1024, a time-step parameter a = 32, and a number of chan-
nels M = 1024. It is unnecessary to apply the ESPRIT algorithm
over regions of the time-frequency plane that only contain noise.
Since the most important deterministic information is contained
in the channels of high energy, those channels can be identified
using a peak detection algorithm over the energy profile of the Ga-
bor transform as shown in Fig. 5. In a software environment, the
choice of which channels will be analysed could be left to the user.
It is reasonable to think that the noise whitening induced by the
sub-band division of the spectrum makes the ESTER criteria more
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(a) Waveform of the metal sound m5 (b) Initial amplitude

(c) Damping (d) Energy square root

(e) DFT spectrum of m5 (f) DFT spectrum of the re-synthesized sound m5_resyn with all com-
ponents

Figure 4: Overview of the analysis of m5 (a) using the ESPRIT algorithm over its Gabor transform. (b), (c) and (d) show the 246 mode
parameters which have been initially extracted. (e) and (f) respectively show the DFT spectrum of the original sound m5 and the DFT
spectrum of the re-synthesised sound m5_resyn; both sounds are available at [12]. The 152 modes marked with a black dot are the ones
that remain after discarding the modes which initial amplitude is below the absolute detection threshold; the resulting synthesis sound
m5_resyn_amp_ts can be listened to at [12].
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Figure 3: DFT spectrum of the re-synthesized sound
m5_std_esprit obtained by applying a full band ESPRIT
algorithm. The model order is K = 206.

Figure 5: Energy of the Gabor transform of m5 computed for each
of its channels. The dots correspond to the channels identified as
peaks.

reliable than in the full-band case, therefore the analysis order is
computed for each of the selected channels, and set to the maxi-
mum of the ESTER criteria cost function. Doing so, a total number
of 250 modes is obtained.

4.3. Discarding multiple components

If the distance between a set of channels on which an analysis has
been performed is smaller than the bandwidth of the analysis win-
dow g[l], the same component is likely to appear in all of these
channels. These multiple estimations of the same component have
to be identified, and only one will be kept for the final re-synthesis:
the one which is the closest to the central frequency of its detec-
tion channel. In the example presented here, 4 components have
been identified as replicas using a frequency confidence interval
of 1 Hz. Fig. 4b, 4c and 4d show the mode parameters (am-
plitude, damping, energy as function of frequency) that remain
after discarding the replicas. The resulting re-synthesized sound
m5_resyn can be listen to on [12]. Fig. 4f shows the DFT spec-
trum of m5_resyn which can be compared to the DFT spectrum
of the original analysed sound Fig. 4e.

4.4. Discarding irrelevant components

The estimated set of modes is the one that best fits the signal model
(2) with respect to the Total Least Square criterion. However, as
shown in Fig 4b, some of those modes are not relevant for they
have an insignificant energy. In order to produce perceptually con-
vincing sounds, one can rely on psychoacoustic results in order
to discard inaudible modes. For instance, the absolute detection
threshold can be used to discard modes by observing their initial
amplitude. The black doted modes on Fig. 4b, 4c and 4d rep-
resent the modes that remain after applying an absolute detection
threshold ([13]) and setting the minimum of the threshold to the
minimum amplitude that the sound format can handle (e.g. ±1
for wav format coded as 16 bits integers). The resulting sound
m5_resyn_amp_ts, containing 152 modes, can be listened to
at [12].

It is also possible to use energy arguments and favour high
energy modes over low energy modes. In the directory named
‘Cumulative synthesis’ available at [12] are stored successive re-
synthesis of m5 computed by successively adding the modes sorted
in decrescent order of energy. One can note that there is no sig-
nificative perceptual difference between the sounds beyond 105
modes.

5. FURTHER IMPROVEMENTS

One of the advantages provided by the use of time-frequency rep-
resentations is the existence of efficient statistical estimators for
the background noise. As it can be seen on Fig. 1, a significant
number of Gabor coefficients describing an impact sound corre-
spond to noise, and can therefore be used to estimate the variance
of the stochastic part of the signal (see [11]). If the additive noise
is coloured, it is even possible to estimate the variance in several
selected frequency bands. Knowing the variance of the noise for
each frequency channel offers the possibility to use noise masking
properties of the human hearing to discard inaudible components,
and possibly lead to a more selective criteria than the absolute de-
tection threshold described in section 4.4.

The concept of nonstationary Gabor frames ([14]) makes it
also possible to adapt the resolution of the Gabor transform so
as to get an optimal compromise between precision and compu-
tational cost. It would allow, for instance, to take into account the
logarithmical frequency resolution of the human hearing when ap-
plying the Gabor transform. Furthermore, it can be observed that
the damping usually decreases with frequency; nonstationary Ga-
bor frames would allow to adapt the time-step parameter of the
Gabor frame along the frequency scale, so that computational cost
is saved while a sufficient number of coefficients are taken for the
analysis.

6. CONCLUSION

It has been shown that using the ESPRIT algorithm over time-
frequency representations leads to perceptually convincing re-synthesis.
The method has the same benefits than the sub-band analysis: it
allows an extension of the analysis horizon, and it diminishes the
complexity of the problem by only considering successive regions
in the frequency domain; but on top of that, the information given
by the time-frequency representation is of great use for targeting
the analysis on the time-frequency intervals that contain the de-
sired information. This avoids unnecessary analysis and reduces
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the global computational cost.
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ABSTRACT

A parametric model of aural tuning of acoustic pianos is presented
in this paper. From a few parameters, a whole tessitura model
is obtained, that can be applied to any kind of pianos. Because
the tuning of piano is strongly linked to the inharmonicity of its
strings, a 2-parameter model for the inharmonicity coefficient along
the keyboard is introduced. Constrained by piano string design
considerations, its estimation requires only a few notes in the bass
range. Then, from tuning rules, we propose a 4-parameter model
for the fundamental frequency evolution on the whole tessitura,
taking into account the model of the inhamonicity coefficient. The
global model is applied to 5 different pianos (4 grand pianos and
1 upright piano) to control the quality of the tuning. Besides the
generation of tuning reference curves for non-professional tuners,
potential applications could include the parametrization of synthe-
sizers, or its use in transcription / source separation algorithm as a
physical constraint to increase robustness.

1. INTRODUCTION

One of the main factor that makes piano tuning so distinctive is the
inharmonic nature of piano tones [1]. For a perfectly soft string,
the spectrum of a note sound should be composed of purely har-
monic partials. In practice, because of the stiffness of the piano
wire, each partial is slightly sharper, and the higher the rank of the
partial, the sharper the partial. This phenomenon directly affects
the tuning because it constraints the tuner to stretch the intervals
in order to cancel or control beats. Moreover, psycho-acoustical
effects seem to be involved in the choice of the amount of stretch-
ing that is optimal according to the position in the tessitura [1]
[2]. Due to the variations in piano scale designs and tuners’ spe-
cific techniques, no single standard tuning rule can be established.
However, some studies (see [3], [4]) have tried to formalize these
rules used by tuners, to approximate aural tuning in a given range
of the piano, taking into account inharmonicity measurements.

The purpose of this paper is to simulate aural tuning on the
whole tessitura of a particular piano, based on the recordings of
only a few isolated notes. This problem can be seen as an inter-
polation of inharmonicity and fundamental frequency across the
whole tessitura, based on a limited set of initial data. In order to
get a robust method, we constrain the interpolation with prior in-
formation on piano string design and tuning rules. This model can
be used to generate tuning reference curves for non-professional
tuners, to parametrize piano synthesizers, or be included as a con-
straint in transcription / source separation algorithms.

In Section 2, physical assumptions used to model the piano
string vibration are given, and the relations between piano string

design and tuning are discussed. From this considerations, we pro-
pose in Section 3 a simple model with 2 parameters to represent
the evolution of the inharmonicity coefficient on the whole tessi-
tura. Then, in Section 4, we introduce a 4-parameter model based
on tuning rules to generate reference tuning curves, by taking into
account the inharmonicity model. We conclude (Section 5) with a
discussion on potential applications of such model. For the sake of
completeness, we describe in Appendix A the inharmonicity / fun-
damental frequency estimation algorithm that we used on single
note recordings to obtain the reference values.

2. PHYSICAL CONSIDERATIONS IN PIANO TUNING

2.1. Physical modelling of piano string

Solving the transverse wave equation for a plain stiff string with
fixed endpoints yields the following modal frequencies [1]:

fn = nF0

√
1 +Bn2, n ∈ N+ (1)

where n is the mode index or partial rank, B the inharmonicity
coefficient, and F0 the fundamental frequency of a flexible string
(with no stiffness). F0 is related to the speaking length of the string
L, the tension T and the linear mass µ according to:

F0 =
1

2L

√
T

µ
(2)

Note that F0 ≈ f1, but that strictly speaking this fundamental
frequency is not directly measured as one peak in the spectrum:
it is a global value of the tone that must theoretically be obtained
from the whole set of partials. The stiffness is taken into account
in B, with:

B =
π3Ed4

64 TL2
(3)

where E is the Young’s modulus and d the diameter of the plain
string. Note that this model is given for a string with fixed end-
points. It does not take into account the bridge coupling (with
finite admittance), which modifies the partial frequencies, mainly
in the low frequency domain [5], [6], [1], [7].

2.2. String set design influence on B

Piano strings are designed with the constraint to minimize the dis-
continuities in physical parameters variations [8], [9]. Three main
discontinuities appear along the keyboard: the bass break between
the bass and treble bridges, the transition between plain and wrapped
strings and the transitions between adjacent keys having different
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number of strings. The variations of B along the keyboard are
mainly affected by the bass break which results in two main trends:

On the treble bridge, from C8 note downwards, B is decreas-
ing because of the increase of L. Down to middle C (C4 note), the
values of B are roughly the same for all the pianos and B follows
a straight line in logarithmic scale [10]. This result is mainly due
to the fact that string design in this range is standardized since it is
not constrained by the limitation of the piano size.

To keep a reasonable size of the instrument, the bass bridge
design reduces the growth of L. Then the linear mass of the string
is increased in order to adjust the value of F0 according to equation
(2). Instead of increasing only the diameter d, which increases B
and decreases the breaking strength, the strings are wrapped. Thus,
on bass bridge, B is increasing from sharpest notes downwards.
Note that the number of keys associated to the bass bridge and the
design of their strings are specific for each piano.

2.3. Tuning influence on (F0,B)

Most of the parameters in equations (2) and (3) are fixed at the
string design. The only parameter the tuner can vary in order to
adjust F0 is the tension of the string T . In the same time, T affects
the value of the inharmonicity constant B. Consequently, F0 and
B are dependent on each other because of physical relations and
tuning considerations. In this paper, we assume that the relative
variation of T during the tuning (of an initially slightly detuned
piano) is small enough to consider that B remains constant.1 It
allows us to first extract a parametric model for B along the key-
board, and then to deduce tuning reference curves.

3. WHOLE TESSITURA MODEL FOR B

3.1. Parametric model

According to subsection 2.2,B should be modelled by two distinct
functions corresponding to the two bridges, and could present a
discontinuity at the bass break. In this paper we propose a “contin-
uous” additive model on the whole tessitura, discretized for m ∈
[21, 108], the midi note index from A0 to C8. We denote it by
Bθ(m), with θ the set of parameters.

Usually, the evolution of B along the keyboard is depicted in
logarithmic scale and presents two linear asymptotes. We denote
by bT (m) (resp. bB(m)) the Treble bridge (resp. the Bass bridge)
asymptote of logBθ(m). Each asymptote is parametrized by its
slope and its Y-intercept.

{
bT (m) = sT ·m+ yT

bB(m) = sB ·m+ yB
(4)

According to [10], bT (m) is similar for all the pianos so sT and
yT are fixed parameters. Then, the set of free (piano dependent)
parameters reduces to θ = {sB , yB}. Bθ(m) is set as the sum of
the contributions of these two curves (4) in the linear scale:

Bθ(m) = ebB(m) + ebT (m) (5)

It should be emphasized that this additivity does not arise from
physical considerations, but it is the simplest model that smoothes

1For instance, if a note is increased by a quarter tone (50 cents) during
the tuning, ∆F0

F0
' 2.9%. According to equations (2) and (3), ∆B

B
=

−2 · ∆F0
F0
' 5.9%.
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Figure 1: Model of B along the keyboard.

discontinuities between the bridges. Experimental data will show
that it actually describes well the variations of B in the transi-
tion region around the two bridges. An example of this model for
Bθ(m) is shown on Figure 1.

3.2. Parameter estimation

The results in this paper are obtained from single note recordings
of 3 separate databases: Iowa2 (1 grand piano), RWC [11] (3 grand
pianos) and MAPS3 (1 upright piano). For a given note indexm ∈
[21, 108], F ∗0 (m) and B∗(m) are the estimated values of F0(m)
and B(m) using the algorithm described in Appendix A.

We first estimate the fixed parameters {sT , yT } using the data
of all the pianos in the range C4-C8 (m ∈ [60, 108], the standard-
ized design range). These are obtained by a L1 linear regression
(to reduce the influence of potential outliers) on the average of the
estimated inharmonicity curves in logarithmic scale over the dif-
ferent pianos. We find sT ' 9.26 · 10−2 , yT ' −13.64. These
results are in accordance with estimates based on physical consid-
erations [10]: sT [10] ' 9.44 · 10−2 , yT [10] ' −13.68.

Finally, each piano is studied independently to estimate the
particular parameters θ = {sB , yB} on a set of few notes M .
θ is estimated minimizing the L1 distance between B∗(m) and
Bθ(m):

θ∗ = argmin
θ

∑

m∈M
|B∗(m)−Bθ(m)| (6)

We present on Figure 2 the curves of Bθ(m) obtained for every
piano from a set of 3 quasi-equally spaced notes taken in the bass
range A0-D3 (m ∈ [21, 50]). The discontinuity of the bass break
is clearly observable for some pianos on the reference data curves
(for instance between C#2 (m = 37) and D2 (m = 38) notes for
the 2nd grand piano of the RWC database) and does not always
occur at the same keys. The global variations are well respected.
Note that some outliers are present (in the high treble range) in the
whole tessitura data curves. This problem is discussed in the ap-
pendix and is due to the fact that for sharpest notes the partials are
not in sufficient number to have a robust estimation of B. To eval-
uate the distance between the model and the whole tessitura data
those outliers have been manually removed before the computation
of the relative deviation between B∗(m) and Bθ(m). We present
on Figure 3 the histograms of the relative deviation computed in

2http://theremin.music.uiowa.edu
3http://www.tsi.telecom-paristech.fr/aao/en/

category/database/
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Figure 2: Superposition of the model Bθ(m) (estimated from 3
notes in the bass range) with the whole tessitura reference values
for 5 different pianos.
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Figure 3: Histogram of the relative deviation between B∗(m) and
Bθ(m) computed for all the pianos in the range C4-C8 (at the top)
and A0-B3 (at the bottom).

A0-B4 (m ∈ [21, 71]) and C4-C8 (m ∈ [72, 108]) ranges. In
C4-C8 range, the mean and the standard deviation are respectively
equal to −4.2 · 10−3 and 1.16 · 10−1. In A0-B4 range we have
respectively 4.6 · 10−3 and 1.57 · 10−1.

4. WHOLE TESSITURA MODEL FOR F0

4.1. Aural piano tuning principles

Every tuning begins by the tuning of the reference note, in most
cases the A4 at 440Hz. To do so, the tuner adjusts the tension
of the strings to cancel the beats produced by the difference of
frequency of the tuning fork (a quasi perfect sinusoid) and the first
partial of the note. Thus, f1(m = 69) = 440Hz.

From A4, the tuner builds the reference octave F3-F4 accord-
ing to the equal temperament in controlling (or counting) the beats
of different intervals (for instance between the 3rd partial of a ref-
erence note and the 2nd of its fifth) [12]. For high inharmonicity
pianos the frequency deviation between the first partial of the note
and the theoretical fundamental frequency given by the equal tem-
perament in this octave can be about ±8.6 cents (±0.5%) [3].

Finally, from this reference octave in the middle of the tes-
situra, each note is tuned step by step with the same procedure.
Because of the partial deviation due to the inharmonicity, the oc-
taves are stretched to more than a 2:1 frequency ratio. For a ref-
erence note of midi index m, f1(m + 12) > 2f1(m) because
f2(m) > 2f1(m). Moreover, the amount of stretching of the
octaves in the different parts of the keyboard is linked to psychoa-
coustic effects and tuner’s personal tastes. It is well known that the
piano sounds better in the bass range if the amount of stretching
is more important than in the treble range (even if the inharmonic-
ity effect is less important). This fact is linked to the underlying
choice of the type octave during the tuning [2]. For instance, in a
4:2 type octave, the 4th partial of the reference note is matched to
the 2nd partial of its octave. Depending on the position in the tes-
situra, the piano can be tuned according to different type octaves:
2:1, 4:2, 6:3, 8:4, ... or a compromise of two. This means that the
tuner may not be focused only on cancelling beats between a pair
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of partials, but that he controls an average beat generated by a few
partials of the two notes.

Here, we propose a 4-parameter model for synthesizing aural
tuning on a given piano. The steps may be a simplified version
of those done by a tuner but the global considerations (stretch-
ing inherent in the inharmonicity and the type octave choice) are
taken into account. We begin by the A4 reference note, setting
f1(m = 69) = 440Hz. Then, we introduce (Subsection 4.2) a 3-
parameter model to estimate the tuning of all the A keys from the
A4. In Subsection 4.3, we propose a model to tune all the notes
inside of a fixed octave interval (for instance A4-A5 previously de-
termined). Finally, in Section 4.4, we introduce 1 extra parameter
to take into account a global detuning and we present the results
for the 5 pianos. Note that the following expressions are estab-
lished for upper interval construction, but the same reasoning can
be applied for lower intervals.

4.2. Octave interval tuning

4.2.1. Model

During the tuning of an upper octave interval, the cancellation of
the beats produced by the u-th partial of a reference note indexed
m− 12 and the v-th partial of its octave indexed m (u = 2v) can
be done by tuning F0(m) such as4:

F0(m) = F0(m− 12) · u
√

1 +B(m− 12)u2

v
√

1 +B(m)v2
(7)

The choice of the type octave is parametrized by introducing
the variable ρ ∈ N+, such as u = 2ρ and v = ρ. Usually the max-
imal value for ρ is 6 (it corresponds to a 12:6 type octave which
can sometimes occur in the low bass range of grand pianos). We
denote by ρϕ(m) the model of ρ on the whole tessitura given for a
set of parameter ϕ. Then,

F0(m) = 2 F0(m− 12)

√
1 +B(m− 12) · 4ρϕ(m)2

1 +B(m) · ρϕ(m)2
(8)

This model takes into account the cancellation of the beats pro-
duced by a single pair of partials. In practice, the deviation F0(m)

2F0(m−12)

should be a weighted sum of the contribution of two pairs of par-
tials, because the amount of stretching may result from a compro-
mise between two type octaves. An alternative model to take into
account this weighting is to allow non-integer values for ρϕ(m) ∈
[1,+∞[. For example, if the octave tuning of a note indexed m
is a compromise between a 2:1 and 4:2 type octaves, ρϕ(m) will
be in the interval [1, 2]. This model looses the physical meaning
(u = 2ρ and v = ρ are not anymore related to partial ranks), but
presents the advantage to be easily inverted to estimate ρϕ(m).
Note that this model for octave interval tuning could be general-
ized to other intervals tuning by considering the beats inherent in
the equal temperament. Indeed, in equal temperament only octave
intervals can have consonant partials.

4Note that F0 is defined as being the fundamental frequency for a per-
fectly soft string. In practice it is not present in the piano tone so the tuner
adjusts f1, the frequency of the first partial . F0 is used in the equations of
this section because it is more practical to manipulate. In the end, equation
(1) is applied to obtain f1(m) = F0(m)

√
1 +B(m).
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Figure 4: Superposition of ρ∗(m) averaged from 3 pianos, and the
model ρϕ(m). High and low stretching curves are respectively,
arbitrarily defined by ρϕ(m) + 1 and max(ρϕ(m)− 1, 1).

4.2.2. Estimation of ρϕ(m)

We choose to model ρϕ(m) as follows:

ρϕ(m) =
K

2
·
(
1− erf

(
m−m0

α

))
+ 1 (9)

with erf the error function. It expresses the fact that the amount
of stretching inherent in the type octave choice is decreasing from
the low bass range to the high treble range and that it is limited by
horizontal asymptotes at each extremity. The set of parameters is
then ϕ = {m0, α,K}. m0 is a parameter of translation along m.
α rules the slope of the decrease. K settles the value of the low
bass asymptote. Note that in (9) the high treble asymptote is set to
1 because it corresponds to the minimal type octave (2:1).

ρ∗(m) is estimated on the data F ∗0 (m) and B∗(m) by invert-
ing equation (8):

ρ∗(m) =

√
4F ∗0 (m− 12)2 − F ∗0 (m)2

F ∗0 (m)2B∗(m)− 16F ∗0 (m− 12)2B∗(m− 12)

(10)
Then, the set of parameters is estimated minimizing the L1 dis-
tance between ρϕ(m) and ρ∗(m) on a set M of notes.

ϕ = argmin
ϕ

∑

m∈M
|ρ∗(m)− ρϕ(m)| (11)

Finally, ρ∗(m) has been estimated for the 3 best tuned pianos
of the database (the selection criterion was that their tuning devi-
ation from equal temperament is following the global variations
of the Raylsback theoretical curve [1]), and averaged to obtain a
mean curve from different tuners.5 The parameter estimation gives
m0 ' 64 (the curve is centred on the middle octave), α ' 24, and
K ' 4.51 (in the low bass range, the tuning is a compromise
between 8:4 and 10:5 type octaves). The results are depicted on
Figure 4. Some values of ρ∗(m) are missing in the treble and the
bass range because we removed the outliers from the estimation
of B∗(m) and F ∗0 (m). Because F3-F4 (m ∈ [53, 65]) is the ref-
erence octave of the tuning, ρ∗(m) is not estimated on it. From

5In practice the estimation of ρ∗(m) could be done for each piano to
model their actual tuning. We choose here to obtain a reference stretch-
ing curve from well-tuned pianos in order to control the tuning of the 5
pianos in Subsection 4.4. In this case the application is not anymore the
interpolation of the tuning on the whole tessitura of each piano.
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ρϕ(m) defined as a mean stretching model, we define arbitrarily a
high stretching model by ρϕ(m) + 1 and a low stretching model
by max(ρϕ(m) − 1, 1). The low stretching model is saturated to
1 in the treble range because ρ ∈ [1,+∞[.

4.3. Model for semitone tuning in a given octave interval

Once the octave intervals are built according to equation (8), the
whole tessitura is interpolated semitone by semitone. If there was
no stretching, the semitones would be equally spaced by the ratio
of 12
√
2 given by the equal temperament. In practice, the frequency

ratio between 2 adjacent notes is a little higher than 12
√
2. We

model this deviation as follows:

f1(m+ 1) = f1(m) 12
√

2 + ε(m+ 1) (12)

with ε � 1. As a first order model, we assume that ε varies lin-
early with B. This dependence underlines the fact that the higher
B, the higher the deviation should be. Thus,

ε(m+ 1) = λ ·B(m+ 1) (13)

λ is estimated in the given octave interval and takes into account
the stretching related to the type octave through the previous esti-
mation of f1(m+ 12). Recursively we have:

f1(m+ 12) = f1(m)

12∏

p=1

12
√

2 + λ ·B(m+ p)

By taking the logarithm, and developing at the first order, λ can be
estimated by:

λ =
24 log

(
f1(m+ 12)/2f1(m)

)

12∑
p=1

B(m+ p)

(14)

4.4. Global detuning and results

Once the tuning has been estimated on the whole tessitura, the real
piano tuning can present a slight global detuning compared to the
model f1(m). The detuning or deviation of each note from the
equal temperament (ET) is given in cents by:

d1(m) = 1200 log2

f1(m)

F0ET(m)
(15)

with
F0ET(m) = 440 · 2(m−69)/12 (16)

We introduce the global detuning through the 4th parameter dg ,
which is estimated by minimizing the L1 distance, on the refer-
ence octave F3-F4 (m ∈ [53, 65]) between d∗1(m), the detuning
estimated on data, and d1(m) + dg the detuning of the model:

dg = argmin
dg

65∑

m=53

∣∣d∗1(m)− (d1(m) + dg)
∣∣ (17)

Finally, Figure 5 shows the deviation from ET of the estimated
models for the 3 amounts of stretching (mean, low and high) ap-
plied to the 5 pianos. Comparing the curves of the model and the
data, we can see that RWC2 and RWC3 piano seem well-tuned.
On the contrary, the tuning of RWC1 piano is not stretched in the
bass range and the tuning of Iowa and MAPS pianos should be a
little more streched in the treble range, according to our model.
Further research and discussions with piano tuners will investigate
whether this discrepancy is indeed due to an inappropriate tuning,
or a limitation of our model.
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Figure 5: Superposition of the deviation from ET of the model
f1(m), with the whole tessitura data for 5 pianos. f1(m) is com-
puted for the 3 models of ρϕ(m) depicted on the figure 4 and cor-
responding to a mean, low and high octave stretching.
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5. CONCLUSIONS

We presented in this paper a model composed of a few parameters
for aural tuning on the whole piano tessitura. The parameters can
be learned from the estimation of the inharmonicity coefficient and
the fundamental frequency of a few single note recordings. For the
inharmonicity coefficient, 3 notes in the bass range are sufficient
to obtain a good interpolation on the whole tessitura. For the fun-
damental frequency, a few more notes are needed on the whole
tessitura. The model takes into account physical considerations of
the piano string scale design and piano tuning rules used by tuners.

It is intended to be useful for controlling the tuning of a given
piano (as shown in Subsection 4.4) or for parametrizing the tuning
of physically-based piano synthesizers. Following the steps pro-
posed in this paper it could be possible to generate an inharmonic-
ity curve specific to a given piano (or to set the inharmonicity co-
efficient of each note if the design of the target piano is perfectly
known), choose the amount of stretching on the whole tessitura
and an eventual global detuning to automatically generate an ap-
propriate tuning.

The next step of this work is to include this model as con-
straints in multipitch (such as [17]) or automatic transcription al-
gorithms of piano music. Instead of searching for 88 independent
values of the inharmonicity coefficient and of the fundamental fre-
quency, it strongly constraints the estimation to only 6 parameters,
which should result in increased robustness.
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A. APPENDIX: (F0,B) ESTIMATION ON SINGLE NOTES

The problem of estimating (F0,B) on single piano note recordings
has been dealt with by several authors, amongst these: [13], [14],
[15], [4]. Each of these algorithms could potentially be used for
the estimation of the reference data used by the tuning model pre-
sented in the body of the article. However, the algorithm below
comprises a new preprocessing stage of adaptive noise level esti-
mation, which avoids most of potential outliers during the partial
selection. Satisfactory results are usually obtained up to the C6
note.

Algorithm: The main idea is to perform a linear regression on
an alternative version of the inharmonicity law (1):

f2
n

n2
= F 2

0 + F 2
0B · n2 (18)

This equation is linear according to n2. If we collect the fn fre-
quencies in the spectrum S(f) and we know their rank n, we just
have to do a linear regression to obtain F0 and B. We use Least
Absolute Deviation Regression (LADR) to discard outliers (phan-
tom partials or partials affected by strong bridge coupling inhar-
monicity). The main steps of the algorithm are presented on Fig-
ure 6. The input is the magnitude spectrum S(f) computed with
zero padding on 216 frequency bins from a 500ms window in the
decay part of the sound. The first step is a noise level NL(f) es-
timation of the magnitude spectrum. This preprocessing stage al-
lows the separation of spectral peaks related to partials from noise.
Then, the partials above the noise level corresponding to transverse

Figure 6: Estimation of (F0,B). Algorithm scheme.

modes of vibration are picked up by an iterative process, estimat-
ing intermediate (F0, B) values at each step.

Noise level estimation: We assume that the noise is an addi-
tive colored noise, i.e. generated by a filtered white gaussian noise
[16]. In a given narrow band, if the filters have a quasi flat fre-
quency response the noise can be considered as white gaussian,
and its spectral magnitude follows a Rayleigh distribution:

pX(x;σ) =
x

σ2
e−x

2/(2σ2) (19)

In this pre-processing stage, we want to estimate the noise dis-
tribution in each band without removing the partials. To do so, a
good estimator for σ is the median med = σ

√
ln(4). Indeed, in a

given narrow band there are much less bins corresponding to par-
tials than bins corresponding to noise, so partials have a reduced
influence in the estimate of the noise median. The tradeoff sits in
the choice of the bandwidth: the bands have to be narrow enough
so that the white noise approximation holds, but wide enough so
that most of the bins correspond to noise. We chose a 300Hz me-
dian filtering on the magnitude spectrum S(f) to estimate σ(f).
Finally, we define the noise level in each band NL(f) as the mag-
nitude such that the cumulative distribution function is equal to a
given threshold T , set to T = 0.9999. With this choice of T ,
only 6 bins corresponding to noise on average (out of 216) should
be above the noise level. The cumulative density function of a
Rayleigh distribution is given by:

cX(x;σ) = 1− e−x2/(2σ2) (20)

Partial selection: The fn are extracted in the same time as
their rank n by an iterative process. We begin with an approxi-
mative value of F0 = F0ini given by equal temperament (the pro-
cessed note is supposed to be known) and with Bini = 0, for the
search of the first three partials. Then, for each iteration we per-
form LADR according to equation (18) to estimate an intermediate
(F ′0, B

′) couple which will help in selecting the next partial. Each
fn frequency partial is searched in the range nF ′0

√
1 +B′n2 +

[−F0ini
5
, F0ini

5
]. The width of the search interval is set empirically.

Once no partial is found above the noise level the algorithm termi-
nates. The last iteration is presented on Figure 7.

Influence of the dynamics: In practice, for a given note,
sound spectra can significantly vary according to dynamics. For
forte dynamics, a lot of “phantom” partials can appear in the spec-
trum (non-linear coupling of transverse waves with longitudinal
waves), be picked during the partial selection and corrupt the lin-
ear regression. Another limitation can appear in piano dynamics:
for sharp notes (from C6 to C8) the transverse mode partials are
too weak and not in sufficient number to correctly process the se-
lection and the regression steps.
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Figure 7: Partial selection and LADR at the last iteration of the
algorithm.
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ABSTRACT
In the context of audio restoration, sound transfer of broken

disks usually produces audio signals corrupted with long pulses of
low-frequency content, also called thumps. This paper presents a
method for audio de-thumping based on Huang’s Empirical Mode
Decomposition (EMD), provided the pulse locations are known
beforehand. Thus, the EMD is used as a means to obtain pulse es-
timates to be subtracted from the degraded signals. Despite its
simplicity, the method is demonstrated to tackle well the chal-
lenging problem of superimposed pulses. Performance assessment
against selected competing solutions reveals that the proposed so-
lution tends to produce superior de-thumping results.

1. INTRODUCTION

Severe damages or discontinuities to the grooves of a disk, such as
those produced by deep scratches or breakages, may give rise to
long-duration pulses of low-frequency content in the resulting au-
dio signal, during disk playback [1, 2]. Being typically preceded
by high-amplitude impulsive disturbances, long pulses are consid-
ered the impulse response of the stylus-arm system added to the
waveform of interest [1, 2].

An illustration of a synthetically generated pulse is seen in Fig-
ure 1. As can be seen, the pulse waveform seems to have both an
amplitude-modulated component (decaying exponential envelope)
and a frequency-modulation component. Typically, the pulse os-
cillations start at about 150 Hz, right after the initial click, and
decay exponentially down to about 10 Hz.

To the author’s knowledge, apart from crude high-pass filter-
ing, which is usually unsatisfactory, there are three available tech-
niques for long pulse removal or audio de-thumping. Brief de-
scriptions of these methods follow.
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Figure 1: Synthetic example of a long pulse. The initial click oc-
curs at about 11 ms.

The so-called template matching method has been first pro-
posed by Vaseghi in [1] and [3]. Its main assumption is that long

∗ The work of Dr. Esquef was supported by CNPq-Brazil via grants no.
472856/2010-3 and 306607/2009-3.

pulses are shape-invariant, for being the impulse response of a
given stylus-arm system. Thus, if a clean version of the pulse (a
template) is available, its time-reversed version can be used as a
matched filter to detect other pulse occurrences in the audio sig-
nal. Furthermore, amplitude-scaled versions of the template can
be used to suppress corrupting pulses from the signal by simple
subtraction. The remaining initial click is supposed to be removed
afterward by standard de-clicking techniques [2].

In [4, 2, 5] Godsill and colleagues have proposed a model-
based signal separation technique for audio de-thumping. The
first step of the method consists in estimating two distinct auto-
regressive (AR) models: one of high order for the signal of inter-
est and another of low-order for the corrupting pulse. Then, pulse
removal is achieved by separation of the two AR processes. In this
approach, the initial click is taken as part of the long pulse, be-
ing modeled by the same AR model of the pulse, but with a much
higher excitation variance. Therefore, suppression of the initial
click and the pulse is taken care of at once by the method.

Simple non-linear filtering techniques for audio de-thumping
have been proposed in [6] by Esquef and colleagues. In this solu-
tion, hereafter referred to as the TPSW method, an initial estimate
for the long pulse is obtained from a non-linear filtering technique
called two-pass split window (TPSW) [7, 6], which is capable of
producing relatively smooth pulse estimates, despite the presence
of the high-amplitude clicks that precede the pulses. Then, these
pulse estimates are made even smoother by means of an overlap-
and-add signal segmentation with low-order polynomial fitting.

Thorough comparisons among the aforementioned methods is
beyond the scope of this paper. Nevertheless, in general terms, the
main advantages of the template matching method are its simplic-
ity and ability to detect long pulses even if the initial clicks are
absent. However, the solution is less flexible to tackle more chal-
lenging situations, such as the occurrence of superimposed long
pulses, i.e., when a second pulse appears within the duration of a
preceding one. According to the results presented in [6] the AR-
separation and TPSW methods perform equally well, being the
latter less intense computationally. Moreover, both can treat su-
perimposed pulses.

In this paper an alternative solution to audio de-thumping is
proposed. More specifically, it makes use of the so-called Empiri-
cal Mode Decomposition (EMD) [8] and its improved version, the
Complementary Ensemble EMD (CEEMD) [9, 10], as a means to
obtain estimates of long pulses corrupting an audio signal of in-
terest. In principle, the EMD is capable of decomposing a given
time-domain waveform into a finite set of Intrinsic Mode Func-
tions (IMFs) and a monotonic residue, each IMF being a single
AM-FM component. Since a long pulse can be well characterized
as a single AM-FM component, the choice of the EMD for the
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problem at hand seems justified.
The experimental results reported in this paper reveal that the

EMD and the CEEMD are effective and simple tools to provide
adequate pulse estimates. Performance evaluation of the proposed
method against the AR-separation and TPSW methods is carried
out via the Perceptual Audio Quality Measure (PAQM) [11]. The
attained results show that the CEEMD-based audio de-thumping
performs comparably to the competing solutions.

The remainder of the paper is organized as follows. In Sec-
tion 2 brief reviews of the EMD and the CEEMD are given. The
proposed pulse estimation method is explained in Section 3. The
experimental setup defined for the comparative tests is described
in Section 4. In Section 4.3 the attained results are presented and
discussed. Finally, conclusions are drawn in Section 5.

2. THE EMPIRICAL MODE DECOMPOSITION

The Empirical Mode Decomposition was originally introduced by
Huang and collaborators [8] as a way to decompose multicom-
ponent signals into constituent functions from which meaningful
instantaneous frequencies could be estimated via the Analytical
Signal approach [12]. The EMD decomposition does not assume
any basis function since it is an entirely data-driven iterative algo-
rithm that operates over signal envelopes.

The EMD method decomposes a signal into components called
Intrinsic Mode Functions (IMFs), which are typically character-
ized by zero-mean oscillations modulated by a slowly varying en-
velope. An IMF must have the following properties [8, 13, 14]:

1. The number of extrema and the number of zero-crossings
must be either equal or differ at most by one;

2. The arithmetic mean between the upper and lower envelopes
of an IMF must be zero at any point of its domain.

With reference to the item 2 above, the upper (lower) envelope
is usually obtained via low-order polynomial fitting to the local
maxima (minima) of the signal. Variations on the EMD algorithm
exist [14, 15, 16] and are mainly concerned with two issues: differ-
ent criteria to stop the intermediate iterative sifting procedure that
culminate in an acceptable IMF; and alternative data extrapolation
schemes to obtain the signal envelopes [17, 10].

2.1. EMD Implementation

For the experiments reported in the paper, a standard version of the
EMD, i.e., one that uses a Cauchy-type stopping criterion and natu-
ral cubic spline interpolation to compute the envelopes [8, 13], has
been implemented in Matlab. Alternatively, these envelopes can
also be obtained via piecewise cubic Hermite interpolating poly-
nomials across local maxima (minima).

Considering a signal x(t), the EMD is described as follows.

1. Let j = 1 and set xj(t) = x(t);

2. Identify all local maxima and minima of xj(t);

3. Obtain the upper envelope eupper(t) (respectively, lower en-
velope elower(t)) by polynomial interpolation across the lo-
cal maxima (respectively, local minima) of xj(t) ;

4. Compute the mean envelope m(t) =
[
eupper(t)+elower(t)

]
/2;

5. Obtain an IMF estimate Cj(t) = xj(t) − m(t);

6. If m(t) is a non-monotonic function (or if it has enough ex-
trema to allow envelope computation), make xj(t) = m(t);
increment j by one unit; and go back to step 2 to obtain the
subsequent IMFs. Otherwise, stop the iterations and set the
residue of the decomposition as r(t) = m(t).

In practice, step 5 above is insufficient to produce a proper
IMF. To remedy this, step 5 is modified to include an inner loop
to perform additional siftings to xj(t). More specifically, a so-
called proto-IMF is defined as Cj,k(t) = xj(t)−m(t) for the kth

iteration of the sifting loop, which must continue until a stopping
criterion (defined below) is satisfied. If an additional sifting is
needed, then one sets xj(t) = Cj,k(t) and returns to step 2 going
through step 5. The final IMF estimate Cj(t) is then obtained as
the last Cj,k(t) of the sifting loop.

Here, the chosen stoping criterion is the same adopted in [13],
i.e., the iterations stop when the quantity

Sd = Var
{
Cj,k−1(t) − Cj,k(t)

}
/Var

{
Cj,k−1(t)

}
(1)

becomes smaller than a pre-assigned value, typically within the
range [0.0001–0.0003]. After obtaining a total of J IMFs and a
residual trend rJ(t), the original signal can be reconstructed by
summing up all IMFs and the trend: x(t) =

∑J
j=1 Cj(t)+rJ(t).

For broad spectrum signals such as those of fractal or Gaussian
processes, the maximum number of IMFs is approximately log2 L,
where L is the number of samples of the signal [18].

2.2. Complementary Ensemble EMD

EMD has been successfully used for analysis of diverse kinds of
signals, mainly due its ability to tackle responses of non-linear and
non-stationary systems. Nevertheless, the presence of intermit-
tency in such signals often results in a phenomenon called mode
mixing [13, 14], where coherent parts of the signal may end up in
adjacent IMFs, thus devoid of physical meaning.

The original EMD algorithm is sensitive to the addition of
small perturbations to the input signal, in the sense that it may
produce a new set of IMFs in comparison with those of the noise-
less version. Based on this fact, Wu and Huang [10] proposed that
more reliable IMFs should be estimated from EMD of an ensemble
formed by a given input signal artificially corrupted with several
realizations of Gaussian noise.

The idea behind of the Ensemble EMD (EEMD) is to take a
large number of noisy versions of the original signal

x(i)(t) = x(t) + ε w(i)(t), (2)

where ε w(i)(t) is the i-th realization of a zero-mean white Gaus-
sian noise with standard deviation ε, which can be made a fraction
of that of x(t). After obtaining the IMFs C

(i)
j (t) for each real-

ization x(i)(t), the final result is obtained by averaging the IMFs
across all realizations:

C̃j(t) = lim
N→∞

1

N

N∑

i=1

C
(i)
j (t). (3)

Given a non-infinitesimal ε and a large enough N , the residual
noise amplitude will be proportional to ε/

√
N and the resulting

IMFs stable. More importantly, the EEMD largely reduces the
mode mixing problem [10], thus improving the EMD performance
at the expense of a much higher computational load.
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A further improvement to the EEMD is the Complementary
EEMD (CEEMD), in which the ensemble is formed by N/2 com-
plementary pairs of noise realizations with symmetric amplitude.
This way, Eq. (2) is modified to x(i)(t) = x(t)+(−1)iε w(i−γ)(t),
for i = 1, 2, . . . , N , where γ = i modulo 2. The IMFs of the thus
constructed ensemble are then obtained as before via Eq. (3). This
procedure ensures that the residual noise will be zero.

3. LONG PULSE ESTIMATION VIA EMD AND CEEMD

Similar to the AR-separation and TPSW methods, the proposed
EMD-based de-thumping requires prior knowledge of pulse loca-
tions in time. This means that, for a particular pulse, estimates
of its onset time and duration must be available. In practice, the
former can be inferred from the location of the initial click, which
can easily obtained by standard detection techniques [2].

From the auditory perception perspective, the most salient part
of a long pulse is its beginning, for its higher amplitude and fre-
quency. Therefore, pulse duration estimates can be obtained by
visual inspection. In other words, underestimation of pulse dura-
tions is likely to produce no audible effects.

3.1. EMD-based Estimation of Single Pulses

For didactic reasons, EMD-based estimation of single pulses is
presented first, being that of superimposed pulses left to later.

The main steps of the pulse estimation procedure (one pulse
at a time) are listed below. More specific details of each step are
given in the sequel.

1. Select a portion of the signal of interest containing one sin-
gle long pulse (to be called input signal hereafter);

2. Extend the input signal backward in time;

3. Analyze the extended input signal via the EMD. The main
parameter to be defined is the maximum number of IMFs.

4. Form the pulse estimate by mixing together partial recon-
structions of the signal, with different levels of detail, via
an overlap-and-add windowing scheme.

As regards step 1, the beginning of the input signal should
coincide with that of the pulse, i.e., it should start right after the
initial click. The duration of the segment should be approximately
that of the observed long pulse. It is advisable though to add about
5 ms to the duration in order to overcome boundary effects that
may affect IMF estimation [17, 10]. For that very reason, step 2
is taken. The idea here is to analyze an input signal a bit longer
than necessary and then discard samples at the extremities of the
ensuing IMFs and residue to get rid of possible boundary effects.
Therefore, the backward signal extrapolation carried out in step 2
does not need to be much involved. It can be simple enough to just
capture the tendency of the signal trajectory.

Signal extension backward in time should be made for at least
the duration of the initial click. For that, extrapolation schemes
based on AR modeling [2, 19] can be used. A simpler solution,
which is employed here, consists in mirroring the beginning of the
input signal with odd symmetry w.r.t. its first sample.

The EMD in step 3 uses a standard version of the algorithm
(see Section 2.1). As for the treatment of envelope boundaries, the
solution proposed in [10] is resorted to. More specifically, consid-
ering the upper envelope for didactic reasons, a straight line is first
fitted to the two consecutive maxima nearest to the end (or begin-
ning) of the signal. Then, an artificial new end (or beginning) point

for the envelope is created at the end (or beginning) of the segment.
This new point is taken as the largest value between the own signal
and the linearly extrapolated envelope. A similar scheme can be
employed to extend the lower envelope. In both cases, no exten-
sion of the input signal is carried out, just extrapolation of its lower
and upper envelopes toward its boundaries.

The aforementioned procedure surely helps to reduce end ef-
fects observed in the IMFs, but do not completely eliminate them.
Hence, input signal extrapolation performed in step 2 is still needed.

One of the known issues of the standard EMD is the so-called
mode-mixing or intermittence [8], which consists of the split of an
apparent single intrinsic mode between two adjacent IMFs. Intrin-
sic mode segregation is a complex question whose discussion is
beyond the scope of this paper. As reported in [20] it depends on
parameters such as the relative amplitude of the modes and their
proximity in frequency.

As one could anticipate from the above discussion, although a
single long pulse would qualify for being an IMF, it is not always
true that one of the IMFs produced by EMD of the input signal
constitutes alone an adequate pulse estimate. The main reason for
that seems to be the overlap between the spectral range of the long
pulse and the low-frequency content of the audio signal of interest.

An illustration of the mode-mixing problem in the context of
EMD-based pulse estimation is depicted in Figure 2. As can be
seen, while the tail of the pulse is well captured by the residue
obtained after extracting seven IMFs, adequate representation of
the initial faster oscillations only happens if the 7th IMF is added
to the residue.

Similar to the strategy employed in [6], a practical way to ob-
tain a useful pulse estimate is to predefine three temporal regions
for the pulse and assign to each region pulse estimates with dif-
ferent degrees of detail (or frequency ranges). One pulse partition
that typically works in practice is the following:

pF: about half oscillation cycle from the beginning of the pulse;

pM: about one and half oscillation cycles from the end of pF;

pL: the rest of the pulse from the end of pM.
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Figure 2: Top: Signal corrupted with a long pulse. The thin verti-
cal line at about 25 ms indicates the beginning of the pulse. Mid-
dle: corrupted signal (thin faded gray line) and residue after ex-
tracting the first 7 IMFs (thick black line). Bottom: corrupted
signal (thin faded gray line) and the sum of the residue with the
7th IMF (thick black line).
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Figure 3: Signal corrupted with a long pulse (thin faded gray line)
and composite pulse estimate after EMD with 7 IMFs (thick black
line). The thin vertical lines delimit the partitions pF, pM, and pL.
The residue is attributed to pL. The sum of the residue and the 7th
IMF is attributed to pM. The sum of the residue with the 7th and
6th IMFs is attributed to pF.

The residue of the EMD analysis can be assigned to pL. Since
the maximum number of IMFs can be forcefully limited, the residue
is not a monotonic function and could be further decomposed into
more IMFs. However, the idea here is to set the maximum num-
ber of IMFs so as to produce a residue that, besides being smooth,
captures well the oscillations present in the pulse tail pL. Continu-
ing the decomposition process until obtaining a monotonic residue
is then unnecessary and would undesirably increase the computa-
tional costs involved.

To the portion pM one can assign the sum of the residue and the
last IMF observed in that region. In a similar fashion, to the por-
tion pF one can assign the sum of the residue and the two last IMFs
observed in that region. In practice, the partitions pF, pM, and pL

must overlap a bit in time. This way, it is possible to merge their
waveforms together seamlessly via straightforward cross-fading
schemes. An example of the proposed partition and assignment
scheme is seen in Figure 3, where the cross-fading among adja-
cent partitions lasts about 4.5 ms.

As reported in [18], EMD of white noise tends to produce
IMFs that could be considered as sub-band signals of a dyadic oc-
tave filterbank analysis with poor selectivity channels. Thus, the
higher the IMF number the lowest the mean frequency of its power
spectral density. Assuming this behavior holds for spectrally rich
audio signals, one may speculate that the estimates assigned pL,
pM, and pF would consist of lowpass versions of the input signal
with progressively increasing cutoff frequencies.

From the above discussion, an advantage of the EMD is that
the resulting IMFs are pulse estimates with different frequency
bandwidths that can be readily combined in the partition and as-
signment scheme. However, from Figure 3 one perceives that, es-
pecially in regions pF and pM, part of the low-frequency content of
the signal is present in the pulse estimate.

A practical solution to gain more control over the smoothness
of the pulse estimate is to post-process the partial pulse estimates
obtained in each partition prior to their merging. An effective post-
processing is the piece-wise polynomial fitting described in [6]. In
brief terms, this signal smoothing scheme consists of fitting a low-
order polynomial to short-duration frames of the signal of inter-
est, in an overlap-and-add signal segmentation, e.g., Hanning win-
dows with 50% temporal superposition. If the polynomial order
is fixed to 2, as adopted in the conducted experiments, the degree
of smoothness is solely controlled by the length of the overlapping
windows.

Here, a different window length can be chosen for each parti-
tion pL, pM, and pF . A rule of thumb is to set the window length
to some value (in units of time or number of samples) between a
quarter and a half of the smallest period of the pulse oscillation
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Figure 4: Signal corrupted with a long pulse (thin faded gray line)
and composite pulse estimate after applying the piece-wise poly-
nomial smoothing to the estimate shown in Figure 3.

observed in the considered partition. The pulse estimate that re-
sults from applying the piece-wise polynomial fitting is seen in
Figure 4, where windows of sizes 10 ms, 20 ms, and 30 ms have
been used, respectively, to smooth out the pulse estimates in par-
titions pF, pM, and pL. In order to avoid boundary effects during
the smoothing procedure, the bumpy pulse estimate in partition pF

was also extended backward by about 10 ms via odd symmetry
reflection w.r.t. its first sample.

Once an adequate pulse estimate is obtained, de-thumping is
simply achieved by subtracting the pulse from the signal. Removal
of the initial click can be easily accomplished via standard model-
based de-clicking techniques [2]. In practice, it may be desirable
to artificially overestimate the click duration toward the beginning
of the long pulse.

At this stage it seems appropriate to comment on the strong
and weak points of the EMD-based pulse estimation. An obvious
weakness lies in its inability to obtain a pulse estimate at once as a
single IMF. Furthermore, the user is left with the task of choosing
several additional parameters for the post-processing stage. This
burden, however, can be alleviated through a graphical user inter-
face, similar to that designed and proposed in [6]. On the other
hand, the EMD can be seen as a computationally cheap way of ob-
taining lowpass and bandpass filtered versions of the input signal.

3.2. CEEMD-based Estimation of Single Pulses

CEEMD-based estimation of single pulses follows the first three
processing steps defined in the beginning of Section 3.1, the latter
carried out with the CEEMD instead of the EMD. The fourth step,
however, turns out to be unnecessary, as it will be demonstrated.

Besides the number of IMFs, signal analysis via CEEMD re-
quires the choice of two other parameters: the standard deviation
of the additive noise realizations and the number of their pairs.
Fortunately, in the context of long pulse estimation tackled here,
these two parameters have minor impact to the final results. For all
simulations presented in this paper involving CEEMD, the stan-
dard deviation of the additive noise has been set to 20% of that of
the input signal, whereas the number of noise realization pairs was
set to 4, mainly to reduce computational costs.

Once the maximum number of IMFs is defined, the pulse es-
timate is simply taken as the ensuing residue, after discarding the
initial samples that are due to the artificial signal extension. As be-
fore, this residue is not a monotonic function and could be further
decomposed into more IMFs.

At this point it is worth mentioning that the maximum number
of IMFs required for the CEEMD to produce a smooth pulse es-
timate is about twice as that of EMD. This slower convergence to
a target-residue may come from a much higher number of signal
extrema in the beginning of the decomposition, due to the addition
of noise to the input signal.
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Figure 5: Signal corrupted with a long pulse (thin faded gray line)
and pulse estimate (thick black line) as the CEEMD residue after
extracting the first 12 IMFs. The thin vertical line at about 23 ms
indicates the actual beginning of the pulse. Pulse samples before
that limit should be discarded.

Figure 5 displays an example of pulse estimate obtained via
the proposed CEEMD-based method, where the pulse is taken as
the residue after extracting 12 IMFs. Here, for illustration pur-
poses, the pulse is plotted including the samples related to a back-
ward signal extension of about 2.5 ms. As can be seen, the at-
tained pulse estimate exhibits an adequate level of smoothness and
is capable of following the pulse trajectory in both fast and slow
oscillation regions.

In comparison with the pulse estimate shown in Figure 4, the
one yielded by the CEEMD solution is a bit bumpier. However,
since the amplitudes of these faster oscillations are quite small,
their subtraction from the corrupted signal is bound to produce
inaudible effects. Therefore, post-processing for further smooth-
ing and windowing schemes for pulse composition are no longer
needed.

3.2.1. Speeding up the CEEMD-Based Pulse Estimation

As seen in the previous section, the CEEMD-based pulse esti-
mation is effective, yet simpler than the EMD-based counterpart,
from the algorithm implementation and calibration perspectives.
Its main drawback is a higher computational cost that slows down
the process of obtaining the desired pulse estimates.

In the context of EMD of white noise, findings reported in [18]
suggest that the number of IMF zero-crossings, which holds rela-
tion with the number of IMF extrema, tends to decrease on average
by half from a given IMF to the subsequent one. Thus, the larger
the number of extrema in the beginning, the longer the decompo-
sition takes to converge to a monotonic residue.

With the previous information in mind, the following modifi-
cation, which affects the computation of signal envelopes within
the EEMD processing chain, has been found operative to speed up
the CEEMD-based pulse estimation method:

1. Detect all peaks and valleys of the input signal as usual;

2. Select from the previous set of peaks and valleys only the
peak (valley) with maximum (minimum) amplitude inside
juxtaposed observation windows of 3.4 ms (about 150 sam-
ples at 44.1 kHz sampling rate);

3. Obtain the signal envelopes as usual, but using only the
peaks and valleys selected in step 2;

4. Apply item 2 only for extraction of the first two IMFs.

The selection performed in step 2 above is an attempt to re-
tain only the most prominent peaks and valleys of the input sig-
nal, which is artificially corrupted with noise in the CEEMD. The
proposed peak and valley pruning produces upper and lower en-
velopes are way smoother than those of the noisy input signal. As

a consequence, the frequency bandwidths of the first two IMFs are
larger than those of the corresponding IMFs computed via conven-
tional CEEMD, forcing the modified CEEMD iterations to con-
verge faster to slowly varying IMFs, which are of interest to the
present application.

Together with the maximum number of IMFs, the length of
the observation window in step 2 above can also be changed by
the user as a means to control the degree of smoothness of the
pulse estimate. Considering a practical range from 1 to 10 ms,
the longer the window length, the smaller the maximum number
of extracted IMFs required for the residue to become an adequate
pulse estimate.

To illustrate the combined role of the two previously discussed
parameters in the final CEEMD-based pulse estimate, outcomes of
two different yet equally effective configurations of the CEEMD
method are presented in Figure 6 and Figure 7. In connection
with these results, Table 1 summarizes the processing parameters
adopted in each configuration and the average savings in computa-
tional time w.r.t the conventional CEEMD-based pulse estimation.

Visual assessment among the plots shown in Figures 5 to 7
reveals similar pulse estimates. Hence, from Table 1, adoption
of the proposed peak (valley) picking for envelope computation
within CEEMD is advantageous, for it can produce up to a ten-
fold reduction in computational time.
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Figure 6: Signal corrupted with a long pulse (thin faded gray line)
and pulse estimate (thick black line) as the CEEMD residue af-
ter extracting 4 IMFs. Peak and valley selection was carried out
within juxtaposed windows of 3.4 ms.
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Figure 7: Signal corrupted with a long pulse (thin faded gray line)
and pulse estimate (thick black line) as the CEEMD residue after
extracting only 2 IMFs. Peak and valley selection was carried out
within juxtaposed windows of 6.8 ms.

Table 1: Configuration of the CEEMD-based pulse estimation and
corresponding results. The value of T is about 10 s when running
the CEEMD analysis on a Core i7 870 2.93 GHz Quad Core CPU.
All simulations ran on the same machine.

CEEMD Configuration Results
No. IMFs Window Size Avg. Proc. Time Visual Output

13 – T Figure 5
4 3.4 ms T/3.8 Figure 6
2 6.8 ms T/10 Figure 7
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3.2.2. A Real-World Example of CEEMD-based De-Thumping

As a real-world example, one of the long pulse occurrences in
the signal available from [21] has been subjected to the proposed
CEEMD-based de-thumping. The signal in question, which is
sampled at 22.05 kHz, contains pulses with initial oscillations of
about 180 Hz, thus faster than in the previously considered pulse.
In order for the CEEMD method to capture those fast pulse vari-
ations, the window size in the peak/valley selection scheme has
been experimentally set to 1.4 ms, whereas the maximum number
of IMFs was limited to 2.

The attained pulse estimate is seen in the top panel of Figure 8,
where one can notice undesirable fast oscillations after about 40
ms of the beginning of the pulse. To improve the estimate, they
were flattened out via the overlap-and-add polynomial smooth-
ing [6] with windows of 13.6 ms. The final pulse estimate, which
is shown in the bottom panel of Figure 8, is then composed by
seamlessly merging the first approximately 16 ms of the original
CEEMD-based estimate with its smoothed out version from about
40 ms onward.

Concerning the corrupted signal and related pulse estimate
depicted in the bottom panel of Figure 8, the corresponding de-
thumped version is seen in the top plot of Figure 9. The remaining
click of about 680 µs (about 15 samples at 22.05 kHz sampling
rate) was suppressed by LSAR signal reconstruction with model
order 65 to produce the signal shown in the middle plot of Fig-
ure 9. A detailed vision of the signal reconstruction around the
click location is seen in the bottom plot.

3.3. Estimation of Superimposed Pulses

As regards estimation of superimposed pulses, a strategy that has
been found effective was to treat independently the parts that form
the pulse. In other words, the signal part that follows the last
driving initial click is subjected for instance to the CEEMD-based
pulse estimator as if it were a single pulse occurrence. Separately,
pulse estimation in the intermediate part between two consecutive
initial clicks is carried out using the same processing parameters.
For this part, it is desirable to extent the signal backward and for-
ward in time for about the duration of the delimiting clicks.
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Figure 8: Top: real-world example of a signal corrupted with
a long pulse [21] (faded gray line) and corresponding CEEMD
pulse estimate (thick black line). Bottom: same corrupted signal
(faded gray line) and improved estimate via polynomial smoothing
from 40 ms onward (thick black line).
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Figure 9: Top: de-thumped signal related to the corrupted signal
and related pulse estimate shown in the bottom plot of Figure 8.
Middle: de-clicked signal via LSAR signal reconstruction. Bot-
tom: detail of the signal reconstruction around the click location,
with the original click painted in faded gray line. The thin verti-
cal lines around 23 ms delimit the audio region subjected to LSAR
interpolation.

Figure 10 shows an example of CEEMD-based estimation of
superimposed pulses in which the same processing setup that gen-
erated the result seen in Figure 6 has been used.

4. PERFORMANCE ASSESSMENT

In this paper the performance assessment methodology for audio
de-thumping methods defined in [6] is employed. The same set of
test signals and one of the quantitative metrics considered in [6]
are also used as a means to allow direct comparisons with those
previous results. A brief overview of the experimental setup is
given in the sequel. The reader is referred to [6] for a more detailed
description.

4.1. Test Signals

The test signals comprise a set of reference uncorrupted signals
and a corresponding set of artificially corrupted versions. The ref-
erence set is composed of 6 CD-quality short-duration (11 to 20
s) excerpts of audio including diverse musical genres such as pop,
jazz, classic, and ethnic, as well as solo of drums and acoustic bass.

The corrupted set was produced by adding several single long
pulses (with initial click) to the reference signals. Successive pulses
were placed approximately 769 ms apart from each other. Here,
only the set of strong pulses [6, 22] will be considered for perfor-
mance evaluation.
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Figure 10: Signal corrupted with a superimposed long pulse (thin
faded gray line) and CEEMD-based pulse estimates (thick black
lines).
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4.2. Experimental Setup and Performance Metric

As in [6], the evaluation methodology adopted here consists in
first obtaining restored versions (de-thumped and de-clicked) of
the corrupted set via a selection of de-thumping methods with pre-
defined configurations. Then, the reference and restored sets are
compared by objective means.

Here, the Perceptual Audio Quality Measure (PAQM) [11] is
used as the performance metric. In a nutshell, the PAQM compares
a processed signal w.r.t. a reference and outputs a dissimilarity in-
dex that takes into account several properties of the human audi-
tory system, such as masking in time and frequency. The closer
to zero the PAQM, the more similar perceptually are the processed
and reference signals.

The aim here is to run a direct comparison among the PAQM
values associated with the restored signals produced by the follow-
ing de-thumping methods: AR Separation (ARS), TPSW-based
(TPSW), EMD-based pulse estimation (EMD), and CEEMD-based
pulse estimation (CEEMD). Therefore, only the processing setup
of the EMD and the CEEMD will be defined. The processing pa-
rameters employed in the ARS and the TPSW can be found in [6].

4.2.1. EMD Configuration

The following configuration was employed to obtain the EMD-
related results:

• Backward signal extension: 100 samples with odd symme-
try w.r.t. the first sample;

• Maximum number of IMFs: 6;

• Envelope computation: piecewise cubic Hermite interpolat-
ing polynomials across local maxima (minima);

• pF: 44 ms from the beginning of the pulse;

• pM: 60 ms from the end of pF;

• pL: 100 ms from the end of pM;

• Pulse estimate inside pF: (residue + 6th IMF + 5th IMF)
smoothed out via the overlap-and-add polynomial scheme
with windows of 10 ms and 2nd-order polynomials;

• Pulse estimate inside pM: (residue + 6th IMF) smoothed out
via the overlap-and-add polynomial scheme with windows
of 20 ms and 2nd-order polynomials;

• Pulse estimate inside pL: (residue) smoothed out via the
overlap-and-add polynomial scheme with windows of 30
ms and 2nd-order polynomials;

• Click removal: 75th-order LSAR signal reconstruction of
50 samples from the click onset.

4.2.2. CEEMD Configuration

The following configuration was employed to obtain the CEEMD-
related results:

• Number of noise realization pairs: N/2 = 4;

• Standard deviation of each realization: ε = 0.2 std{x(t)};

• Backward signal extension: 100 samples with odd symme-
try w.r.t. the first sample;

• Maximum number of IMFs: 4;

• Envelope computation (for first two IMFs): piecewise cu-
bic Hermite interpolating polynomials across local maxima
(minima), after selection of one maximum (minimum) per
juxtaposed windows of 3.4 ms;

• Envelope computation (third and fourth IMFs): piecewise
cubic Hermite interpolating polynomials across local max-
ima (minima);

• Click removal: 75th-order LSAR signal reconstruction of
50 samples from the click onset.

4.3. Results and Discussion

Table 2 summarizes the attained PAQM of the restored (de-thumped
and de-clicked) test signals for each of the considered methods and
predefined configurations given in the previous sections and [6].

Analysis of the results suggests a tendency of the EMD to out-
perform the competing methods. For instance, for all test signals
restored by EMD, the associated PAQMs are smaller than those
of TPSW. ARS offers the most effective restoration for signals
Drums and Singing, whereas CEEMD is the least successful in
these cases. Signal Ethnic as restored by CEEMD yields the small-
est PAQM. It is worth mentioning that too small PAQM differences
may not necessarily imply a noticeable perceptual difference. Au-
dio examples can be found in [23].

In summary, for the considered experimental scenario, the at-
tained PAQM results suggest EMD and CEEMD are effective and
competitive tools for audio de-thumping.

Table 2: Comparative performance evaluation of the EMD,
CEEMD, TPSW, and ARS de-thumping methods using PAQM.
The best results (lowest PAQM) are highlighted.

Test Signal EMD CEEMD TPSW ARS
Pop 0.024 0.028 0.036 0.046
Jazz 0.012 0.031 0.028 0.061

Classic 0.010 0.023 0.017 0.033
Ethnic 0.032 0.030 0.051 0.048
Drums 0.029 0.097 0.049 0.014
Bass 0.015 0.030 0.031 0.188

Singing 0.092 0.282 0.110 0.066

5. CONCLUSIONS

This paper addressed the problem of long pulse removal from au-
dio signals (de-thumping). Two methods for long pulse estimation
based on Huang’s Empirical Mode Decomposition (EMD) were
proposed. After an overview of the EMD and its related comple-
mentary ensemble version (CEEMD), their use as tools to obtain
adequate pulse estimates from corrupted audio signals was inves-
tigated by means of practical examples.

It was found out experimentally that, possibly due to mode
mixing issues afflicting signal analysis via EMD, an intrinsic mode
function (IMF) or a non-monotonic residue (after successively ex-
tracting a given number IMFs from the original signal) may not
serve alone as an adequate pulse estimate. To overcome the prob-
lem, the adopted solution [6] was to define three temporal parti-
tions to which pulse estimates with different frequency bandwidths
or levels of smoothness were attributed. The final composite pulse
estimate was then assembled together by merging seamlessly the
estimates from each partition.
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As regards signal analysis via the CEEMD, it was discov-
ered that adequate pulse estimates could be obtained at once as a
non-monotonic residue after successively extracting a given num-
ber IMFs from the original signal. However, as compared with
the EMD, about twice the number of initial IMFs needed to be
extracted for producing a smooth enough pulse estimate. Other
CEEMD parameters such as the variance of the additive noise and
the number of ensemble pairs had negligible impact on the final
results. As a means to decrease the computational cost of the
CEEMD for the studied application, a modified scheme for sig-
nal envelope computation was devised: piecewise cubic Hermite
interpolating polynomials were fitted across local maxima (min-
ima), after selection of one maximum (minimum) per juxtaposed
short-duration windows. Average reductions in computation time
up to ten times were reported.

Objective performance evaluation of the proposed EMD- and
CEEMD-based methods for audio de-thumping was carried out us-
ing the same methodology and test data of [6]. Indirect compara-
tive results, in terms of the Perceptual Audio Quality Measure [11]
of the restored versions of the corrupted data, suggest the proposed
CEEMD-based method tends to perform as effectively as the com-
peting TPSW-based procedure [6] and outperform the AR separa-
tion method [2]. As regards the EMD-based method the observed
tendency is of a more favorably performance in comparison with
the TPSW-based solution.
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ABSTRACT

The use of high quality sound effects is growing rapidly in mul-
timedia, interactive and virtual reality applications. The common
source of audio events in these applications is impact sounds. The
sound effects in such environments can be pre-recorded or synthe-
sized in real-time as a result of a physical event. However, one
of the biggest problems when using pre-recorded sound effects is
the monotonous repetition of these sounds which can be tedious to
the listener. In this paper, we present a new algorithm which gen-
erates non-repetitive impact sound effects using parameters from
the physical interaction. Our approach aims to use audio grains
to create finely-controlled synthesized sounds which are based on
recordings of impact sounds. The proposed algorithm can also be
used in a large set of audio data analysis, representation, and com-
pression applications. A subjective test was carried out to evaluate
the perceptual quality of the synthesized sounds.

1. INTRODUCTION

Our environment is full of diverse types of impact sounds such as
hitting, collision, bumping, dripping, etc. Such impact sounds are
generally produced when two or more objects interact with each
other. Pre-recorded versions of these sounds are used to generate
such sound effects in interactive and virtual reality applications,
in real time and offline productions. This method requires a large
set of recordings of impact sounds to cover all possible situations
which in turn necessitates a very large memory. One possible way
to reduce recordings’ size is by grouping them by size, material
type, etc., but even then many recordings need to be carried out.
For this reason, a small set of recordings of impact sounds is gener-
ally played back repetitively, and that can be tedious to the listener.
Methods have been proposed to improve the realism of sound ef-
fects in games, such as the work of Vachon [1]. However, the
repetition of sound effects in interactive applications, particularly
in game’s audio, remains a big challenge for the researcher and
audio designer.

Alternatively, impact sounds can be generated automatically
using either physics-based interaction of objects, known as phys-
ical models, or by imitating the properties of sound as perceived
by the listener, known as spectral models. In recent years a num-
ber of such synthesis algorithms have been developed and applied
to impact sounds synthesis [2, 3, 4, 5, 6, 7, 8, 9]. Physical mod-
els [2, 3, 4, 5] are very efficient and accurate in simulating a tar-
get sound but the refinement of such models is not always suc-
cessful because the physical mechanisms of many environmental
impact sounds are still not completely understood [10]. There-
fore, a limited class of impact sounds has been targeted by this

type of models. Furthermore, these models are computationally-
intensive and require significant parameter-tuning to achieve real-
istic results, making it more difficult to use in a game production
pipeline. In contrast, spectral models [6, 7, 8, 9] have a broader
scope and construct the spectrum as received by the ear. Therefore,
their refinement and repurposing is easier than physical models.

In recent years, combinations of sound synthesis models with
pre-recorded sound have been used to generate high quality impact
sound in interactive applications [11, 12]. Such approaches reduce
the effect of the monotonous repetition of recorded sounds, and
enhance the quality of synthesized sounds by linking the synthesis
parameters to the physics engine. Bonneel et al. [11] presented a
new frequency-domain method that used both pre-recorded sounds
and physical models to generate high quality sounds. In [12], Pi-
card et al. proposed a technique where non-repetitive sound events
can be synthesized for interactive animations by retargeting the
audio grains, extracted from the recorded sounds, based to the pa-
rameters received from the physics engine.

In this paper, we propose a similar approach where the pre-
recorded impact sounds are represented in the form of a dictio-
nary and synthesis patterns. During the generation phase, the syn-
thesis pattern and corresponding atoms from the dictionary are
selected according to the reported synthesis parameters from the
physical interaction. During the analysis process, a continuous
pre-recorded impact sounds are automatically segmented into in-
dividual events and all the events collected from different impact
sound sources are decomposed into sound grains, where each grain
has energy only at a particular frequency or scale. A dictionary
is trained from the extracted sound grains. The recorded impact
sound events are projected onto the dictionary which constitutes
the synthesis patterns. During synthesis process, these patterns are
tuned according to the target sound parameters.

2. SIGNAL REPRESENTATION TECHNIQUES

For many years, a large family of signal analysis techniques have
heavily relied on Fourier transform (FT) and short-time Fourier
transform (STFT) where the input signal is represented with the
superposition of fixed basis functions i.e. sinusoids. The FT and
STFT methods are most useful when considering stationary sig-
nals but most real-world sound signals are not stationary in time.
Therefore, these analysis techniques are inadequate for such sig-
nals. Over the last two decades there has been a lot of interest to
find alternative signal representation techniques which are adap-
tive and specialized to the signals under consideration. As a result,
a number of basis functions and representation techniques have
been developed to represent any input signal in a more compact,
efficient, and meaningful way.
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2.1. Dictionary-Based Methods

One of these techniques, which have attracted a lot of interest in re-
cent years, is dictionary-based representation as it offers a compact
form of the signal, and is highly adaptive. These methods have
been used in many signal processing applications including analy-
sis and representation of audio signals [13, 14] and music [15].

In dictionary-based methods, a signal is represented as a linear
combination of elementary waveforms (atoms) taken from a dic-
tionary. A dictionary is a collection of parameterized waveforms.
Let x be a discrete-time real signal of length N i.e. x ∈ <N , and
D = [δ1, δ2, . . . , δK ] be a dictionary, where each column δk rep-
resents an atom and its length is N i.e. D ∈ <N×K . The aim is to
represent x as a weighted sum of atoms δk which can be written
as,

x =

K∑

k=1

δk wk (1)

where w is a column vector in <K and represents the expansion
coefficients or weights. Generally, the dictionary D is overcom-
plete i.e. N < K, which means the matrix D is of rank N
and the linear system in Eq. (1) is undetermined. In that case,
the decomposition vector w in Eq. (1) is not unique and there
may even be an infinite number of possible expansions of the form
of Eq. (1). Therefore, one has to introduce some additional con-
straints to specify a unique or particular decomposition.

2.2. Sparse Representations

Given an overcomplete dictionary D and the signal x, finding a
solution to the underdetermined systems given in Eq. (1) is a non-
trivial task. In general, the representation in Eq. (1) is approxi-
mated by applying some additional constraints to specify a unique
or particular solution. An adequate approximation of the signal x
in Eq. (1) is obtained by selecting few atoms δk from dictionary
D corresponding to highest weights wk. That is, useful represen-
tations are the ones where most of the energy of the signal x is
concentrated into a small number of coefficients, hence x can be
approximated using only j atoms from the predefined dictionary
as

x =

j∑

k=1

δk wk + r (2)

or in matrix form
x = Dw + r (3)

where j < K and r ∈ <N is residual. The selection of atoms and
their numbers are controlled by limiting the value of approxima-
tion error. By applying such criterion, the approximation solution
given in Eq. (3) can be redefined as

x ≈ Dw such that ‖x−Dw‖2 ≤ ε (4)

where ε is a given small positive number. The solution with the
fewer number of atoms and corresponding weights is certainly an
appealing representation. Sparse or compact approximation of a
signal x is measured using the `0 criterion, which counts the num-
ber of non-zero entries of the weights vector w ∈ <K . The prob-
lem of finding the optimally sparse representation can be defined
as the solution to

min
w
‖w‖0 such that ‖x−Dw‖2 ≤ ε (5)

where ‖w‖0 is the `0-norm, which count the number of non-zero
coefficients in weight vector w. The problem of finding the opti-
mally sparse representation, i.e., with minimum ‖w‖0, is a com-
binatorial optimization problem in general. Constraining the solu-
tion w to have the minimum number of nonzero elements creates
an NP-hard problem [16] and cannot be solved easily. Therefore,
approximation algorithms, such as matching pursuit (MP) [17], or-
thogonal matching pursuit (OMP) [18], and basis pursuit (BP) [19],
are used to find an optimal approximation solution of Eq. (5).
The MP and OMP algorithms are classified as greedy methods
where a signal approximation is iteratively built up by selecting the
atom that maximally improves the representation at each iteration.
These algorithms converge rapidly, and exhibit good approxima-
tion properties for a given criterion [17, 20].

2.3. Selection of Dictionary

Dictionaries are often constructed from a combination of discreti-
zed, scaled, translated, and modulated lowpass functions. An over-
complete dictionary that leads to sparse representations can either
be chosen as a prespecified set of functions or designed by adapt-
ing its content to fit a given set of signal examples. Choosing a
prespecified transform matrix is appealing because it is simpler
but there is no guarantee that these bases will lead to a sparse rep-
resentation of signals under consideration.

The sparse approximation of the Eq. (5) can also be improved
by using an appropriate dictionary for the given class of signals.
Instead of using predetermined dictionaries, dictionary learning
methods [21, 15] can be used to refine them. Such methods adapt
an initial dictionary to a set of training samples. Therefore, the
aim is to learn a dictionary for which an input signal, taken from a
given class of signals, has a sparse approximation.

3. PROPOSED ANALYSIS-SYNTHESIS ALGORITHM

The proposed synthesis algorithm generates the target impact sou-
nds using parametric representation modeled from the recorded
impact sounds. This algorithm is divided into three stages i.e. anal-
ysis, parameterization, and synthesis, as depicted in Fig. 1. In the
analysis phase, the recorded continuous impact sounds are seg-
mented and split into sound grains. During the parameterization
phase, the impact sounds are represented by synthesis patterns,
and an adaptive dictionary trained from these sound grains. The
target sound is generated at the synthesis stage where a pattern is
selected and adjusted according to the parameters received from
the physical interaction.

4. ANALYSIS OF RECORDED SOUNDS

The aim of the analysis process is to extract the sound grains which
characterize the recorded impact sounds. The analysis stage in-
cludes the segmentation, peak alignment, and the extraction of
sound grains.

4.1. Automatic Segmentation

The first step during the off-line analysis of the impact sound is to
segment each recorded sound signal into individual sound events
or simply events. For example, if the input sound is a clapping
sound then each clap in the sound sequence is called an event,
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Figure 1: Overview of the proposed analysis-synthesis algorithm.

which is represented by x. Each event is isolated by detecting and
labeling its onset and offset points.

An impulsive event consists of an attack and a decay parts
which are concatenated together. The onset of events is labeled us-
ing the energy distribution method proposed by Masri et al. [22],
which detects the beginning of an impulsive event by observing
the suddenness and the increase in energy of the attack transient.
Detection is selected as an onset of an event when there is a sig-
nificant rise in energy along with an increased bias towards the
higher frequencies. Short-time energy of the signal is used to lo-
cate the offset of each event. Starting from the onset of each event,
the short-time energy is calculated with overlapped frames, and
compared against a constant threshold to determine the offset. On-
set detection methods have been applied to input sounds that are
monophonic i.e. only a single melodic line or tune is present, and
music notes or events do not overlap [23, 24]. In this paper, we
have also assumed that there is no overlapping of the sources in
the recorded impact sounds.

Equal or different number of events can be selected from each
sound source. Once the events are selected and segmented, they
are peak aligned by cross-correlation such that the highest peaks
occur at the same point in time. This increases the similarities
between the extracted sound grains and improves the dictionary
learning process. The set of collected sound events can be repre-
sented as a matrix X i.e.,

X = [x1,x2, . . . ,xm] (6)

where each column represents a sound event and length of each
event is n. Zero padding is used for any segmented sound event
whose length is less than n.

4.2. Extraction of Sound Grains

The recorded impact sounds from different sources need to be rep-
resented in a way that i) the similarities and differences between
various impact sounds can be observed and parameterized, ii) this
parametric representation can be manipulated in various ways to
generate sound effects at synthesis stage. Impact sound belongs to
the transient signal family that is non-stationary. Based on the fre-
quency resolution properties of the human auditory system, such

signals can be split into layers of grains where the energy of each
grain is presented at a particular frequency or scale. The infor-
mation in each grain and the overall structure of these grains are
analyzed based on human auditory system. Such parametric rep-
resentation can be used to compare the characteristics of different
sounds [25]. Furthermore, during the synthesis process, the pa-
rameters representing these grains can be manipulated in various
ways to control the generated sound.

In the proposed scheme, stationary wavelet transforms (SWT)
[26, 27] is used to extract the sound grains from the impact sound
events. The SWT is the real-valued extension to the standard dis-
crete wavelet transform (DWT). SWT is preferred over DWT be-
cause the latter lacks the property of shift-invariance. The SWT
has the ability to underline and represent time-varying spectral
properties of the transient signals and offers localization both in
time and frequency.

The SWT is applied to each event, xi, which decomposes it
into two sets of wavelet coefficient vectors: the approximation co-
efficients ca1 and the detail coefficients cd1, where the subscript
represents the level of decomposition. The approximation coef-
ficients vector ca1 is further split into two parts, ca2 and cd2,
using the scheme shown in Fig. 2(a). This decomposition pro-
cess continues up to Lth level which produces the following set
of coefficient vectors: [cd1, cd2, . . . , cdL, caL]. The approxima-
tion coefficients represent the low-frequency components, whereas
the detail coefficients represent the high-frequency components.
To construct the sound grains from coefficients vectors, the in-
verse SWT is applied to each coefficient vector individually by
setting all others to zero which produces the following bandlim-
ited sound grains: [g1,g2, . . . ,gL+1]. Each grain contains unique
information from the sound event, retains the size of the the sound
event. The block diagram of the process of extraction of sound
grains from a coefficient vector is shown in Fig. 2(c). The entire
sound event matrix X is split into sound grains which produce
the grain matrix G = [gi : i = 1, 2, . . . , p], where gi form the
columns of the grain matrix and the number of total grains are
p = m× (L+ 1).

Figure 2: (a) Decomposition tree of SWT, (b) SWT filters, (c) con-
struction of a sound grain.

The selection of wavelet type from the family of wavelets (i.e.
Haar, Daubechies, etc.) and their decomposition level depend on
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the input sound signal, application area, and the representation
model. This is an iterative process where the best wavelet type
and optimum decomposition level are obtained by evaluating the
perceived quality of the synthesized sounds generated from the dif-
ferent wavelet types and decomposition levels.

5. PARAMETERIZATION

The proper parameterization of the sound features extracted from
the analysis part is an essential element of the synthesis systems. In
this paper, a dictionary-based approach is used to create a paramet-
ric representation of the recorded sounds. The similarities and dif-
ferences of the sound grains, as well as their relationships to the in-
put sounds are preserved and reflected in the presented parametric
representation. One key advantage of dictionary-based signal rep-
resentation methods is the adaptivity of the composing atoms. This
gives the user the ability to make a decomposition suited to spe-
cific structures in a signal. Therefore, one can select a dictionary
either from a pre-specified set of bases functions, such as wavelets,
wavelet packets, Gabor, cosine packets, chirplets, warplets etc., or
design one by adapting its content to fit a given set of signals, such
as dictionary of instrument-specific harmonic atoms [15].

5.1. Dictionary Learning

Choosing a set of prespecified basis functions is appealing because
of its simplicity but there is no guarantee that these basis functions
will lead to a compact representation of given signals. The success
of such dictionaries in practice depends on how suitable they are to
sparsely describe the signals in question. However, there are many
potential application areas, such as transient and complex music
sound signals, where fixed basis expansions are not well suited
to model this type of sound signals. A compact decomposition
is best achieved when the elements of the dictionary have strong
similarities with the signal under consideration. In this case, a
fewer set of more specialized basis functions in the dictionary is
needed to describe the significant characteristics of the signal [15,
28, 29]. Ideally, the basis itself should be adapted to the specific
class of signals which are used to compose the original signal. As
we are dealing with a specific class of sound signals, we believe
that it is more appropriate to consider designing learning-based
dictionaries.

Given training impact sounds and using adaptive training pro-
cess, we seek a dictionary that yields compact representations of
the sound event matrix X. The K-SVD algorithm [21] is such a
technique for training a dictionary from given example signals. It
is a highly effective method, and has been successfully applied to
several image processing tasks [30, 31]. The K-SVD algorithm
consists of an iterative process of optimization to produce a sparse
representation of the given samples based on the current dictio-
nary, and an update of the atoms that best represent the samples.
The update of the dictionary columns is done along with an update
of the sparse representation coefficients related to it, resulting in
accelerated convergence.

In the proposed scheme, the K-SVD algorithm is used to train
an adaptive dictionary D which determines the best possible rep-
resentation of a given impact sounds. The K-SVD algorithm takes
the sound grains matrix G, as initial dictionary D0, a number of
iterations j, and a set of training signals, i.e sound event matrix X.
The algorithm aims to iteratively improve the dictionary to achieve
sparser representations of the sound events in X, by solving the

optimization problem

min
wi

‖xi −Dwi‖22 such that ∀i ‖wi‖0 ≤ T0 (7)

where T0 is the number of non-zero entries in wi. The iteration
of K-SVD algorithms is performed in two basic steps: i) given the
current dictionary, the sound events in X are sparse-coded which
produce the sparse representations matrix W, and ii) using this
current sparse representations, the dictionary atoms are updated.
The dictionary update is performed one atom at a time, optimizing
the target function for each atom individually while keeping the
other atoms fixed.

5.2. Synthesis Pattern

The OMP is used to find the synthesis patterns of the input impact
sound events over the dictionary. The OMP is a greedy step-wise
regression algorithm. The aim of OMP algorithm is to approxi-
mate the solution of the sparsity-constrained sparse coding prob-
lem given in Eq. (7), where the dictionary atoms have been nor-
malized. At each stage, this algorithm selects the dictionary atom
with the maximal projection onto the residual signal. Once the
atom is selected, the signal is orthogonally projected to the span
of the selected atoms, the residual is recomputed, and the process
is repeated. The algorithm stops after a predetermined number of
steps, selecting a fixed number of atoms T0 in every iteration. At
this stage, the impact sound matrix X can be fully represented as
a dictionary matrix D and synthesis patterns matrix W. The in-
formation about the impact sound sources is labeled onto synthesis
pattern W for future reference and for possible use during the syn-
thesis process.

6. GENERATION OF TARGET SOUND

To synthesize the target impact sound, the controlling variables are
employed to select the best sound parameters. During the synthe-
sis process, an impact sound event from the sound matrix X is
synthesized by selecting the decomposition pattern wi and then
adding the corresponding weighted dictionary atoms, which can
be written as,

x̂i
∼=
∑

j ∈ J

δj wi(j) (8)

where J contains the T0 number of indices of the non-zero entries
in wi. The perceptual quality of the synthesized impact sound
event x̂i is directly related to the number of non-zero entries in
wi. The quality of synthesized impact sound event x̂i improves
sharply for the first few atoms but become imperceptible after a
particular value of T0.

6.1. Expressive Synthesis Method

Two sound events generated consecutively by the same sound sou-
rce will be similar but not identical. For example, when a person
claps twice in the same way with the same applied force, the gen-
erated clapping sounds will be similar but not identical. The pro-
posed algorithm can synthesize example impact sounds approxi-
mately from the represented parameters, i.e. synthesis pattern W
and dictionary atoms D. A limited number of impact sound events
sequence can be generated from this representation as the num-
ber of synthesis pattern vectors is limited and fixed. Therefore,
the same set of impact sounds will be repeated during long impact
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sound sequences, which will make it perceptually artificial in the
ears of the listeners.

To generate more natural and customized sounds, the proposed
method modifies the synthesis process given in Eq. (8). This equa-
tion uses the represented parameters, W and D, to synthesize an
impact sound event. Every time Eq. (8) is executed to synthe-
size an impact sound event x̂i, a synthesis pattern wi is used to
combine the dictionary atoms. For expressive synthesis, when an
impact sound event x̂i is generated, a small random vector ψ is
added to the selected synthesis pattern wi such that the overall
time-varying spectrum of the impact sound is unchanged. The
value of ψ is generated randomly in a sphere of radius R with
the origin at the synthesis pattern of the generated impact sound.
A different vector ψ is generated for every event of impact sound
and the length of ψ is equal to T0 because only non-zero entries in
wi are changed. Hence, The synthesis equation given in Eq. (8) is
modified for the expressive synthesis process and can be rewritten
as,

x̂i
∼=
∑

j ∈ J

δj [wi + ψ](j). (9)

The impact sound sequence generated using Eq. (9) will be similar
but not identical, and they will also not be exact copies of the sound
events matrix X.

7. SUBJECTIVE EVALUATION OF SYNTHESIS SOUND
QUALITY

Subjective tests have been used to accurately assess the quality of
the sound events generated by the proposed algorithm.

7.1. Impact Sound Database

A sample of commonly heard everyday impact sounds were used
to evaluate the perceptual quality of sounds synthesized using the
proposed analysis-synthesis algorithm. The group contains six
impact sounds which include: bumping sounds of a tennis ball,
a football and a basketball on laminate floor; a finger knocking
sound on a wooden table; and male and female clapping sounds.
The recordings of these sounds were made in an acoustical booth
(T60 < 100 ms) at a sampling rate of 44.1 kHz.

To record the bumping sounds, each ball was dropped on lami-
nated floor from a fixed height of 80 cm with no applied force. Af-
ter each bump, the ball is lifted up to the same height and dropped
again. A microphone was placed vertically close to the floor level
and horizontally about 100 cm away from the potential point of
contact at the floor. The experimenter knocked the centre of the
wooden table1 top with his right hand index finger with a con-
stant force. To capture this sound, the microphone was placed at
the level of table top and about 100 cm away horizontally from
the centre of the table. The recording of the clapping sounds was
made with one male and one female subjects2, both between the
age of 25 and 35. Each subject was seated in the acoustical booth
alone and a microphone was placed about 100 cm away from their
hands. Subjects were asked to clap at their most comfortable or
natural rate using his or her conventional clapping style. A set
of sequences was recorded for each sound source where each se-
quence contains series of event.

1The size of the table was 20.5 cm width, 39.5 cm length, and 28.5 cm
height.

2The male clapper was the author and the female clapper was a research
fellow at I-Lab.

7.2. Synthesis Model and Stimuli

The purpose of this listening test is to compare the quality of the
synthesized impact sounds with the original recorded sounds. The
set of sequences of six impact sounds from the recorded database
were segmented into individual sound events. An equal number of
sound events, i.e. 30, were taken from each impact sound type.
The segmented sound events were peak aligned and put into a
matrix form i.e. S = [x1,x2, . . . ,xm], where m = 6 × 30 =
180 was the number of collected events and the length of each
event was n = 2048. To extract the sound grains from the col-
lected event matrix X, the SWT was applied to each event up
to the 5th level. That produced the sound grains matrix G =
[g1,g2, . . . , gp], where p = 180 × 6 = 1080 represented the
number of sound grains and the length of each grain was equal
to n = 2048. The parametric representation of the input impact
sounds was done by training an adaptive dictionary using the ex-
tracted sound grains. Given the sound grains matrix G as an initial
dictionary D0, and the impact sound events matrix X as training
signals, K-SVD algorithm was used to train a final adaptive dic-
tionary D = [δ1, δ2, . . . , δK ], with a number of atoms equal to
K = 108. To find the decomposition patterns W, OMP was used
to project recorded sound events over the dictionary D. Hence,
the decomposition patterns W and adaptive dictionary D fully de-
scribed the parametric representation of the input impact sounds.

Three groups of stimuli were synthesized from the represented
model of the recorded sounds W and D. The first group of stim-
uli was synthesized using seven atoms from the represented model,
while in the second and third groups, they were synthesized using
fourteen and twenty one atoms respectively from the represented
model. Furthermore, each group contains twelve stimuli, where
two stimuli are used from each sound source: male clapper, fe-
male clapper, tennis ball, football, basketball, and one finger and
table. During the synthesis process, one event of the target sound
was generated from the represented model using seven, fourteen,
and twenty one atoms. However, when this event was used as a
stimulus, the same event was repeated three times with 0.5 sec-
onds interval. Similarly, the corresponding reference sound (the
original recorded event) was also repeated three times with 0.5
seconds interval. During each experiment, one reference stimulus
and a corresponding synthesized stimulus from each group were
presented to the subjects simultaneously. The subjects listened to
the reference and synthesized stimuli and graded the quality of the
synthesized sounds. The subjects’ responses were collected using
the graphical user interface (GUI).

7.3. Subjects and Evaluation Setup

A group of 10 subjects (8 male and 2 female), between the age of
26 and 40, participated in the subjective evaluation. The subjects
included PhD students and staff from the I-Lab centre with no re-
ported hearing impairment. The subjects were trained before the
evaluation session and can be considered to be expert listeners.

For the evaluation experiment, the subjects were seated in an
isolated multimedia room. The experimental setup consisted of
one Dell Inspiron 630m laptop and one Sennheiser HD 500 head-
phone. Every subject was familiarized with the evaluation process
by undertaking a training session. A GUI was built in MATLAB
which was used for the training and sound quality evaluation pro-
cesses.

During each experiment, the subjects were presented with one
reference stimulus (the original recording) and three test stimuli
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(one for each group) from the same sound source. Since there
were twelve experiments, the total number of synthesized sounds
evaluated by each subject was equal to 36. The subjects’ task was
to listen to the reference and the three test sounds, and then rate
the quality of the test sounds in comparison to the reference stimu-
lus. The subjects can replay the reference and test sounds as many
times as they wished. To register a rating for each test, the subjects
were asked to move the slider on a scale ranging from 0 to 100.
The 0 to 100 scale is divided into five equal quality steps: Excel-
lent (81-100), Good (61-80 ), Fair (41-60), Poor (21-40), and Bad
(0-20). Once subjects completed all test sounds within a particular
experiment, they could move to the next one by clicking the “save
and proceed” button, which stored the rating and presented them
with the following set of tests. Each subject took about 15 minutes
to evaluate all the experiments.

7.4. Results

Fig. 3 shows the mean evaluation ratings from all the subjects as
well as the bars 95% confidence intervals of the mean ratings. It
can be observed that the higher the number of atoms used in the
synthesis process, the better the perceived quality. Furthermore,
the relationship between the perceived quality of the synthesised
sound and the number of atoms is linear. This result is due to the
fact that as the number of atoms increases in the synthesized pat-
tern, the synthesized sound event approximate more closely to the
original signal. The figure also shows that even with a small num-
ber of atoms, T0 = 7 out of the size of the dictionary K = 108,
the mean subjects’ rating of the quality was “Good”. This indicates
that our method achieved a perceptually acceptable level of sound
quality with only few number of atoms, hence a more compact
form. When increasing the number of atoms to T0 = 21, the mean
quality rating improved to “Excellent”. These results highlight the
efficiency of the parameterization technique used, and the advan-
tages of using an adaptive dictionary trained from sound grains
that are extracted from the input signal.
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Figure 3: Mean synthesis quality of the synthesized sounds aver-
aged across all subjects. The bars show 95% confidence intervals
of the mean ratings.

8. CONCLUSIONS

We presented a new algorithm, which can synthesize any impact
sound by analyzing and representing the recorded sound as a set
of atoms and synthesis patterns. The atoms of the dictionary were
first adaptively trained from the input sound using K-SVD algo-
rithm, and then the synthesis patterns were generated by project-
ing the sound events over the trained dictionary. The target sound
was synthesized by selecting and tuning the synthesis pattern and
their corresponding atoms from the dictionary. In addition, an ex-
pressive synthesis method was presented which can generate non-
repetitive and customized impact sounds. Subjective tests were
carried out to evaluate the perceptual quality of the synthesis mod-
el. The tests’ results showed that it is possible to achieve a satis-
factory level of perceived sound quality using the compact repre-
sentation of a given impact sound with a small number of atoms
(T0 = 7) from the trained dictionary. An approximation sound
with T0 = 21 was sufficient to yield an “Excellent” quality aver-
age rating.

As part of future work, we will further investigate the expres-
sive synthesis model and analyze the distribution of the synthesis
patterns of real life sound events and their possible statistical mod-
eling. The quality and realism of the synthesized impact sounds
generated from expressive synthesis model will be evaluated using
subjective tests.
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ABSTRACT 

In ensemble music performance, such as a string quartet or duet, 

the musicians interact and influence each other’s performance via 

a multitude of parameters – including tempo, dynamics, 

articulation of musical phrases and, depending on the type of 

instrument, intonation. This paper presents our ongoing research 

on the effect of interaction between violinists, in terms of 

intonation. We base our analysis on a series of experiments with 

professional as well as amateur musicians playing in duet and 

solo experimental set-ups, and then apply a series of 

interdependence measures on each violinist’s pitch deviations 

from the score. Our results show that while it is possible to, 

solely based on intonation, distinguish between solo and duet 

performances for simple cases, there is a multitude of underlying 

factors that need to be analyzed before these techniques can be 

applied to more complex pieces and/or non-experimental 

situations. 

1. INTRODUCTION 

The study of music performance is a research field that is 

thoroughly multidisciplinary, combining elements from signal 

processing, computational musicology, pattern recognition, and 

artificial intelligence. The largest corpus of work within this field 

approaches the problem of performance analysis as follows: 

given the score for a musical piece P and a recorded performance 

of that piece Ep, the goal is to measure the deviations between P 

and Ep in terms of timing (onset times and note durations), 

dynamics, articulation and, based on the instrument type, 

intonation. Almost all existing approaches deal with the 

performance aspects of a single musician, and a thorough state of 

the art can be found in [1]. 

For the case of musical ensembles,such an analysis can be 

performed on two different levels: the intrapersonal level, where 

each musician is individually interpreting his/her own score, and 

the interpersonal level, where each musician provides and 

receives audiovisual feedback to/from other musicians, thus 

establishing a causal relationship between the performances. 

This causal relationship and the influence mechanism that 

drives it can be perceived as an achieved synchrony between the 

musicians; taking the case of musical timing as an example, 

synchronized tempo curves and onset times would strongly 

indicate a joint performance, as opposed to each musician 

performing alone and subsequently joining the recordings.  

In this work, we focus on the synchronization of intonation 

adjustments in violins: since the violin is a fretless instrument 

and therefore capable of producing continuous pitch, violinists 

performing in a duet or larger ensemble must work together to 

achieve harmonic consonance for the overall sound. 

1.1. Objectives 

In studying the interaction mechanism that results in the 

synchronization of intonation adjustments, we focus on three 

main objectives: 

 

 Detecting evidence of synchronization, as well as 

measuring its strength 

 Analyzing the cause and behavior of the 

synchronization mechanism 

 Simulating the mechanism by means of a 

computational model. 

 

Through the achievement of these objectives, we hope to 

contribute in two different ways: first, by detecting and 

quantifying the interaction between musicians as they perform – 

which has potential applications both in analyzing collaborative 

performances as well as aiding in their realization. Second, by 

measuring and simulating the interaction – which can be used to 

synthesize audio from separate, intelligent musical agents which 

are aware of, and capable of adapting to each other’s expressive 

choices in order to better control the quality of the joint acoustic 

result.  

In this article, we investigate towards the achievement of the 

first objective; to detect and quantify the synchronization 

mechanism, specifically for the case of violin intonation. To this 

end, our approach was to record violinists performing their part 

in an interactive set-up (i.e. together) and then separately; then, 

using each musician’s score as a reference for the expected pitch, 

we calculate the deviation of the performed pitch contour from 

the score. Finally, we attempt to measure the coupling between 

the pitch deviation of violinist 1 and 2, using various 

interdependence measures.   
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1.2. Related work 

Regarding synchronization in musical ensembles, an important 

amount of the existing work has been done from a cognitive 

point of view, such as Keller’s theory of joint action in music 

performance[2].Keller focuses on three processes: auditory 

imagery, where the musician has his/her own anticipation of their 

own sound as well as the overall sound of the ensemble, 

prioritized integrative attention, where the musician divides 

his/her attention between their own actions and the actions of 

others, and adaptive timing, where the musician adjusts the 

performance to maintain temporal synchrony. The final process, 

essentially an error correction model where discrepancies 

between timing representations are detected, has its mathematical 

foundation in phase and period synchronizations; however, the 

main focus of this work is mainly theoretical and not 

immediately usable as groundwork for computational 

approaches. 

A more practical approach on musical synchronisation can be 

found in [3], where the bowing gestures of two members of a 

skilled string quartet are studied, revealing evidence of 

interactive coupling in the synchronization of their movement 

along with a high precision in execution. Similar to Keller’s 

approach on timing, measures of synchronization are based on 

approaching the musician’s temporal behavior as an oscillating 

system, where the two musicians are coupled with each other. 

Another approach, similar in context but dealing more with the 

concept of dominance in social interaction can be found in [4]. 

Regarding intonation and melodic features in general, 

Kahlin’s research[5]  focused on formant frequencies in singing 

voice, and specifically on the effect of singing solo versus 

singing in a barbershop quartet, reporting that the singers strive 

to separate their own formants from the others; given the 

importance of accurate intonation in such as scenario, it is 

considered likely that the singers spread their formants in order 

to hear themselves better, which facilitates intonation. 

On the specific subject of synchrony in intonation 

adjustments, we could not find any literature that has investigated 

the matter from a computational point of view. For the specific 

case of the violin however, there exist musicological approaches 

[6] and handbooks directed to violinists which discuss the 

hypothesis that such adjustments exist. 

1.3. Outline 

The remainder of this article is organized as follows: In 

section 2, we describe our signal acquisition process, as well as  

the pre-processing steps that we perform prior to our analysis; 

section 3 provides details about our choice for the 

interdependence measures; section 4 contains some experimental 

results of our analysis. Finally, in section 5, we discuss the 

results and provide some conclusions and our future directions. 

2. SIGNAL ACQUISITION & PRE-PROCESSING 

We conducted two series of experiments; the first round of 

experiments featured two professional violinists who have 

previous experience in performing as a duet and were familiar 

with the scores they were performing, while the second round of 

experiments featured two amateur violinists who had no 

experience of performing together, and without previous 

knowledge of the scores.  

2.1. Recordings 

Each piece was recorded in two discrete set-ups: 

 

 a solo set-up, where each musician performed their part 

alone, and 

 a normal set-up, where the musicians performed their 

respective part together as in a normal duet situation. 

 

In order to reduce the complexity of the required task as well as 

motivate the musicians to focus on the performance unrestricted, 

the recordings were carried out without the use of a metronome. 

The pieces performed by the professional musicians were select 

excerpts from J.S. Bach’s Concerto for two violins (BWV 1043) 

and L. Berio’s Duetti per due violini. For the case of the amateur 

musicians, we opted for scores of much simpler difficulty, and 

thus the pieces used were the traditional piece Greensleeves 

played in unison by the two violinists, and a simplified excerpt 

from L. Berio’s Duetti per due violini. 

Each violinist was captured using piezoelectric pickups fitted 

on the bridge of the violin, while a large diaphragm condenser 

microphone captured the overall sound of the duet; all audio 

signals were captured with a sampling rate of 44100 hertz. 

Besides audio signals, we also recorded bowing gesture 

parameters using an EMF motion tracking device, using the 

method detailed in [7]; these signals were used to perform the 

audio-to-score alignment, as it is shown in the next section. 

2.2. Score-performance alignment 

In order to have a reference to which the intonation adjustments 

can be compared, it was necessary to align each performance to 

its respective score; this way, the score can be used as the 

‘expected’ pitch, and the difference between this and the 

recorded pitch can be viewed as a score-free representation of the 

intonation. However, it is known that score-performance 

alignment is a difficult task, especially for the case of a 

continuous-excitation instrument such as the violin where the 

note onsets are varied and smooth.   

Utilizing the captured bowing gestures as well as the audio 

information as input, we used an implementation based on the 

method described in [9],[10]. In this method, bow direction 

changes as well as more subtle measurements such as an 

estimation of the applied bow force provide the most probable 

candidates for note changes, combined with information 

extracted from the audio (such as the fundamental frequency 

curve and the root mean square energy of the recorded sound). 

These features are given as input to an implementation of the 

Viterbi algorithm, which calculates the temporal alignment 

between the score and the recorded performance. 

 

2.3. Temporal alignment of experimental recordings 

Since the recordings in the experimental set-ups were 

performed without a metronome, it was necessary to time-warp 

the performances in order to compare pitch deviations between 

violinists 1 and 2 without regarding timing information; in the 

solo recordings, for example, this comparison is impossible since 

the two recordings of violinists 1 and 2 were not temporally 

synchronized.  

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-418



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011 

 

 DAFX-3 

 

 
 

Figure 1: Expected pitch (score), recorded pitch in the normal set-up, and recorded pitch in the solo set-up, for an excerpt of J.S. 

Bach’s ‘Concerto for two violins’ 

This was achieved by applying a note-by-note temporal 

warping algorithm based on resampling the signal between note 

onsets and restoring its original pitch using an implementation of 

the phase vocoder algorithm, as described in [8]. We initially 

considered warping only the pitch contours instead of the 

recorded audio; however, besides producing an accurate and 

non-destructive temporal alignment (as seen in Figure 2) , this 

approach can be also very useful in performing  user evaluation 

tests, where subjects can hear the normal duet recordings and the 

solo aligned-duet recordings and rate the quality of the duet’s 

intonation - thus investigating whether intonation adjustments 

alone (i.e. with no temporal mismatch) can provide enough 

information to discriminate between solo and duet recordings. 

For this reason, all recordings were warped to match the onset 

timings of the normal recordings, in order to preserve the natural 

timing of a joint performance. 

 

 

Figure 2: Extracted pitch before time-warping and after 

time-warping the source sound. 

2.4. Audio feature extraction 

The audio features that were used are the fundamental frequency 

contour, root mean square (RMS) energy and aperiodicity, all of 

which were extracted using the YIN algorithm[11]. The window 

size was set to 4096 samples, using a hop size of 32 samples. 

Both the F0 contour and the score were converted to pitch cents 

using 440 hertz as reference. The RMS energy and aperiodicity 

were used to filter out data points without a clear pitch content, 

while the octave errors produced from the pitch estimation were 

corrected using pitch guides; essentially an upper and lower 

bound for the F0 contour that is obtained by shifting the score-

defined notes by a given threshold (±30 pitch cents). Finally, all 

time series were downsampled to a sampling rate of 1KHz, in 

order to facilitate the comparison of time series as well as reduce 

the computational load for the interdependence measures used 

afterwards. Figure 1 presents an example of the extracted, post-

processed data. 

2.5. Intonation adjustments extraction 

In order to extract the intonation adjustments from the F0 

contours, we consider the score as a reference or ‘expected 

pitch’, i.e. perfect, non-adjusted intonation. The deviation 

between the recorded pitch and this reference was initially used 

as the intonation adjustment. However, the score is translated to 

fundamental frequency using the equal temperament scale, as  in 

keyboard or fretted instruments; this does not necessarily hold 
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for the case of violin performance. Indeed, violinists make their 

choice of temperament based on a number of factors, such as the 

interval with the previous and next note, the string the note is 

being played on, as well as the type of  instrument they are 

performing with. 

This phenomenon was observed in our recordings as well; 

there were numerous notes in the score whose expected pitch had 

a systematic distance from the mean pitch performed by all 

violinists. Given that all measured pitch deviations varied within 

a very small range (within the range of 10 pitch cents), this 

systematically biased representation of the expected pitch 

introduced a lot of noise in our time series. We proceeded to 

bypass this problem as follows: for notes with a systematic 

distance larger than 5 pitch cents, we substituted the expected 

pitch with the mean F0 value of all performances for that 

particular note, in that particular piece. This choice was later 

validated by our results as increasing the separation between the 

solo and normal experimental set-ups. 

3. INTERDEPENDENCE MEASURES 

After extracting the pitch deviations for each violinist and each 

recording, the next step was to search for interdependence among 

the pitch deviations of violinist 1 and violinist 2. Several 

interdependence measures were considered and tested before we 

decided on which method to use. First we briefly discuss 

methods which did not provide useful, before finally describing 

the method we chose. 

3.1. Preliminary interdependence measures 

As a first indication to the nature of the possible 

interdependence between the two pitch deviations, we initially 

turned our attention to scatter plots between the values of the two 

time series. Figure 3 presents such a scatter plot, for the 

Greensleeves recording with the two violinists playing in unison, 

which is we considered as the simplest and clearest case of 

interdependence. 

 

Linear and rank correlation. Naturally, the first obvious choice 

as a measure of interdependence was linear correlation. It can be 

observed from the scatter plots, however, that there is no visible 

correlation between the pitch deviations of the two violinists, and 

there is little difference between the solo and normal set-ups. The 

implications of such an observation lead us to the conclusion 

that, whichever synchronization phenomenon occurs is not 

consistent throughout the piece, and cannot be viewed as a 

process which is either invariant to time or cyclostationary.  

Nevertheless, we calculated three correlation measures: 

product-moment (Pearson), Kendall and Tau correlation among 

the two time series. Unsurpriningly, the correlation coefficients 

had very low values for all experiments (≤[0.015] average), and 

failed to show statistically significant separation between the solo 

and normal experimental set-ups. 

 

Mutual information. Another interdependence measure that was 

considered was mutual information, adapted for non-bivariate 

time series [12]. Mutual information is a dimensionless measure 

first applied to Information Theory, and loosely put, measures the 

difference between two types of joint entropy; the joint entropy 

of the two variables as measured from the data, and the joint 

entropy of the two variables as if they were independent. 

 

Figure 3: Scatter plots for Greensleeves between 

violinist 1 and 2, solo (top) and normal (bottom). 

 

Thus, it quantifies the reduction in uncertainty about one random 

variable given knowledge of another. However, this measure too 

failed to provide separation between normal and solo, with the 

exception of the experiment shown in figure 3, where the 

violinists where playing the same melody. 

 

Granger causality. One significant drawback of the previous 

measures is their lack of directionality; besides the overall degree 

of interdependence, it is also important to draw conclusions 

about the direction of influence, i.e. whether violinist 1 is 

influencing violinist 2 more than the opposite. 

A measure that is capable of giving such an estimate is 

Granger causality [13], a statistical concept of causality that was 

first applied to Econometrics, and recently to Neuroscience. It 

poses the hypothesis that if variable X causes variable Y, then 

past values of X should significantly help in predicting future 

values of Y as opposed to simply using past values of Y to 

predict its own future, given that the data is normally distributed. 

The parameter that in most implementations has to be defined by 

the user is the maximum number of lags. 

Although there are cases in auditory cognition where granger 

causality has been used as a measure of coupling[15], it soon 

became apparent that the nonlinearities of our time series were 

not the suitable input for this measure. The normalized causality 

value was very low (≤0.001) for all recordings and a large variety 

of lag values, while the separation was once again not consistent. 

3.2. Non-linear coupling detection 

For our final interdependence measure, we turned our attention 

towards methods which are widely used in computational 
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neuroscience. There exists a variety of nonlinear interdependence 

measures that quantify the signature of directional couplings 

among two random processes, based on distances in 

reconstructed state spaces. Essentially, the dynamics of each time 

series are reconstructed using a given number of embedding 

dimension and a given time delay; then, a distance matrix is 

calculated by estimating the distance of each point from every 

other in the phase space. Finally, by evaluating distances of 

conditioned neighbors in the distance matrix, the directional 

coupling for the two variables is calculated.  

Of these measures, we use the measure L, which was recently 

shown to be of higher sensitivity and specificity for directional 

couplings than previous approaches. For a more in depth 

explanation of the method as well as its mathematical 

formulation, we direct the reader to [14] where the method was 

originally introduced. 

There are four main parameters that have to be given as an 

input: 

 

 the embedding dimension (m), which is the number 

of past values to be included for the state space 

reconstruction 

 the time delay parameter or tau (τ), which is the 

time delay in samples between each of the past 

values used, and 

 the number of nearest neighbors (k), which is the 

number of closest points from the distance matrix 

to be used for the coupling calculation, and 

 the theiler window (W), which is the range of 

points to be excluded from the distance matrix in 

order to discard too-close neighbors 

 

Experimenting with the values of these parameters, it became 

evident that the most imporant ones where the embedding 

dimension (m) and the time delay (τ), since they were the ones 

who had the greatest impact on the outcome of the algorithm; the 

number of nearest neighbors was set to 3, and the theiler window 

to 2*τ. From there on, we calculated the coupling strength 

between violinists 1 and 2 for each experimental recording for 

the following range of values for m and τ: 

 

m = [2:20], and  

τ = [10:360] milliseconds, with a step of 20 ms. 

 

The rationale behind the above ranges is fairly simple: 360 

milliseconds were manually identified as the maximum vibrato 

period in our recordings, while 20 embedding dimensions is a 

commonly adopted upper limit for the computation of the 

nonlinear coupling.  

Given the number of tested values for the embedded 

dimension and the time delay described above, we performed 

304 calculations of L for each recorded experiment; this was 

done to help us achieve greater statistical significance in our 

results. 

The value of L increases with the amount of coupling 

strength, and is normalized between 0 and 1; higher coupling for 

violinist 1 than violinist 2 indicates that V1 casts a stronger 

influence on V2. Finally, the average coupling is calculated as 

the mean value of both coupling values, one for each violinist. 

4. RESULTS 

The results are divided in two categories – one for the recording 

of the amateur musicians, and one for the professional and more 

complex recordings. 

4.1. Coupling results for amateur musicians 

In all our recordings with the amateur musicians, three main 

empirical observations were made: 

 

1. Violinist 2, being less adept at prima vista, was more 

focused on performing the piece correctly rather than 

adjusting to violinist 1. As a consequence, violinist 1 

was mainly trying to adapt his intonation to violinist 2. 

 

2. Performing a piece in unison (as in the case of 

Greensleeves) naturally exposes the mismatch in 

intonation the most, since the harmonic dissonance is 

much more apparent when the two violinists are 

performing the same melody, in the same tonal height; 

this was the case where the interaction between 

musicians was most evident. 

 

3. Performing a piece where the melodic line of violin 1 

is different from violin 2, made the detection of 

harmonic dissonance much more difficult. The same 

stands for the tempo of the performed piece, where 

slow tempos exposed bad intonation, and fast tempos 

also made it difficult for the musicians to keep their 

attention on their partner, presumably because of the 

cognitive load of the performance. 

 

In Figure 4, the coupling strength for all values of m and tau is 

displayed as a grayscale mesh. It can be seen that, although m 

and tau seem to increase the overall coupling strength, the 

coupling value stays consistent throughout the repetitions of the 

L measure. 

 

 

Figure 4: All calculated coupling strengths for the Berio 

duet recorded by the amateur violinists. 

The average coupling strength for a given recording is given 

by taking the mean across all values of m and τ. Figure 5 shows 

the average coupling strength the Greensleeves recording: 
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Figure 5: Overall coupling strength for normal and solo 

recordings of Greensleeves 

 

Figure 6 shows the overall coupling strength for the Berio 

recording, featuring two repetitions of the normal set-up and two 

repetitions of the solo set-up: 

 

 

Figure 6: Overall coupling strength for two normal and two 

solo recordings of the L.Berio duet. 

 

From the above calculated values, it can be seen that the 

coupling strength is capable of providing consistent separation 

between the normal and solo recordings, albeit with a small 

margin for more complex scores. Moreover, it is also seen that 

the coupling measure employed is capable of indicating the 

direction of the influence mechanism between the violinists; in 

both figures, violinist 2 has a stronger influence on violinist 1 

than the opposite. 

Moreover, it is observed that the coupling strength is 

significantly decreased when the musicians have more complex 

scores; in figure 5 the two violinists are performing the same 

score, while in figure 6 they are performing different melodic 

lines. 

4.2. Coupling results for professional musicians 

In the experiments with professional musicians, our main 

observation was that, since the musicians were already familiar 

with each other’s playing, as well as the performed pieces, they 

could reproduce their intonation with remarkable accuracy 

throughout the recordings; thus shifting their attention more 

towards the timing and articulation aspects of the performance. 

This became particularly evident after listening to the time-

warped recordings, where it was nearly impossible to distinguish 

between the normal recording and the solo. Evidence of this 

statement can be seen in one of the very first figures, Figure 2, 

where it is evident that the solo and normal recordings have 

remarkably similar F0 curves. 

Figure 7 shows the overall coupling strength for the Bach 

recording, while figure 8 shows the overall coupling strength for 

the L.Berio recording. 

 

Figure 8: Overall coupling strength for normal and solo 

recordings of the J.S. Bach duet, with the professional 

musicians 

 

Figure 8: Overall coupling strength for normal and solo 

recordings of the L.Berio duet, with the professional 

musicians 

It is evident that these cases are much harder to separate; this 

is attributed both to the skill of the violinists, as well as the 

complexity of the score. The direction of influence is consistent 

throughout all four recordings, although the tempo and 

complicated harmonic relationship between the two scores makes 

it difficult to validate as a result. 

5. CONCLUSIONS & FUTURE WORK 

In this paper we have presented a preliminary method for 

measuring the synchronization mechanism behind intonation 

adjustments in violin duets, based on the pitch deviation of each 

violinist from his/her respective score. An analysis procedure for 

the recorded material has been outlined, as well as some 

considerations on specific performance aspects of the violin. We 

tested a number of interdependence measures before concluding 

on the measure that provides the best results, and the final chosen 

measure appears to validate the hypothesis that violinists are 

influenced by each other’s intonation when performing together, 

at least for the simple cases of non-professional musicians. 

However, it has been seen that the coupling strength is 

dependent on a multitude of factors; namely the complexity of 

the piece, the skill of the violinists, and the harmonic relationship 

between the two performed melodic lines. In order to obtain 

clearer separation between solo and duet recordings and to study 
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this synchronization phenomenon without coloration from the 

scores, it is necessary to push towards two main improvements. 

First, we believe that the use of F0 contours as the only 

extracted feature does not convey the real phenomenon well 

enough, since the pitch perception of real instruments such as the 

violin is strongly related to psychoacoustics factors such as the 

loudness and timber of the produced sound. To this end, an 

objective measurement of harmonic consonance/dissonance has 

to be included as a feature, to approach more the human 

perception of pitch and intonation. 

Second, in order to make the coupling detection independent 

from the performed scores, it is necessary to post-process the 

scores with an algorithm that analyzes the intervals between the 

two violins, and adjusts the expected pitch (or the lack thereof) 

according to the harmonicity of the interval; this way, very 

harmonic intervals between the two melodic lines will greatly 

penalize ’bad’ intonation, while inharmonic intervals will 

contribute much less to the coupling strength. 
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ABSTRACT

Timbral modeling is fundamental in content based music similar-
ity systems. It is usually achieved by modeling the short term
features by a Gaussian Model (GM) or Gaussian Mixture Models
(GMM). In this article we propose to achieve this goal by using
the GMM-supervector approach. This method allows to represent
complex statistical models by an Euclidean vector. Experiments
performed for the music similarity task showed that this model
outperform state of the art approches. Moreover, it reduces the
similarity search time by a factor of ≈ 100 compared to state of
the art GM modeling. Furthermore, we propose a new supervector
normalization which makes the GMM-supervector approach more
preformant for the music similarity task. The proposed normaliza-
tion can be applied to other Euclidean models.

1. INTRODUCTION

Exploring the wide world of music requires some navigation tools.
To discover new tracks, one might consider several options. Spe-
cialized magazines or music expert friends can guide the user. In
a more passive way, the user can wait for new music production
by listening to his favorite radio or following the statistically made
recommendation of online mp3 providers, based on user profiles
and puchase analyses. But to explore several million of iTunes c©

music tracks, one may need to employ a content based similarity
search system. The principle is quite simple. From a starting mu-
sic and for a given similarity measure,the system provides the user
a list of similar songs found in the entire database. If the user is
not satisfied with the result, he/she can change or adapt the sim-
ilarity measure according to his/her wishes. The system can also
learn the user preferences using relevance feedback. One can also
use the result of previous queries as starting point for a new search
and, thereby, perform a step by step smart exploration of the music
space.

Obviously, the relevance of the similarity measure is funda-
mental. A music track can be described in several ways. Using
the mpeg-7 taxonomy, we distinguish the meta description (e.g.:
music author or title) and the content description. Similarity sys-
tems based on content description mimic human perception of sim-
ilarity. Timbral modeling is nowaday state of the art in such sys-
tems. It consists in statistical modeling of short term audio fea-
tures, usually the Mel Frequency Cepstrum Coefficients (MFCC).
The model used can be a Gaussian Mixture Model (GMM) as pro-
posed in [1, 2], or a single Gaussian Model with full covariance
matrix [3, 4] which provides similar performances. The measure

∗ This work was supported by the French Oseo project QUAERO

used to compare the models is the Symmetrized Kullback-Leibler
Divergence (SKLD) [5] or alternatively the Earth Mover’s Dis-
tance based on the SKLD when models are GMMs [2].

We present here an application of the Gaussian Mixture Model
using Universal Background Model (GMM-UBM) approach for
content based music similarity. This method, initially developed
in the field of speaker recognition [6] has been successfully ap-
plied for music genre classification and similarity [7]. The main
idea is to build a generic Gaussian mixture model by using a large
data set of representative signals, which are in our case extracted
from a large set of music tracks. This model, named Universal
Background Model, aims at modeling the overall data distribution
and can be composed of hundred of Gaussians. The model for a
specific track is then obtained by adapting the UBM model param-
eters by using the track data. The final model is composed of a
subset of the GMM parameters, stacked into a vector, the so called
supervector. This approach presents several advantages:

• it allows to build a complex model from a small amount of
data,

• the final model can be embedded into the Euclidean space,
which allows fast similarity search.

In this paper, a complete description of the GMM-UBM model
is proposed in section 2. Then our main contribution it presented
in section 3. It consists in a new supervector transformation, which
provides a significant improvement of the similarity system. Ex-
periments are detailed in section 4 and the perspectives of this
work are presented in section 5.

2. GMM-UBM APPROACH

2.1. Universal Background Model

The Universal Background Model (UBM) aims at modeling the
overall data distribution. It consists of a classical Gaussian Mixture
Model. For a D-dimensional feature vector x the mixture density
used for the likelihood function is defined as a weighted sum of
unimodal Gaussian models :

p(x|λ) =
MX
i=1

ωipi(x) (1)

whereM is the number of Gaussian components, pi = N (µi,Σi).
λ represents the GMM parameters, where λi = {ωi, µi,Σi},
i = 1, · · · ,M . x represents a feature vector, which in our case
is a short term descriptor, usually an MFCC.
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The UBM is usually composed of Gaussian models with di-
agonal covariance matrix. The loss of modeling ability due the
diagonal covariance matrix can be compensated by increasing the
number of Gaussian in the mixture [6]. The UBM is trained us-
ing a large and representative set of data by using the Expectation
Maximization (EM) algorithm.

2.2. UBM adaptation

The UBM adaptation is the process of modifying the UBM param-
eters in order to fit a particular data distribution. In our application,
this subset is the data extracted from a track to modelize.

This adaptation is made using the Maximum A Prosteriori
(MAP) approach. The first step consists in determining the proba-
bilistic alignement of the training vectors with the UBM Gaussian
components. For a Gaussian i in the UBM we compute :

Pr(i,xt) =
ωipi(xt)PM

j=1 ωjpj(xt)
(2)

ni =

TX
t=1

Pr(i,xt) (3)

Ei(x) =
1

ni

TX
t=1

Pr(i,xt)xt (4)

These statistical values are then used for adapting the mean vector
µ̂ of each Gaussian during the following iterative process:

µ̂0
i = µi (5)
µ̂k
i = αiEi(x) + (1− αi)µ̂

k−1
i (6)

αi =
ni

ni + r
(7)

where xt represents the tth feature vector of the music track to
modelize and r is a fixed “relevance factor“, usually set between 8
and 20. k = 1, · · · ,K represents the iteration number.

2.3. GMM supervector

To summarize, a music track model is directly derived from a
generic GMM, estimated using a large set of representative data
(the so called UBM). During the adaptation process, only the mean
vectors of the Gaussians are modified to fit the particular music
track distribution. Consequently, all the the music track models
have both the same covariance matrix and weight. Knowing the
parameter of the UBM, a particular music model can be summa-
rized by the mean vectors of its Gaussian mixture components:

µ =

0B@ µ1

µ2

· · ·
µN

1CA (8)

where µ, named the GMM supervector, is the concatenation of
all the mean vectors of the N Gaussian components. In [8], the
authors propose to approximate the Kullback-Leibler divergence
between two models a and b by :

d(µa, µb) =
1

2

NX
i=1

ωi(µ
a
i − µb

i )
TΣ−1

i (µa
i − µb

i ) (9)

where µa and µb are the GMM supervectors of the models a and b
respectively, λi represents the mixture weights and Σi the covari-
ance matrix of the ith Gaussian component (which is common to
the models a and b). From this representation, we can deduce the
following natural normalization:

µ̄i =
√
ωiΣ

−1/2
i µi (10)

i ∈ 1, · · · , N

where N is the number of Gaussian components of the model.
Then, the divergence presented in eq. 9 can be rewritten as the
square Euclidean distance between the normalized supervectors:

d(µa, µb) =
1

2
‖µ̄a − µ̄b‖2 (11)

Finally, because of the monotony of the square function (·)2,
one can directly use the Euclidean distance ‖µ̄a − µ̄b‖ for music
similarity retrieval, as proposed in [7].

3. SUPERVECTOR NORMALIZATION FOR MUSIC
SIMILARITY

3.1. Hubs and orphans

Even if the statistical modeling of short term descriptors gives
good results for music similarity, it usually tends to create false
positive results which are usually the same songs. This songs,
named hubs, are falsely close to all the tracks of the database. As
well, some songs, named orphans, are falsely far from the rest of
the database. J. Aucouturier et al.[9] showed that this phenomenon
is “not a property of a given modeling strategy and tends to appear
with any type of model”.

For a better understanding of the problem we propose to mod-
elize a set of music tracks and to study their distance distributions.
The music database and the modeling process are fully described
in section 4. From this set of supervectors we compute the dis-
tance matrix between all the supervectors. Figure 1 presents the
distance distribution between the track supervectors and the rest
of the database. We can observe that the distributions have a sig-
nificant variability. For example, the distribution related to the
first music track shows that this model is far from the rest of the
database. Consequently, it will have a poor probability to appear
within the results of the similarity search. This is a good example
of an “orphan” song.

3.2. P-norm

To overcome this drawback, a distance normalization method was
proposed by T. Pohle et al.in [4]. The key idea of this method is
to transform the distances between two models by using their dis-
tance distribution according to a normalization set. After the nor-
malization process, the histogram of the new ”distance“ between
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Figure 1: Distance distribution between supervectors. Each curve
represents the histogram of the distance between a given supervec-
tor and the rest of the database.

a model and the rest of the database must be a normal distribution
N (0, 1). This normalization is given by:

P-norm (d(a, b)) =
1

2

„
d(a, b)− µ̊a

σ̊a
+
d(a, b)− µ̊b

σ̊b

«
(12)

where d(a, b) is the original distance between models a and b,
µ̊a, σ̊a are the mean and standard deviation of the distances be-
tween the models a and the normalization set. For convenience, in
the rest of this paper, we will refer to this method as the P-norm
(Pohle-normalization). One can notice that this type of normaliza-
tion is very close to the ZT-norm developed in the field of speaker
verification [10].

3.3. UCS and MCS normalizations

An important benefit of the supervector approach is the ability to
represent a complex statistical model as an Euclidean vector. It
allows the use of efficient indexing algorithms for fast similarity
search into very large databases like local sensitive hashing [11].
The use of the P-norm (which modifies the distances) transforms
the original Euclidean space into a non-metric space, constrain-
ing the use of ad-hoc indexing methods which are usually slower.
Therefore, a normalization which can be applied directly to the su-
pervector is more suitable. Let us consider the supervector as a
point into a high dimensional space and a large representative data
set. To reproduce the benefit of the P-norm by a geometric trans-
formation of the supervectors, the projected points must “see the
world in a same way” i.e. the distance distribution between a point
and the rest of the database must be the same for all the points. It is
easy to show that a uniform data distribution on a hyper sphere sat-
isfies this constraint. We propose two different methods to reach
this goal:

1. project the supervectors on a unit sphere centered on the
Universal Background Model,

2. project the supervectors on a unit sphere centered on the
mean supervector of a representative data set (here we used
the entire database).

For convenience, we named the first approach the UBM Centered
Spherical normalization (UCS-norm) and the second one the Mean
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Figure 2: Distance distribution between supervectors normalized
by the UCS-norm.

Centered Spherical normalization (MCS-norm). The following
equations detail the implementation we used.

µ̄a
UCS =

µ̄a − µ̄UBM

‖µ̄a − µ̄UBM‖ (13)

µ̄a
MCS =

µ̄a −M
‖µ̄a −M‖ (14)

with M =
1

N

NX
k=1

µ̄k , µ̄k ∈ Ω (15)

where µ̄a represents the supervector to normalize, µ̄UBM is the
supervector of the UBM andM represents the mean supervector
of a subset Ω composed ofN supervectors. Figure 2 clearly shows
that the UCS-norm allows to reduce the variability of the distance
distributions. One can observe that the track number one is no
more “orphan” still its distances from the rest of the database have
been significantly reduced.

4. EXPERIMENTS

4.1. Data set

For our experiments, we used a music data set composed of 1304
tracks belonging to the following music genres: Country, Electron-
ica, Folk, Gospel, Jazz, Latin, New Age, Pop/Rock, R&B, Rap,
Reggae, World. These songs, originally encoded in mp3 32kHz
stereo were down-sampled in 22050 kHz and turned into mono by
summing the two channels.

4.2. Feature extraction

The short term feature vectors extracted are composed of 13 Mel
Frequency Cepstrum Coefficients (MFCC) and 4 Spectral Flatness
Measures (SFM). This extraction is made using a sliding window
of 40 ms and a hop size of 20 ms.

DAFX-3

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-427



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

4.3. Model

For this experiment, we used two types of models: the GMM su-
pervector and a classical multivariate Gaussian Model (GM) with
full covariance matrix. For the GMM-UBM approach, the whole
data set was used for building a UBM composed of 64 Gaussian
components with diagonal covariance matrix. This model was
adapted for each song with 5 iterations of MAP using a relevance
factor r = 10 (see 2.2). Normalized supervectors were extracted
as described in section 2.3. The similarity is obtained by the Eu-
clidean distance between supervectors. In the case of GM, the
Symmetrized Kullback-Leibler divergence is used.

4.4. Evaluation metric

The evaluation metric used is the “average ratio of genre matches”
in the top 1, 3 and 5 nearest neighbors after filtering the results be-
longing to the same artist as proposed in the MIREX Audio Music
Similarity and Retrieval task 1.

4.5. Similarity search time cost

For the GM approach we used a fast implementation of the Symetrized
Kullback-Leibler Divergence using its close form expression for
multivariate Gaussain models. The covariance matrix inversion
was computed off-line and stored into the model. With this sys-
tem, the time cost for computing the full similarity matrix was of
16 s in a 3GHz 64bits computer which represents≈ 9.4 ·10−6s by
model comparison. Using the supervector approach, the duration
of the entire similarity matrix process was of 0.13 s, which rep-
resents ≈ 7.6 · 10−8s by model comparison, representing a time
improvement factor of 123.

4.6. Results

The obtained similarity results are presented in Table 1. First of
all, we can observe that the supervector approach is slightly better
than the standard Gaussian Model using the Kullback-Leibler di-
vergence when no normalization is used. We can also notice the
relevance of the P-norm. The UCS-norm and MCS-norm when
applied for supervector normalization allows a significant perfor-
mance improvement compare to the supervector whithout normal-
ization. Moreover, the proposed normalizations methods perform
slightly better in average than the P-norm. It is interesting to notice
that the MCS-norm achives a better normalization than the UBM
centered one. Furthermore, chaining the UCS-norm and the MCS-
norm (SV + UCS-norm + MCS-norm) and using a sequence of
all the normalization methods (SV + UCS-norm + MCS-norm +
P-norm) significantly improve the results, showing that these nor-
malization methods are complementary.

5. CONCLUSIONS

We have presented here an application of GMM supervector ap-
proach to the music similarity task. This modeling method allows
to represent a complex statistical distribution into a Euclidean vec-
tor. We have proposed two new supervector projections suitable
for the music similarity task. Experiments showed the relevance
of our approach.

1http://www.music-ir.org/mirex

Table 1: Average ratio of artist-filtered genre matches in the top 1,
3 and 5 nearest neighbors. GM = Gaussian Model, SV = Super-
vector. The last column shows the type of distance related.

System 1NN 3NN 5NN dist. type
GM 45.01 44.06 44.20 non eucl.
GM + P-norm 48.31 47.52 47.14 non eucl.
SV 46.93 45.67 45.07 euclidean
SV + P-norm 51.38 49.16 47.95 non eucl.
SV + UCS-norm 50.15 49.13 48.81 euclidean
SV + MCS-
norm

50.92 49.80 49.09 euclidean

SV + UCS-norm
+ MCS-norm

51.08 50.13 49.45 euclidean

SV + UCS-norm
+ MCS-norm +
P-norm

52.61 51.51 50.41 non eucl.

The improvement obtained by the MCS-norm is promising.
Indeed, this normalization can be applied to all type of models
which can be embedded into the Euclidean space. Our current
research focuses on extending this normalization to other type of
models.
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ABSTRACT

We propose here an original method for the automatic alignment
of temporally distorted occurrences of audio items. The method
is based on a so-called item-restricted fingerprinting process and
a segment detection scheme. The high-precision estimation of the
temporal distortions allows to compensate these alterations and ob-
tain a perfect synchronization between the original item and the
altered occurrence. Among the applications of this process, we
focus on the verification and the alignment of audio fingerprint-
ing annotations. Perceptual evaluation confirms the efficiency of
the method in detecting wrong annotations, and confirms the high
precision of the synchronization on the occurrences.

1. INTRODUCTION

Audio identification aims at detecting occurrences of known au-
dio tracks in an unknown audio signal or stream. A typical ex-
ample is the identification of songs in a broadcast recording. An
"occurrence" is defined as the presence in an unknown signal of
a degraded, or modified, version of an original audio track, that
remains recognizable. An audio identification system typically
searches for the possible occurrences of a large collection of tracks
previously "learned" in a database. Each track contained in the
database is called an audio "item".

One of the main challenges of audio identification is the ro-
bustness to the possible degradations between the original item
signal and the occurrence signal. Typical degradations are audio
encodings (MPEG, Real Audio...), filterings, noise addition, etc.
These degradations do not alter the temporal evolution of the sig-
nal. On the opposite, the so-called dynamic degradations, such as
time-scale changes, or signal cropping, induce a loss of alignment
between the original item and the occurrence. The problem an-
swered by this paper is to estimate very precisely these dynamic
degradations, in order to realign both signals. The motivations for
this issue will be explained later on.

The subject of audio alignment has been covered in the past,
especially in the domaine of audio-to-score alignment, which con-
sists in aligning the audio signal of an execution of a musical piece
with the score itself. Joder et al. [1] and Cont [2] both answer
this problem with Hidden Markov Models coupled with a tempo
model. Müller et al. [3] also propose an algorithm to align a per-
formance of a song on the score, based on a chroma representa-
tion. However, these approaches all deal with the alignment with
respect to a score, i.e. a symbolic representation of music, whereas
the problem here is the alignment of two audio signals. Müller et
al. [4] also applied the chroma representation for the matching of
two musical interpretations (i.e. two audio signals) of the same

piece. But their contribution only focuses on the detection of these
matches, not on their temporal alignment.

The method we propose here for the alignment of audio oc-
currences is based on an original scheme, derived from the audio
fingerprinting technique. Indeed, in [5], Casey et al. rank the prob-
lems of audio queries by order of similarity between the query and
the reference. While genre classification and cover song detection
connect very different audio signals from their semantic musical
content, audio fingerprinting is described as "identifying a record-
ing in the presence of a distorting communicating channel". Au-
dio fingerprinting is in fact one of the main methods (along with
audio watermarking) to perform audio identification. It consists
in computing perceptually relevant numerical codes (the so-called
fingerprints) that characterize the signal of the audio items of the
database. When performing identification, similar codes are com-
puted from the unknown signal, are compared to the codes stored
in the database. This similarity search allows to identify the occur-
rences of the items in the unknown signal.

This paper will show how an audio fingerprinting technology
can be exploited for the automatic alignment of audio occurrences,
and consequently, for the correction and the refinement of ground
truth annotations for audio identification evaluation. We will ex-
plain thoroughly in Section 2 why there is a need for such an au-
tomated process of annotation verification in the context of audio
fingerprinting evaluation. We then present in detail the context and
the terminology of the problem in Section 3, before presenting the
alignment process in Section 4. A first application of this process
on the Quaero audio identification corpus is presented and com-
mented in Section 5, along with some audio examples. Then we
comment on the applications and perspectives of this contribution
in Section 6.

2. AUDIO FINGERPRINTING EVALUATION

Research on audio fingerprinting has been very active in the last
ten years, and commercial applications based on this technology
are numerous. However, contrary to other subjects in audio in-
dexing, there is no consensus on the evaluation protocol, nor any
public evaluation campaign for audio fingerprinting. One might
argue that the main reason that the main commercial system al-
ready work very well. However, most companies actually have not
published results of their systems on a large public database. The
Quaero project has brought a first step in this direction with its
first evaluation campaign for audio identification that was held in
September 2010. Following this campaign, a collaborative paper
from the participants was submitted [6], that discusses the issues
of audio fingerprinting evaluation and proposes a public evaluation
framework (available at http://pyafe.niderb.fr/).
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Related works on evaluation The main obstacle in audio finger-
printing evaluation lies in the cost of collecting a large real-world
corpus, with reliable and precise annotations. The Quaero eval-
uation campaign is based on a musical track monitoring scenario
and is based on a corpus, provided by Yacast1, containing real-
world radio broadcast audio data. Cano et al. [7] also evaluate
the identification rate of musical tracks on 12h broadcasted audio
streams, but most of the authors measure the robustness of the fin-
gerprinting code on audio items altered by typical audio degrada-
tions. Wang (Shazam) [8] evaluates the recognition rate over 250
items, after a GSM compression step and under the addition of
noise with controlled SNR. Additive noise over clean items is also
used by Weinstein and Moreno (Google) [9]. Haitsma and Kalker
(Philips) [10] also propose a protocol involving a large collection
of audio degradations (MP3 or Real Media encoding, equalization,
various filters, time-scale modification, etc.) applied to four clean
items.

Artificial vs Real-world distortions Artificial alterations are in-
deed preferred in the literature for several reasons: the corpus only
consists in a collection of audio tracks and is thus much more easy
to collect, the alterations are easily applied, and, most of all, they
can be precisely controlled. It is then possible to study the evolu-
tion of the robustness with regard to the SNR, or the time-scaling
factor. On the other hand, these artificial degradations do not re-
flect real-world situations. Indeed, in a typical case of broadcast
emission, any musical track is generally slightly time-scaled, dy-
namically compressed, affected by additional noise, and subject to
MP3-like encoding or digital-analog conversion.

Real-world annotation Nevertheless, a corpus based on real-
world data needs the human annotation of all the occurrences of
the items in the stream, and most of the degradation process is un-
known to the experimenter. Annotating the start and end times of
an occurrence is easy, but the annotation of a large scale corpus
will generally imply a low precision (even a one second precision
is ambitious). Moreover, it is almost impossible to determine man-
ually the time-scale factor. Finally, a certain amount of mistakes
is expected from manual annotation, especially when the item col-
lection involves different edits of the same song.

The method proposed here is an ideal mean for verifying and
improving such manual annotations, as we will show in this pa-
per. The detection of missing occurrences is not in the scope of
this article, but the detection of wrongly annotated occurrences
proves very efficient. The alignment of the occurrence signal with
the original item signal (and thus of the fingerprint codes com-
puted from both signals) allows the application of several evalu-
ation schemes used on artificial corpuses. We hope that this new
type of annotation post-processing will encourage evaluations of
audio fingerprinting techniques on real-world corpuses.

3. CONTEXT

The problem that is raised here is similar to that of audio identi-
fication, as explained before: occurrences of known audio items
are to be found and located in an audio stream. However, we seek

1http://www.yacast.fr/fr/index.html

here a much more precise result, which is made possible by the use
of prior information, unavailable in a common audio identification
scenario. We suppose here that the processed signal has been pre-
viously annotated, either manually or during the production of an
artificial corpus. In both cases the annotation may be unprecise,
and only consists of a collection of item occurrences in the audio
streams, characterized by the item index in the database, and the
approximate start and end times in the stream. The annotated times
can be wrong by a few seconds, the error being compensated by a
larger analysis scope.

An audio item can even be a sample of a song (for instance
the chorus), instead of the whole track, and its exact position in
the song unknown. This situation remains equivalent to using the
whole song, as long as the scope of analysis includes the whole
song. However, this implies, since a musical track structure is
generally repetitive, that the excerpt, or a part of it, may be de-
tected several times in the scope of analysis. Such repetitions must
be discarded from the alignment process, in order to focus on the
most reliable occurrence.

The item occurrence in the stream can be affected by typical
audio distortions, either artificially generated or sampled from a
real-world corpus. These distortions fall into two categories:
Static distortions: do not affect the temporality of the signal, i.e.
the original and distorted signals are perceived as synchronous on
their whole scope. Typical examples are linear filters, equalization,
amplification, analog/digital conversions, typical audio encodings
(MPEG, OGG ...), noise addition, loudspeaker/microphone loop.
Temporal distortions: affect the synchronization between the orig-
inal and distorted signals. The process proposed here intends to
estimate precisely these temporal distortions in order to be able to
correct them and reach a perfect alignment between the original
and distorted signals. Temporal distortions considered here are:

• Shifting: in the case of frame-sequence analysis, a slight
shift (of a few tenth of seconds) between the signals can
induce major differences in the content of the frames. It is
thus important to synchronize the start time of both signals.

• Scaling: for instance, radio stations very often accelerate or
slow down musical tracks to fit in a live schedule.

• Cropping: the beginning or the end of the audio item can
be absent from the occurrence.

• Insertions: although this distortion is less common, the item
can be interrupted by another signal, and then played again
from where it stopped. This induces a slight shift between
the item and the occurrence, that also requires a proper cor-
rection (i.e. cutting the inserted signal).

Figure 1 sums up the temporal characteristics that we intend to
evaluate in this process:

1. ItemTime: the time in the stream that corresponds to the
beginning of the database item.

2. StartTime: the time, relative to the ItemTime, where the
occurrence actually starts in the stream. It is positive or
zero. When strictly positive, it means that a part of the item
beginning is not played in the stream.

3. EndTime: the time, relative to the ItemTime, where the
occurrence ends in the stream. It is strictly positive, and
upper bounded by the ItemDuration × TimeFactor, when
the item is played until its end.
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Figure 1: Characterization of the temporal alterations encoun-
tered on the occurrence (at the top) of a given item (at the bottom).

4. TimeFactor: ratio between a time relative to the ItemTime
in the stream, and the corresponding time in the item signal.

5. InsertTime & InsertDuration: if the insertion happens in
the stream (as in Figure 1), the time is relative to the Item-
Time ; if it happens in the item, the time is absolute in the
item. The same holds for the duration. Several insertions
can be observed on a single occurrence.

The ItemDuration (also denoted D) is the duration of the full item
signal. All characteristics are expressed in seconds.

4. DESCRIPTION OF THE ALIGNMENT PROCESS

4.1. Item-restricted fingerprinting

The key element of the alignment process is the application of a
customized Item-restricted fingerprinting technique that we present
here.

The normal process of audio fingerprinting is to fill a database
will the fingerprint codes computed from a large collection of au-
dio items. Each item is described by multiple code, computed at
various time position in the signal, in order to be able to recog-
nize any subset of it. In the present context, for each occurrence,
the item is already known (from the annotation). So for each oc-
currence, a new database is built specifically, that contains only the
fingerprint codes computed from this item. This constraint dramat-
ically reduces the size of the database, and thus the search time.
Consequently, the result of the search is a sequence of timestamps
describing the position of the codes in the original item.

The use of a fingerprinting method ensures a sufficient robust-
ness to static distortions observed in the stream occurrence. The
fingerprint method used here is the one developed by the Ircam
[11]. It is based on a double-nested Short Term Fourier Transform
of the audio signal, over overlapping frames of a few seconds. The
original method has recently been upgraded [12] with perceptual
scales (a Bark filter-bank for the short-term FFT and a sone scale
for the amplitudes of the long-term FFT). The resulting code is a
real vector of 36 components.

The latter article [12] also describes an upgrade of the algo-
rithm based on onset detection, but this part of the algorithm is
not used here, and we rely on a regular frame scheme. In order
to locally reduce the effect of the temporal distortions, the frame

size is kept relatively short (2 s). The hop size is much shorter (50
ms), than in the "standard" fingerprint process (originally set to
0.5 s). This implies that the expected temporal shift between cor-
responding codes is 12.5 m, which represents a negligible portion
(0.6%) of the frame size. Theoretically, any other fingerprinting
method could be adapted to this item-restricted scheme, but the Ir-
cam is prefered, precisely because it involves larger window and
step sizes that most methods, and thus reduces the number of fin-
gerprint codes per item.

The first step of the algorithm consists in computing the finger-
print codes for each item, and storing them with the corresponding
timestamps. Each minute of signal generates about 1200 codes.
For each annotated occurrence in the stream, a sequence of codes is
computed on the scope of analysis. Then a simple nearest neighbor
search (k = 1 neighbor) is performed among the codes of the item,
to collect the resulting sequence of timestamps associated. The
so-called timestamp sequence is denoted by a set (xi, yi)i=1,...,n,
where n is the number of frames, and xi and yi are respectively the
time of the frame in the stream and the timestamp of the nearest
neighbor in the item.

Figure 2 shows several examples of timestamp sequences. The
ideal detection of the full item, illustrated by Figure 2(a), implies
the presence of a solid line segment of slope close to 1, that binds
the ordinates 0 and D (in our case all the audio items are 60 s
long). Another fragmented line is also visible on the figure, that
denotes a repetition of the item, with alterations. On the opposite,
Figure 2(b) shows a clear example of wrong annotation, where the
dots are randomly drawn. The dot distribution is clearly not uni-
form though, and shows higher densities on some constant ordinate
lines. This is a simple expression of the classical phenomenon in
similarity of "hubs" [13], i.e. examples that are near to all other ex-
amples in a distribution. Figure 2(c) shows an example of cropped
occurrence where the beginning of the item is missing. Figure
2(d) shows a line degraded in the beginning, illustrating an exam-
ple of occurrence where the first seconds are covered by another
signal (possibly the radio host voice). Figure 2(e) shows a clear
example of insertion of a signal snippet in the middle of the orig-
inal item signal. Finally, Figure 2(f) is an interesting example of
fragmentation of the line, that denotes the detection of separated
chunks of the original item, probably because of an edit mismatch
between the item and the stream occurrence. Indeed, radio stations
frequently use specific edits of a song with structures that greatly
differ from the original album edit.

These examples show that the alignment process basically con-
sists in a segment detection algorithm in the timestamp sequence.
Each segment is described by the following equation:

y = ax+ b ∀x ∈ [xstart;xend], (1)

where

• a is the slope of the line containing the segment, that corre-
spond to the time-factor previously introduced.

• b is the offset of the line containing the segment. Differ-
ences between the b values will indicate the presence of
insertions.

• [xstart;xend] are the boundaries in abscissa of the segment.
These will determine the ItemTime, StartTime, CutTime
and EndTime values introduced in Figure 1.
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(a) Perfect detection, with a repetition
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(c) Missing track beginning
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(e) Insertion in the stream occurrence
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(b) Wrong annotation, no item
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(d) Degraded in the beginning, additional speech
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(f) Fragmented detection, edit mismatch

Figure 2: Timestamp sequences: ordinates represent the time in the item of the nearest neighbor to the code computed from the stream at
the time in abscissa. Several examples of result are shown, ranging from the ideal detection of the item (a) to the absence of detection (b).

A Hough transform [14] could of course be used for this line
detection problem. However, it is more costly than the method
proposed below. Moreover, as we will show, the evaluation of the
common slope is done jointly on all the segments and is therefore
more robust and precise than a fusion of separate estimations from
each segment.

4.2. Time-factor estimation

The first step consists in evaluating the slope a. The time-scaling
is supposed constant over the whole occurrence, since a varying
time-scaling induces audible distortions not acceptable to the lis-
tener. All the segments thus share the same a value.

The point-slope of a pair of points (xi, yi) and (xj , yj) is de-
fined as follows:

ai,j =
yj − yi
xj − xi

(2)

We evaluate the distribution of ai,j , over the pairs i, j com-
plying with the constraint 1s < x2 − x1 < D, where D stands
for the item duration. The complexity of this operation is linear
O(n). The lower bound is set because both coordinates are dis-

crete (as shown on the zoom provided Figure 3), which makes the
point-slope less precise as the points get closer.
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Figure 3: Illustration of the discrete distribution of the points in
the timestamp sequences.

A histogram distribution is computed between the values 0.8
and 1.2 2 to identify the expected maximum peak on the a value.
The computation of the point-slope indeed strongly amplifies the
effect of a real line on the distribution, since aligned points all

2considered as large bounds for reasonable (i.e. not too audible) time
factors.
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contribute to the same bin, whereas unaligned points contribute to
different bins. Figure 4 illustrates this on the case of points shared
between two lines of same slope. Even in this case, one sees that
the pairs from different lines induce different slopes, and will not
create local maxima in the distribution.

Figure 4: Unaligned points, even from aligned sets, do not con-
tribute to local maxima in the distribution of slopes.

However there is in fact a "resonance" of the slopes in the very
close vicinity of 1 (|a− 1| < 0.0005) that we don’t explain. In or-
der to avoid this accidental maximum, the distribution is set to zero
in this very small interval. Even if the real maximum is precisely at
1, it will spread outside this interval and will be detected. Figure 5
shows an example of the slope distribution, where the time-factor
peak is clearly located.
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Figure 5: Example of histogram estimated distribution of the point-
slopes. The slope a (i.e. the time-factor) is estimated from the
salient peak position (indicated by the dotted line).

4.3. Offset estimation

We then estimate the point-offsets defined as follows:

bi = yi − a xi. (3)

Since all the lines share the same slope, then bi is constant for all
the points (xi, yi) on a same line. By estimating the distribution of
the point-offsets, disjoint segments from the same line are gathered
in the same bin, whereas segments from parallel lines (in the case
of insertions or cuts) are separated.

Contrary to the time factor distribution, the search scope for
the b values cannot be easily bounded. Moreover, in the case of
noisy timestamp sequences, the local maxima are more spread than

the peak observed on the time-factor distribution. Instead of his-
tograms, we thus use kernel density estimation [15] (with a gaus-
sian kernel) to get a smoother distribution and gather neighboring
peaks3. The latter, given a specific number of bins, automatically
estimates the optimal bandwidth value for the gaussian kernel. The
resulting distribution is then divided by its 90% percentile, in or-
der to fix an absolute threshold (empirically set to 10) for peak
detection.
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Figure 6: Distribution of the offset values (yi − a xi), evaluated
with gaussian kernel density estimation. Here, three line offset val-
ues (indicated by the the vertical dotted lines) are detected above
the threshold (the horizontal dotted line). The light areas indicate
the range of offsets associated with the peaks.

The peak values above the threshold are iteratively selected.
At each step, the distribution is set to zero in the surroundings of
the peak. The kernel bandwidth estimation induces the automatic
determination the 3 dB bandwidth of the peak. Finally, all the
points (xi, yi), with their offset inside the 3 dB cut-off interval,
are associated to the selected b value, i.e. to a particular line in the
timestamps plane.

Figure 6 shows the result of the offset estimation process ap-
plied to the timestamp sequence shown in Figure 2(f). Three peaks
are shown, that correspond to the three last segments observed
on Figure 2(f) (the forth peak is outside the scope of the figure).
Figure 7 shows the results of this operation on the timestamp se-
quence. Each gray shade represents the points associated with one
of the segments.

In the case of no peak detection, the occurrence is discarded
and considered as a erroneous annotation.

4.4. Segment estimation

The distribution of the points associated with the segments can be
more noisy than on Figure 7, and needs post-processing. Figure 8
shows an example of result with erroneous points. Each ordinate
(represented with a different shade) shows a binary signal that in-
dicates the association (or not) of the points to the segment. In
this case the segments 3 and 4 are to be discarded, and segments
1 and 2 show a few accidental points outside their boundaries. In
fact any point can be wrongly associated with a line, if it is close

3In particular, we use the very fast and efficient implementation pro-
vided by Botev [16], but this is not essential here.
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Figure 7: Each gray scale depicts the collection of points associ-
ated with one of the segment offsets detected from the timestamp
sequence of Figure 2 (f).

to it, even if it is far outside the segment boundaries. These are
discarded by applying a median filter, with a sliding window of 10
samples, on each segment binary signal. Then, the whole area be-
tween the first and the last point of each segment is assigned to it.
Finally segments shorter than 5 s are discarded. The dotted boxes
on the figure indicate the result of this post-processing, i.e. the
estimation of the segment boundaries.
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Figure 8: Each ordinate value corresponds to an offset value, and
shows a binary signal indicating the point associated to it. The
dotted boxes indicate the boundaries of the segments detected after
post-processing. The offset values 3 and 4 are discarded here.

When detecting repetitions of the item (as in Figures 2(a) and
(d)), only the most exact occurrence of the item is of interest, the
other repetitions are accidental. A simple way to discard these
repetitions is to compute the stream time distance between the seg-
ments: if a segment s2 is shorter than s1, then the segment s2 is
discarded if |xs1 −xs2 | > 30 s, where xs = − bs

a
defines the abc-

sissa of the intersection of the line s with the zero-ordinate axis.

4.5. Estimation of the temporal characteristics

The result of the process so far is a list of S segments ; each seg-
ment s is characterized by its offset bs and its boundaries [xsstart;xsend].
The segments are sorted by ascending start boundaries. The slope
a is common to all segments.

• TimeFactor is equal to the slope a:
TimeFactor = a.

• ItemTime is equal to the abscissa of the intersection of the
first line with the zero-ordinate axis:

ItemTime = − b1
a

.

• StartTime equals the start boundary of the first segment:
StartTime = x1start.

• EndTime equals the end boundary of the last segment:
EndTime = xSend.

• Successive segments with bs+1 < bs correspond to an in-
sertion in the stream signal:

InsertTime (in the stream) = xsend,
InsertDuration (in the stream) = bs+1−bs

a
.

• Successive segments with bs+1 > bs correspond to an in-
sertion in the item signal:

InsertTime (in the item) = a(xsend − ItemTime),
InsertDuration (in the item) = bs+1 − bs.

Figure 9 illustrates the distinction on insertions. In order to cut
the inserted chunks and synchronize both signals, the time factor is
used differently when cutting an insertion in the stream (a) or in the
item (b). The black line represents the two consecutive segments,
and the gray segment represents the synchronized position for the
second segment, after correction .

(a) stream cut (b) item cut

Figure 9: Illustration of the correction of an insertion detected
between two consecutive segments. The estimate of the insertion
duration is indicated.

5. EVALUATION

The full evaluation of such a process can only be done by human-
checking all the occurrences that have been verified and aligned,
as well as the occurrences discarded.

We have thus limited the evaluation to a subset of 100 occur-
rences randomly extracted from the Quaero corpus annotations of
the 2010 campaign of evaluation for audio identification. Some of
the training items of the corpus were delivered by Yacast in several
edit versions. Among the occurrences, we have then deliberately
introduced 30 errors of edit version, in order to verify that edit
mismatches are correctly identified as annotation errors. Item mis-
match is supposed much more easy to detect than edit mismatch,
and is thus not tested here.

After their automatic verification and alignment, the 100 oc-
currences were human-checked with the help of a small tool we
developed prior to this contribution, in order to perform this syn-
chronization manually. The tool interface (developed in Matlab)
in shown Figure 10. The user can adjust the characteristics pre-
sented earlier (ItemTime, TimeFactor, etc.) and play the item and
the aligned stream occurrence simultaneously to check the align-
ment. The software is meant to be used with headphones, since the
item is played on the left channel and the occurrence on the right
channel. The full description of the software is not relevant here.

After several hours of annotation we have concluded that the
perception of a slight phase shift of d seconds is very consistent:
• d ≈ 0: When sounds are perfectly simultaneous, one sound is
heard and located in the middle of the head.
• |d| < 0.03: In a scope of about 30 ms, we still hear one sound,
but the latter moves on the side when |d| grows.
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Figure 10: Graphical User Interface of the annotation tool devel-
oped for the manual alignment and verification of occurrences.

• 0.03 < |d| < 0.07: Between 30 ms and 70 ms, we start hear-
ing two different sounds on sharp onsets (e.g. percussive sounds
or some consonants on the singing voice).
• |d| > 0.07: Above 70 ms, we hear two different sounds.
These empirical observations corroborate the results in the litera-
ture on spacial hearing perception [17].

We have thus limited the precision of the parameters to 0.01 s
in the annotation tool, which is still notably heard (through the
"perceived" position of the sound in the head) when approaching
perfect synchronization.

Using the tool, we have corrected the result of our process
to reach the best synchronization possible. Figure 11 shows the
distribution of the corrections applied to the ItemTime parameter.
Most of the correction amplitudes do not exceed 40 ms. The mean
amplitude of the corrections equals 25 ms, which is an expected or-
der of magnitude since the step size between the fingerprint codes
was set to 50 ms. Some corrections, though reach higher values,
up to 90ms. This is explained by the fact that a slight error on the
time-factor can induce a much larger difference on time offsets,
especially at the beginning of the occurrence, where the correction
was applied.
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Figure 11: Histogram distribution of the corrections manually set
to the ItemTime estimated with our method.

The 30 occurrences with edit mismatch were all detected as
such, except one where the singing voice part is common to both
edits. The detection of erroneous annotation is thus very efficient
and reliable.

Finally, we have verified the TimeFactor estimation, by check-

ing that the two sounds are still perfectly synchronized after 20
seconds of signal. Only 4 occurrences over the 70 correct ones
(about 6%) were slightly offbeat, the rest remains aligned.

Nevertheless, the best demonstration is still to actually hear the
sounds. Several audio samples of the item and stream occurrence
(before and after the automatic correction), as well as the stereo
mix of the two, can be found on the following webpage:
http://www.mathieuramona.com/wp/data/align.

6. CONCLUSION AND PERSPECTIVE

We have proposed here an original variant of the fingerprinting
scheme, called item-restricted fingerprinting, that is associated with
a segment detection method to estimate the temporal distortions
between an item occurrence signal and the original item signal.
The high precision of the parameters estimation allows the com-
pensation of the temporal distortions and the perfect synchroniza-
tion of the item and the occurrence.

This method has been used to verify and correct approximative
annotations for audio fingerprinting. The short evaluation shows
that the incorrect annotation detection works almost perfectly, even
on different edits of the same musical track. The estimation of
the temporal characteristic proves very precise and on most on the
items, the perfect synchronization of the item and stream signal
is confirmed perceptually, after compensating the temporal distor-
tions.

This contribution offers many applications. In the field of
audio fingerprinting, the alignment of the occurrences allows to
reproduce a part of the evaluation protocols generally applied to
synthetic alterations of items. Moreover, the precise estimation of
the time-factor enables controlled studies on robustness to time-
scaling on real-world audio data. The problem of signal alignment
answered in this paper can probably be extended to other fields of
research in audio processing.

Short-term perspectives would concern the remaining flaws of
the algorithm. The peak near the value 1 in the distribution of the
point-slopes deserves a proper explanation and should be answered
more reliably. The correction of the insertions is also problematic.
The duration is correctly estimated through the offset values, but
the position is not precise enough, and results in local asynchrony
between the signal. Proposing a proper scheme for the detection
and the correction of missing occurrences in a fingerprint evalua-
tion corpus is another long-term perspective.
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ABSTRACT

The use of mid-level audio features has recently shown promising
perspectives for music content description tasks. In this paper we
investigate the use of a mid-level harmony-related descriptor for
the task of music structure analysis. The idea behind the descrip-
tor is to concatenate the chroma sequence of a musical segment
in a Multi Probe Histogram (MPH). Probing local pitch intervals
within the chroma sequence, we show that such an abstraction of
the audio signal is a good descriptor of the tonal hierarchy that is
consequent to a given key or melodic line. It is thus a powerful
feature for describing harmonic and melodic progressions within
a music piece. After introducing the histograms’ computation and
enlightening their relation to harmony, we use such a description
for the task of music structure segmentation and provide prelimi-
nary results that show very encouraging perspectives.

1. INTRODUCTION

Music structure analysis aims at drawing the temporal map of a
music piece by extracting its constitutive structural parts. In clas-
sical music, such structural forms usually correspond to the first
and second movements, development, exposition and so on. In
popular music, common structural segments are often referred to
as intro, verse, chorus and outro. As a front-end processing for
many challenging applications such as content-based information
retrieval and browsing, summarization and thumbnailling, the task
of music structural analysis has gained an increasing interest in the
Music Information Retrieval community.

Most approaches for this task aim at identifying repetitive pat-
terns or segments of homogeneous acoustical information in low-
level audio descriptors. While perceptual studies show that sound
properties such as timbre and harmony allow to discriminate sec-
tions within a music piece in most western music, MFCC and
Chroma vectors are often chosen as low-level audio features. Dif-
ferent strategies were proposed to detect structural boundaries and
classify sections in the features distributions. A popular approach
consists in embedding the audio features in an audio self-similarity
matrix [1] [2]. The comparison of the feature vectors in a pairwise
manner enlightens repetitive and/or homogeneous segments within
the audio data. Structure is then derived using k-means clustering
or HMM. Other approaches directly apply clustering techniques
to the features distribution. A comparative study of most recent
algorithms can be found in [3].

A limitation of using low-level descriptors for the descrip-
tion of a music piece is that acoustical information within musical
sections is highly inhomogeneous. Therefore the extraction time-

scale of the features, which is rather short, does not always yield
a robust description of sections. Mid-level features or dynamic
features were thus recently introduced to account for the temporal
evolution of the feature vectors. In [4], authors model the tem-
poral evolution of the spectral shape over a fixed time duration
window. Varying the window size, authors can derive similarity
matrices that either relate to short-term or long-term structures.
In [5], Dynamic Texture is applied to the audio to model timbral
and rhythmical properties. An alternative solution was proposed
in [6] introducing a contextual distance that considers sequences
of frames in order to enlighten repetitive patterns in the feature
vectors.

We propose in this paper to use a mid-level harmony-related
audio feature to describe musical structures, by means of a con-
catenation of mid-term chroma sequences in Multi-Probe Histograms
(MPHs). MPHs were recently introduced in [7] for the task of
scalable audio content retrieval and has not been used for musical
audio content description yet. Probing local tone intervals within
the sequence, such a representation allows to summarize the whole
sequence by its dominant tone intervals and is thus an abstraction
of its harmonic content.

After introducing the chroma representation of audio signals
and the computation of MPHs, we discuss the musical interpreta-
tion of the resulting histograms. On the basis of musical knowl-
edge and works on perception of tonal structures, we emphasize
the harmony interpretation of MPH’s. This is experimentally val-
idated by analyzing the Well-Tempered Clavier books using this
representation. Once the link between MPH and harmony has been
established, MPHs are embedded in similarity matrices and used
for the task of music structure segmentation. Evaluation of the
system is reported at the end of the paper.

2. AUDIO SIGNAL REPRESENTATION

2.1. Chroma Features

Chroma features are low-level audio descriptors that describe the
pitch classes content of an audio data. Each coefficient of a chroma
vector sums the signal’s spectrum energy in sub-bands correspond-
ing to one of the 12 pitch classes of the well-tempered scale. For
the experiments in this paper, chroma features were extracted by
means of the chroma toolbox1. The analysis of chroma features
thus enables to focus on the structure of harmonic-related content
within a music piece.

1http://www.mpi-inf.mpg.de/∼mmueller/chromatoolbox/
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2.2. Multi-Probe Histograms

Chroma features are extracted over neighboring windows of the
audio signal. There is thus a strong correlation between adjacent
feature frames, unless a strong transition occurs in the audio signal,
such as a note change, and in that case, only the value of first dom-
inant chroma bins changes. Multi-Probe Histograms are based on
that observation and aim at characterizing these local transitions
between dominant bins in chroma sequences by probing the pitch
classes intervals between adjacent frames. A deepen description
of MPH’s computation is beyond the scope of this paper and can
be found in [7]. Nevertheless, we will briefly introduce their com-
putation by means of a simple example in order to understand how
tonal structures can be reflected in the histograms.

We consider a transition from a C Major chord (frame i) to a F
Major chord (frame i+1) and their corresponding chroma vectors:

From frame i to frame i+1, there are 122 possibilities for the
maximum of energy to be transferred from a pitch class to an other.
Each of these possible transitions defines a position in the Multi-
Probe Histogram. In our example, the energy is logically trans-
ferred from the pitch classes of the major triad of a C to the major
triad of an F. For the MPH computation, we consider for each ad-
jacent frames of the sequence the transition between the two dom-
inant pitch classes, i.e. C and G for the C Major chord and F and
C for the F Major chord. As illustrated above, the transition from
frame i to frame i+1 allows 4 possible transfers of energy between
those pitch classes. For this iteration, bins of the MPH that will be
allocated a new value are defined by these 4 transitions. Consid-
ering the transition from the tone C to the tone F, a bin position in
the histogram is computed as follows :

p = bC ∗ 12 + bF (1)

with bC and bF the positions of the pitch classes C and F in the
chroma vector, respectively 1 and 6. Furthermore, in each frame
the first dominant bin is allocated the weightw1 and the second the
weight w2. C and F being the first dominant bins in our example,
the added weight for our histogram bin for the transition from C to
F is defined as:

w = w1 + w1 (2)

meaning that the histogram is added the value w at its bin p. The
operation is then repeated for the remaining 3 pitch classes tran-
sitions, and iterated over the remaining frames of the chroma se-
quence. Note that the actual values of major pitch classes in the
chroma vectors do not influence the histogram’s value. Only the
distance or interval between tones does. Of course, one can in-
crease the number of chroma bins K to be considered from one
frame to another, thus probing 2K intervals at each time frame.

As illustrated in the remainder of this paper, MPH’s can either
be computed with the whole chroma sequence of an audio data,
or just over a portion of the audio signal and used as a mid-level
audio feature. Independently of the length of the chroma sequence,
computed MPH’s size does not vary and is thus composed of 122

= 144 bins.

3. MPH AS A HARMONIC FEATURE

Tonality and harmony relate to the combination of pitches in the
chord constructions and melodic progressions of a music compo-
sition. In this section, we investigate how a MPH abstraction of
chroma sequences is related to harmony and tonality. We first
shortly review works on tonal structure perception in music cog-
nition research. By means of the well-tempered clavier books we
then experimentally show how key distances are reflected using
the Multi-Probe Histograms as an audio feature.

3.1. Tonal Structures

Works and studies on the perception of tone structures in the music
cognition literature show a strong interdependency between tones,
chords and key. By means of the probe tone experiment, i.e. peo-
ple are asked to judge of the quality of a note in a given key con-
text, Krumhansl estimated key profiles, or tonal hierarchies, that
are produced by a given harmony. Moreover, she states in [8] that
such tonal hierarchies generate a map of key distances that is the
same of the chord distances, and is verified in the circle-of-fifth.
This means that given a tonal context, the transition probabilities
between chords and pitch classes of the well-tempered scale are
not equally distributed in a music composition. Moreover, a study
by Cohen in [9] on how a key becomes established in a music com-
position showed that the four notes of a music piece (in that case
excerpts of the Well-Tempered Clavier Books) were sufficient for
musically trained listeners to estimate the tonic of the key. This all
suggests that a music composition and its tonal structure are char-
acterized by a restricted set of discrete pitches and intervals. The
tonal structure is even established in mid-term sections in music
pieces. Considering local pitch intervals, MPH’s are completely
determined by the tonal hierarchy of a key context, and should
therefore be a good feature, or abstraction, for describing the par-
ticular tonal structure of a music piece.

3.2. Experimental Validation

The Well-Tempered Clavier books consist of preludes and fugues
composed in all 24 major and minor keys and are considered as
a reference work on harmony. In order to experimentally validate
the interpretation of Multi-Probe Histograms as harmonic features,
we extracted MPHs on the 24 preludes of the The Well-Tempered
Clavier books and measured the distance between the pieces com-
paring their corresponding histogram. The goal is to find wether
or not the MPH based comparison of the pieces satisfies the map
of key distances that is defined by the circle-of-fifth. Note that
Cohen verified in [9] that consonance between Bach Preludes are
consistent with the circle-of-fifth.

For each piece, the chroma vectors are extracted with a sam-
pling rate of 10Hz and are concatenated in a MPH. A piece is thus
modeled by a single 144 bins histogram. Distance between the
pieces is measured by calculating the cosine distance between the
histograms. The results are shown in Figure 1.
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(a) Circle of Fifths (b) MPH distance matrix between 24 Preludes

Figure 1: Circle of Fifths and MPH similarity between the 24 Pre-
ludes of the Well-Tempered Clavier Books

Computing the similarity between the pieces, we verify that
keys that are close to each other in the circle-of-fifth, and that are
thus consonant, also have a high MPH similarity. On the other
hand, pieces composed in keys that are highly distant are highly
dissimilar in their MPH representations. Whereas only measur-
ing the similarity between the chroma sequences is not sufficient
to yield that result, concatenating the sequences in MPHs thus al-
lows to highlight the relevant tone intervals that are consequent to
a given key. And in that sense it can be used as a good and com-
putationally inexpensive harmonic descriptor of music.

4. STRUCTURE DETECTION

A Multi-Probe Histogram can be extracted over chroma sequences
of variable sizes. It can thus be used as an abstraction of a whole
music piece, but could also define a mid-level audio feature for
music content description. In this section we investigate the use of
MPH’s as a mid-level audio feature for the task of music structural
segmentation.

4.1. MPH as a mid-level audio feature

For the description of a music piece, we embed the MPH’s as mid-
level audio features in an audio self-similarity matrix. This means
that instead of calculating the feature frame pairwise distance, as
proposed in [1], each time instant is now modeled by the MPH
calculated on a sequence of L frames that surrounds it. Thus in-
cluding more contextual information in the measure of similarity,
we intend to provide a more homogeneous description of struc-
tural parts. We can illustrate that with a simple example: let’s
consider a same single note, for example an A, that is played in
two different sections of a music piece, and thus in two different
melodic, and eventually tonal, contexts. The pairwise similarity
between the feature frames extracted over these two notes will be
maximal and rise confusion, whereas if one introduces contextual
information, awareness of the past- and forthcoming tonal struc-
ture is considered and the similarity between the two time instants
is reduced.

We show a concrete example in Figure 2. The audio excerpt is
a 30 seconds excerpt of Chopin’s Mazurka, Op. 63, No. 3 in which
a tonality change from a B flat minor to a C Sharp minor occurs.
In Figure 2.a, the standard similarity matrix as proposed in [1] is
computed on the chroma features. In Figure 2.b, we compute our
proposed similarity matrix with MPH’s computed over chroma se-
quences of length L = 50 frames, which corresponds to 5 seconds.

(a) Similarity Matrix with Chroma
Vectors

(b) MPH Similarity Matrix, L = 50
frames

Figure 2: Similarity matrices computed over a portion of the
Mazurka, Op. 63, No. 3. Transition between B flat minor and
C Sharp minor.

The scales of B flat minor and C Sharp minor contain similar
pitch classes. There is thus a high similarity in the chroma vectors
and it is not clear from the chroma similarity matrix when in the
music piece the tonality change occurs. But introduction of con-
textual information by means of the MPHs considerably reduces
the similarity between the two sections. Moreover, each section
tend to be more represented as a block of high similarity, satisfying
the definition of a state representation of structure as introduced in
[10]. For comparison, similarity matrices were also generated us-
ing the mid-term mean-value of Chroma vectors as features. While
self-similarity within sections is also strengthened, high confusion
between the two sections remains. We thus hope that the MPH rep-
resentation will robustly enhanced the description of music pieces.

4.2. Segmentation and Structure Clustering

The Segmentation step aims at estimating the potential boundaries
between the structural parts of a music piece. We use for that pur-
pose the audio novelty approach as described in [11]. This method
has already shown good performances for the task of structure seg-
mentation.

We use the MPH enhanced similarity matrices as input for the
structure clustering algorithm described in [12]. The algorithm is
based on a nonnegative matrix factorization (NMF) of similarity
matrices that separates musical sections in the matrix. The ap-
proach tends to work better when sections are displayed as blocks
of high similarity in the matrix. This is referred to in the literature
as the state representation of structure. Computing the standard
similarity matrix on the low-level descriptors, structure is however
rarely displayed in that manner. As shown above, introducing con-
textual information with the MPHs strengthens such a state repre-
sentation and we therefore hope to improve the performance of the
structure segmentation using our MPH based similarity matrix.

5. EVALUATION

5.1. Evaluation set-up and evaluation metrics

In order to compare our approach to the state of the art, we run
the evaluation on the TUT Beatles2 data set that consists of 174

2http://www.cs.tut.fi/sgn/arg/paulus/structure.html
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songs from The Beatles. There is no ideal performance measure
of music structure analysis algorithms. In fact musical structures
being highly hierarchical, it is hard to find a match between the
hierarchy-level of the annotation and the estimated structure. Nev-
ertheless a compromise has been found in using the pairwise pre-
cision (P), recall (R) and F-measure (F), and the over- and under-
segmentation scores (So and Su) introduced in [13].

The results are compared with the system in [14] that won the
MIREX3 music structure segmentation evaluation task in 2009 for
the same dataset, and with the same clustering algorithm we use
[12], but ran on standard chroma similarity matrices.

5.2. Results

The evaluation is reported in Table 1.

MPH based Standard Matrix
Similarity Matrix Ref [12] Ref [14]

F 63.3% 60.8% 60.0 %
P 59.3% 61.5% 56.1%
R 72.4% 64.6% 71.0%
So 68.3% 61% 73,9%
Su 58.8% 59.9% 61.7%

Table 1: Evaluation of the proposed approach and comparison with
the state-of-the-art

The general increase in the F-measure is of 3% in comparison
with the reference systems. While the algorithm seems to behave
in a similar manner as in [14] (comparable Precison and Recall
rates), the nature of the segmentation changes using MPHs instead
of raw chroma vectors for the similarity matrix computation. In-
deed, introduction of the MPH increases the Recall rate of 8% in
comparison with [12] with a reasonable loss in Precision (2%).
This means that our approach deals better with over-segmentation
issues. Over-segmentation is indeed often a problem in structure
segmentation because of the inner structure of musical sections.
While this structure is reflected in the estimated segmentation, it
doesn’t match the hierarchy level of the annotated structure.

It is also to be noted that our approach reflects structure in
the harmonic progression of the songs. However, in this database,
many structural information is also contained in the instrumenta-
tion changes. It would therefore be appropriate in further work to
study the impact of MPH with mono-instrumental recordings.

6. CONCLUSION

In this paper we showed that concatenating chroma sequences in
Multi-Probe Histograms is efficient for describing tonal and har-
monic properties of sounds. Varying the length of the studied
chroma sequences, MPHs can either be utilized as global descrip-
tors of music pieces, or as a mid-level feature for music content
description. The first evaluation of its application to the task of
structure segmentation shows very promising results. It is however
important to keep in mind that evaluation methods for the task of
structure segmentation are still under active discussions, and the
performance measures do not reflect all aspects of the relevancy
of an estimated segmentation. Indeed, there is a lack of accuracy

3http://www.music-ir.org/mirex/wiki/2009:Music_Structure_Segmentation_Results

in the definition of musical structures and annotation procedures.
Further work will include the evaluation of the approach on a large
mono-instrumental classical music database. Thus focusing on the
harmonic aspects of structure, with no eventual confusion intro-
duced by instrumentation changes, one could then run a deeper
investigation on the benefits of using MPHs for the task of music
structure analysis.
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ABSTRACT

In this paper we address the problem of the description of mu-
sic production techniques from the audio signal. Over the past
decades sound engineering techniques have changed drastically.
New recording technologies, extensive use of compressors and
limiters or new stereo techniques have deeply modified the sound
of records. We propose three features to describe these evolutions
in music production. They are based on the dynamic range of the
signal, energy difference between channels and phase spread be-
tween channels. We measure the relevance of these features on a
task of automatic classification of Pop/Rock songs into decades. In
the context of Music Information Retrieval this kind of description
could be very useful to better describe the content of a song or to
assess the similarity between songs.

1. INTRODUCTION

Recent popular music makes an exhaustive use of studio-based
technology. Creative use of the recording studio, referred to as pro-
duction, exerts a huge influence on the musical content [1]. Sonic
aspects of music, as brought by studio technologies, are even con-
sidered by some authors to be at the top of the hierarchy of per-
tinence in contemporary popular music analysis [2]. They can be
perceived as more important than rhythm and even than pitch.
Studio techniques may concern many aspects of the musical con-
tent. Equalizers modify spectral content, reverberation bring cus-
tomizable acoustics to the recording, pitch-shifters like Antares
Autotune1 can transform vocals to a point where it becomes the
trademark of a song [3]. Double and multiple tracking techniques
allow the construction of heavily contrapuntal and spatialized parts
from a single original sound source or musician [4]. Dynamic pro-
cessing used in audio mastering weights so heavily on music per-
ception that it spawns public debate [5].
Studio practices are heavily dependent on equipment: equalizers
and dynamic compressors require electronic components, pitch-
shifting is impossible to perform without digital processing and
recordings have to be made on media whose performance are highly
variable across the musical periods. This leads to the hypothesis
that some sonic aspects in recorded music are specific to a given
period of time.
In the Music Information Retrieval field, this aspect has received
few attention. The first work which could be related to produc-
tion is the Audio Signal Quality Description Scheme in MPEG-7
Audio Amendment 1 [6]. This standard includes a set of audio

∗ Part of this work was made as an independant consultant
1http://www.antarestech.com/

features describing the characteristics of the support, considered
as a transmission channel of a music track: description of Back-
GroundSoundLevel, RelativeDelay, Balance, Bandwidth. In [7],
Tzanetakis uses the Avendano’s Panning Index [8] to classify pro-
duction styles (and then production time). Kim [9] and Scaringella
[10] study the effect of remastering on the spectrum of the songs.
Their interest in remastering comes from a question that was more
debated, the so-called “album effect”. This refers to the fact that
machine learning algorithms for automatic music classification or
music similarity estimation may learn characteristics of the album
production instead of general properties such as genre and then be
over fitted. Identifying this album effect is still an open problem
but we believe that some production aspects do not belong to the
album effect and may characterize the period of a song or even
its genre. It is thus important to characterize the production effect
that is independent of album and relates to more general attributes
of a song. In this aim we propose three features describing some
aspects of the production of a song. The first feature relates to the
temporal variation of the signal amplitude and is described in sec-
tion 2, the second and the third, detailed in section 3 describe the
use of stereo. To assess the accuracy of these features and how
they relate to a production period, we use them in a task of auto-
matic classification of songs in decades in section 4. We finally
conclude in section 5.

Figure 1: Relationship between input and output level in a com-
pressor for a fixed threshold and various ratios.
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Figure 2: Mean decibel amplitude histogram for five decades from
1960 to 2000

2. COMPRESSION AND LIMITING

2.1. A growing use of compressors and limiters over the years

The first techniques we study are compression and limiting. Their
aim is to alter the amplitude of the signal in order to reduce its
dynamic range (ie. the ratio between the loudest and the weak-
est parts of the signal’s power). They can be used to deal with
technical limitations of the recording system, or to improve the
audibility of the signal for aesthetic reasons. A compressor ap-
plies a non-linear transformation to the sound level across time
(see Fig. 1). It applies a negative gain to the signal whenever the
amplitude exceeds a user-set threshold. Another way to deal with
dynamic compression is to consider that one applies an input gain
to the signal, which increases its power, while the signal’s peaks
must not get over a given threshold under in any circumstance.
This is the principle of limiting. Intensive usage of limiting re-
sults in signals with many samples very close to 0 dB Full Scale
(the maximum possible level on digital media). From the begin-
ning of the 90s, this technique has been increasingly used to make
songs sound “louder” while peaking at the same level . Each music
recording company wanting to make records that sound “louder”
than the ones from the competitor, this degenerated into a so-called
“loudness war” (see for instance [11]). To describe these effects
we propose a feature based on the amplitude of the signal in dB
FS (Decibel Full-Scale).

2.2. Signal description of compression and limiting effects

2.2.1. Dynamic histogram

This feature corresponds to the histogram of the peak normalized
signal level represented in dB. Let s(n) be the audio signal with
s(t) ∈ [−1, 1].

sdB(n) = 20 ∗ log10(|x(n)|) (1)

The bins of the histogram are 1dB wide and the centers go from
-95.5 dB to -.5dB. These values are chosen considering the 96 dB
dynamic of a 16-bit signal. The histogram is normalized to repre-
sent percentage values.
We use the signal amplitude instead of any energy estimate to be
able to precisely detect the effect of limiting. Indeed, both limiters
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Figure 3: Mean of the signal amplitude absolute value in dB for
five different decades. The center horizontal line represents the
median. The middle two horizontal lines represent the upper and
lower limits of the inter-quartile range. The outer whiskers repre-
sent the highest and lowest values that are not outliers. Outliers,
represented by ’+’ signs, are values that are more than 1.5 times
the inter-quartile range.

and compressors apply a gain directly on the signal. As a result,
the effect of the limiter, as it has been used recently, will be the
presence of many samples with an amplitude very close to 0 dB. If
we were using an energy estimate, such as RMS, these peak values
would be smoothed and then less visible.
Fig. 2 shows the mean amplitude histogram computed on 1042
Pop/Rock songs (see section 4 for details) for five different decades
ranging from 1960 to 2010. First we notice the progressive dis-
placement of the histogram toward the right, ie. toward high sound
level value, from the 80s to the 00s. This is typically the effect of
a higher compression rate over decades. Looking at Fig. 3 repre-
senting the mean of the signal amplitude absolute value in dB for
the five decades, we can confirm the increase of the sound level
from the 80s to the 00s, but we also see that this value decreases
from the 60s to the 80s. This diminution of the mean sound level
can be explained by the increasing bandwidth of the recording me-
dia from less than 75dB in the 60s [12] to the 96 dB of the audio
CD. Indeed, if the bandwidth increases and the peak value stays
constant, the mean decreases. The second noticeable observation
on these histograms appears on the high sound level bins, particu-
larly in the [-1dB,0dB] bin. Indeed we see that the height of these
bins increase with the decade. This is an effect of the intensive
use of limiters, and justifies the use of amplitude instead of en-
ergy estimation. This effect is more visible on Fig. 4 that shows
the percentage of samples between -1 and 0 dB (ie. the height of
the rightest bin of the histogram) for the five decades. We see that
this value does not vary much in the three first decades and starts
growing in the nineties to reach a top value in the 00s.

2.2.2. Summary features

To obtain a more compact representation, we also compute the
four first moment of the distribution of sdB , ie. the mean, the vari-
ance, the skewness and the kurtosis, as well as the median and
inter-quartile range. In the following we call these features, to-
gether with the histogram bin amplitude, the Dynamic Features. A
higher compression rate should be materialized by a higher mean
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Figure 4: Percentage of samples between -1 and 0 dB for five dif-
ferent decades.
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Figure 5: Cochleagram difference for the While My Guitar Gently
Weeps from The Beatles. Color ranges from -.3 (white) represent-
ing right channel to .3 (black) representing left channel.

or median and also by a lower skewness (the mass of the distribu-
tion is concentrated on the high values). Fig. 3 shows the mean of
the distribution over decades. The observation is the same as on
the histogram, showing an increasing use of compression from the
90s.

3. STEREO AND PANNING

The second group of techniques that we study relates to the dif-
ferences that are observed between the left and right channels of
a stereo recording. This panel of techniques results in a variety
of signals, that can range from mono ones, for which there is no
difference between the two channels, to complex stereo images
produced by using amplitude and phase differences. We present
two measures that intent to describe the differences between the
two channels.
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Figure 6: Mean of cochleagram difference for the song While My
Guitar Gently Weeps from The Beatles. Negative values indicate
right channel, positive values indicate left channel.

3.1. Amplitude panning

3.1.1. Cochleagram differences

Amplitude panning consists in distributing the sound of each sources
on each channel. Avendano [8] proposes a method to measure the
differences between left and right channels. He computes a nor-
malized similarity measure between left and right channel spec-
trograms. We use a slightly different measure based on channel
cochleagrams. The cochleagram represents the excitation pattern
of the basilar membrane. We use this method to obtain a more
perceptually meaningful representation of the sound. The cochlea-
gram is computed using a gammatone filterbank whose center fre-
quencies follows the ERB scale [13]. The ERB scale is computed
as follows:

ERBn = 21.4log10(0.00437f + 1); (2)

where f represent the frequency.
We use a filterbank of 70 filters with frequency centers between
30 Hz and 11025 Hz. To measure the spectral difference between
channels over time, we compute the difference between both chan-
nel cochleagram. We call this representation Cochleagram Differ-
ence (CD). Fig. 5 shows the Cochleagram Difference of the song
While My Guitar Gently Weeps from The Beatles. We can clearly
see the guitar and the organ (in black) between 500 Hz and 3 kHz
that are almost fully panned on the left. In the low frequency we
notice (in white) the bass and the drums that are much louder on
the right channel. The remaining green color is mainly due to
voices that are in the center.

3.1.2. Summary features

To summarize the information contained in this representation we
use four features that we will call Amplitude Stereo Features (ASF)
in the following.
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• The global mean over frequency and time of the absolute
value. This feature indicate the global amount of panning
in the song,

• The standard deviation over frequency of the mean over
time of the absolute value. This feature is an indication
of the amount of panning variation across time,

• The mean over time which measure the mean panning across
frequencies,

• The mean over time of the absolute value which gives the
same indication but ignoring the panning direction (left/right),

• The standard deviation over time.

As an illustration, Fig. 6 shows the mean over time of the
cochleagram difference for the same song as in Fig. 5. This fig-
ure shows that, over the song, bass frequencies are panned on the
right (indicated by negative values), while medium and high fre-
quencies are panned on the left (indicated by positive values).

3.2. Phase stereo

In the last two decades, sound engineers have been broadly us-
ing mixing techniques based on slight differences between the left
and right channel that give a sense of “wideness” to the sources.
We will group these techniques under the designation of “phase
stereo” as opposed to “amplitude stereo”, of which panning is an
example. There exist at least three of these techniques. The sim-
plest one is based on an inversion of phase between the two chan-
nels. Another one is based on a single original track, that is being
panned as it is on one channel, and panned with a short delay (be-
tween 10 and 30ms) on the other channel. A third one, sometimes
called “double-tracking”, consists in recording at least twice the
same musical phrase played on the same instrument and to pan
each take on a different channel. This method is widely used by
heavy metal producers on guitar parts, in order to provide an im-
pression of a “huge” guitar sound. Such techniques are made easy
to implement by the precision of track synchronization brought by
reliable multi-track recorders, as well as the abundance of avail-
able tracks provided by digital recording systems. As a conse-
quence of the use of these mixing techniques, recordings with very
few panning can still give a sense of space. To describe these ef-
fects we propose a new representation inspired by the phase meters
used by sound engineers.

3.2.1. Spectral Stereo Phase Spread (SSPS)

We denote by sL(n) and sR(n) the left and right channel of a
stereo audio signal over sample n. The common tools used in
music production to analyze the stereo de-phasing of an audio sig-
nal is named the “phase-meter”. It displays over a 2D represen-
tations the values y(n) = sL(n) − sR(n) (on the ordinate) and
x(n) = sL(n) + sR(n) (on the abscissa). When the channels L
and R are “in phase”, y(n) cancels, when they are in phase oppo-
sition, x(n) cancels. This is illustrated in Fig. 7. We therefore use
the following σLR to measure the spread of the audio signal due
to de-phasing

σLR =
σ (sL(n)− sR(n))

σ (sL(n) + sR(n))
(3)

where σ(x) denotes the standard deviation of the values x.
As for the Cochleagram Difference (which measures stereo

spread in frequency due to amplitude panning), we propose a for-
mulation of the stereo phase spread in the frequency domain. The
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Figure 7: Representation of sL(n);sR(n) (top parts) and
y(n);x(n) for various case of de-phasing between left and right
channels. [top-left]: φ = 0, [top-right]: φ = π/4, [bottom-left]:
φ = π/2 and [bottom-right]: φ = π

goal is to obtain a spectral location of the use of de-phasing tech-
niques. For this a Short Time Fourier Transform analysis is first
performed using a Blackman window of length 40ms with a 20ms
hop size. We denote by SL(fk,m) and SR(fk,m) the respec-
tive short time Fourier complex spectrum at frame m and fre-
quency fk. The phase components, ΦL(fk,m) and ΦR(fk,m)
represents the phase of each cosinusoidal component at frequency
fk and at the beginning of the frame. The phase components
ΦL(fk,m) and ΦR(fk,m) over frame m can therefore be con-
sidered as an equivalent of sL(n) and sR(n). We can therefore
compute the same measures Y (fk,m) = S′L(fk,m)−S′R(fk,m)
and X(fk,m) = S′L(fk,m) + S′R(fk,m) using

S′L(fk,m) = cos(2πfk/sr + ΦL(fk,m))

S′R(fk,m) = cos(2πfk/sr + ΦR(fk,m))
(4)

σLR(k) =
σ (S′L(fk,m)− S′R(fk,m))

σ (S′L(fk,m) + S′R(fk,m))
(5)

In order to derive a perceptual measure from σLR(k), we group
the values over frequencies fk into ERB bands.

σLR(b) =
∑

fk∈{B}k

σLR(k) (6)

where {B}k denotes the set of frequency of the bth ERB bands.
A further refinement is to weight each value of σLR(k) by the
amplitude of the corresponding frequency bin fk

σ′LR(b) =
∑

fk∈{B}k

A(k)σLR(k) (7)

where A(k) is the mean of the contribution of the modulus (am-
plitude spectrum) |SL(fk,m)| and |SR(fk,m)|.
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In Fig. 8, we illustrate the computation of S′L(fk,m)−S′L(fk,m)
and S′L(fk,m) + S′L(fk,m) for five frequency bands and de-
phasing of φ = 0, φ = π, φ = π/2, φ = π/4 and φ = 0 in
each band.
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Figure 8: Computation of σLR(k) in the frequency domain.

Fig 9 shows the CD (on the top) and the SSPS (on the bottom)
of the song Gangsta’s Paradise by Coolio. Compared to the previ-
ous Beatles’ song, this song presents very few amplitude panning
as shown by the almost uniform green color of the CD. In contrast
the SSPS shows some very strong variations. The lighter areas of
the SSPS corresponds to points in time and frequency where the
phase difference between channels is higher. These segments cor-
respond to the entrance of the choir which as been mixed using the
double tracking technique.

3.2.2. Summary features

To summarize the information contained in SSPS we use four fea-
tures that we will call Phase Stereo Features (PSF) in the follow-
ing.

• The global mean over frequency and time,

• The standard deviation over frequency of the mean over
time,

• The mean over time,

• The standard deviation over time.

4. CLASSIFYING SONGS INTO DECADES

As a proof of concept of our features we propose to automatically
classify songs into decades. Since the proposed features are de-
signed to describe production characteristics of the records, and
since these characteristics have changed over time, our features
should allow to guess the period of production. This kind of clas-
sification could be very interesting for measuring the similarity
between songs or for automatically generating playlists.
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Figure 9: Cochleagram Difference (Top) and Spectral Stereo Phase
Spread (Bottom) for the song Gangsta’s Paradise by Coolio. In
the Cochleagram Difference, Color ranges from -.3 (white) repre-
senting right channel to .3 (black) representing left channel. In the
Spectral Stereo Phase Spread lighter colors represent higher phase
spread.

4.1. Sound set

We use a set of 1980 Pop/Rock songs by 181 different artists. The
set contains 396 songs for each decade. The year were obtained
from a metadata database. The set is divided into a train set of
1042 songs and a test set of 938 songs. To avoid over-fitting of
the models due to the album effect, the train and test sets contains
different artists.

4.2. Classification method

As a classifier, we use support vector machines (SVM) with a
Gaussian radial basis function kernel. We set γ = 1/d [14] where
d is the dimension of the feature set and C = 1. The implemen-
tation is the one of LIBSVM [15]. To make a multi-class classi-
fier from the 2-class SVM we use the one versus all method. We
train a classifier for each class versus all the remaining classes. To
make a decision we compare the posterior probabilities provided
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Features Performance
DF ASF PSF MFCC Accuracy

× 0,39
× 0,46

× 0,47
× 0,47

× × 0,51
× × × 0,61
× × × × 0,64

Table 1: Classification accuracy for various feature combina-
tions. DF=Dynamic Features, ASF=Amplitude Stereo Features,
PSF=Phase Stereo Features, MFCC=Mel Frequency Cepstral Co-
efficients

1960 1970 1980 1990 2000 recall
1960 125 23 5 1 0 0,81
1970 28 111 78 12 7 0,47
1980 1 30 152 5 1 0,80
1990 16 36 43 125 24 0,51
2000 5 13 11 29 161 0,74

precision 0,71 0,52 0,53 0,73 0,83

re
al
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la

ss

Classified as

Figure 10: Confusion matrix for the classification with all the fea-
tures

by LIBSVM and affect the class with the highest probability to the
incoming data.
We compare the results of the proposed features either separately
or grouped. For comparison purposes we added the Mel Frequency
Cepstral Coefficients (MFCC) that are widely used features for
spectral envelope description.

4.3. Results

Tab. 1 shows the classification results for various feature combi-
nations. First, we see that every features carry information about
decade, the best one being the dynamic features with an accuracy
of 0.47. An interesting observation is that the two kind of stereo
features (amplitude and phase) perform better when used together
(.51) than separately (respectively .39 and .45), showing that they
carry different kind of information. When all the features are used
in conjunction we obtain a score of .64. Tab. 10 shows the con-
fusion matrix of this last case. As expected, the main confusions
occurs between adjacent decades. The 00s obtain the best recog-
nition rate (.83) followed by the 90s and 60s (resp. .73 and .71).
Confusion occurs more often between 70s and 80s.

5. CONCLUSION

In this paper, we presented three innovative audio features to de-
scribe the characteristics of the music production effect. These
features are related to dynamic range and stereo mixing. Dynamic
features pointed out the increasing use of compressors and limiters
across decades. Stereo features were shown to be able to charac-
terize both amplitude panning and phase stereo. The relevance of
the features was tested in a task of automatic decade classification
of music tracks. An accuracy of 60% on a five decade task was

reached using our features. While such classification can be useful
for automatic song tagging or for music similarity, it could be in-
teresting to try regression methods to estimate more precisely the
within decade period of production. Also, since the production
techniques can vary across genres, further research should focus
on possible variations of our features across genres.
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Satellite Workshop 1 - Versatile Sound Models for Interaction in Audio-Graphic Virtual Environments: Control of
Audio-graphic Sound Synthesis - Roland Cahen, Diemo Schwarz, Hui Ding

The use of 3D interactive virtual environments is becoming more widespread in areas such as games, architecture, urban-
ism, information visualization and sonification, interactive artistic digital media, serious games, gamification. The limitations
in sound generation in existing environments are increasingly obvious with current requirements. This workshop will look at
recent advances and future prospects in sound modeling, representation, transformation and synthesis for interactive audio-
graphic scene design. Several approaches to extending sound generation in 3D virtual environments have been developed in
recent years, such as sampling, modal synthesis, additive synthesis, corpus based synthesis, granular synthesis, description
based synthesis, physical modeling... These techniques can be quite different in their methods and results, but may also be-
come complementary towards the common goal of versatile and understandable virtual scenes, in order to cover a wide range
of object types and interactions between objects and with them. The purpose of this workshop is to sum up these different
approaches, present current work in the field, and to discuss their differences, commonalities and complementarities.

Satellite Workshop 2 - Modalys, a physical synthesizer: more than twenty years of researches developments and musical
uses - Nicolas Ellis, Joel Bensoam, Jean Lochard, René Caussé

In the early 90s, the software was initially created with the intent to serve as a virtual instrument maker workshop.
The usages are now extending from the virtual reproduction of existing acoustic instruments to industrial prototyping. This
diversification made necessary to rethink many parts of the software, from the core synthesiser to the numerous interfaces :
textual (Lisp), Max/MSP (mlys), OpenMusic, Matlab.

Satellite Workshop 3 - From ASA to CASA, what does the C stand for anyway? - Mathieu Lagrange, Luis Gustavo
Martins

Auditory Scene Analysis (ASA) is the process by which the human auditory system organizes sound into perceptually
meaningful elements. Inspired by the seminal work of Al Bregman (1990) and other researchers in perception and cognition,
early computational systems were built by engineers such as David Mellinger (1991) or Dan Ellis (1996). Strictly speaking,
a CASA or a "machine listening" system is an computational system whose general architecture or key components design
are motivated by facts taken from ASA. Though, ASA being a Gestaltist theory that focuses on the description and not on
the explanation of the studied phenomenon, computational enthusiasts are left with a largely open field of investigation.
Perhaps this lack of definition did not fit into the way we do research nowadays, since papers strictly tackling this issue are
relatively scarce. Though, informal discussions with experts in the sound and musical audio processing areas confirm that
making sense of strongly polyphonic signals is a fundamental problem that is interesting both from the methodological and
application point of views. Consequently, we (organisers of this workshop) believe that there are fundamental questions that
need to be raised and discussed in order to better pave the way of research in this field. Among others, those questions
are: From ASA to CASA: only insights? Is the knowledge transfer from ASA to CASA only qualitative? Are there other
approaches in scientific fields such as biology, cognition, etc. that are also potentially meaningful for building powerful
computational systems? What is CASA? Is CASA a goal in itself? Can it be decomposed into well defined tasks? Is CASA
worth pursuing? What are the major locks in contemporary CASA? How does it relates to other sound processing areas such
as Blind Source Separation (BSS) or Music Information Retrieval (MIR)? This workshop aims at bringing to the audience
some background and new topics on ASA and CASA . Those questions will then be raised and discussed with the help of the
invited speakers
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