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ABSTRACT
Digital systems dedicated to audio and speech processing usually
require sample rate conversion units in order to adapt the sam-
ple rate from different signal flows: for instance 8 and 16 kHz
for speech, 32 kHz for the broadcast rate, 44.1 kHz for CDs and
48 kHz for studio work. The designer chooses the sample rate con-
version (SRC) technology based on objective criteria, such as fig-
ures of complexity, development or integration cycle and of course
performance characterization. For linear time-invariant (LTI) sys-
tems, the transfer function contains most information necessary
for the system characterization. However, being not LTI, the SRC
characterization also requires aliasing characterization. When the
system under study is available only through input excitations and
output observations (i.e. in black box conditions), aliasing charac-
terization obtained for instance through distortion measurements
is difficult to evaluate properly. Furthermore, aliasing measure-
ments can be messed up with weakly nonlinear artifacts, such as
those due to internal rounding errors. Consider now the fractional
SRC system as a linear periodically time-varying (LPTV) system
whose characteristics describe simultaneously the aliasing and the
in-band (so-called linear) behaviour from the SRC. An interesting
and new compound system made of multiple instances of the same
SRC system builds a LTI system. The linear features from this
compound system fully characterizes the SRC (i.e. its linear and
aliasing rejection behaviour) whereas weakly nonlinear features
obtained from distortion measurements are only due to internal
rounding errors. The SRC system can be analyzed in a black box
condition, either in batch processing or real-time processing. Ex-
amples illustrate the capability of the method to fully recover char-
acteristics from a multistage SRC system and to separate quanti-
zation effect and rounding noise in actual SRC implementations.

1. INTRODUCTION

Evaluating a digital fractional SRC system with tools designed
for the evaluation of analog-to-digital convertors (ADC) is an at-
tractive solution. For instance, the instant power measured at the
output of the system excited by a swept-sine would assess the li-
near performance of the system whereas a distortion measurement
would evaluate the performance of the aliasing rejection [1].

However aliasing effects are a linear effect from a polyphase
system [2]. Linear multirate (MRS) [3] and linear periodically
time-varying (LPTV) [4, 5] contexts are better suited for discussing
fractional SRC systems. The SRC system can be equally repre-
sented by a lowpass filter H whose polyphase components form
the time varying impulse response of the system. The ideal SRC
is fully characterized by the conversion ratio R/P and its lowpass
filter H , in particular:

• its passband characteristics (responsable for the resampled
signal coloration),

• its stopband characteristics (responsable for the attenuan-
tion of the aliased and mirrored spectral images),

• the don’t care bandwidth (which defines the bandwidth lim-
itations for incoming signals).

This ideal SRC model is exposed in Section 2. Finite word-length
representation causes internal rounding errors and undesired devi-
ations from the ideal model. The method presented in this paper
aims at separating the impact of rounding errors from the ideal
characteristics in a black box methodology condition. The de-
velopments from this paper are limited to the single input single
output (SISO) case. The interest follows:

• to provide a common framework for comparing the perfor-
mances of different SRC algorithms,

• to assess the performances of proprietary SRC algorithms
where internals are not available,

• to assess the global performance of complicated multi-stage
SRC algorithms.

Section 3 details a compound system based on multiple instances
of the SRC system that is LTI. The merits of this LTI compound
system for the characterization of sample rate conversion system
are discussed in section 3.2. This characterization method is com-
pared to the bispectrum method, used in [6, 7, 2, 8, 9] in order
to assess the performances of LPTV systems. Finally, section 4
shows on different examples how traditional black box LTI charac-
terization methods can be used in order to assess the performances
of a SRC system.

2. IDEAL MODELS AND NOTATIONS

2.1. Decimation, Expansion and SRC

The building blocks for multirate systems are the delay operator,
the decimation operator and the expansion operator [3]. Consider
the following real (or complex) scalar signals: x, y, u and v. The
expansion operator ↑R associates u to x (see Fig. 1) in an opera-
tion sometimes refered as upsampling:

∀n ∈ Z, u(n) =

(
x
“ n
R

”
if n = kR

0 else.
(1)

The decimation operator ↓ P associates y to v (see Fig. 2) in an
operation sometimes refered as downsampling:

∀n ∈ Z, y(n) = v(nP ). (2)
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↑ R
ux

Figure 1: R-fold expansion operator model.

↓ P
v y

Figure 2: P -fold decimation operator model

The previous definitions respectively for expansion and decima-
tion can be recast in the z-transform domain. The result of the
R-fold expansion (see Fig. 1 and equation (1)) verifies in the z-
domain:

U(z) = X(zR). (3)

The signal y obtained as the P -fold decimation from the signal
v (see Fig. 2 and equation (2)) verifies in the z-domain, with ωP
being a P th root of unity:

Y (zP ) =
1

P

P−1X
m=0

V (ωmP z). (4)

The multirate system shown in Fig. 3 can be used as an ideal
model for a sample rate convertor with a fractional ratio ×R/P
as in [5], with R and P chosen coprime. This multirate system
consists of a R-fold expansion, a LTI system H refered to as the
kernel of the multirate system and a P -fold decimation. The signal
v is the result of the filtering of u, i.e. v(z) = H(z) · u(z). Thus,
from Eq. (3) and (4), one obtains the modulation equation for the
ideal ×R/P sample rate conversion system:

Y (zP ) =
1

P

P−1X
m=0

H(ωmP z) ·X(ωRmP zR). (5)

2.2. LPTV systems

A discrete-time linear system is defined as (L2, L1)-LPTV if a
shift of the input by L1 samples results in a shift of the output
by L2 samples, for any input signal [2]. Given this definition, the
ideal ×R/P sample rate conversion system appears as a (P,R )-
LPTV system. Reciprocally, any (P,R )-LPTV system with R
and P chosen as two relatively prime integers verifies equation (5)
and can be characterized by a kernel H .

2.3. Polyphase type-1 decomposition

TheR-polyphase type-1 components1, x k
R

, are associated to a sig-
nal x in such a way that interleaving those components regenerates
the original signal x. In the z-domain, it results:

X(z) =

R−1X
l=0

z−lX l
R

(zR). (6)

1Polyphase type-2, type-3 and type-4 are alternate definitions for the
polyphase decomposition, cf. [2].

H↑ R ↓ P
vu yx

Figure 3: ×R/P sample rate conversion model.
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Figure 4: LTI context for a fractional resampler.

This relationship can be inverted [3] and for any k:

∀k ∈ Z, X k
R

(zR) =
zk

R

R−1X
n=0

ωnkR X(ωnRz). (7)

3. LTI CONTEXT FOR SRC SYSTEM

3.1. Principles

Consider the compound system described on Fig. 4 where the boxes
↑↓ R/P represent the whole system given in Fig. 3. Consider Q a
positive integer and r and p such as:

r = RQ, p = PQ, R/P = r/p.

The input signal x is considered as the combination of PQR in-
terleaved channels x k

r
. The SRC operator ×R/P is applied sepa-

rately on every channel. The resulting y k
p

are interleaved and form
a new signal y. The left (resp. right) part of the diagram is re-
lated to the QR-polyphase analysis network (resp. PQ-polyphase
synthesis network) in [7]. Note that this compound system is not
causal because of the usage of the advance operator z. The follow-
ing result applies:

Theorem 1. The compound system described in Fig. 4 where the
ideal ×R/P sample rate conversion system defined by H(z), the
z-transform from its kernel, is applied on PQR channels, and
which input x (resp. output y) is obtained by interleaving every
channel x k

r
(resp. y k

p
), is LTI.

Furthermore, y is obtained by filtering x through the expanded
kernel of the sample rate conversion system:

Y (z) = H(zQ) ·X(z).
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An important aspect for the proof given in the appendix is the
constraint that P and R are relatively prime. In the case of a SRC
system, it is always possible to chose P and R relatively prime
since only the ratio R/P matters. However, the result from Theo-
rem 1 can not apply to any (L1, L2)-LPTV system.

3.2. Discussion

The compound system from Fig. 4 with Q = 1 provides a simple
methodology for assessing the performance of a SRC system. The
kernel H of the SRC system is supposed to have a finite impulse
response (FIR) of length L. The typical filter bandwidth is about
π/R radians and the typical filter length L is about several times
R (depending of the stiffness of the lowpass filter)

• Choose one test vector x from a set of possibly several test
vectors.

• De-interleave the test vector x and form the PR channel
test vectors x k

R
. Zero padding can prove to be useful in

order to force the SRC system to process the signal until it
has returned at rest to a steady-state.

• Apply the SRC system to each different channel vector and
obtain the response channel vector y k

P
. The system un-

der study being supposed to be FIR, the response channel
vectors return to 0 after a maximum of dL/Re input zero-
padding samples.

• Interleave the PR response channel vectors y k
P

and form
the response vector y.

• Store the response vector y and repeat the process for every
available test vector x.

In short, the SRC system is fed with signals in different phase sit-
uations obtained by deinterleaving a given test vector x and the
output vectors are interleaved together. The analysis of the SRC
system proceeds as if the test vectors x were processed by a regu-
lar LTI system. There are different subcases of interest for the test
vectors.

Periodic signals are one type of interesting test vectors [7].
Once steady state is achieved (i.e after L samples on the test vec-
tor), a single output period is extracted, stored and analyzed. Note
that if N = nPR, the channel input vectors (resp. channel re-
sponse vectors) from the compound system are nP -periodic (resp.
nR-periodic). Yin and Mehr in [10] use nP -periodic channel in-
put vectors in order to excite and to identify the (R,R )-LPTV
system. Transposed to the context of characterizing a SRC sys-
tem, this identification method implicitly turns into a least-square
FIR identification method knowing one period from x and observ-
ing one period from y. Compared to these identification methods
[7, 10], the LTI approach relaxes the constraints onN which is not
a necessary multiple of PR.

The impulse response is another type of interesting test vector.
In such case, the impulse response h(n) of the kernelH is directly
available in y. When x(n) = δn, only remains XmR

R
= zm for

m ∈ [0, P ); any other contribution being pure zero:

H(z) = Y (z) =

P−1X
m=0

z−mRYmR
P

(zP )

∀m ∈ [0, P ) h(nP +mR) = ymR
P

(n)

P
Q

R
 =

 p
R
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Q

R
 =

 r
P
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x

Figure 5: causal LTI context for a fractional resampler.

where n varies in the support from ymR
P

. The method is indeed
valuable and cheap (P channel vectors to process instead of PR)
for characterizing an ideal SRC system but it misses the effects
from internal rounding errors.

In order to cover those effects, we assume that with orthogonal
input signals (obtained for instance by random phase shifting as
in [7]), rounding errors average to zero. Distortion observed on
the compound system is exclusively due to rounding errors: this
can be observed for instance by feeding a full-scale sine in the
compound LTI system. Alternatively, the method developped in
[11] for measuring the performance of weakly nonlinear system
can be used.

Note that the method requires the exact knowledge of the re-
sampling ratio×R/P . A separate adhoc method may be necessary
in order to estimate this ratio if it is not explicitly given.

Note also that for complex resampling ratios, such as those
encountered for resampling 44.1 kHz audio streams at 48 kHz, the
amount of channels becomes large: for R = 160 and P = 147,
we need to process PR = 23520 input channel test vectors. A
script automating the processing and the storage of each of those
PR audio files is needed.

3.3. Causal System

The LTI compound system as described in Fig. 4 is obviously not
causal. In the previous discussion, non-causality was not an issue
because we assumed that the analysis proceeded in batch process-
ing. Causality may be required for real-time applications. In such
case, we can use the type-4 polypase decomposition instead and
obtain a causal LTI context for the analysis of a SRC in Fig. 5. The
transfer function of the causal LTI compound system becomes:

Y (z) = z−PQR+1H(zQ) ·X(z).

3.4. Bispectrum analysis

The bispectrum (or bifrequency system function) of a LPTV sys-
tem is a bivariate function H(ejω1 , ejω2) that associates the spec-
trum Y

`
ejω2

´
of the input signal to the spectrum X

`
ejω1

´
of the

DAFX-3

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-150



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

output signal (cf. [7]):

∀ω2∈ R, Y
“
ejω2

”
=

+πZ
−π

H
“
ejω1 , ejω2

”
X
“
ejω1

”
dω1. (8)

Theorem 2. The bispectrum H(ejω1 , ejω2) of the ideal ×R/P
sample rate conversion system consists of Dirac lines deriving
from H(ejω), the transfer function of its kernel:

H
“
ejω1 , ejω2

”
=

1

P

P−1X
m=0

H
“
ej
ω1
R

”
δ (Pω1 −R (ω2 + 2mπ))

where δ corresponds to the Dirac distribution.

Due to the fact that R and P are relatively prime, the different
Dirac lines exhibited by the bispectrum reduce to one single Dirac
line shaped by the transfer function of the SRC kernel and repeated
along the quadrants.

Therefore the spectrum analysis of the LTI compound system
compares to the bispectrum analysis of the LPTV system as in [6].
Kernel spectrum and bispectrum can both be retreived in black
box conditions. It is however our opinion that the LTI approach
obtained from the compound system from Fig. 4 is more flexible
than the bispectrum approach: constraints about input signal are
relaxed and analysis methods are more straighforward to use be-
cause directly derived from traditional methods.

4. EXAMPLES

4.1. Upsampler ×3

Figures 6 and 7 illustrate how the kernel transfer function from
two x3 in-house upsampler algorithms can be revealed with the
LTI methodology. The upsampling algorithms under study were
provided as binary executable files that process soundfiles in dou-
ble precision floating point arithmetic. The soundfiles are stored
in single precision floating point (i.e. 24-bit mantissa). Both algo-
rithms proceed in two stages, including first an upsampling block
(resp. ×128 and ×4) and a decimating block obtained by polyno-
mial interpolation (resp. linear interpolation and quadric interpola-
tion) as in [12]. The actual upsampler kernel is difficult to evaluate
in a formal way due to the presence of the polynomial interpolation
block.

In order to reveal the upsampler kernel transfer function, two
complementary test vectors, x(1) and x(2) are generated. The first
test vector x(1) is generated as the impulse response of a low-order
lowpass filter (with a cutoff frequency approximatively set to π/2).
The second test vector x(2) was generated by the modulation of
x(1) at the Nyquist frequency. The tranfer function H(ejω) is ob-
tained as a weighted sum of the ratio Y (ejω)/X(ejω) for each
available test vector:

H
“
ejω
”

=
1P

iW
(i)(ω)

×
X
i

W (i)(ω)
Y (i)

`
ejω
´

X(i)(ejω)
.

In this example, the weightW (i)(ω) was set to |X(i)(ejω)|2. Fig. 6
demonstrates that in-band ripples behave accordingly to the spec-
ifications, resp. ±0.002 dB and ±0.01 dB. Fig. 7 demonstrates
that the alias rejection performance matches the −94 dB specifi-
cation only for the second algorithm. Examination of both figures
demonstrates that the don’t care bandwidth matches the specified
band [0.9π, 1.1π]/3.
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Figure 6: Estimated upsampler×3 transfer function, passband de-
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Figure 7: Estimated upsampler ×3 transfer function, stopband de-
tails.

4.2. Resampler ×3/2

Figures 8 and 9 illustrate how different types of arithmetic impact
measurements obtained from the LTI methodology. The SRC sys-
tem under study is an in-house one-stage ×3/2 SRC implementa-
tion available respectively in double precision floating point arith-
metic, in 24-bit fixed-point arithmetic and in 16-bit fixed-point
arithmetic. The algorithms were provided in an executable format.

Fig. 8, obtained with the set of test vectors from section 4.1,
illustrates the impact of the filter coefficients quantization. The 24-
bit coefficient quantization provides an accuracy compatible with
the stopband specification whereas the 16-bit quantization does
not.

Fig. 9 demonstrates the impact of internal rounding errors on
a pure sine located at π/8. The noise floor due to the storage for-
mat is about −186 dB. The harmonic distortion observed for the
floating-point version of the algorithm serves as a reference as-
sessing the impact from both the double-precision floating-point
internal rounding errors and the quantization due to the file for-
mat storage. This reference is about −160 dB. The differences
between the reference blue line and the dotted red (resp. dotted
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green) curve on Fig. 9 are only due to rounding errors in the 24-bit
(resp. 16-bit) fixed-point arithmetic. In the implemented algo-
rithm, the impact of the rounding errors in the 24-bit fixed-point
arithmetic seems neglectable with regard to the alias level. In the
16-bit arithmetic, the impact of internal rounding error is more sen-
sible but still limited with regard to the actual performance of the
alias rejection. Interestingly, only odd harmonics are generated in
16-bit fixed-point arithmetic. Note that the impact of the rounding
errors is quite limited in this example because the SRC process-
ing is single stage and the rounding error happens only once per
output sample without propagation when the result of the double
precision accumulation is cast back into single precision. A more
complex situation is expected when the SRC algorithm involves
multiple stages or polynomial interpolation.

5. CONCLUSION

In this paper, we have discussed the merits of a compound system
made of several instances of a sample rate conversion systems.
This compound system is LTI and its transfer function, H(zQ), is

directly related to the transfer function of the SRC kernel. Reg-
ular identification and characterization methods designed for LTI
systems can be applied on this system in order to reveal the li-
near characteristics responsable for both the in-band and the alias-
ing behaviour and the weakly nonlinear characteristics due to the
propagation of rounding errors. This LTI context simplifies the
analysis method proposed in [7] when the periods from the LPTV
systems are relatively prime.
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A. PROOFS FOR THE THEOREMS

Proof for Theorem 1. LetQ be any positive natural integer. Name
r (resp. p) the integer r = RQ (resp. p = PQ). The parameters
P , R, r and p are associated through the following properties:

r = RQ, p = PQ, R/P = r/p, P ∧R = 1. (9)

We use equation (7) in order to describe the signal x as the
interleaving from the input channels x k

r
:

∀k ∈ Z, X k
r

(zr) =
zk

r

r−1X
n=0

ωnkr X(ωnr z).

In order to continue the calculous, we introduce intermediary vari-
ables. First, let define the composite root Ωm,n as:

∀m ∈ [0, P ), ∀n ∈ [0, r), Ωm,n = ωmp ω
n
r

= ωmR+nP
PQR

then define the intermediary functions χml (z) and χm(z) as:

∀l ∈ [0, P ), χml (z) =

Q−1X
k=0

z−kX k+lQ
r

(ωRmP zr),

∀m ∈ [0, P ), χm(z) =
1

P

PR−1X
l=0

z−lQχml (z)

=
1

P

PR−1X
l=0

Q−1X
k=0

z−(k+lQ)X k+lQ
r

(ωRmP zr).

Notice that k + lQ with k ∈ [0, Q) and l ∈ [0, PR) covers the
entire range [0, pR). Therefore, the previous sum can be rewritten
as:

∀m ∈ [0, P ), χm(z) =
1

P

pR−1X
k=0

z−kX k
r

(ωRmP zr).

Let evaluate X k+lQ
r

(zr) first, X k+lQ
r

(ωRmP zr) then

X k+lQ
r

(zr) =
zk+lQ

r

r−1X
n=0

ωn(k+lQ)
r X(ωnr z).

For the second evaluation, notice ωRmrP = ωRmRp = ωmp and there-
fore:

X k+lQ
r

(ωRmP zr) = X k+lQ
r

`
(ωmp z)

r´
=

`
ωmp z

´k+lQ

r

r−1X
n=0

ωn(k+lQ)
r X(ωmp ω

n
r z)

=
zk+lQ

r

r−1X
n=0

Ωk+lQ
m,n X(Ωm,nz).

Now, let evaluate χml (z) and finaly χm(z):

χml (z) =

Q−1X
k=0

z−kX k+lQ
r

(ωRmP zr)

=
zlQ

r

Q−1X
k=0

r−1X
n=0

Ωk+lQ
m,n X(Ωm,nz),

χm(z) =
1

P

PR−1X
l=0

z−lQχml (z)

=
1

rP

PR−1X
l=0

Q−1X
k=0

r−1X
n=0

Ωk+lQ
m,n X(Ωm,nz)

=
1

PQR

PQR−1X
k=0

r−1X
n=0

Ωkm,nX(Ωm,nz).

The response channels signal y k
p

results from the application
of the fractional SRC to x k

r
. Apply equation (5):

Y k
p

(zP ) =
1

P

P−1X
m=0

H(ωmP z) ·X k
r

(ωRmP zR).

The signal y is obtained by interleaving every channel y k
p

:

Y (z) =

pR−1X
k=0

z−kY k
p

(zp)

=

pR−1X
k=0

z−kY k
p

(zPQ)

=
1

P

pR−1X
k=0

z−k
P−1X
m=0

H(ωmP z
Q) ·X k

r
(ωRmP zr)

=
1

P

P−1X
m=0

H(ωmP z
Q)

pR−1X
k=0

z−kX k
r

(ωRmP zr)

=

P−1X
m=0

H(ωmP z
Q)χm(z).

This concludes the evaluation of Y (z) in term of the modula-
tion components X(Ωm,nz):

Y (z) =
1

PQR

P−1X
m=0

pR−1X
k=0

r−1X
n=0

H(ωmP z
Q)Ωkm,nX(Ωm,nz).

Since P and R are coprime, mR+ nP mod (PQR) covers ex-
actly the range [0, PQR) when m ∈ [0, P ) and n ∈ [0, RQ). Let
apply the Chinese remainder theorem: the double sum in m and n
can be replaced by a simple sum in i, with m = i × R̄, labelling
R̄ the multiplicative inverse from R in the ring Z/PZ :

Y (z) =
1

PQR

PQR−1X
i=0

pR−1X
k=0

H(ωiR̄P zQ)ωikPQRX(ωiPQRz)

=
1

PQR

PQR−1X
i=0

PQR−1X
k=0

ωikPQRH(ωiQPQRz
Q)X(ωiPQRz).

Since ωPQR is a root of the unity, we have:

PQR−1X
k=0

ωikPQR = PQR
X
n

δi−nPQR.

Every modulation component vanishes from Y (z) and only re-
mains:

Y (z) = H(zQ) ·X(z). (10)
This concludes the demonstration because the vanishing of ev-
ery modulation component X(ωiPQRz) from Y (z) proves that the
system is LTI.
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Proof for Theorem 2. The proof is obtained by substituting the ex-
pression of the bispectrum in equation (8). The Dirac lines, located
at ω1 = R/P (ω2 + 2mπ), simplify the integral expression:

Y
“
ejω2

”
=

1

P

P−1X
m=0

H
“
ej
ω2+2mπ

P

”
X
“
ej
R
P

(ω2+2mπ)
”
.

In order to simplify the notation from the previous expression, in-
troduce ω such as ω2 = Pω:

Y
“
ejPω

”
=

1

P

P−1X
m=0

H
“
ej(ω+ 2mπ

P )
”
X
“
ejR(ω+ 2mπ

P )
”
.

The modulation equation (5) that characterizes the ideal ×R/P
SRC system can be recognized here, where z is substituted by ejω .
This concludes the proof by identification of the bifrequency func-
tion.
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