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ABSTRACT

In this paper, we present a revised model of the plectrum-string
interaction and its interface with the digital waveguide for simu-
lation of the harpsichord sound. We will first revisit the plectrum
body model that we have proposed previously in [1] and then ex-
tend the model to incorporate the geometry of the plectrum tip.
This permits us to model the dynamics of the string slipping off
the plectrum more comprehensively, which provides more physi-
cally accurate excitation signals. Simulation results are presented
and discussed.

1. INTRODUCTION

The harpsichord is a plucked string keyboard instrument which
was first invented probably around the late 14th century [2]. A
predecessor of the piano, its popularity reached its peak in the
17th century, becoming one of the most important keyboard in-
struments of the Baroque era. The harpsichord became "obsolete"
rather quickly after the maturation of the piano, but the 20th cen-
tury early music movement has since renewed significant interest
towards the instrument. Figure 1 shows the mechanism in which
the harpsichord strings are sounded. When the key is played, the
harpsichord jack is guided to move vertically upwards and a flexi-
ble plectrum mounted at the end of the jack plucks the string.

General harpsichord physics have been discussed in [3, 4, 5]
discussing the various components of the harpsichord. More spe-
cific studies such as the soundboard vibration modes or attack tran-
sients can be found in [6, 7, 8, 9, 10, 11]. The dynamics of the
harpsichord, generally thought to be nonexistent, has been stud-
ied in greater detail in [12] and has shown actually that a limited
amount of dynamics and timbral changes exist.

The interaction between the harpsichord plectrum and string
is an aspect much less studied. A theoretical model was first pro-
posed by Griffel [13], prompting further studies and a modified
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Figure 1: Harpsichord key and jack.

plectrum model proposed by Giordano and Winans II [14]. In
contrast, the finger-string interaction has been studied and mod-
eled in more detail in both the guitar [15, 16, 17, 18, 19] and con-
cert harp [20, 21]. For the guitar, differences in radiated sound
due to changes in guitar plectrum parameters have been reported
in [22, 23], and a guitar plectrum-string interaction model can be
found in [24].

A more thorough harpsichord plectrum has been recently pro-
posed by the authors [1, 25], which excites both transverse motions
of the strings and allows for interfacing with digital waveguides
[26, 27]. In this paper, we extend our model to incorporate the
plectrum tip geometry, describing the final stages of the string slip-
ping off the plectrum more completely, important in synthesizing a
more accurate string excitation signal. The physical-based excita-
tions provide controllability and expressivity that can complement
existing models using a sampled excitation database [28].

In Section 2 we present our improved plectrum model, which
includes a review of our previous plectrum body model and the
new plectrum tip model. In Section 3 we discuss the plectrum-
string interaction, where the interaction at the plectrum body and

DAFx-329



Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

tip are treated differently. In Section 4, we detail the interfacing
between our plectrum model with the digital waveguide. Simula-
tion results are discussed in Section 5, and in Section 6 we draw
our conclusions.

Figure 2: Force exerted on plectrum.

2. PLECTRUM MODEL

In this section, we will first review the plectrum body model. We
will then extend our plectrum model so that it incorporates the tip
geometry of the plectrum, important for an accurate description of
the string during slip-off from the plectrum.

2.1. Model Assumptions

For our model, we shall assume that

e the strain is small within the plectrum (still allows for large
end deflection)

e the plectrum is an isotropic elastic material

e the plectrum has a uniform rectangular cross section

o the plectrum only bends in a plane so that there is no twist-
ing motion

e there is no friction between the string and plectrum

o the force exerted on the plectrum is always perpendicular to
the surface in contact

e the force is concentrated only at one point

e the plectrum mass is ignored, and thus the plectrum and
string are assumed to be quasi-static, neglecting any oscil-
lations from the plectrum’s inertia.

2.2. Plectrum Body

The harpsichord plectrum is modeled as a thin rectangular rod
clamped at one end and free on the other end. When a clamped rod
is subject to an external force F/, it results in a bending moment M
due to the internal stresses. The general equilibrium equation for
a bent rod is given by

aM o

— =Fxt 1

dl M

where dl is an infinitesimal element of the rod, and £ is a unit
vector tangential to the rod. Under the assumptions in the previous
section, the bending moment can be written as

dr  d*7

M =FEI FTRATE 2)
where F is the Young’s Modulus, [ is the second moment of inertia
(or area moment of inertia), and 7 is the radius vector from a fixed
point to the point considered on the rod. Defining a coordinate
axis such that the x-y plane denotes the plane of the bent rod and ¢
as the angle between the horizontal and ¢, shown in Figure 2, the

equation is simplified to

d*¢

EI 1z +F=0 3)
Imposing the correct boundary conditions at the free end, we
can solve for the deflection angle along the length of the plectrum,

O1) = 57 (L1 = 51P) @
_ . 1FL?

where L is length of the plectrum. The parametric shape of the
plectrum z(1) and y (1) can be found as

z(l) = [ cosgdl
y(l) =—[ singp di

For small-angle approximations (¢ < 1), this reduces to the com-
monly seen cantilever beam loading equations. A bent harpsichord
plectrum, however, undergoes significant deflection, and these can-
tilever beam equations do not agree well with the general solution
(6). A revised approximation that the authors have proposed is

given by
CL(EN P ot e
2 \EI 3 4 20
F n? B
=—(=)l5 = 7
y(D) (EI)(Q 6) ™
LL(EN (L sl ot
6 \EI 4 10 8 56

which gives good agreement even up to end deflection angles ¢ of
45°.

©)

z(l) =1

2.3. Plectrum Tip

Figure 3: Force exerted on plectrum tip.

In order to account for the geometry of the end of the plectrum,
we will model the plectrum tip as a circular tip with diameter equal
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to that of the thickness of the plectrum. We will go through deriva-

tions similar to that of the previous section 2.2. Also keeping in

mind that an exerted force on the tip of the plectrum must still be

perpendicular to the surface, as in Fig 3, equation (3) becomes
EI dQ—(b + F(cos ) =0 (8)

dl?
where 6 denotes the angle and position on the tip the force is ap-
plied. The deflection angles become

o) = 8D Ly ©
do= o1 =1) = LT (10)

2 ET

Similarly, for the revised approximation of the plectrum shape, all
the F' terms are replaced with F'(cos ). Note that when 6 = 90°,
there is no bending moment on the plectrum, and the plectrum
becomes unbent with zero deflection ¢(1) = 0. In the case of the
harpsichord plectrum and string, this represents the moment when
the string slides past and leaves the plectrum. It is also clear from
the figure that 6 will not be larger than 90°, as this would imply
that the plectrum is bent upwards instead.

3. PLECTRUM-STRING INTERACTION

In this section, we will discuss the interaction between the harpsi-
chord plectrum and string while they are in contact when the string
is plucked. Assuming small string displacements, a segment of the
string with mass Am and length Az that is in contact with the
plectrum follows the equations of motion,

D% (t DPas(t
(Am) th( ) _ K gz2( )(Az) + Fpa
(11)
&ys(t) P ys(t)
(Am) e = K 922 (Az) + Fpy

where x5(t) and y,(t) denote the transverse string segment dis-
placements, K is the tension of the string, F), , and F}, , are the
z and y components of the plectrum force F' exerted on the string
segment, and z is the coordinate along the string, perpendicular to
both z(¢) and ys(t). The time when the string is sliding along
the main plectrum body and when it is slipping off the tip must be
treated differently.

3.1. Sliding Along Plectrum Body

As shown in Figure 4, the clamped end of the plectrum moves
with the harpsichord jack, constrained to move only in the verti-
cal direction. Its position is denoted by (x;(t), y;(t)). During
the phase where the string is sliding along the plectrum body, the
string is at a distance L' < L from the clamped end. Using our
revised approximation of equation (7) evaluated at the location of
the string [ = L', we have

wot) —ay(t) =1 — (;)2 LT;

F L/3 F 3 L/7
= (ﬁ) B (ﬁ) 105

(12)

ys () — y;(t)

Figure 4: Plectrum and string interaction along main plectrum
body.

The deflection angle at [ = L’ is given by equation (5), and there-
fore the components of the plectrum force are given by

. (FL”
F, . =Fsin ( Yol )
13)

If we know the motion of the harpsichord jack, the transverse
string segment displacements can be calculated using equations
(11) to (13).

3.2. Slip-off

(X5, ¥s)

Figure 5: Plectrum and string interaction at plectrum tip.

As shown in Figure 5, as the string slides past the end of the
plectrum body, labeled in the figure as point (z., ye), it proceeds
to slip off the tip. While the string is on the plectrum tip, it is
a distance L”" = L + A from the clamped end of the plectrum,
where A is the additional length correction from the tip. However,
A is on the order of the thickness of the plectrum, which is much
smaller than the length of the plectrum. To reduce the complexity
of the problem, we will first make the approximation that the force
F is applied at the point (z., y.). Using the plectrum tip model
of section 2.3, the deflection of the plectrum at (z., ye) is given
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by

ze(t) — z;(t) :L—(W) %

F(cos0)\ L* = (F(cos6)\* L”
wl) - = - (FER0) Lo (K)o
(14)
From the geometry in Figure 5, we also find that
xs(t) — ze(t) = rc[sin(@ + ¢o) — sin(¢o)] (15)
Ys(t) = ye(t) = refcos(0 + go) — cos(¢o)]

where r. is the radius of curvature of the tip, equal to half the
plectrum thickness. Combining these two expressions with equa-
tion (10), we have the plectrum deflection at the location of the
string which accounts for the additional length correction of the
plectrum tip:

2o(t) —25(t) =1L (1 - %) + 7 [sin(0 + o) — sin(o)]

2
w) - =20 (1-48)

+7¢ [cos(8 + ¢o) — cos(¢o)]

(16)
Note that if = 0, this expression reduces to equation (14), which
represents the string just at the edge of the plectrum body. Simi-
larly, the components of the plectrum force are now

F, . = Fsin(6+ ¢o)
a7
F,y, = Fcos(f+ ¢o)
and therefore the the transverse string segment displacements can

be calculated once again.

4. DIGITAL WAVEGUIDE INTERFACE WITH
PLECTRUM MODEL

For segments of the string not in contact with the plectrum, the
equations of motion (11) are reduced to the wave equation
Pz(t) 2 0%z (t)
oz 0722

Pus(t) _ 28us(0)
ot? 0z

(18)

where ¢ = / K/ is the string wave propagation speed, K is the
string tension defined earlier, and y = (Am)/(Az) is the linear
mass density. D’Alembert’s traveling-wave solution to the wave
equation is well-known and can be expressed as

zs(2,t)
Ys(2,1)
where ™ and y~ represent the traveling waves in the —z direc-

tion and ™ and 3 in the +2 direction. In the discrete-time do-
main, traveling waves are simulated efficiently by means of digital

=z (z+ct)+xt(z—ct)

1
=y (z+ct) +yT(z—ct) (19)
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Figure 6: Harpsichord string synthesis model.

waveguides. The harpsichord synthesis model is represented by
the block diagram in Figure 6. Pairs of digital waveguide delay-
lines are implemented on both sides of the plucking junction. In
addition, our plectrum model excites both the horizontal and ver-
tical transverse modes of string vibrations, and the two modes can
be coupled both at the nut and the bridge.

right

Figure 7: Sum of forces at the plucking point.

The length of the segment of string in contact with the plec-
trum Az is much smaller than the length of the string L5 and can
be effectively reduced to a single point. As shown in Figure 7 for
the transverse vertical ¥y component, the equilibrium of the sum of
the forces on the plucking point gives

ﬁp_:u + ﬁleft + ﬁm’ght =0 (20)

For small displacements, the y component of the left and right
string forces can be approximated as

0ys
Fleft,y ~ —K ayz B
Zp
21
0ys
Fright,y ~K 82’ N
Zp

As with the traveling wave solution (19) of string displacements,
the left and right string forces can also be decomposed as left and
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right traveling “force waves.” Defining the force wave as

K@yI (z % ct)

T(zxct) = - 22
[Pt = 22)
the traveling wave decomposition of the forces gives
Fiegt y = fl;ft(z +ct) + fl:ft(z —ct) (23)
Frighty = _fr_ight(z + Ct) - f:;ght (Z - Ct)

Further relating the spatial and time partial derivatives of the
force waves, we have expressions for the “Ohm’s Law” for travel-
ing waves

- _ g% KOy -
! o dz ¢ ot Rv
(24)
oyt Koyt
+ _ 9% B0y o+
! - Kaz c Ot R

where R = K/c = /Kp is the wave impedance of the string,
and v~ and v™ are the traveling velocity wave components of the
transverse string velocity. Rewriting equation (20) in terms of the
traveling force waves and also using the Ohm’s Law for traveling
waves,

(frepe + fl-:ft) = (frignt + f:;ght) +F,,=0 (25

R(=Viese + Viegi) = R(=Vrigne + 0figne) + Fpy =0 (26)
In addition, at the plucking point, the left and right transverse
string velocities must be continuous,

- + T + —
vleft + v'right - v'right + v'right =v (27)

where v is defined as the transverse velocity of the plucked point.

Equations (26) and (27) allow us to solve for the outgoing velocity

waves vy, p, and v:;. ght 1N tErms of the incoming velocity waves
- + .

v'right and vleft'

_ _ F,
Uleft = Ur'ight + 21}5/
(28)
F,
U:ight = Ultft + ;Ey
VL,;(ZJ)I P > | Vi (1)

Fp,y
2R

Figure 8: Plectrum plucking junction.

This plucking junction is shown in the diagram of Figure 8.
The transverse displacement waves can be evaluated using a Back-
ward Euler method:

{yleft(n) = yl;ft(n -1+ Ul;ft(n)T

(29)
y:’:ight(n) = y’j;ght(n - 1) + U'jight(n)T

where T is the sampling interval. The transverse x displacement
follows an identical derivation. When the string slides off the plec-
trum, F, , = F}_» = 0, the plucking junction disappears, and the
digital waveguide segments to the left and right of the junction are
effectively combined into one.

5. RESULTS

5.1. Simulation Parameters

Table 1: Delrin harpsichord plectrum and steel string values.

Plectrum Parameters
Length L 6 mm
Width W 4 mm
Thickness H 0.5 mm
Second moment of inertia / | 0.029 mm”
Young’s modulus £ 5 GPa
String Parameters
Tension T' 135N
Density p 7850 kg/m®
Diameter d 0.37 mm
Linear density p 0.84 g/m
Length L, 0.5m

Modern harpsichord plectra are made out of a plastic material
called Delrin. The plectrum and steel string parameters are listed
in Table 1. The sampling frequency was chosen at fs = 100 kHz.
The plectrum width was made to equal that of one spatial sampling
interval X = 4.0 mm. The harpsichord jack was assumed to move
at a constant velocity v; :

y;(t) = v;t

Referring to Figure 6 of the synthesis model, while the nut was
treated as a rigid termination, we implemented a bridge filter that
consisted of a one-pole filter and ripple filter similar to the one
implemented in [28]. The transverse = and y string vibrations were
not coupled together. That is a direction for future work.

5.2. String Excitation Motion

Figure 9 shows the transverse = and y string motion before the re-
lease of the string off the plectrum, plucked at the midpoint with
a jack velocity v; = 0.02 m/s. Clearly noticeable is a sharp steep
rise in the horizontal displacement just prior to the release of the
string that is absent in the vertical string displacement. This cor-
responds to the slip-off phase when the string is sliding off the
plectrum tip. An expanded view of the slip-off portion is shown
in Figure 10. This “kick” in the horizontal direction contributes to
the brightness of the synthesized harpsichord tone.

5.3. Plucking Speed

Conventional wisdom has it that regardless of how fast one presses
on the harpsichord key, the dynamics do not change considerably.
Figure 11 shows a graph of the string release amplitude (defined
as A = /x2 4 y2 immediately before the release of the string
from the plectrum) v.s. the jack velocity, plucked at the midpoint
of the string. Under regular playing speeds of 0.02 — 0.1 m/s, the
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Figure 9: Motion of string before release from plectrum, plucked
at the midpoint with jack velocity v; = 0.02 m/s.
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Figure 10: Expanded view of the slip-off of of Figure 9.

amplitude does not vary more than 10%, a difference not readily
audible from our simulations. At higher playing speeds, there is a
significant increase and drop in the release amplitude, but these are
unphysical in the realm of harpsichord playing. In Figure 11 this
"peak velocity" occurs at around 2 m/s. For longer bass strings,
simulations show a lower the peak velocity but it remains well
above reported playing speeds.

5.4. Plucking Point

Many harpsichords have more than one set of strings (called reg-
isters) for the same note, where the jacks pluck at different loca-
tions along the string. While Italian harpsichords generally had
their plucking locations closer together for uniformity of sound,
harpsichords built north of the Alps had their strings plucked at lo-
cations further apart to create differences in timbre [2]. It is well-
established that plucking closer to the nut excites more harmonics

w

N
o Uk 00 N O w g b

=

String Release Amplitude (mm)

o

] HE ] R
-2 -1 0 1 2

10 10
jack velocity (m/s)

=
o

Figure 11: String release amplitude v.s. jack velocity, plucked at
the midpoint.

and contributes to a nasal quality to the sound. Our simulations are
consistent with this.

As discussed in [1], playing on harpsichord registers which
pluck closer to the nut not only results in changes in timbre but
also a decrease in volume. The string is released earlier, and the
player experiences a “lighter” touch, as the harpsichord jack does
not travel as far before the string is plucked. Figure 12 shows simu-
lation results between the plucking location and string release am-
plitude. As expected, the largest amplitude occurs when plucked
at the midpoint and decreases as the plucking point moves closer
toward the nut.

6. CONCLUSION

This paper extends the previous harpsichord plectrum model pro-
posed by the authors to incorporate the plectrum tip geometry. In-
terfacing with a digital waveguide, the complete plucked string
motion, especially the final slip-off, is more accurately described.
This is crucial in generating the string excitation signals to cre-
ate realistic plucked harpsichord tones. Future work can include
bridge coupling between the two transverse string vibrations and
modeling of the lute stop.
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