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ABSTRACT

This paper presents a review on techniques for signal reconstruc-
tion without phase, i.e. when only the spectrogram (the squared
magnitude of the Short Time Fourier Transform) of the signal is
known. The now standard Griffin and Lim algorithm will be pre-
sented, and compared to more recent blind techniques. Two im-
portant issues are raised and discussed: first, the definition of rel-
evant criteria to evaluate the performances of different algorithms,
and second the question of the unicity of the solution. Some ways
of reducing the complexity of the problem are presented with the
injection of additional information in the reconstruction. Finally,
issues that prevents optimal reconstruction are examined, leading
to a discussion on what seem the most promising approaches for
future research.

1. INTRODUCTION

The ubiquitous Short Time Fourier Transform (STFT) is a very
efficient and simple tool for audio signal processing, with a rep-
resentation of the signal that simultaneously displays both its time
and frequency content. The STFT computation is perfectly in-
vertible, fast (based on the Fast Fourier Transform (FFT)), and
provides a linear framework well suited for signal transformation.
However, a majority of these modifications act on the magnitude
of the STFT ; in this case phase information is lost, or at least
corrupted. Source separation, for instance, is often based on the
estimation of the time-frequency local energy of the sources, and
the isolated sources are usually recovered trough Wiener filter-
ing [1], i.e. with the phase of the original mixture. Other cases
of adaptive filtering, like denoising [2], usually perform subtrac-
tion in the amplitude domain, once again not taking account of the
phase of the signal. Signal modifications, such as time-stretching
or pitch shifting [3], may also involve changes on the magnitude
of the STFT (adding/removing frames, moving bins) without per-
fect knowledge of the expected structure of the phase. Although
phase vocoder [4] brings some answers to the problem, the overall
quality of the modification is still perfectible.

Furthermore, accurate reconstruction of a signal from its mag-
nitude STFT is also of paramount importance in the domain of
signal representation. Many works are addressing the relation be-
tween magnitude and phase of a Discrete Fourier Transform (DFT)
[5, 6, 7]. Therefore, solving convergence issues of existing algo-
rithms could also give ways of solving the problem of phase and
magnitude dependency in the time-frequency domain. In short,

* This work was supported by the DReaM project (ANR-09-CORD-
006) of the French National Research Agency CONTINT program.

being able to reconstruct a signal while only knowing its magni-
tude could bring significant improvements in many situations from
source separation to signal modification.

Here, the key point is that the STFT has an important property:
redundancy of the information. For a real signal, each length-/NV
analysis window provides N/2 + 1 independent complex coef-
ficients (keeping only components corresponding to positive fre-
quencies), and with the additional constraint that the coefficients at
frequencies 0 and IN/2 are real by construction, this amounts to N
real coefficients (in other words, the Discrete Fourier Transform is
an orthogonal transform). However, with the STFT the analysis is
always carried out with an overlap between adjacent analysis win-
dows. In the case of minimal overlap of 50%, a real input signal
of length N provides 2N real coefficients (neglecting here bound-
ary effects). In the common case where the overlap is higher than
50%, this redundancy of information gets even higher. Similarly,
the FFT can be oversampled in frequency (with zero-padding in
time), providing more coefficients per frame.

This brings an important point: the STFT has to verify a so-
called “consistency criterion” [8]. In other words, the set of com-
plex STFT coefficients lives within a subset of the space CN <M
but is not isomorphous to it: in general, an array of complex coef-
ficients does not correspond to the STFT of a signal. Now, when
keeping only the magnitude of the STFT, a real input signal of
length N provides N + 1 real coefficients (with 50% overlap):
phase reconstruction from magnitude-only spectrograms may still
be possible [3]. The main issue is whether some crucial informa-
tion has been lost by taking the magnitude, bringing ambiguities
and/or ill-posedness issues. In the case of source separation, for
instance, Gunawan showed [9] that phase reconstruction improved
the quality of the separation. In the case of adaptive filtering, Le
Roux showed [10] that the inconsistency criterion led to an im-
proved estimation of the Wiener filter.

The goal of this article is to provide a state of the art in the
problem of signal reconstruction from spectrograms (the squared
magnitude of the STFT). Its goal is not only to review the benefits
and drawbacks of each of the published methods, but also to dis-
cuss fundamental and sometimes open issues that make this prob-
lem still very active after decades of intense research. The article is
organized as follows: the framework of the STFT will be presented
in section 2, and the unicity of the representation will be discussed
in section 3. The baseline technique for phase reconstruction, the
so-called Griffin and Lim algorithm, will be presented in section 4
and quantification of the convergence will be discussed in section
5. Then, more recent reconstruction techniques will be presented:
blind reconstructions in section 6 and informed ones in section 7.
Finally, issues that arise when trying to achieve perfect reconstruc-
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tion of the signal will be discussed in section 8 and applications of
such phase estimation to digital audio processing in section 9 prior
to the conclusion of the document in section 10.

2. SHORT TIME FOURIER TRANSFORM

Let z € [2(R) be a real, discrete signal, of finite support. On
this support, we define the ST F'T operator such that S(n,m) =
STFT][z] computed with an analysis window w of length N and
an overlap N — R (i.e., a hop size of R samples between consec-
utive analysis windows):
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Here, n is the frequency index, and m the time index. Inversion
of this ST F'T is achieved by the synthesis operator ST FT ! de-
scribed in equation (2) using the synthesis window s which gives
the signal Z:

z(l) = Z s(l —mR) Z S(n, m)ei%”lifvnﬁ
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If the synthesis and analysis windows verify the energy-
complementary constraint:

Zw(l +mR)s(l+mR) =1

m

then perfect reconstruction is achieved: £ = .

However, one might want to have more freedom in the choice
of analysis / synthesis windows, and therefore the STEFT ' op-
erator must include a window ponderation such that Z(l) =
~(ll)STFT1[5],where§(l)::zmw(l+mR)s(l+mR)which
is equivalent, up to boundary effects, to constraining the synthesis
window to 28; In [11], the inverse STFT is also described with
the use of a vector formulation.

The different domains involved and the functions used to pass
from one to another are presented on figure 1. The spectrogram W
is the squared magnitude' of S and is given by W = SS* where
S™* is the complex conjugate of S. Note that the spectrogram of
a signal is also its autocorrelation and can be used as such for the
interpolation of signals [12]. W is a set of real non-negative num-
bers € Rf *M The goal of the reconstruction is then to estimate
S(n,m) suchthat S € Sx,ar, where Sy, as is the subset of N x M
complex arrays representing co-called “consistent” STFTs, while
keeping SS* = W. Consistency of S is provided by the constraint
Z(S) = 0, where Z is defined by:

I(S) = S — STFT[STFT'[9]] 3)

In many applications such as the ones mentioned in the in-
troduction, the array W used for reconstruction might not itself
belong to the set of “consistent spectrograms” (the image of Sy, as
by the operator M — |M|?). This might be due to the fact that
the estimation of W is corrupted by noise (for denoising), or the
cross-talk of other sources (for source separation), or because W
is obtained through an imperfect interpolation algorithm (for time-
stretching). In this case, there is no signal z that exactly verifies

'Tt should be noticed that some authors alternatively refer to spectro-
gram as the set S, i.e. the complex STFT coefficients
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Figure 1: Domains involved when processing STFT's and spectro-
grams (expanded from [8]).

SzS; = W. There, the goal is to find the closest approximation,
that minimizes the norm of Z(.S) (for some matrix norm, usually
the Froebenius norm). In other words, one looks for the set Sy s
of consistent STFTs that verify SS* = W

Because we are specifically addressing a problem that uses
compact STFTs, we discard techniques involving oversampling of
each DFT [13, 14]: oversampling the DFT, while retaining the
overlapping of the frames, introduces a redundancy of information
that is too large to be handled in most practical cases. Signal re-
construction in those conditions can be considered solved by the
previous studies even in the case of an isolated frame [15]. In this
review, we will focus on techniques that, on the contrary, do not
require specific constraints on the window design, the DFT over-
sampling, or hop size (we just assume that the STFT and inverse
STFT are fixed and well-defined).

When trying to estimate the phase of an STFT from its mag-
nitude only, some problems arise: the unicity of the representation
[16, 12] discussed in section 3, how to quantify the convergence of
the reconstruction (section 5), but also the tendency of reconstruc-
tion algorithms to catch local, non optimal, minima. A notable
issue preventing optimal convergence is the so-called stagnation
of the optimization [17] and will be discussed in section 8.

3. UNICITY OF THE REPRESENTATION

When addressing the problem of perfect reconstruction of a sig-
nal from its spectrogram, the first question that comes in mind is
the unicity of the representation: can two different signals pro-
vide the same spectrogram ? The work of Nawab [12] produced
some practical answers to the problem while only providing suf-
ficient but not mandatory conditions to guarantee the unicity of
x represented by W (n,m). Some other works, such as [16] ad-
dressed signal uniqueness with the use of asymmetric windows
w(n) # w(N — n)), but such window is not suited for analysis
of the spectrogram for the sake of phase linearity amongst other
causes.
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3.1. Sign indetermination

Some simple examples can be given to prove that unicity is
not always verified. This is caused by the sign indetermination
|STEFT[z]| = |STFT[—xz]|. Take for instance two signals z1
and z2 such as they do not overlap: z1 = 0 outside [N14; N15]
and z2 = 0 outside [Naa; Nog] with Nip + N < Naa, then
x1 — x2 and z1 + x2 have the same STFT S(n, m).

Therefore, there are at least two signals z and —x verifying the
spectrogram W and the solution can only be unique under some
constraints such as positivity of the signal (for instance in the case
of image processing). But when this sign indetermination happens
between big chunks of an audio signal, this case is either perceptu-
ally insignificant or can be countered by some simple knowledge
on the signal.

However, it will be shown that this sign problem can happen
locally in the reconstructed signal and regardless of its structure,
this phenomenon is called stagnation by Fienup et al. [17] and will
be discussed in section 8.

3.2. Conditions for the unicity of the reconstruction

The important conditions providing unicity in the case of a partial
overlap, that is when hope size is R > 1, are given by Nawab [12]:

1. Known window function w(n)

2. Overlap of at least 50% (R < %).

3. Non zero window coefficients within the interval [0; N]
4. One sided signal, to define at least one boundary
5

. Knowing R consecutive samples of the signal to be recon-
structed starting from the first non-zero sample.

6. Less than R consecutive zeros samples in the signal.

Condition 1 of knowing w(n) can be simply explained. This
was illustrated by Le Roux in [18], with the example of design-
ing an inconsistent STFT H € CN*M 5o that 3" |H| > 0 but
STFT(STFT™'(H)) = 0 only for a given analysis/synthesis
window pair. Since each analysis window has a different time-
frequency smearing (see figure 6, in section 6), the information
contained in the spectrogram is directly linked to w. This is espe-
cially true for inconsistent STFTs, of which the spectrogram is a
particular case.

Condition 2 suggests that the amount of data contained by
|S(n,m)| is superior or equal to the one originally present in x,
while condition 3 prevents missing informations due to zeros in w.
Without any a priori on the signal, necessity of those two condi-
tions seems rather natural. Enforcing regularity on the signal (like
the techniques discussed in section 7) can lower those specific con-
ditions.

Condition 4 imposes boundaries to the signal, allowing injec-
tion of some informations for the reconstruction, similar to the ap-
proach of Hayes and Quatiery in [19]. These boundaries were also
used by Fienup et al. [17] but the support of an audio signal is too
big in regard to the analysis window in order for such condition to
be efficient. In fact, much more happens between the boundaries.

Since Nawab’s work was based on successive interpolation of
the signal, conditions 5 and 6 were established in order to know
precisely the first R samples of the signal and continuously inter-
polating the signal without gaps. We feel that condition 5 is not
always necessary, but condition 6 prevents sign indetermination
problems like illustrated in section 3.1.
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Figure 2: Spectrogram differences between two simple signals xg
and T, /4.

Some examples will be given throughout the paper in order to
show that if the signal is not unique, it often comes down to the
duality of the sign indetermination. We will also show in section 8
that greater issues are preventing the reconstruction and that unic-
ity of the solution can be overlooked until those issues are solved.
However those issues will often be linked to the unicity problem.

3.3. Phase rotation and spectrogram invariance

One common misconception about spectrogram is that it is phase
invariant. Of course, if one were to work with complex signals,
this phase invariance would be verified, but whether this still holds
for real signals (whatever this means) is not so obvious.

For real signals, the only way to appropriately define the phase
of the signals is within the framework of analytic signals. Let us
assume that the signal x under study is the real part of a mono-
component analytic signal H with slowly-varying amplitude A(¢):
z(t) = Re(H) = A(t) cos(wt), and let us construct the families
of functions x4 for the same amplitude A and frequency w, but
with varying absolute phase ®: zo = Re[He'®]. If phase invari-
ance were to hold, the spectrogram | Ss|? of e would be the same
as |So|? for any value of .

Figure 2 shows the signal, spectrogram and absolute spectro-
gram difference of z¢ for ® = 0 (left) and & = 7 (right) for three
frequencies (300, 1500 and 4050Hz) at 16kHz sampling frequency
and for an envelop A in the shape of a Hanning window with three
different amplitudes (1, % and %). The difference is computed as
| So| = [Sx/al [>. As one can see, this difference has an energy
far from negligible.

Two interesting remarks can be made: first, the error is spread
throughout the spectrum and not only in the vicinity of the signal’s
frequency. Second, this error is not either concentrated in time
around the onset or offset of the tones: it can be shown as well that
there is a similar error even when the amplitude of the signal stays
constant.

Figure 3, shows the average spectrogram difference C(So, Sa)
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Figure 3: Spectrogram differences (equation (4)) for varying ® in
TP.

as defined by

So(n, m)| = |Sa(n, m)| |2
C(SO,S¢)—\/Z"’m| ( \s)o|(n,|m)lg -

@

n,m

for varying ® from O to 2. One can see that the difference is m
periodic due to the sign indetermination of |S(n, m)| and that
most of the time it is inferior to 0.01 (i.e. -20dB).

This small experiment leads to the following rule of thumb:
strictly speaking, the STFT is not phase invariant. However, when
the computation is only made with low precision (less than 20
dB), the standard error criteria on the spectrogram don’t “see” the
phase. When minimizing this error, it appears that the original
signal is indeed the true minimum but within a very flat surface.
However, this fact that STFT is not strictly invariant to phase is
good news: phase information seems to be present to some extent
in the amplitude, but as a second-order effect. We shall see that this
observation is the basis for discussion on the main issues making
phase reconstruction such an intricate problem.

3.4. Perfect reconstruction

While the signal to be reconstructed from W is not necessarily
unique, our goal is to find the most accurate reconstruction in re-
gard to the original signal x. We call perfect reconstruction the
estimation of the signal Z with an error of at most the measure er-
ror on x. If x is 16bits sampled, then the error power to achieve is
approximatively equal to the quantification error power, that is to
say approx. -90dB.

Moreover, we will consider perfect reconstruction as the esti-
mation of  or —x. That is, we are implicitly discarding the global
sign problem in the determination of x. We will show in section
8 that local indetermination of this sign can cause convergence is-
sues.

4. ITERATIVE RECONSTRUCTION OF THE SIGNAL:
THE GRIFFIN AND LIM BASELINE ALGORITHM

Based on the Gerchberg and Saxon algorithm [20], Griffin and Lim
proposed the first global approach to solve the problem of signal
reconstruction from spectrograms [3]. Due to the good perceptual
results despite its simplicity for a basic implementation, this recon-
struction algorithm remains the baseline for all subsequent work.
Note that, as in the case of Gerchberg and Saxon reconstruction of
the phase, uniqueness of the reconstruction is not guaranteed.

The approach from Griffin and Lim relies on a two-domain
constraint, similar to the work of Hayes [15]. Before reconstruc-
tion, the spectrogram W of the STFT S is known but the phase

X()
STFT

¥
Si(n,m)
SuAnm)=|S, i m)| IS, (: :)|

STFT"

T
xHy"

Figure 4: The iterative framework of Griffin and Lim [3]

/S is unknown and can be initialized to 0 or at random values. In
the spectral domain, absolute values of the estimated STFT S; are
constrained to |So| = +/W at each iteration i, while the temporal
coherence (as defined by equation (3)) of the signal is enforced by
the operator STFT[STFT ™).

The algorithm is presented on figure 4. First, it is initialized
with S = VW. Atiteration i, the estimated STFT S; is computed
and £S; is given to the original spectrogram so that the resulting

time domain signal z; is computed by inverse STFT of |Sg| ‘gf‘ .
In [3] it is shown that the mean square error between the STFT
of the signal z; and the estimated STFT of amplitude|So| can be

expressed as a distance:

d(So, S Z]w ©)
and can be reduced to:
d(So, S Z| |So| — 153 |? (6)

It is_also demonstrated that the gradient of d verifies
Ad(So, S;) < 0 and that this technique therefore reduces the dis-
tance d at each iteration.

This algorithm presents three main drawbacks:

1. First, its computation requires offline processing, as it in-
volves computation of the whole signal at each iteration,
and computation of both an STFT and an inverse STFT.

2. Second, convergence can be very slow, both in terms of
computation time per iteration and by the number of iter-
ations before convergence.

3. Finally, the algorithm does not perform local optimization
to improve signal consistency, neither does it provide a con-
sistent initialization of the phase from frame to frame.

Griffin and Lim’s algorithm often provides time-domain sig-
nals that sound perceptively close to the original. However, de-
pending on the sound material and the STFT parameters, some
artifacts can be perceived: extra reverberation, phasiness, pre-
echo... Indeed, while looking at the temporal structure of the re-
constructed signals, we can see that they are often far enough from
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the original to produce RMS error above 0dB. Although the corre-
sponding sound quality may be sufficient in many cases, there are
some application scenario where this may be a severe limitation.
For instance, in the context of audio source separation, one may
want to listen to the residual signal without the estimated source
(karaoke effect): obviously a badly estimated time-domain signal
prevents a correct source subtraction from the mix.

5. CONVERGENCE CRITERION

In order to assess the performance of the reconstruction, different
criteria have been proposed. The most common ones are:

1. The spectral convergence C, expressed as the mean differ-
ence of the spectrogram W with the absolute value of the
reconstructed STFT S as expressed by:

En,m [vVW(n,m) — 5’(717 m)S*(n, m)|?
> nm W(n,m)

@)
The convergence criterion C relates directly to the mini-
mization process of Griffin and Lim’s technique (equation
(6)). This is the distance between the current coherent spec-
trogram and the target spectrogram. Then, when C = 0,
perfect reconstruction is achieved modulo unicity of the so-
lutions.

2. The consistency Z of the estimated STFT S as given in
equation (3). Again, Z = 0 means an accurate reconstruc-
tion, up to invariants.

3. The signal x to reconstruction ¥ root mean square error
power:

R — . [2E0) —2(n)?
> x(n)?

This criterion, analogous to the inverse of the signal-to-
noise ratio, gives a better view of the reconstruction quality
(we chose error over signal-to-noise ratio in order to ob-
serve the variations of C and R in the same direction). Note
that the computation of R requires the knowledge of the
original signal x. Therefore, it can only be used in (oracle)
benchmarking experiments, and not in (blind) practical es-
timation. In this case, when R = 0 the reconstruction is
strictly equal to the original.

(®)

Obviously, the choice of the convergence criterion will have
an effect on the discussion of the results obtained by each method.
Even if R = 0 is equivalent to C = 0, one can easily find very
small values of C associated with high values of R.

Such issue is illustrated on figure 5 in the simple case of the
DFT. The signal x used to compute figure 5 is a speech signal
sampled at 16kHz and quantized on 16 bits. A random phase delay
®(n) is computed, respecting the Hermitian symmetry (®(—n) =
—®(n)), and making sure that this delay is always an integer in
samples Vn. Then, the phase of the DFT of x is shifted by ®(n),
multiplied with an integer factor k, with k£ ranging from 1 to 20.
This is done through

Xi(n) = Xi(n)e*®™

The resulting time-domain signal is called Zx. The two signals
x and Zj, have the same energy (X X* = X X}), but are ran-
domly delayed across frequencies. The figure displays the conver-
gence criterion (20 log C) and the reconstruction error (20 log R)

10
convergence C
— — —errorR R
0 [
o -
g -
-0t 7~
7
-20 : : :
5 10 15 20

phase perturbation

Figure 5: Difference between the C and R criteria used to eval-
uate the signal reconstruction, as a function of the amplitude of a
random delay (integer in samples) on the DFT spectrum.

both in dB between signals = and Z5. Since there are two possi-
ble solutions (z and —z), R displayed on figure 7 is computed as
min(R|z, R|-z). In this figure, one can see that the two criteri-
ons evolve separately. While C is staying at approx. —14dB, R
is slowing rising to values above OdB. This illustrates the fact that
C may not be a good indicator of the reconstruction quality, with
respect to the original signal.

6. BLIND TECHNIQUES FOR SIGNAL
RECONSTRUCTION

In this section, we review recent techniques that have been de-
signed to improve Griffin and Lim’s algorithm.

6.1. STFT consistency

STFT consistency of equation (3) can lead to the spectral domain
only formulation of Griffin and Lim’s least square estimation of
the signal. In [8], an extensive work is presented to show how
equation (3) can be used for the estimation of the phase of the
corresponding coherent STFT. For instance, equation (10) gives a
phase estimate ¢ at each coordinate (n, m) of the STFT:

Z(n,m) = S(n,m)— STFT[STFT~'[S(n,m)]]
11
Z(n,m) = Z elzﬂﬁa(p, q)S(n—p,m—q) (9)
p:—% =1-Q
®(n,m) = Z(S(n,m)+Z(n,m)) (10)

. w(k)s —i2rp kel
w1tha(p7q):—%zk%e 2R 46,4,

The term «(p, q) is the convolutive kernel applied to the STFT,
that ensures both time domain (coordinate g) and frequency do-
main (coordinate p) coherence of the representation (this is the
equivalent of the so-called “reproducing kernel” in wavelet anal-
ysis). This kernel is directly computed with the analysis and syn-
thesis windows, and is invariant for the whole STFT. The shape of
different kernels (p, q) is given on figure 6 for four different win-
dow functions. The temporal dispersion of the kernel has a weak
dependency on the window shape, but the frequency distribution
is in direct relation to the spectral leakage of the window function
[21].

The expression of Z(n,m) given by equation (9) makes ex-
plicit the consistency criterion given in equation (3). This criterion
is particularly efficient to provide information on the local coher-
ence of the STFT as the phase correction depends directly on the

}ggzgl‘ Equation 10 is also the direct application of

value of
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Figure 6: The influence of different windows on the STFT repre-
sentation for an overlap of 75%. (amplitudes in dB)

Griffin and Lim optimization and follows the convergence of dis-
tance d defined in equation (6).

Additional studies in the same line [8] proposed solutions to
lower the computation time while keeping a similar convergence
speed. First, limiting the frequency domain span of the window «
drastically lowers computation time while introducing only mini-
mum error. When using analysis windows with low spectral leak-
age, one can reduce the term p of equation (9) to, for instance, the
range [—2;2]. This simplification significantly reduces the com-
putation time, at the cost of a small error typically below 0.1%.
Figure 6 presents some shapes of a(p, ¢) for different analysis and
synthesis windows. We can see that the energy is concentrated
around (0, 0) especially for the half sinus window (used for the
experiments in [8, 22]), allowing further approximation to the fre-
quency bins around 0.

The second simplification is the use of sparseness of the signal
in the time-frequency domain, in order to only update the bins of
high energy. At each iteration, bins of lower and lower energy
are updated. Empirical results shows that such simplification does
not significantly modify the reconstructed signal Z at convergence,
while drastically lowering computation time.

When using both simplifications, computation times given in
[8] show a reduction by a factor 10 to 40 over the original Grif-
fin and Lim iterative STFT reconstruction. This method improves
convergence speed but does not significantly improve the final
quality of the reconstruction. Note that both the computation time
and the framework of this technique allow for real-time implemen-
tation, with minimal delay.

P S S S VTN
ERAEIRAE AR -~ -~ -~ ~,’ -~
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o g o

current frame

TeT e e
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Figure 7: Real Time Iterative Spectrogram Inversion for an over-
lap of 75%.

6.2. Real-Time Iterative Spectrogram Inversion

The main drawback of Griffin and Lim’s reconstruction algorithm
is the processing of the whole signal for each iteration, preventing
any use for on-line processing. Zhu and al. [23] proposed two
implementations of the reconstruction, starting with a constraint
of a real-time implementation.

First, the baseline Real Time Iterative Spectrogram Inversion
(RTISI [24]) technique is based on the coherence of preceding re-
constructions in regards to the frame begin reconstructed. This
technique illustrated on figure 7, can be decomposed into two
steps:

1. Consider the m-th frame S™ of the STFT S(n, m) with its
window function w,, and the signal Z,, which contains the
weighted sum (equation (2)) of formerly processed frames.
Then, ZSg" is initialized so that:

/85 = /DFT|[wmim)

2. Then, the iterations are done as in Griffin and Lim, but re-
strained to frame m. At each step:

L8 = ZDFT|wmEm + wmii ]
() = s()DFT 'S

This method is especially suited for multiple window length STFT,
in a similar way to the window-switching method of MPEG 2/4
AAC coding [25]. However, RTISI offers results somewhat lower
than Griffin and Lim’s, mainly caused by the lack of look-ahead
and optimization toward the furure of the signal.

Therefore, a second method, RTISI with Look-Ahead (RTISI-
LA [26]) was proposed. It is described by the scheme of figure 8.
This method performs phase estimation of RTISI on k frames after
the current one, ensuring that the estimated phase for the frame
soon to be committed in the resulting signal § is both in agreement
with the past and future evolutions of the signal.

Convergence values C obtained for the RTISI-LA algorithm
are usually better than the ones obtained with Griffin and Lim, but
only in the order of 6dB of improvement. This improvement is
mainly based on the emphasis on time coherence of the signal, as
construction is done in both ways (forward and backward). Addi-
tional work from Gnann et al. [27] has focused on the phase initial-
ization and processing order of the reconstruction. By processing
the frame according to their energy and initializing the phase with
unwrapping, one can improve the convergence of the reconstruc-
tion by 1 to 5dB.

Additional work from Le Roux [22] showed the same ten-
dency when adding the phase initialization of RTISI-LA to the
STFT consistency-based reconstruction.

DAFx-380



Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

----7---» already
‘committed
frames

gy

'
'
'
:
'
'
'

commit
frame

commit

%onderation windovN

Figure 8: Real Time Iterative Spectrogram Inversion with Look
Ahead of k = 3 and 75% of overlap.

6.3. Summary on existing techniques

Existing techniques are gradually introducing more and more con-
straints in the time domain, compared to the first approach of Grif-
fin and Lim. They are still providing results that are close to the
original spectrogram (convergence in the C criterium) but far from
the original time domain signal. This tendency to generate inco-
herent signals in the time domain will be explained in the section 8
addressing fundamental issues shared by these current approaches.

Informal experiments were done using the initialization pro-
posed in condition 5 and 6 of section 3 (knowledge of first sam-
ples of the signal) using the RTISI-LA technique. Unfortunately,
this condition was not able to improve the reconstruction quality.
Indeed, these conditions are neither necessary nor sufficient to per-
form perfect signal reconstruction, with both STFT coherence or
real time spectrogram inversion.

7. INJECTING ADDITIONNAL INFORMATIONS

The three algorithms presented before do not show high accuracy
in the reconstruction of the signal. Reconstruction errors R are
often above zero, and rarely below —6dB. Therefore, injecting
additional information on the signal could be a possible way to
achieve a better reconstruction.

As perfect signal reconstruction involves very small variations
on the spectrograms, much lower than the convergence values C
usually obtained with the previous methods, one solution is to in-
ject additional information during reconstruction. This informa-
tion can be a prior on the shape of the signal, local phase informa-
tion or shape criterion.

7.1. Additional knowledge on the signal spectrum

Alsteris and al. [5] have proposed an extended study on the pos-
sibility of reconstructing the signal while only knowing partial in-
formation of the spectrum and especially the knowledge of phase
sign, phase delay or group delay. Moreover, when a prior on the
position of the poles and zeros of the z-transform of each frame of
the STFT is known, reconstruction can be made using the known
relations between amplitude and phase of a DFT [7].

Spectrogram convergence C

Reconstruction noise level R

—— G&L with phase sign
- - -G&

dB
&

20 40 60 80 100
Iteration number

Figure 9: Convergence and reconstruction noise level for Griffin
and Lim’s method, with and without knowledge of the sign of the
original phase.

Phase sign, alternatively, has been shown to be a powerful ad-
dition to the spectrogram [28] in order to achieve a reconstruction
of good quality for a very small amount of extra information (only
one bit per bin). However, such information is not always avail-
able, especially in the case of blind source separation when the sig-
nal to be reconstructed is not known well enough. New approaches
such as informed source separation could however benefit from the
information of phase sign.

On figure 9, both convergence C and reconstruction noise R
are shown for the Griffin and Lim reconstruction (512 samples half
sinus window with 75% overlap) with or without knowledge of the
phase sign. The test signal is a music sample of 2 seconds, sam-
pled at 44.1kHz. One can see that phase sign does not improve
the convergence speed of the algorithm in terms of C, but dra-
matically enhances the quality of the reconstruction, as C and R
become strongly correlated.  Perceptively, transients are better
reconstructed with less smearing and artifacts.

However, as shown with this example, sign information does
not seem sufficient to achieve perfect reconstruction in practice, as
the reconstruction noise levels R remain high even after 100 itera-
tions. However, convergence could probably be faster while using
this prior on phase sign for proper initialization of the algorithm.

7.2. Probabilistic inference

Another idea that has been explored is to use some statistical prop-
erties of the signal. The work proposed by Achan [29] uses an au-
toregressive model of the speech signal to be reconstructed, in or-
der to improve the convergence of the algorithm. As mentioned in
the article, the proposed method performs only slightly better than
the classic Griffin and Lim (approx. 2 to 4dB depending on the
model) and resorts to a posteriori regularization of the signal. This
can however be an interesting approach when the class of signals
to be recovered is well defined. Also, the idea beneath this tech-
nique is interesting, as concurrent optimization is done both in the
time and STFT domain, whereas blind techniques only constrain
the STFT domain.
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7.3. Local observations

Spectrograms also possess local properties that can be extracted
with or without a prior in order to recover the original signal:

Nouvel [30] proposed the iterative estimation of local patterns
of the time-frequency diagram, patterns based on a polynomial ex-
pression of the phase, for instance. The algorithm proposed per-
forms better than Griffin and Lim only when there is no overlap.
Missing information is then brought to the reconstruction by the
prior learning of the polynomial coefficients.

Another approach is the Max-Gabor analysis of spectrograms
from Ezzat et al. [31]. It uses local patch of the spectrogram where
local amplitude, frequency, orientation and phases are estimated.
The information are used in order to synthesize the time-domain
signal with Gabor functions. Unfortunately this study does not ad-
dress the quality of the reconstruction by comparing it to Griffin
and Lim as it was not aimed originally at the task of phase recov-
ery.

7.4. Conclusion: usefulness of additional information

In this section we presented some recent techniques that perform
signal reconstruction from spectrogram while having additional in-
formations on the signal to reconstruct. We saw that despite some
advanced models, the proposed algorithms are only slightly better
than the original framework from Griffin and Lim, especially in
terms of the time-domain R error criterium.

Even when using the sign of the STFTs, Griffin and Lim al-
gorithm does not convergence faster, nor better: only the quality
(SNR) improves. This proves that most of the work to improve
the convergencel has to be done on the reconstruction algorithms
themselves, as additional information only serves at improving the
final quality. The issues that are preventing the convergence de-
spite the additional information are discussed in the next section.

8. OVERLOOKED ISSUES

As far as the state of the art goes, a number of issues regarding
signal reconstruction from spectrograms seem overlooked. One
of them is the use of the convergence criterion C which requires
extremely high convergence (difference of approx. -90dB) in order
to achieve a perfect reconstruction of the signal. Other issues are
caused by the way information is spread in the spectrogram or by
the minimization technique of the reconstruction itself.

8.1. Phase information and spectrogram

The first major issue of signal reconstruction from spectrograms is
the effect of phase information in the modulus of the STFT. Be-
cause the STFT is obtained via windowing, one can find at bin
n the contribution of many spectral components added to one an-
other, thus forming a linear system [13, 14, 32]. However, such
system only finds a suitable solution under three precautions:

1. The analysis window has to produce a lot of spectral leak-
age. The Gaussian window is a good example of such win-
dow and is often used.

2. The overlap has to be very high, in order to provide as little
time downsampling as possible in every frequency channel.

3. Usually DFT are oversampled, bringing yet another layer
of redundancy in the STFT

Zero phase
1 :
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0 L 4
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Original phase
0.5 T ‘ T ‘
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-0.5 : : : : :
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Figure 10: Spectrogram amplitude difference with or without
phase for two signal « and z:. x: is the signal x translated 20
samples to the left. Spectral difference C between the two frames
is -25dB.

In real analysis conditions, when using windows with a low
spectral leakage and a rather low overlap (usually 50% or 75%),
such an analytic resolution of the system is not possible, mainly
due to the precision of both the data contained in the STFT and the
complexity of the system to solve.

One example is given on figure 10 where the same frame of
two different STFTs of a speech signal sampled at 16kHz and
quantized on 16 bits are displayed: in red, the frame inverse DFT
of a frame of the STFT of original signal = and in black the same
frame of the STFT of z:, the signal = shifted by 20 samples to
the left. On the top row, the inverse DFTs are presented with zero
phase (magnitude only) and on the bottom row the time-domain
inverse DFTs with the original phase information are given. De-
spite the vast difference between the two frames, the zero phase
responses are very similar (differences are barely visible around
samples 160 and 350). Difference C of the two signals on the top
row of figure 10 is -25dB, approx. the convergence limit of Griffin
and Lim’s technique. Although this figure is a good example of
the poor effect of phase on the magnitude of the STFT, it will also
serve well the illustration of stagnation by translation given later.

8.2. Stagnation caused by sign indetermination

Fienup et al. [17] proposed an interesting study on the problems
preventing iterative algorithms such as Griffin and Lim’s to con-
verge toward a unique solution. It described this issues as stagna-
tion, a self explanatory term that illustrates the inability of the algo-
rithm to converge toward an optimal solution because it reached a
local minima of optimization. Although Fienup’s work was based
on image processing, two of the three stagnations described in [17]
can very well be observed on one-dimensional signals.

The first stagnation is linked to the sign indetermination il-
lustrated in section 3. During reconstruction, the algorithm can
be stuck between a mix of the two possible solutions x and —z,
because it converged toward features of both signals. This phe-
nomenon is illustrated on figure 11. On this figure, one can see that
at the beginning the estimated signal Z is in phase with « whereas
at the end it is in phase with —x. On the middle on the figure, one
can see a characteristic point when Z gets closer to zero, illustrat-
ing an inflection point from one frame to another. Note that the
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Figure 11: The first stagnation: the algorithm estimation (bottom)
is stuck between a mix of x (top) and —x (middle). Estimation
with an half sinus window of 512 sample long, overlap of 75%.

difference between the two local minima is approximately equal
to the window size. Such stagnation is also observed on signals
reconstructed with RTISI-LA and the STFT coherence. Moreover,
this stagnation is not consistent along the frequency axis: a closer
look to the signal presented on figure 11 shows that phase coher-
ence toward  or —z is only true for the first harmonic.

This first stagnation is countered by the knowledge of the sign
of the STFT presented in section 7 and is the main cause of the
very high noise estimation levels R observed when reconstructing
a signal with either of the three method presented in section 6.
Basically, knowing the sign of the STFT causes the uniqueness
of the solution to be true, avoiding a lot of local minima during
minimization.

An other stagnation, also explained by the sign indetermina-
tion is what Fienup called "fringes". Sadly, this observation is
hard to make on audio signals but is still present during the recon-
struction. Because of this sign indetermination | DFT[z(—n)]| =
|DFT[x(n)]|, frames happen to be estimated in the wrong time
direction. Most of the times, overlap is enough to prevent such
stagnation, which is then the most unlikely to happen.

Solutions to overcome these stagnations proposed in [17] do
not apply well to signal processing, as they were designed for im-
age processing. However, the idea of Monte Carlo method and ar-
tificial boundaries of the reconstruction seem interesting and easily
transposable to the signal domain.

8.3. Stagnation caused by translation

The third stagnation is the translation of the signal. Because the
TFD operator is circular, translation of the signal does not always
drastically change the magnitude of the transform (figure 10) de-
spite the windowing. Therefore, convergence can happen to a
translated version of the original signal: like in figure 12 where
a signal and its reconstruction with Griffin and Lim’s technique
are presented. This problem can be linked to the phase rotation
problem addressed in section 3 but on local portions of the signal.

original
— - — - Griffin and Lim

time

Figure 12: Stagnation by translation for a Griffin and Lim recon-
struction (half sinus 512 sample window, 75% overlap, 200 itera-
tions)

8.4. Different stagnation per frequency band

An other issue of the stagnation is that it happens at different levels
on different frequency bands. Because the coherence of the STFT
is limited (surfaces of figure 6) in both time and frequency, a gap
in energy can cause different patchs of the reconstructed STFT
to present different kinds of stagnation. As music signal often
presents harmonic structure or colored noise, localized energy is
very common.

An illustration of this phenomenon is given on figure 13 where
a speech signal (the original, 16bits and 16kHz, at approx. 200Hz
fundamental) and its reconstruction from its spectrogram (Grif-
fin and Lim, 512 sample half sinus window, 200 iterations) are
showed for different frequency band. The filter bank presents a
passing band of 400Hz and a zero phase to prevent delay to be
inserted between observations.

On the two first bands, from 1600 to 4600Hz, the signal is
well reconstructed and is mainly presenting a small stagnation by
translation. However, the direction of the translation is not the
same for the two bands.

On the bands three to five, one can mainly see a stagnation
by sign indetermination with characteristic inflection points based
around samples 2300 and 2460 for band 3, 2375 for band 4 and
2325, 2495 for band 5. Once again, even if the bands are present-
ing the same type of stagnation, their evolution is different, mainly
dependent on the local frequency.

It can be noted that, as expected, this stagnation issue gets
more and more problematic as frequency increases. At low fre-
quencies, the overlap between adjacent windows represents a
smaller phase increment than at high frequencies. This may give
an insight on why standard phase reconstruction offers a rather
good sound quality despite a low SNR: at high frequencies, the ear
is not so sensitive to the phase but rather to the general energy in
the frequency bands. It may also indicate that algorithms based in
the injection of additional information should have different trade-
offs in terms of precision versus amount of extra information, in
different frequency bands.

9. APPLICATIONS TO DIGITAL AUDIO PROCESSING

In the case of source separation in a linear instantaneous stationary
mixture, one often knows partial information on the source to be
reconstructed, such as its spectrogram (or corrupted spectrogram).
In this case, Gunawan [9] proposed a framework in order to use the
information contained in the mixture M, of IV sources to help the
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Figure 13: Signal Comparison (original in black, Griffin and Lim’s reconstruction in red) for different frequency bands (zero phase filter

bank). Stagnation are not consistent across frequency

phase estimation. While constraining the spectrogram W of the
j-th source, one can reconstruct its phase with the following steps:

S;CH _ \/WjeiASTFT(STFT—l(S§+%)) an
R VA oS (12
J

This way, stagnations such as sign indetermination or trans-
lation are automatically compensated by the error computed on
equation (12). The phase of the mixture is used as an additional
information to constrain the reconstruction. Of course, this study
provides the best results when the target spectrogram of each
source W is perfectly known, while in practice the target spec-
trogram is only an estimate. Results are also conditioned by the
number NN of sources, with the best results for only 2 sources.

An other study [10] proposed by Le Roux used the spectro-
gram consistency (the fact that S = STFT(STFT™'S)) as a
constraint for the maximum likelihood estimation of a Wiener fil-
ter o5 for the j-th source. Such filters are used to perform adaptive
filtering (for instance, in denoising) but usually rely on the energy
ratio between the sources:

. Wj (na m)
ajlnm) = =SpTS (13)
S = aM (14)

By explicitly adding the constraint that
S; — STFT(STFT™'8;) =0

into the equation, results show an improvement in SNR of around
3dB when applied on speech denoising.

10. SUMMARY AND CONCLUSION

In this paper we presented a state of the art on the question of
signal reconstruction from spectrogram. We especially addressed
the problem of perfect reconstruction and the issues preventing ex-
isting algorithms from converging to one (or one of the possible)
solution.

Unicity is an important question to be asked in this case, but
ordinary conditions are sufficient to guarantee that there is no more
than two possible solutions for the reconstruction, given by the
sign indetermination of the magnitude operator.  Still, we saw
that duplicity of the solution is the cause of the stagnation of the
minimization by sign indetermination.

The three current techniques of blind reconstruction (Griffin
and Lim, RTISI-LA and STFT coherence) have been described and
discussed. Although there has been more than 20 years between
Griffin and Lim’s and the two other techniques, overall reconstruc-
tion quality has not significantly improved. Of course, computa-
tion time and implementation (especially in the case of real-time
processing) have been a huge development part of such techniques,
but we feel that most of the work has yet to be focused on the ac-
tual process leading to the optimal convergence of the algorithm in
order to get better than just perceptively close reconstructions.

Given the amount of information present in the spectrogram,
especially with the typical value of 75% overlap, perfect recon-
struction (i.e. reconstructing x from | ST F'T'[z]| with error inferior
the measure error on z itself) should be possible. We raised how-
ever a number of issues preventing convergence of the reconstruc-
tion toward the absolute minima. Those issues, called stagnation
by Fienup [17] are configurations that prevent further minimiza-
tion of the error. Stagnation presented are of two types: stagnation
by sign indetermination (time inversion and signal inversion) and
stagnation by translation. Because music signals are not evenly
distributed on the time-frequency plan, stagnation can occur inde-
pendently on local patches of the spectrogram both in time and
frequency and is therefore difficult to correct.

Future work should then emphasize the resolution of the stag-
nation problems highlighted in this article, either with side infor-
mation or using blind reconstruction. Whereas solving the prob-
lem of sign indetermination should be rather simple as one can
observe sign coherent patches in the reconstructed STFT, phase
translation if more problematic as it produces time delay that varies
for the whole time-frequency domain.
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