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ABSTRACT

We present two new beat tracking algorithms based on the auto-
correlation analysis, which showed state-of-the-art performance in
the MIREX 2010 beat tracking contest. Unlike the traditional ap-
proach of processing a list of onsets, we propose to use a bidirec-
tional Long Short-Term Memory recurrent neural network to per-
form a frame by frame beat classification of the signal. As inputs
to the network the spectral features of the audio signal and their
relative differences are used. The network transforms the signal
directly into a beat activation function. An autocorrelation func-
tion is then used to determine the predominant tempo to eliminate
the erroneously detected - or complement the missing - beats. The
first algorithm is tuned for music with constant tempo, whereas
the second algorithm is further capable to follow changes in tempo
and time signature.

1. INTRODUCTION

For humans, tracking the beat is an almost natural task. We tap
our foot or nod our head to the beat of the music. Even if the beat
changes, humans can follow it almost instantaneously. Nonethe-
less, for machines the task of beat tracking is much harder, espe-
cially when dealing with varying tempi, as the numerous publica-
tions by different authors on this subject suggest.

Locating the beats precisely opens new possibilities for a wide
range of music applications, such as automatic manipulation of
rhythm, time-stretching of audio loops, beat accurate automatic DJ
mixing or self-adapting digital audio effects. Beats are also crucial
for analyzing the rhythmic structure, and the genre of songs. In
addition they help identifying cover songs or estimating the simi-
larity of music pieces.

The remainder of this paper is structured as follows: Section 2
gives a short overview over existing methods for beat tracking.
Section 3 briefly introduces the concept and different types of neu-
ral networks with a special emphasis on bidirectional Long Short-
Term Memory recurrent neural networks, which are used in the
proposed algorithms. Section 4 details all aspects of the newly pro-
posed beat tracking algorithms. Results and discussion are given in
Section 5 and the final section presents conclusions and an outlook
to further works.

2. RELATED WORK

Most methods for beat tracking of audio signals have a working
scheme like the one shown in Figure 1. After extracting features
from the audio signal, they try to determine the periodicity of the
signal (the tempo) and the phase of the periodic signal (the beat

locations). The features can be for example onsets, chord changes,
amplitude envelopes, or spectral features. The choice of a par-
ticular feature mostly depends on the subsequent periodicity es-
timation and phase detection stages. For periodicity estimation,
autocorrelation, comb filter, histogram, and multiple agent based
induction methods are widely used. Some methods also produce
phase information during periodicity estimation, and therefore do
not need a phase detection stage to determine the exact position of
the beat pulses. [1] gives a good overview on the subject.
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Figure 1: Basic workflow of traditional beat tracking methods.

Most of todays top performing beat tracking algorithms rely
on onsets as features [2, 3, 4]. Since music signals contain much
more onsets than beats, additional processing is needed to locate
the beats within the onsets. By transferring this determination
of beats into a neural network, less complex post-processing is
needed to achieve comparable or better results.

3. NEURAL NETWORKS

Neural networks have been around for decades and are success-
fully used for all kind of machine learning tasks.

The most basic approach is the multilayer perceptron (MLP)
forming a feed forward neural network (FNN). It has a minimum
of three layers where the input values are fed through one or more
hidden layers consisting of neurons with non-linear activation func-
tions. The output values of the last hidden layer are finally gath-
ered in the output nodes. This type of network is a strictly causal
one, where the output is calculated directly from the input values.

If cyclic connections in the hidden layers are allowed recurrent
neural networks (RNN) are formed. They are theoretically able to
remember any past value. In practice however, RNNs suffer from
the vanishing gradient problem, i.e. input values decay or blow up
exponentially over time.

In [5] a new method called Long Short-Term Memory (LSTM)
is introduced to overcome this problem. Each LSTM block (de-
picted in Figure 2) has a recurrent connection with weight 1.0
which enables the block to act as a memory cell. Input, output,
and forget gates control the content of the memory cell through
multiplicative units and are connected to other neurons as usual.
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If LSTM blocks are used, the network has access to all previous
input values.
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Figure 2: LSTM block with memory cell

If not only the past, but also the future context of the input is
necessary to determine the output, a number of different strategies
can be applied. One is to add a fixed time window to the input,
another solution is to add a delay between the input values and the
output targets. Both measures have their downsides as they either
increase the input vector size considerably or the input values and
output targets are displaced from each other.

Bidirectional recurrent neural networks (BRNN) offer a more
elegant solution to the problem by doubling the number of hidden
layers. The input values to the newly created set of hidden layers
are presented to the network in reverse temporal order. This offers
the advantage that the network not only has access to past input
values but can also ’look into the future’.

If bidirectional recurrent networks are used in conjunction with
LSTM neurons, a bidirectional Long Short-Term Memory (BLSTM)
recurrent neural network is build. It has the ability to model any
temporal context around a given input value. BLSTM networks
performed very well in areas like phoneme and handwriting recog-
nition and are described more detailed in [6].

4. ALGORITHM DESCRIPTION

This section describes our algorithm for beat detection in audio
signals. It is based on bidirectional Long Short-Term Memory
(BLSTM) recurrent neural networks. Due to their ability to model
the temporal context of the input data [6], they perfectly fit into the
domain of beat detection. Inspired by the good results for musical
onset detection [7], the approach of this work is used as a basis and
extended to suit the needs for audio beat detection by modifying
the input representation and adding an advanced peak detection
stage.

Figure 3 shows the basic signal flow of the proposed system.
The audio data is transformed to the frequency domain via three
parallel Short Time Fourier Transforms (STFT) with different win-
dow lengths. The obtained magnitude spectra and their first order
differences are used as inputs to the BLSTM network, which pro-
duces a beat activation function. In the peak detection stage, first
the periodicity within this activation function is detected with the
autocorrelation function to determine the most dominant tempo.

The beats are then aligned according to the previously computed
beat interval. We propose two different peak detection algorithms,
one tuned for music with constant tempo and beats (BeatDetec-
tor) and a second one which is able to track tempo changes (Beat-
Tracker). The individual blocks are described in more detail in the
following sections.

STFT & 
Difference

STFT & 
Difference

BLSTM 
Network

Peak
detectionSignal Beats

STFT & 
Difference

Figure 3: Basic signal flow of the presented beat detector / tracker

4.1. Feature Extraction

As input, the raw pulse code modulated (PCM) audio signal with
a sampling rate of fs = 44.1 kHz is used. To reduce the com-
putational complexity, stereo signals are converted to a monaural
signal by averaging both channels. The discrete input audio signal
x(n) is segmented into overlapping frames of W samples length.
The windows with lengths of 23.2 ms, 46.4 ms, and 92.8 ms (1024,
2048, and 4096 samples respectively) are sampled every 10 ms, re-
sulting in a frame rate fr = 100 fps. A standard Hamming win-
dow w(l) of the same length is applied to the frames before the
STFT is used to compute the complex spectrogram X(n, k)

X(n, k) =

W
2
−1∑

l=−W
2

w(l) · x(l + nh) · e−2πjlk/W (1)

with n being the frame index, k the frequency bin index, and h
the hop size or time shift in samples between adjacent frames.
The complex spectrogram is converted to the power spectrogram
S(n, k) by omitting the phase portion of the spectrogram by:

S(n, k) = |X(n, k)|2 (2)

Psychoacoustic knowledge is used to reduce the dimensionality of
the resulting magnitude spectra. To this end, a filterbank with 20
triangular filters located equidistantly on the Mel scale is used to
transform the spectrogram S(n, k) to the Mel spectrogramM(n,m).
To better match the human perception of loudness, a logarithmic
representation is chosen (cf. Figure 4(a)):

M(n,m) = log
(
S(n, k) · F (m, k)T + 1.0

)
(3)

If large window lengths are used for the STFT, the raise of the
magnitude values in the spectrogram occurs early compared to the
actual beat location (cf. Figure 4(b)). Instead of calculating the
simple positive first order difference as in [7], a more advanced
method is used to overcome this displacement of the actual beat
locations compared to the positive first order difference. First a
median spectrogram Mmedian(n,m) is obtained according to
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Mmedian(n,m) = median{M(n− l∗,m), . . . ,M(n,m)} (4)

with l∗ being the length for which the median is calculated. This
length depends on the used window size W for the STFT, and is
computed as: l∗ = bW/100c. Both the use of the median and the
length of the window were empirically determined during prelimi-
nary studies. The positive first order median difference D+(n,m)
is then calculated as

D+(n,m) = H (M(n,m)−Mmedian(n,m)) (5)

with H(x) being the half-wave rectifier function H(x) = x+|x|
2

(cf. Figure 4(c)). Using only the positive differences as additional
inputs to the neural network gave better performance than omitting
the differences at all or including both the positive and negative
values.

4.2. Neural Network

For the neural network stage, a bidirectional recurrent neural net-
work with LSTM units is used. As inputs to the neural network
three logarithmic Mel-spectrograms M23(n,m), M46(n,m) and
M93(n,m) (computed with window sizes of 23.2 ms, 46.4 ms, and
92.8 ms, respectively) and their corresponding positive first order
median differences D+

23(n,m), D+
46(n,m), and D+

93(n,m) are
used, resulting in 120 input units. The fully connected network
has three hidden layers in each direction, with 25 LSTM units each
(6 layers with 150 units in total). The output layer has two units,
representing the two classes ‘beat’ and ‘no beat’. Thus the net-
work can be trained as a classifier with the cross entropy error
function. The outputs use the softmax activation function, i.e., the
output of each unit is mapped to the range [0, 1] and their sum is
always 1. The output nodes thus represent the probabilities for the
two classes.

4.2.1. Network Training

The network is trained as a classifier with supervised learning and
early stopping. The used training set consists of 88 audio excerpts
taken from the ISMIR 2004 tempo induction contest1 (also known
as the "Ballroom set") with lengths of 10 seconds each, the 26
training and bonus files from the MIREX 2006 beat tracking con-
test2 with lengths of 30 seconds, and 6 musical pieces of the set in-
troduced by Bello in [8] with lengths from 3 to 15 seconds. Each
musical piece is manually beat annotated, marking every quarter
note in case of time signature with a denominator of four (i.e., 2/4,
3/4, and 4/4), and the eighth note for all pieces (or parts of pieces)
with a time signature of 5/8 or 7/8. The 120 files have a total length
of 28.5 minutes and 3,595 annotated beats.

Each audio sequence is preprocessed as described above and
presented to the network for learning. The network weights are
initialized with random values following a Gaussian distribution
with mean 0 and standard deviation 0.1. Standard gradient descent
with backpropagation of the errors is used to train the network. To
prevent over-fitting, the performance is evaluated after each train-
ing iteration on a separate validation set (a 15% randomly chosen
disjoint part of the training set). If no improvement is observed for

1http://mtg.upf.edu/ismir2004/contest/tempoContest/node5.html
2http://www.music-ir.org/mirex/wiki/2006:Audio_Beat_Tracking

20 epochs, the training is stopped and the network state with the
best performance on the validation set is used onwards.

4.2.2. Network Testing

Since the network weights were initialized randomly, five differ-
ent networks were trained on different sets of the training data.
The beat activation functions of the ’beat’ output nodes are then
averaged and used as input to the following stage (cf. Figure 4(d)).
For the evaluation the preprocessed music excerpts are presented
to these five previously trained networks.

4.3. Peak Detection

The averaged beat activation function (cf. Figure 4(d)) gives the
probability of a beat at each frame. Similar to [7], the function
could be used directly to determine the beats by applying a simple
threshold. However, a more sophisticated algorithm for peak pick-
ing is applied here. It is able to reduce the relatively high number
of false positives and negatives even further. This method yields
an F-measure value of 0.88 for a 5-fold cross validation on the
complete training set, compared to 0.81 achieved using a simple
threshold.

If constant tempo is assumed for (a part of) the musical piece,
the predominant tempo can be used to eliminate false positive
beats, or complement missing false negative ones. The two dif-
ferent proposed peak detection techniques differ only in the length
for which a constant tempo is assumed. The BeatDetector assumes
a constant tempo throughout the whole musical piece, whereas the
BeatTracker considers only a moving window which covers the
next 6 seconds. This modification enables the BeatTracker to fol-
low tempo changes.

4.3.1. Autocorrelation Function

Both proposed algorithms first determine the tempo for the musi-
cal piece. The BeatDetector uses the entire input signal for calcu-
lation, whereas the BeatTracker only uses the next 6 seconds rel-
ative to the actual starting point. The most dominant beat interval
of this segment is used to estimate the tempo. The autocorrelation
function (ACF) is calculated on the beat activation function ab(n)
as follows:

A(τ) =
∑

n

ab(n+ τ) · ab(n) (6)

The algorithm constrains the possible tempo range of the audio
signal from Tmin = 40 to Tmax = 220 given in beats per minute.
Thus only values of A(τ) corresponding to the range from
τmin = 273ms to τmax = 1.5 s are used for calculation. Since
music tends to slightly vary in tempo and beats sometimes oc-
cur early or late relative to the absolute position of the dominant
tempo, the resulting inter beat intervals vary as well. Therefore a
smoothing function s is applied to the result of the autocorrelation
function A(τ). A Hamming window with a size of τt = 150ms
is used. The size of this window is not crucial, as long as it is
wide enough to cover all possible interval fluctuations and remains
shorter than the smallest delay τmin used for the autocorrelation.
This results in the smoothed autocorrelation function A∗(τ):

A∗(τ) = A(τ) ? s (τt) (7)
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(a) Logarithmic Mel spectrogram with an STFT window of 92.8 ms
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(b) Positive first order difference to the preceding frame
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(c) Positive first order difference to the median of the last 0.41 s

(d) Beat activation function (output of the neural network stage)

Figure 4: Evolution of the signal through the processing steps
of the algorithm. It shows a 4 s excerpt from ‘Basement Jaxx -
Rendez-Vu’. Beat positions are marked with dashed/dotted verti-
cal lines.

4.3.2. Beat Phase Detection

The dominant tempo T corresponds to the highest peak in the
smoothed autocorrelation function A∗(τ) at index τ∗. This de-
lay τ∗ is used as the beat interval i. The phase of the beat p∗ is
computed as the highest value of the beat activation function’s sum
at the possible beat positions for the given interval i:

p∗ = max
p=0...i

∑

k

ab(p+ k · i) (8)

4.3.3. Peak Picking

Finally, the beats are represented by the local maxima of the beat
activation function. Thus, we use a standard peak search around
the locations given by nk = p∗+k·i calculated with the previously
determined p∗. To allow for small timing fluctuations, a deviation
factor d = 0.1 · i is introduced and the final beat function b(n) is
given by:

b(n) =

{
1 for ab(nk − d) ≤ ab(nk) ≥ ab(nk + d)

0 otherwise
(9)

The BeatDetector determines all beats in this manner. The Beat-
Tracker only detects the next beat and moves the beginning of the
lookahead window to that beat. Then the dominant tempo esti-
mation and all consecutive steps (Section 4.3.1 to 4.3.3) are per-
formed on the new section of the beat activation function.

5. EVALUATION

Beat tracking performance was evaluated during the MIREX 2010
beat tracking contest with two different datasets3. The first set,
the McKinney collection (MCK set), has rather stable tempo. The
second collection (MAZ set) consists of Chopin Mazurkas, which
are in 3/4 time signature and contain tempo changes.

Both described algorithms outperformed all other contribu-
tions on the MCK set. The BeatDetector shows a small overall
advantage over the BeatTracker. Depending on the used perfor-
mance measure the relative performance gain compared to the next
best algorithm is up to 5.7% (F-measure with a detection window
of ±70ms), 6.9% (Cemgil: accuracy based on a Gaussian error
function with 40 ms std. dev.), 8.2% (Goto: binary decision based
on statistical properties of a beat error sequence), and 4.7 (PScore:
McKinney’s impulse train cross-correlation method). Table 1 sum-
marizes the results and also includes the best result ever achieved
in the MIREX competition by any algorithm as a reference to the
state-of-the-art. It can be seen that our BeatTracker algorithm per-
forms better or close to it (depending on the used performance
measure). This shows the future potential of this approach com-
pared to other signal based ones, given the fact that the actual peak
picking algorithm is a rather simple one.

The tempo changes of the MAZ set are the main reason for the
BeatDetector not performing better (see Table 2), as it assumes
a constant tempo throughout the whole musical piece. Nonethe-
less the algorithm performs still reasonably well. As expected, the
more flexible BeatTracker performs better and ranks second ac-
cording to F-measure and first according to Cemgil’s performance

3Evaluation measures described at http://www.music-
ir.org/mirex/wiki/2010:Audio_Beat_Tracking#Evaluation_Procedures

DAFX-4

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-138



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

MCK Set [%] F-measure Cemgil Goto PScore
BeatTracker 54.50 41.30 8.87 59.19
BeatDetector 53.16 40.28 22.64 57.73

GP3 50.27 37.21 20.92 56.54
LGG2 49.97 37.68 17.93 54.96
TL2 41.97 29.86 2.50 50.59
NW1 35.56 25.83 5.75 45.67

MRVCC1 25.70 18.34 0.14 38.36
ZTC1 24.64 18.61 0.41 26.07

GP1 (2009) 54.80 41.00 22.20 59.00

Table 1: Results for the MIREX 2010 beat tracking evaluation
(MCK set). Only the best performing algorithm of other partic-
ipants are shown; GP1 & GP3: Peeters, LGG2: Oliveira et. al.,
TL2: Lee, NW1: Wack et. al., MRVCC1: Campos et. al., ZTC1:
Zhu et. al.

measure. However, the most mentionable aspect is that the neural
networks were trained solely on ballroom dance and other kinds
of western pop music. Neither a classical piece nor piano music
was used for training. Furthermore, only one training example
actually contained tempo changes. This suggest that even better
performance can be expected when trained on music which has
properties similar to the MAZ data set.

MAZ Set [%] F-measure Cemgil Goto PScore
TL2 68.46 40.42 0.00 72.21

BeatTracker 58.74 51.81 0.00 57.92
MRVCC2 49.26 39.55 0.31 51.22

GP4 48.27 36.72 0.31 50.06
BeatDetector 47.30 38.20 0.00 45.92

LGG2 41.48 30.65 0.00 43.51
NW1 27.59 19.82 0.00 31.35
ZTC1 1.16 0.94 0.00 0.94

Table 2: Results for the MIREX 2010 beat tracking evaluation
(MAZ set). Only the best performing algorithm of other partic-
ipants are shown; TL2: Lee, MRVCC2: Campos et. al., GP4:
Peeters, LGG2: Oliveira et. al., NW1: Wack et. al., ZTC1: Zhu
et. al.

6. CONCLUSIONS AND FUTURE WORK

This paper presented two novel beat tracking algorithms which
perform state-of-the-art although they use a relatively simple and
straight forward approach. The BeatTracker outperformed all other
algorithms in the MIREX 2010 beat tracking contest for the McK-
inney dataset. Although no classical music was used for training
and the training set had less then 3.5 minutes of material with a
time signature of 3/4 the new BeatTracker performed still reason-
ably well on the Mazurka test set (all excerpts are in 3/4 time sig-
nature). This shows the aptitude of the BLSTM neural network for
correctly modeling the temporal context and directly classifying
beats. Since the BeatTracker shows superior performance over the
more simple BeatDetector even for musical excerpts with constant
tempo, future development will concentrate on this algorithm.

Besides training with a more comprehensive training set, fu-
ture work should also investigate a possible performance boost by
implementing some more advanced beat tracking algorithms in the
peak detection stage. Kalman filters [9], particle filters [10], a mul-
tiple agents architecture [11] and dynamic programming [2] seem
promising choices. Another possibility is the inclusion of other
input features which haven proven to be effective for identifying
beats [12].
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