
Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

A GRAMMAR FOR ANALYZING AND OPTIMIZING AUDIO GRAPHS

Vesa Norilo

Centre for Music & Technology
Sibelius Academy
Helsinki, Finland

vnorilo@siba.fi

ABSTRACT

This paper presents a formal grammar for discussing data flows
and dependencies in audio processing graphs. A graph is a highly
general representation of an algorithm, applicable to most DSP
processes.

To demonstrate and exercise the grammar, three central prob-
lems in audio graph processing are examined. The grammar is
used to exhaustively analyze the problem of scheduling process-
ing nodes of the graph, examine automatic parallelization as well
as signal rate inferral.

The grammar is presented in terms of mathematical set theory,
independent of and thus applicable to any conceivable software
platform.

1. INTRODUCTION

Most signal processing algorithms are extremely well suited to be
represented by graphs, connected networks of nodes. The nodes in
the network correspond to processing operations, while the inter-
connections denote signal flow.

In addition, audio graphs are typically directional. Signal flows
traverse the graph from initial sources to eventual destinations, en-
tering processing nodes via inputs and exiting them from their out-
puts.

Considering how the graph metaphor is so general and widely
applicable, it would be highly beneficial if a formal language could
be used to reason about graphs in the context of analyzing and
transforming audio algorithms.

This paper employs the elementary principles of mathematical
set theory in discussing, analyzing and transforming audio graphs.
Some straightforward additional notation is introduced to simplify
the discussion about data dependencies and node reachability.

As performance is typically critical in audio applications, an
immediate field of interest is using the emerging theoretical iden-
tities to optimize the computation of audio graphs. The emerging
logical language is employed to present and discuss proofs about
scheduling and transforming audio graphs, without tying the re-
sults to a particular platform or system. The research has been
applied to the foundations of the author’s work with signal pro-
cessing compilers[1].

The rest of this paper is organized as follows. First, in Section
2, Notation, elementary operators for describing subgraphs and su-
pergraphs are introduced. In Section 3, Scheduling a DAG, execu-
tion schedule constraints for an audio graph are formally laid out.
Section 4 Parallelization, discusses rules for automatic paralleliza-
tion of an audio graph. Section 5, Signal Rate Optimization exam-
ines how graphs can be analyzed for required update rates. Finally,

Section 6, Conclusions, summarizes the paper and the grammar in-
troduced in it.

2. NOTATION

The study of graphs is a relatively recent but growing topic in
mathematics. The type of graph best suited for digital computa-
tion of audio signals is the directed acyclic graph or DAG[2].

DAGs incorporate the direction of signal flow, so that outputs
are fed into inputs, and prohibit cycles in the graph – necessary for
a graph to be finitely computable.

Let us begin by defining set-theoretic operators and concepts
to enable the analysis of DAGs. For an overview of elementary set
theory, the reader is referred to literature[3].

2.1. Reachability

Reachability between two nodes is an intuitive concept. If there
exists a path between the nodes, from node to node via connec-
tions, the nodes reachable from each other. Let this condition be
represented by the general reachability operator, a l b, that pro-
duces a boolean truth value.

2.1.1. Upstream Locator

Reachability becomes more useful if the path is constrained. Let us
define a more specific reachability operator, the upstream locator.
Stated as a ↑ b, the operator is true if a can be reached from b by
traversing the graph upstream – the direction opposite to the signal
flow.

2.1.2. Downstream Locator

The inverse of the upstream locator is the downstream locator.
Used for convenience, the operator can be defined simply as

a ↓ b = b ↑ a (1)

.

2.2. Subgraphs and Supergraphs

In general graph theory, a subgraph is a set of nodes and inter-
connections that can be obtained from a larger graph by severing
some of the connections. In this paper, we shall adopt a narrower
definition of a subgraph.

Let us define a subgraph in terms of data dependency; let a
subgraph consist of a particular root node, and any nodes reach-
able from it by traversing the DAG upstream. In other words, the

DAFX-1

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-217



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

subgraph is the portion of the DAG through which signal must pass
before reaching the input of its root node.

Let a supergraph be the opposite of subgraph. Let the super-
graph consist of a root node and all the nodes that can be reached
from it by traversing the DAG downstream.

Let a be an arbitrary node in a DAG. Using the locator opera-
tors, the subgraph of a can be defined as a section of the universal
set U

⇑ a = a ∪ {x ∈ U : x ↑ a} (2)
Likewise, the supergraph of a is

⇓ a = a ∪ {x ∈ U : x ↓ a} (3)

Supergraphs and subgraphs have an inverse relation;

b ∈⇑ a⇐⇒ a ∈⇓ b (4)

Nested subgraphs and supergraphs imply subsets and supersets;

b ∈⇑ a⇔⇑ a ⊇⇑ b (5)

b ∈⇓ a⇔⇑ a ⊆⇑ b (6)

2.3. Summary of Notation

Notation Meaning
a ↑ b Node a can be reached from b by

traversing the graph upstream
a ↓ b Node a can be reached from b by

traversing the graph downstream
⇑ a The set of a and all nodes x for which

x ↑ a holds
⇓ a The set of a and all nodes x for which

x ↓ a holds

3. SCHEDULING A DAG

Let G be a DAG describing an audio algorithm, consisting of sev-
eral independent processing nodes. Should this DAG be trans-
formed into a computer program, the first requirement would be
to produce a correct processing order for the nodes.

The fundamental scheduling constraint is that the processing
of a node can not commence before all its inputs are ready for pro-
cessing. Let us define two informal operators, Ready, indicating
whether a node can be processed or not, and Finished, indicating
whether the node has been processed already. This results in;

Ready(a) = ¬(∃x ∈ (⇑ a \ {a}),¬Finished(x)) (7)

Note that nodes with no input connections, ie. ⇑ a = {a} are
always ready as they have no dependencies.

A linear list could be constructed from the nodes in graph G
by sorting them according to reachability. A sorting algorithm that
operates with a binary less-than predicate could be employed. By
utilizing the upstream locator operator as the less-than comparison,
a correct schedule can be constructed;

a < b⇐⇒ a ↑ b (8)
Such sorting algorithms are available in most programming

languages, including the standard template library for C++[4]. Sim-
ply iterating through such a sorted list is guaranteed to process all
the nodes in correct order, provided the sorting algorithm is com-
patible. This point is expanded in the following subsection.

3.1. Ordering and Reachability

It could be tempting to extend the semantic equivalence of the up-
stream locator to the full trichotomy of comparison operators;

a < b⇐⇒ a ↑ b (9)
a > b⇐⇒ a ↓ b (10)
a = b⇐⇒ ¬(a ↑ b ∨ a ↓ b) (11)

However, the metaphor breaks down at equality. Consider:

a ∈⇑ b
c /∈⇑ b
c /∈⇓ b

(12)

This would give a = c, b = c but also a 6= b, thus the hypo-
thetical equality operator doesn’t function as expected.

For less-than predicate sorting to work, the sorting algorithm
must not rely on equality derived as in equation 11. The class
of acceptable algorithms perform strict-weak ordering[5], which
relies on a binary less-than operator.

As there may be more than one correct order for any strict-
weakly ordered set, the exact result will depend on the sorting al-
gorithm.

4. PARALLELIZATION

As stated in Section 3, there are typically several valid processing
schedules for a DAG. In such cases, the ambiguity results from the
fact that there are operations that are independent of each other.
These operations can be performed in any order or even concur-
rently.

Any nodes that can be parallelized must therefore be ambigu-
ously ordered. In other words, the nodes should satisfy strict-weak
ordering according to upstream reachability in either order. Other-
wise, one of the nodes is upstream reachable from the other, and
the nodes must be serially processed to honor all the dependencies.

The condition for parallelization can thus be formally stated;

Parallelizable(a, b)⇐⇒ ¬(a ↑ b ∨ a ↓ b)
⇐⇒ ¬(a ↑ b ∨ b ↑ a)
⇐⇒ ¬(b ∈⇑ a ∨ a ∈⇑ b)

(13)

More generally, two entire subgraphs are parallelizable if their
intersection is the null set;

⇑ a∩ ⇑ b = ∅ (14)

If this condition is met, the subgraphs can be processed in-
dependently from each other. Note that this only applies to the
narrow definition of a subgraph as defined in Section 2.2, not the
subgraphs of general graph theory.

If the intersection yields a non-empty set, the parallelizable
components are the relative complements of the subgraphs and
their intersection;

DAFX-2

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-218



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

C =⇑ a∩ ⇑ b (15)

A′ =⇑ a \ C (16)

B′ =⇑ b \ C (17)
(18)

Therefore, A′ and B′ can be executed in parallel, but C must
be executed before either of them.

4.1. An Algorithm for Parallelization

As there is significant scheduling overhead in parallel computa-
tion, it is typically ideal to parallelize as little as possible while
still maintaining full utilization of computing resources. A well
known method for balancing utilization and overhead is the data
flow work queue, where a central pool of available tasks is main-
tained. Each worker thread pulls a task from the repository, com-
pletes it and places any newly available tasks into the pool. Tasks
become available as all their inputs are finished, as shown in equa-
tion 7.

Inadequate load balancing may cause performance degrada-
tion in the case of the data flow work queue. This means that some
computational cores are performing useful work while some are
not, possibly waiting for tasks that depend on the ones currently
being processed. In the case of a general audio DAG, load bal-
ancing can be improved by increasing work item granularity – in
other words, including fewer processing nodes in each work item.
This in turn can cause the scheduling overhead from the growing
number of work items to eradicate any gains made from improved
load balancing.

Utilizing the results shown above, an algorithm can be con-
structed that automatically generates a parallelized work schedule.
A work item size parameter is introduced to allow for fine tun-
ing the tradeoff between load balancing and scheduling overhead.
This algorithm carries the assumption that the computational time
consumed by processing a set of nodes can be approximated or
measured. The size of the work item corresponding to that set is
proportional to the computational time.

• Start parallelization from a root node R.

• Obtain the subgraphs of all nodes connected to the inputs
of R. Let these be {P1,P2, ...Pn}. Let I be the index set
{x ∈ Z : 0 < x ≤ n}.

• The serial dependency is

S =
⋃

i∈I


Pi ∩

⋃

j∈I,j 6=i

Pj


 (19)

• The parallelizable portions of the DAG are
{P1 \ S,P2 \ S, ...,Pn \ S}

• The parallelizable portions exceeding the size of the chosen
work item size treshold are kept. Those that fall below the
treshold should be combined, largest with the smallest, until
there are no more work items below the treshold or just one
item is left.

• For any set Pk for which Pk ∩ S 6= ∅, the respective par-
allelizable portion Pk \ S has a dependency on S, and must
be scheduled only after S is entirely completed.

• If the serial dependency S exceeds the work item size, it
should be recursively parallelized. Let the set of nodes
{x ∈ S : (⇓ x) ∩ S = ∅} form the root set from which
a new set of P subgraphs be built. S should be considered
completed only when the newly parallelized tasks are all
completed.

5. SIGNAL RATE OPTIMIZATION

Whereas parallelization is more concerned about when a node set
can be processed while maintaining data flow integrity, signal rate
optimization is about deducing when it must be processed.

Not all signals need equally frequent updates, and often sig-
nificant efficiency can be gained by updating certain node sets at a
lower rate. This optimization technique has a strong tradition, with
the concept of control rate being central in many music software
environments ever since the venerable CSound[6].

Another – arguably more desirable – approach is to analyze
the signal paths in the audio DAG and automatically determine the
desired signal rates for the most typical scenario. This approach,
presented here in the terms of the set-theoretic approach of this
paper, has previously been described by the author[7].

The automatic process can be guided by inserting non-processing
nodes into the DAG whose sole purpose is to guide the signal rate
inferral. Once the inferral is completed, these nodes can be re-
moved from the DAG to avoid any overhead.

There are two kinds of sources, streaming and event-based. A
streaming source will emit a sampled signal with regular sample
intervals. Event-based sources react to some external or internally
derived stimulus, producing an update upon receiving, for exam-
ple, a MIDI event.

In both cases, it is desirable to process the supergraph of a
source node according to its update rate. A filter processing the
output of an oscillator should work at the same signal rate. Like-
wise, if an event-driven signal like an user interface slider seldom
changes, computations that depend on it should be avoided when
unnecessary.

To infer the DAG signal rates, signal sources must be iden-
tified. In an audio DAG, these sources are oscillators, audio file
players, external audio inputs, user interface control signals and
other inputs such as MIDI or OSC[8].

5.1. Source Discovery

A first step in the analysis of the required signal rate for a partic-
ular node is to discover which source nodes have the node in their
supergraphs. According to equation 3, this can be determined by
collecting the source nodes from the subgraph of the node. Let
SRC be the set of all source nodes. As a starting point, we could
assume that the node needs to be recomputed whenever one of its
sources gets updated.

Sources(a) =⇑ a ∩ SRC (20)

5.2. Source Arbitration

There is, however, a further consideration. Stateful processes such
as filters or delay lines should be updated only according to their
audio signal inputs. This ensures a steady sample rate which would
otherwise be compromised by additional updates forced by control
signals. Therefore, if a filter node has both an audio input and a

DAFX-3

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-219



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

user interface slider in its supergraph, it should ignore the updates
by the slider and only update according to the audio rate.

This can be solved by introducing source priorities. By pro-
viding strict weak ordering[5] of the sources, the desired behavior
can be attained. If the audio input has a higher priority than the
user interface element, nodes that have both sources should just
ignore the user interface updates until the next audio-driven up-
date happens.

5.3. Update Regions

After arbitration, the nodes should be classified according to the
arbitrated sources driving them. In fact, both arbitration and clas-
sification can be described by simple equations. Let Saudio be a
high priority source, followed by a medium priority SOSC and a
low priority SUI . These correspond to audio, OSC-event and user
interface update priorities. Let the node sets they drive be Gaudio,
GOSC and GUI . This gives;

Gaudio =⇓ Saudio (21)
GOSC =⇓ SOSC \Gaudio (22)
GUI =⇓ SUI \ (Gaudio ∪GOSC) (23)

This list could further be expanded on the simple principle that
each source drives all the nodes in its supergraph, except those that
also belong to a supergraph of a higher priority source.

Such a system of graphs can be scheduled easily by processing
the node sets in reverse order of priority. From equations 4 and 23
it can be deduced that;

Gaudio ∪GOSC =⇓ Saudio∪ ⇓ SOSC (24)
GUI∩ ⇓ Saudio = ∅ (25)
GUI∩ ⇓ SOSC = ∅ (26)

∀x ∈ GUI , (⇑ x) ∩GOSC = ∅ (27)
∀x ∈ GUI , (⇑ x) ∩Gaudio = ∅ (28)

Thus, no subgraph of any node in GUI can contain any nodes
that also belong to GOSC or Gaudio. Therefore, GUI can safely
be scheduled before the higher priority blocks. The proof can be
extended to show that any lower priority node group can always
be safely scheduled before higher priority node groups. This is es-
pecially important in the case where both sources are driven from
a coherent clock source, such as traditional audio and control sig-
nals. Failure to schedule coherent clock sources according to their
priority would result in potential undesired delays at signal rate
boundaries.

5.4. Priority Inversal

In many algorithms, more precise control of signal rates is re-
quired. With just the inferral system described so far would make it
impossible, for example, to derive MIDI events from audio signals
at any rate below the audio sampling rate. To solve this problem,
it is necessary to be able to override the source priorities locally, at
a specific DAG junction.

The best possible priority inversal mechanism is still a topic
of active research. As an initial solution, priority escalation is sug-
gested. A special source could be generated for any DAG junctions
where priority inversal is desired. This source would have a higher

priority than the one it is meant to override. Scheduling-wise, this
additional source should be processed according to the reverse pri-
ority order, generating some additional bookkeeping overhead.

6. CONCLUSIONS

In this paper, elementary concepts for formally discussing directed
acyclic graphs in audio context were introduced. These concepts
include the upstream and downstream reachability operators, as
well as the construction of subgraphs and supergraphs. Taken to-
gether, these devices facilitate set-theoretic discussion of process-
ing directed acyclic graphs for audio signals.

Three practical, highly important problems were examined us-
ing the newfound grammar. The problem of scheduling operations
described as a signal processing graphs was examined and deemed
a strict-weak order based on a simple reachability operator. The
ambiguity of that strict-weak order was leveraged to analyze the
problem of concurrently executing portions of an audio processing
graph. Finally, the grammar was utilized to discuss automatic sig-
nal rate optimization and discover the additional scheduling con-
straints such a system imposes.

The concepts form the basis of the author’s work on signal
processing languages and compilers[1]. They are presented here
independently from any programming language or system, instead
employing the notation of mathematical set theory. The concepts
are not overwhelmingly difficult, but utilization of formal gram-
mar helps avoid ambiguously worded statements and pseudo-rules.
Further, statements in a formal language lend themselves to further
reasoning, identities and proofs. This is of vital importance when
constructing compilers and interpreters, especially in the case of
automatic parallelization of user algorithms. This paper is written
in the hopes of providing assistance in the form of a grammar to
the researchers working with these problems.

7. REFERENCES

[1] Vesa Norilo, “Introducing Kronos - A Novel Approach to Sig-
nal Processing Languages,” in Proceedings of the Linux Au-
dio Conference, Frank Neumann and Victor Lazzarini, Eds.,
Maynooth, Ireland, 2011, pp. 9–16, NUIM.

[2] F Harary, Robert Z Norman, and D Cartwright, Structural
models: An introduction to the theory of directed graphs, Wi-
ley, 1965.

[3] H B Enderton, “The Joy of Sets. Fundamentals of Contempo-
rary Set Theory.,” The Journal of Symbolic Logic, vol. 59, no.
4, pp. 1441, 1994.

[4] Alexander Stepanov and Meng Lee, The Standard Template
Library, Number X3J16/94-0095, WG21/N0482. Prentice-
Hall, 1995.

[5] Bernd Schröder, Ordered Sets: An Introduction, Birkhäuser
Boston, 2002.

[6] Richard Boulanger, The Csound Book, vol. 309, MIT Press,
2000.

[7] Vesa Norilo and Mikael Laurson, “Unified Model for Au-
dio and Control Signals,” in Proceedings of ICMC, Belfast,
Northern Ireland, 2008.

[8] Matthew Wright, Adrian Freed, and Ali Momeni, “Open-
Sound Control: State of the Art 2003,” Time, pp. 153–159,
2003.

DAFX-4

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-220


