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ABSTRACT

The calibration of a digital spring reverberator model is crucial for
the authenticity and quality of the sound produced by the model.
In this paper, an automated calibration of the model parameters is
proposed, by analysing the spectrogram, the energy decay curve,
the spectrum, and the autocorrelation of the time signal and spec-
trogram. A visual inspection of the spectrograms as well as a com-
parison of sound samples proves the approach to be successful for
estimating the parameters of reverberators with one, two and three
springs. This indicates that the proposed method is a viable alter-
native to manual calibration of spring reverberator models.

1. INTRODUCTION

Spring reverberation is an early method of artificial reverberation,
introduced by Laurens Hammond in the 1940s [1]. Its small size
and low cost compared to the contemporary methods of artificial
reverberation at the time, such as plates or chambers, led to its wide
use both in studio applications and within electrical musical instru-
ments and amplifiers. The special sound of the spring reverberator,
caused by the highly dispersive nature of wave propagation on the
spring, became valued as a musical effect distinct from standard
reverberation.

A spring reverberator consists of one or more helical metal
springs, connected in parallel, series or in a hybrid configuration.
The springs are excited via the use of an electromagnetic coil,
which applies a force to a small magnet connected to springs.
Varying the signal in the coil produces corresponding vibrations
in the spring. The output from the system is taken with a similar
configuration. A small magnetic bead oscillates with the spring
at another location (usually the opposite end of the spring), and
induces current in a nearby electromagnetic coil.

There has been much recent work on modelling the behavior
of the spring reverberator digitally for use in a music production
environment. The first attempts used an optimisation method to fit
the dispersion curve of the spring with a number of allpass filters,
and then used these filters within a wave-guide structure [2]. More
recent work has modelled the vibration of the spring using finite
difference methods [3, 4]. Attempts have also been made to pro-
duce a parametric digital spring reverberator which more closely
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Figure 1: Low-frequency structure of parametric spring reverbera-
tion effect, based on [5].

resembles the structure of a traditional digital reverberator [5]. It
is this final approach to modelling which we consider in this work.

In this work we propose a method for automatically deriving
the characteristics of a spring reverb unit from a recorded spring
impulse response. These characteristics are used to tune the pa-
rameters of the digital spring reverb model, much like previous
work has proposed an analogous method that allows the fitting of
a digital reverberator to a specific room response [6].

The paper is organised as follows. The parametric spring re-
verb model used for the automated calibration is briefly introduced
in Section 2. Section 3 describes the proposed automated calibra-
tion methods for the parametric spring reverb model. The results
of the automated calibration are discussed in Section 4. Section 5
concludes the paper.

2. THE PARAMETRIC SPRING REVERBERATION
EFFECT

Basis for this work is the parametric spring reverberation effect in-
troduced by Välimäki et al. [5]. Figure 1 shows a block diagram
of the feedback structure used to produce the low-frequency chirp
sequence of the spring reverberation effect (cf. Figure 2). The fil-
ter Hdc(z) is a dc blocking filter with a cutoff frequency at 40
Hz [5]. The filter AM

low(zK) is a spectral delay filter [7] consisting
ofM cascaded allpass filters. Each allpass filter section is an inter-
polated stretched allpass filter, which is composed of a Schroeder
allpass filter with an embedded delay line of K − 1 samples and a
first-order fractional-delay allpass filter to implement a delay equal
to 1 plus the decimal part ofK (in samples). The impulse response
of the spectral delay filter imitates the first low-frequency chirp ap-
pearing in the response of a spring reverb unit.
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Figure 2: Spectrogram of one spring of the Leem Pro KA-1210
spring reverb. The spectrogram is normalised for each frequency
bin, to improve the visibility of the chirp structure.

A multi-tap delay line models the propagation and scattering
of waves in a helical spring. It contains a long delay line with
several extra output taps, which introduce pre-echos in the tem-
poral response and small variations in the loop gain of the system
[5]. A random modulation is applied to the delay line to introduce
blurring of the response over time [5]. Finally, the output of the
model is processed with two filters, Heq(z) and Hlow(z), which
are a second-order resonator and a low-pass filter, respectively. An
allpass cascade Alow is inserted into the feedback path to model
the dispersion of each reflection when traversing the spring back-
wards, as proposed by Parker et al. [8].

To produce the high-frequency chirp sequence in the impulse
response of the spring reverberator, a feedback structure similar
to the one depicted in Figure 1 is used in the model, as proposed
in [5]. It is considered less perceptually important [5]. The all-
pass cascade in the feedback path is omitted for the high-frequency
feedback structure, to reduce the computational complexity of the
model. The reader is referred to [5] for a more detailed description
of the parametric spring reverb model.

3. AUTOMATED CALIBRATION

The starting point for the automated calibration of the parametric
spring reverberation effect is the spectrogram of the impulse re-
sponse to be modelled. Figure 2 shows the spectrogram of one
spring of the Leem Pro KA-1210 spring reverb. It is obtained
via an 8192-point short-time Fourier Transform (STFT) using a
Blackman window with a hopsize of 8 samples. The spectrogram
is normalised at each frequency bin, to enhance the visibility of the
high-frequency chirp structure.

The calibration of the model is performed in three steps: First,
the pulse delay of the low-frequency chirp structure and the tran-
sition frequency are determined. These are the perceptually most
important parameters of the model [4]. In the following steps, the
parameters for the low- and high-frequency chirp structures are
determined separately.
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Figure 3: Autocorrelation function. The pulse delay is estimated
at the maximum absolute value, Td = 55.6 ms.

3.1. Determine pulse delay and transition frequency

3.1.1. Pulse delay

The time domain representation of a spring reverb impulse re-
sponse is dominated by the low-frequency pulse sequence, which
contains most of the energy [5]. The pulses recur at regular inter-
vals, given by the pulse delay Td. It can be derived from the maxi-
mum absolute value of the autocorrelation of the impulse response
(see Figure 3). For the given impulse response, Td is estimated as
55.6 ms.

3.1.2. Transition frequency

The transition frequency Fc is defined as the cutoff frequency of
the low-frequency pulse series [4]. As can be seen from the spec-
trogram in Figure 2, the low-frequency pulses overlap in time around
the cutoff frequency, and thus cannot be distinguished from one
another.

To determine Fc, the normalised autocorrelation of the spec-
trogram is calculated for each frequency bin along the time axis.
The spectrogram can be represented as a matrix S, with rows cor-
responding to frequency bins and columns corresponding to time
instants. The autocorrelation of each row in S is calculated and
normalised to one at lag zero. The result of this calculation is
shown in Figure 4 (left). As can be seen, Figures 2 and 4 exhibit
a similar pulse structure: For each frequency, the delay caused
by dispersion and propagation in the spring is constant between
pulses. The autocorrelation around the transition frequency con-
tains no distinct peaks, as around this frequency the pulses overlap
in time. Since the autocorrelation is normalised to one at lag zero,
the mean value of the autocorrelation calculated over time at each
frequency bin is a measure for the periodicity of the impulse re-
sponse with respect to frequency. The mean value exhibits a peak
at the transition frequency, where no distinct pulses are visible in
the spectrogram, i.e., the periodicity is lowest (see Figure 4, right).
Here, Fc is estimated as 4216 Hz. The method works well also for
impulse responses with more than one spring, if the springs share
a transition frequency.
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Figure 4: Normalised autocorrelation of spectrogram and mean
of autocorrelation. The transition frequency is estimated at the
maximum (◦), Fc = 4216 Hz.

3.2. Low-frequency chirps

3.2.1. Gain factor

Figure 5 depicts the energy decay curve of the original impulse
response. It is obtained via a backward integration of energy, the
so-called Schroeder integration [9]. The black dots are Td-spaced,
indicating the low-frequency pulse positions, which dominate the
impulse response [5]. In the parametric model used in this pa-
per [5], the energy decay rate of the impulse response is modelled
by applying a constant gain factor glf to the pulse series (cf. Fig-
ure 1). It determines the attenuation of each reflected pulse with
respect to the previous. The value of glf is estimated by fitting a
line through the energy decay curve.

For the perceived reverberance, the early decay time (EDT)
from 0 dB to −10 dB is considered particularly important [10].
To model the EDT, a line is fitted through the energy decay curve
at the pulse positions, from the first pulse to the pulse where the
impulse response energy decays below −10 dB. The fitting is im-
plemented via the polyfit function in Matlab (cf. black line in Fig-
ure 5). The decay per pulse d in dB is obtained as

d = mTd, (1)

where m is the slope of the fitted line and Td is the pulse delay.
From the pulse decay d, the gain factor glf is obtained via

glf = K10( d
20

), (2)

with
K = sgn {max[ACF (x)]} , (3)

i.e., the sign of the maximum of the autocorrelation functionACF
of the spring impulse response x (cf. Figure 3). To compensate for
additional attenuation of the pulses introduced by the modulation
and linear interpolation in the delay line, the gain factor glf is mul-
tiplied by a constant of 1.2. For the given impulse response, this
yields glf = −0.64.
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Figure 5: Energy decay curve (grey line) and low-frequency pulse
positions (black dots). A least-squares fit (black line) indicates a
decay rate of about−5.4 dB per pulse, during the early decay from
0 dB to −10 dB.

3.2.2. Spectral delay filter calibration

A crucial step in the calibration of the model is determining the
parameters for the spectral delay filter. The goal is to tune the out-
put of the filter to match the dispersion characteristics of the real
spring. The transfer function of the stretched interpolated allpass
cascade used in the model [5] to generate the chirps is given by

AM (z) = M
a1 +Afd(z)z−K1

1 + a1Afd(z)z−K1
, (4)

where Afd is a fractional delay allpass filter with

Afd(z) =
a2 + z−1

1 + a2z−1
, (5)

and
K1 = round(K)− 1. (6)

M is the number of allpass sections in the cascade, a1 is the all-
pass coefficient, andK the stretching factor determining the cutoff
frequency of the chirps. The fractional delay filter is necessary to
implement a nonintegral stretching factor K, to accurately obtain
the desired transition frequency of the chirp structure. The param-
eter a2 can be derived from the nonintegral part of the stretching
factor (for details, see [5]). The parametersM , a1 andK of the all-
pass cascade are obtained by iteratively fitting the allpass cascade
to the first chirp in the spectrogram. The procedure is applicable
to spring reverbs with one or more springs, therefore the general
case of N springs is considered in the following.

First, peaks in the spectrogram are extracted at each frequency
bin, up to the transition frequency. After low-passing the rows
of the spectrogram matrix S, which correspond to frequency bins
(cf. Section 3.1.2), the peak locations at each frequency bin are
detected as zero crossings of the derivative of each row. Next,
the peaks in S are grouped to connected segments, by identifying
sequences of peaks that form a connected line in the spectrogram.
Finally, these peak segments are grouped to chirps in an iterative
process, using the output of the allpass cascade as a model for the
chirps:
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Figure 6: The first chirp (red) is identified through iterative fitting
of an allpass cascade to peak segments of the spectrogram.

1. Fit the output of an allpass cascade to the longest peak
segment in the spectrogram, using nonlinear least squares
fitting via the lsqnonlin function in Matlab. This yields a
rough estimate ĉi of the i-th chirp in the spectrogram.

2. Find peak segments that lie close to ĉi, update ĉi to include
those segments and re-fit the allpass cascade to the new ĉi.

3. Repeat step 2 while peak segments close to ĉi are found.

4. Remove all peak segments allocated to any chirp estimate
ĉ, and repeat steps 1–3, until all chirps ĉ1...N are extracted.

This process identifies the chirps in the spectrogram produced
by the N springs and directly yields the parameters of the allpass
cascades to model their estimates ĉ1...N. The pulse delay Td,i of
each chirp is given as

Td,i = Td + 2∆T0,i, (7)

where Td is the pulse delay (cf. Section 3.1.1), and T0,i is the offset
of the i-th chirp from the first chirp visible in the spectrogram.
The result of the chirp extraction for the given impulse response is
shown in Figure 6.

3.2.3. Chirp equalisation

The spectrum of the first chirp is obtained by calculating the Fourier
Transform of the impulse response from 0 to 2Td. To approximate
the spectral shape of the chirp, a second-order IIR filter is used.
Its transfer function is stretched by replacing the unit delays of the
filter structure with a delay line of length K [5]. The filter param-
eters consist of the stretching factor K, the frequency Fpeak of the
peak in the transfer function, and the −3 dB bandwidth B of the
peak. Nonlinear least-squares fitting is used to fit the frequency
response of the equalisation filter to the spectrum of the first chirp
(see Figure 7).

3.3. High-frequency chirps

The high-frequency chirp sequence is considered less perceptu-
ally important [5]. Therefore, a simpler approach towards calibra-
tion can be taken than for the low-frequency structure. Based on
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Figure 7: Spectrum of first pulse (light grey) and fitted equalisation
filter: Fpeak = 183Hz, B = 146Hz, K = 5.

the assumption of a regular pulse structure, the chirps can be ex-
tracted from the autocorrelation of the spectrogram matrix S (cf.
Section 3.1.2). This procedure emphasises periodic energy com-
ponents in the spectrogram, whilst suppressing nonperiodic com-
ponents, such as the first pulse appearing in the spectrogram above
5 kHz (see Figure 2).

To detect the first chirp of the high-frequency pulse series in
the autocorrelation of the spectrogram, the locations of the two
largest peaks are determined for each frequency bin, using the
method described in Section 3.2.2. To eliminate all peaks not be-
longing to the periodic pulse series, a simple check is performed:
All peaks in the autocorrelation belonging to a periodic chirp in
the pulse series must have a corresponding peak at twice the delay
(cf. Figure 8). The peaks in the autocorrelation passing this check
indicate the dispersion and delay induced to a periodic pulse after
traversing the spring twice: Dividing the locations of the peaks by
two yields the form of the first chirp in the spectrogram, at half the
delay between adjacent chirps. It is modelled by fitting an allpass
cascade via nonlinear least-squares fitting.

For simplicity, the decay rate of the high-frequency chirps is
obtained by multiplying the decay rate of the low-frequency chirp
sequence with a constant factor. Based on inspection of the spec-
trograms of spring reverb impulse responses, we chose 1.3 for the
factor, assuming that the decay rate per pulse is about 30% lower
for the high-frequency than for the low-frequency chirp sequence.
This yields a high-frequency gain factor ghf = −0.83.

4. DISCUSSION

Figure 9 allows a visual comparison of the spectrogram of a real
spring reverb unit and the spectrogram of the digital parametric
model after automated calibration.

The main perceptual parameters, i.e., the transition frequency
and pulse delay of the low-frequency chirp sequence are modelled
quite accurately. The form of the low-frequency chirps is captured
well, although the group delay close to the transition frequency ap-
pears to be larger in the real impulse response than in the model.
As a result of the linear approximation of the early decay time
(EDT, cf. Figure 5), the energy of the low-frequency chirps decays
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Figure 8: Left: First and second peaks in normalised autocorre-
lation of spectrogram. Right: Peaks of first pulse after outlier re-
moval (◦) and fitted allpass cascade (–): a1 = −0.34, M = 189.

slower in the real response than in the model. An auditory com-
parison reveals a marked difference in timbre between the real and
modelled low-frequency chirp sequence. This may partly be due
to the coarse approximation of the chirp spectrum (cf. Figure 7),
which results in a discrepancy between the desired and modelled
spectrum, particularly below 1.5 kHz and above 3.5 kHz. Using
a higher-order equalisation filter in the digital model might help
tackle this problem. Furthermore, the acoustic quality of the in-
creasing diffuseness of successive chirps could be modelled more
accurately, for example by replacing the delay line modulation
with an automatically calibrated digital reverberator [5].

The main characteristics of the high-frequency chirp structure
are successfully reproduced by the model. The form of the first
high-frequency chirp is modelled accurately. The following chirps
are more strongly dispersed in the real impulse response than in the
model. To model the dispersion characteristics more accurately, an
allpass cascade could be inserted in the feedback path of the high-
frequency structure of the model. It is omitted here since it is not
considered perceptually important and reduces the computational
load of the model considerably [5]. The decay rate of the chirps
seems to be slightly lower in the real impulse response than in the
model. This is a result of the linear approximation of the decay
rate in the parametric model.

The automated calibration was performed without constraints
in terms of the computational complexity of the digital parametric
model. The computational load is dominated by the allpass chains.
To lower the computational load of the model, an upper limit can
be set to the length of the allpass chains fitted by the optimisation
algorithms described in Sections 3.2.2 and 3.3. As an example,
we set the maximum length of the low-frequency allpass cascade
to max {Mlow} = 100. Table 1 presents an overview of the cal-
ibrated model parameters for the Leem Pro KA-1210 spring re-
verb. The first column contains parameter values obtained through
manual and semi-automated calibration [5]. The middle column
contains the values obtained using the automated calibration pro-
posed in this paper, without constraints in terms of computational
complexity. The last column presents the values obtained with an
upper limit on the length of the low-frequency allpass chain. There
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Figure 9: Spectrogram of the impulse response of the Leem Pro
KA-1210 (top) and of the parametric model with automated cali-
bration (middle). The bottom graph shows the model spectrogram
as an overlay (red) onto the spectrogram of the Leem Pro KA-1210
(greyscale).

is good correspondence between the manual and automated cali-
bration of the values Td and Fc. The form of the modelled chirps
is determined by the parameters a and M , as well as Fc,lf in case
of the low-frequency chirp structure. If an upper limit is set to M ,
the values of a and Fc,lf change such as to obtain an optimal fit
of the modelled chirp. The spectrogram of the model with limited
allpass cascade length is shown in Figure 10. A visual comparison
reveals no substantial differences to the spectrogram of the model
with unconstraint cascade length, indicating that the restriction is a
viable option to reduce computational load without major percep-
tual impact. However, the form of the first chirp is modelled less
accurately with the reduced allpass chain length. Figures 11 and
12 demonstrate the usage of the automated calibration for spring
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Leem Pro KA-1210, Spring 1
Manual [5] Automated Automated∗

Td 0.056 0.056 0.056
Fc 4300 4216 4216

Fc,lf 4300 4980 4275
Mlow 100 318 100
a1 0.62 0.69 0.63
glf -0.8 -0.64 -0.64

Mhigh 200 189 189
ahigh -0.6 -0.34 -0.34
ghf -0.77 -0.83 -0.83
∗ With max {Mlow} = 100.

Table 1: Comparison between manual and automated calibration
of the parametric spring reverberation effect. The transition fre-
quency Fc refers to the transition frequency of the impulse re-
sponse, whereas Fc,lf refers to the transition frequency of the fitted
allpass cascade. The optimised calibration results were obtained
by setting an upper limit to Mlow.

reverbs with two and three springs. In both cases the main features
of the spectrogram of the real impulse response are captured suc-
cessfully by the proposed automated calibration, and reproduced
by the parametric model. However, the modelling accuracy is in-
ferior to the single-spring example, since the parameters of each
spring are extracted from a single response of the whole unit.

5. CONCLUSION

In this paper, an approach was proposed to automatically calibrate
parameters of a spring reverberation model. A slight modification
of a previously presented spring reverberation model is used [5],
which produces impulse responses containing the same basic fea-
tures appearing in responses measured from spring reverb units.

Signal processing methods to estimate the values of several
parameters of the spring reverb model were suggested. All esti-
mations are based on a measured impulse response of a spring re-
verberation unit or its spectrogram. First, the time delay between
repetitive pulses appearing at low frequencies was estimated by
detecting the first peak in the absolute value of the autocorrelation
function of the measured response. Next, the transition frequency,
which corresponds to the cutoff point of the low-frequency chirp
sequence, was estimated from the autocorrelation function of the
spectrogram. The maximum of the mean of the autocorrelation
function appeared to indicate the transition frequency. The value
of the feedback gain factor was computed from the early decay
time, which we estimated as the difference of time instants, where
the energy decay curve passes the -10 dB level.

A spectral delay filter consisting of a chain of first-order all-
pass filters imitates the shape of the first chirp in the impulse re-
sponse. The number of cascaded allpass filters and their filter coef-
ficient value, which is the same for all filters in the cascade, were
chosen by fitting the output of the allpass cascade via an itera-
tive procedure employing the nonlinear least squares method. The
spectral delay filter was equalised by fitting the parameters of a res-
onant second-order filter to the magnitude spectrum of the chirp,
using the nonlinear least-squares method.

Model parameters for the high-frequency chirp sequence are

also extracted from the autocorrelation of the spectrogram, although
the data is noisier than that containing the low-frequency chirps.
No equalisation is performed for the high-frequency chirps.

The proposed calibration methods can be applied to a response
of a single-spring unit or to one with several parallel springs. The
calibrated parameter values were compared against the manually
and semi-automatically calibrated values presented in [5]. It was
observed that slightly different but similar values are obtained. The
optimal number of allpass sections in the spectral delay filter for
the low-frequency chirp can become very large, such as about 300,
leading to a high computational load in the implementation. For
this reason a constrained optimisation was tested in which the max-
imum number of filter sections is limited to 100. This can lead to
a sufficiently good fit and to a reasonable number of filtering oper-
ations per sample.

Recently, Parker has proposed multirate and subband tech-
niques to reduce the computational cost of the parametric spring
reverberation model [11]. These ways to improve the computa-
tional efficiency are suggested to be applied after parameter values
have been calibrated using methods proposed in this paper.
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7. APPENDIX

This appendix presents the spectrograms of the real impulse re-
sponse and of the parametric model with automated calibration
for spring 1 of the Leem Pro KA-1210 spring reverb (see Fig-
ure 10), a no-name spring reverb containing two springs (see Fig-
ure 11), and a Mesa Boogie spring reverb containing three springs
(see Figure 12). Sound samples are available for download at
http://www.tml.tkk.fi/~hannes/DAFx2011/.
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Leem Pro KA−1210

Parametric model

Figure 10: Spectrogram of impulse response of spring 1 of Leem
Pro KA-1210 (top) and of the parametric model with automated
calibration (middle), with length of the low-frequency allpass cas-
cade limited to max {Mlow} = 100. The bottom graph shows the
model spectrogram as an overlay (red) onto the spectrogram of the
real unit (greyscale). Although the main perceptual aspects of the
low-frequency chirp sequence are captured, the limited length of
the allpass chain deteriorates the modelling accuracy of the form of
the low-frequency chirps. This is a trade-off for reducing the com-
putational complexity by limiting the length of the allpass cascade.
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No−name reverb

Parametric model

Figure 11: Spectrogram of impulse response of a no-name spring
reverb with two springs (top) and of the parametric model with
automated calibration (middle). The bottom graph shows the
model spectrogram as an overlay (red) onto the spectrogram of
the real spring reverb unit (greyscale). The main features of the
real impulse response are captured well. However, additional low-
frequency chirp reflections and some details of the high-frequency
chirp sequence are not reproduced by the model. The modelling
accuracy could presumably be improved if individually measured
responses of both springs were used for the automated calibration.
The same holds for the model response shown in Figure 12. It
is more difficult to derive parameters of all springs from a single
response measured of the whole unit than using individually mea-
sured responses for each spring.

DAFX-7

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-43



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

F
re

q
u

e
n

c
y
 [
k
H

z
]

0.1 0.2 0.3 0.4 0.5

0

5

10

15

20

F
re

q
u
e
n
c
y
 [
k
H

z
]

0.1 0.2 0.3 0.4 0.5

0

5

10

15

20

0.1 0.2 0.3 0.4 0.5

0

5

10

15

20

Time [s]

F
re

q
u
e
n
c
y
 [
k
H

z
]

 

 
Mesa boogie
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Figure 12: Spectrogram of impulse response of Mesa Boogie
spring reverb with three springs (top) and of the parametric model
with automated calibration (bottom). The bottom graph shows the
model spectrogram as an overlay (red) onto the spectrogram of
the real spring reverb (greyscale). All three low-frequency chirp
sequences are modelled relatively accurately, although there are
discrepancies regarding the form of the first modelled chirps and
the details of the high-frequency chirp sequence.
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