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ABSTRACT

In this work we present an approach to perform voice timbre con-
version from unpaired data. Voice Conversion strategies are com-
monly restricted to the use of parallel speech corpora. Our propo-
sition is based on two main concepts: the modeling of the timbre
space based on phonetic information and a simple approximation
of the cross-covariance of source-target features. The experimen-
tal results based on the mentioned strategy in singing-voice data
of the VOCALOID synthesizer showed a conversion performance
comparable to that obtained by Maximum-Likelihood, thereby al-
lowing us to achieve singer-timbre conversion from real singing
performances.

1. INTRODUCTION

One of the main limitations of current Voice Conversion technolo-
gies are the use of a parallel corpora of the source and the target
speakers to perform training of a conversion model. This corpus
consists of a set of recordings in which both speakers pronounce
the same utterances (same phonetic content) without applying any
distinctive emotion or vocal quality. The acquisition of such paral-
lel data may represent a number of difficulties, especially if aiming
to apply it on target voices which are hardly available; for example:
past celebrities.

Some proposals have been reported to achieve non-parallel
conversion based on the alignment of originally unpaired data by
exhaustive similarity search or the adaptation of an original paral-
lel model. An approach following the latter concept [1], is based
on the assumption of a linear relation between the timbre features
of originally paired speakers and unpaired ones. A conversion
model trained from paired data is adapted accordingly; however,
the source-to-target mapping is not defined directly from the un-
paired data.

Previously, the authors introduced a strategy to derive the tim-
bre conversion model exclusively from unpaired data consider-
ing that the phonetic segmentation is available [2]. The propo-
sition consists of a modification of the original Gaussian Mixture
Model(GMM) based approach of [3] and [4] by applying phoneme-
constrained modeling of the timbre space and an approximation of
the joint-statistics following the same assumption considered in
[1]. In terms of spectral conversion error, the conversion perfor-
mance was found comparable to that obtained by parallel training
without perceiving a significant reduction of the conversion effect
on the converted signals.

In this work we extend the study of the proposition presented
in [2]. In particular, we are interested in clarifying issues as the
learning conditions of the phoneme-constrained modeling and the
performance of the proposed non-parallel approach when the na-
ture of the source target corpora differs. We remark on our inter-
est in applying this technology to the concatenative singing-voice
synthesizer VOCALOID [5] in order to perform singer-timbre con-
version on the system databases by exclusively using real perfor-
mances from target singers. According to the work presented in
[6], the experimental study was carried out on full-quality singing-
voice data (Sr = 44.1KHz). However, the proposal presented in
this work may represent a generalized solution for Voice Conver-
sion purposes.

This paper is structured as follows: the phoneme-constrained
Multi Gaussian Modeling is presented in section 2, in section 3
we show study of simple strategy to approximate the source-target
cross-covariance, the experimental framework of our study is de-
scribed in section 4, to evaluate the performance of the proposed
method and compare it with the one based on ML, the results of
objective and subjective evaluations are reported and discussed in
section 5, and the paper concludes with observations and proposi-
tion for further study in section 6.

2. PHONEME-BASED ENVELOPE MAPPING

2.1. GMM-ML for features conversion

The conversion of the voice timbre is commonly achieved by mod-
ification of the short-term spectral envelope information based on
a probabilistic time-continuous transformation function [3]. The
conversion function is commonly derived from a Gaussian Mix-
ture Model of joint timbre features trained in a ML basis. The tim-
bre features correspond to all-pole based estimations of the spec-
tral envelope parameterized as Line Spectral Frequencies (LSF)
[4]. We remind, for clarity, the main expressions followed on this
strategy

ŷ =

Q∑

q=1

p(q|x) [µy
q + Σyx

q Σxx
q

−1(x − µx
q )] (1)

p(q|x) =
N (x; µx

q ; Σxx
q )

∑Q
q=1 N (x; µx

q ; Σxx
q )

(2)

Eq.1 depicts the conversion function, denoting x,y and ŷ the
source, target and converted envelope features respectively. The
GMM size (number of Gaussian components) is given by Q. Note
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that an a priori weighting of the mixture components is not consid-
ered. The term p(q|x) corresponds to the conditional probability
or class membership, according to Eq.2.

In general, concerning the configuration of the GMM, the num-
ber of Gaussian components depends on the amount of training
data as well as the form of the covariance matrices (full or diag-
onal). Normally, an eight-sized GMM with full covariance ma-
trices is in use to achieve learning generalization for voice con-
version purposes [3]. Commonly, the resulting Gaussian means,
when translated to the spectral domain, depict spectral envelopes
with formantic features. This is principally due to the restriction
of using only voiced speech and the significant amount of vocalic
content on the data. Note, however, that a one-to-one correspon-
dence cannot be straightforwardly stated between those envelope
patterns and the vocalic phonetic classes assumed to be contained
in the data.

The vocalic speech is widely considered as provider for the
most important perceptual cues for timbre identification. However,
they represent only a subset of the phonetic elements of a language.
Subsequently, we claim that if aiming to perform full timbre con-
version we might map the envelope characteristics regardless, in
general, of their vocalic or voiced nature. Accordingly, a clus-
tering of the envelope space by only eight gaussian components
may lead to a large averaging of the phonetic content. Note also
the highly competitive behavior observed on the ML-based mix-
ture, resulting in a full modeling of speech segments of different
phonetic nature by the same Gaussian distribution. These phenom-
ena lead to a significant simplification of the phonetic space on the
mapping process and are found at the origin of some “reduction” or
modification of the phonetic content perceived in some converted
utterances.

2.2. Phoneme-constrained Multi-Gaussian Model

Moreover, by means of setting the GMM size close to the as-
sumed number of phonetic events and restricting the covariance
matrices to be diagonal, the behavior of the mixture was found
to be more cooperative but unstable. We show in Fig.1 the re-
sulting component-to-phoneme correspondence for a GMM-ML
in terms of the average membership of each gaussian per pho-
netic class. The results were obtained by evaluating p(q|x) af-
ter training the GMM with labeled data. The vertical axis rep-
resents the GMM components whereas the horizontal axis lists
the phonemes included in VOCALOID according to the Japanese
language (SAMPA standard) ordered by phonetic group (vowels,
nasals, voiced plosives, voiced affricates, liquids, semivowels, un-
voiced plossives, fricatives, unvoiced affricates).

Clearly, following Fig.1, relationships between the clustering
achieved by the GMM-ML and the phonetic class of the features
can hardly be established. An unstable activation of the mixture
components along with phonetic content may produce irregular
evolution of the converted envelopes, representing a potential fac-
tor of degradations on the converted signals.

Consequently, we propose to control the fitting of the statis-
tical model by using the phonetic information; therefore, we re-
strict the computation of each Gaussian distribution to the data
corresponding to a same phoneme. A phoneme-based modeling
(pho-GMM) was already introduced in [7], showing some benefits
in terms of one-to-many mapping reduction compared to conven-
tional GMM-ML.

Following this strategy the resulting component-to-phoneme

0 2000 4000 6000 8000 10000 12000

−20

0

20

40

Frequency (Hz)

A
 (

dB
)

 

 
a
e
M
i
o

0 2000 4000 6000 8000 10000 12000

−20

0

20

40

Frequency (Hz)

A
 (

dB
)

 

 
n
J
m
N
m’
N’
N\

Figure 3: Corresponding spectral envelopes of the MGM means
within phonetic groups. Vowels (top), nasals (bottom).

correspondence is clearly increased [2], as shown in Fig.2. The
model was therefore able to extract characteristic information for
most of the phonemes, and to increase, consequently, the discrim-
ination between them.

Note however some “shared” regions on the grid within ele-
ments of a same phonetic group (e.g. nassals, plosives). Unlike
the case of the vowels, where the differences between the forman-
tic structures represent an important discriminaton factor, the aver-
age spectral patterns at these groups are relatively close. This can
be appreciated in Fig.3, where are shown the resulting envelope
patterns of the vowels (top) and nasals (bottom) sets. Although we
have not a theoretical basis to explain these similiarities, a further
simplifaction of the phonetic space and the role of such a “charac-
teristic envelope” on non-stationary phonemes (e.g. plosives) may
be studied.

Finally, keeping consideration that the phonetic information
is available, the conditional probability can be replaced by a pho-
netic flag to directly assign the corresponding component at the
conversion stage. However, this “forced” membership should be
smoothed at the phonetic boundaries to avoid abrupt changes when
transforming the signal. As was already described, by forcing a
full-competitive behavior we do not significantly differ from the
real role of p(q|x) observed in a GMM-ML. Moreover, following
this proposition we aim to refine the envelope mapping in a pho-
netic basis. Note however that, as comented in [7], without includ-
ing more meaningful context information some mapping losses
can be hardly alleviated if the acoustic characteristics of same-
phoneme data significantly differs. This is demonstrated further in
our experimentation by using data of increasing heterogeneity.

Accordingly, the original conversion function expressed in Eq. 1
is modified as

ŷ = µy
q(x) + Σyx

q(x)Σ
xx
q(x)

−1 [x − µx
q(x)] (3)

Moreover, the sub-index q(x), denotes the phonetic class of the
source input and therefore, defines the only gaussian component
involved in the mapping. Subsequently, since the resulting model
does not keep the “mixture” characteristic anymore, we refer to it
as a “Multi-Gaussian Model” (MGM) [2].
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Figure 1: Average conditional probability at each GMM component per phonetic class. ML-based fitting.
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Figure 2: Average conditional probability at each GMM component per phonetic class. Phoneme-based fitting.
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Figure 4: GMM-ML and pho-MGM conversion error by overall
training size (top). pho-MGM Error by maximum training size per
component (bottom). The error measure (mel dB) coresponds to
the spectral distortion averaged over mel-scaled spectra.

2.3. MGM performance and training

We intended to study the minimal amount of data per phoneme re-
quired to generalize the timbre mapping. However, the amount of
frames per phoneme can barely be equilibrated since the vocalic
content is predominant in the Japanese language. Thus, we limit
our data size control to an upper bound, or maximal training size,
for the number of frames of a same phoneme used to fit a Gaus-
sian component. A regularization of the covariance matrices was
required for phonemes from which only a small amount of data
was available.

The results are shown in Fig. 4. The timbre features corre-
spond to LSF parameters of accurate spectral envelope estimates
obtained by a mel-based autoregressive model [6] with envelope
order set to 50. The cost function corresponds to the spectral
conversion error between the converted envelopes and the target
spectra. We compared GMM-ML and MGM models with similar
complexity (diagonal matrices, 38 components). In general, the re-
sulting conversion error levels are similar (top graph), showing the
MGM with slightly increased performance. An over-fitting effect
was not found to be affecting, though a small training set was used
(1000 vectors). We remark that the conversion performance was
always evaluated on unknown data (test set) in order to observe the
stabilization of the learning; that explains the decreasing behavior
of the error curve.

The maximal amount of training data per MGM component
was also evaluated (bottom graph). The arrows denote the number
of phonetic classes reaching the corresponding maximal number
of vectors at each case. The results show that it is not necessary to
have a large amount of frames (around 100) to approach the high
performance region.

3. CROSS-COVARIANCE APPROXIMATION

3.1. Motivation

From eq. 3 we remark that the only term for which paired data is
required is the source-target cross-covariance (Σyx). By simplify-
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Figure 5: Example of LSF data within a phoneme-class (one-
dimension). Real data (blue) and generated from the resulting ML-
based Gaussian distribution (red).
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Figure 6: Example of LSF data within a phoneme-class (one-
dimension). Real data (blue) and generated from the approximated
statistics for variable α (black, magenta, red).

ing the proposition of [1] via assuming directly a linear transfor-
mation between the source and target features their joint statistics
can be approximated. Moreover, the phoneme-constrained model-
ing presented in the past section limits this term, for each Gaussian
distribution, to depend exclusively on the data of the correspond-
ing phonetic class.

According to eq. 3, the term Σyx, commonly called transfor-
mation matrix after normalization by the source variance, acts ac-
tually as a weight of the variance of the converted features. The
values observed on this term on the GMM-ML based models are
rather small, resulting in poor dynamics of the converted features.
This well-known and characteristic over-smoothing, already ad-
dressed in works [8], is commonly perceived as a muffling quality,
affecting the naturalness of the converted signals.

Notably, an augmentation of the variance of the oversmoothed
converted parameters has been found to reduce significantly this
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muffling effect. Therefore, we assert that this term when estimated
by ML represents a limitation on the resulting conversion qual-
ity. Furthermore, having control of this value might represent an
effective way to increase the naturalness of the converted signals.

3.2. Covariance approximation by linear transformation

Following the phoneme-constrained modeling, the probabilistic lin-
ear transformation between the timbre features of two speakers
proposed in [1] can be simplified as y = Aq(x)x + bq(x), where
Aq is, in general, a square matrix according to the dimensionality
of x, and bq is a bias vector. Therefore, considering the mentioned
relation in the computation of Σyx for each phonetic-component
of the MGM we obtain

Σ̌yx = E[(y̌ − µy̌)(x − µx)] (4)

= E{[(Ax + b) − (Aµx + b)] (x − µx)} (5)

= E[(A(x − µx)2] = AΣxx (6)

Where A can be approximated similarly by evaluating Σyy

Σ̌yy = E{[(Ax + b) − (Aµx + b)]2} (7)

= E[(A2(x − µx)2] = A2Σxx (8)

A =
√

ΣyyΣxx−1 (9)

Although the relation y = Ax + b is assumed between features
corresponding to the same phoneme imposes a strong assump-
tion and, by using diagonal covariance matrices, the resulting one-
dimensional distributions restricts to narrow regions. As the norm
of A decreases, the “width” of the covariance region increases un-
til it reaches a circular form at the full-uncorrelated case (A = 0).
Thus, since the orientation of the modeled distribution is given ex-
clusively by Σxx and Σyy the proposed Σ̌yx may be rather seen
as a lower bound of the real distribution width. Accordingly, we
apply a weighting factor (0 < α < 1) to Σ̌yx on the conversion
function in order to impose a more realistic form on the approxi-
mated distribution.

In Fig. 6 we show a comparison of real and approximated
source-target distributions for several α values of one LSF dimen-
sion within a phonetic class. Clearly, the distribution strictly fol-
lowing the relation y = Ax+b (α = 1) does not suffice the data.
However, by setting α around 0.75, the covariance region approaches
the covariance based on ML. This can be seen in Fig. 5, illustrating
the case when the Gaussian is fitted in a ML basis.

Then, based on eq. 3, the final expression for the conversion
features will be as follows

ŷ = µy
q(x) + α

√
Σyy

q(x)Σ
xx
q(x)

−1 [x − µx
q(x)] (10)

Regarding the effect of the parameter α on the conversion perfor-
mance, values within the range [0.5-0.7] provide the best percep-
tual results. Further, we observe that, for the dimensions with a
low correlation, the imposition of a covariance value higher than
the real one was found to be beneficial. The naturalness of the
converted signals is improved by increasing the dynamics of the
predicted LSFs. Nevertheless, for clarity an objective and subjec-
tive evaluation of α is presented in Section 5.
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Figure 7: Example of a singing sample of a VOCALOID DB in-
cluding the phonetic segmentation and F0 estimation.

4. EXPERIMENTAL FRAMEWORK

4.1. VOCALOID singer databases

The VOCALOID singing-voice synthesizer system consists of three
main elements, the user interface (allowing to input lyrics and
melody information), a singer database (containing a collection
of singing-voice samples from a singer), and the synthesis engine
(performing, briefly, the selection, F0-transposition and concate-
nation of the samples).

In particular, the singer-DB consists of a pre-defined set of
phonetic sequences sung at different pitch ranges. The phonetic
scripts are assumed to cover principally the consonant-vowel com-
binations of the Japanese language. All the singing samples are
recorded at a same tempo following the same melodic pattern,
which is restricted to a one tone variation related to the representa-
tive musical height of each pitch set. An example of a singing sam-
ple is shown in Fig. 7. Each single-pitch set consists of more than
100 recordings, representing more than 70,000 feature vectors.
Typically, a complete VOCALOID-DB includes low, medium, and
a high pitch sets.

Singing-voice data from 2 VOCALOID singer-DBs were con-
sidered for our experimental study. A C4 ( 261Hz) pitch set of a
female singer was set as source voice whereas G3, C4 and E4 pitch
sets (193, 261, 330Hz) as well as 4 real singing performances
from a male singer were used as target voice. The configuration
of the target data was modified according to the interest of com-
paring both the mapping strategy and the effect of the pitch on the
conversion performance, and is described in the next section.

4.2. Effect of the corpora heterogeneity

There is advantage, in terms of envelope mapping performance,
to using data which is not only paired but restricted to a small
pitch variation [6]. Accordingly, the use of non-parallel corpora
may have an impact on the conversion performance if the nature
of the source and target corpora differs. We remark that one of our
main interests in applying non-parallel timbre conversion on the
singing-voice is to use real singing performances to compute the
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Figure 8: Spectrogram of the conversion filter for the sample of
Fig. 7 (energy in dBs).

conversion model, which may observe a large pitch range (melody),
different tempo, and a rich pronunciation variety among the con-
tent.

We were therefore interested in studying the performance us-
ing data with different characteristics. Therefore, we fixed three
different sets as target data: a)VOCALOID’s single-pitch data, b)
VOCALOID’s mixed-pitch data and c) real singing performances
(4 songs). Further, we considered the following evaluation cases:
a)GMM-ML single-pitch (labeled as GMM-ML P SP), b)MGM
single-pitch (MGM-PC P SP), c)non-parallel single-pitch (MGM-
PC NP SP), d)non-parallel mixed-pitch (MGM-PC NP MP), and
e)non-parallel real songs performances (MGM-PC NP RP). Since
objective evaluation on unpaired data is not straightforward, all
the approaches were evaluated on the single-pitch paired data i.e.,
different sets for training but same ones for evaluation.

An evaluation of this nature represents the most exigent case
since the single-pitch set observes the most precise and “homoge-
neous” features, resulting in an increased challenge for the models
trained on data corresponding to wider pitch-range and “hetero-
geneous” phonation characteristics (multi-pitch and real singing
performances sets).

4.3. Signal modification

As was already described, the timbre conversion process is based
in a short-term mapping of the spectral envelope information. The
transformation of the timbre is therefore achieved by replacing the
original envelope by the one given by the converted features. This
is commonly done by analysis-synthesis filtering following the au-
toregressive modeling of the envelope. However, we perform the
modification of the envelope by defining a conversion filter, corre-
sponding to the difference at each frame between the correspond-
ing transfer function of the converted LSFs and an interpolation of
a harmonic analysis of the source signal. The frame processing is
done in a pitch-synchronous basis. We show in Fig. 8, in the form
of a spectrogram, an example of resulting conversion filter for the
utterance of Fig. 7.

We use the harmonic information instead of the envelope on
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Figure 9: Converted LSF parameters given by α = 0 (dotted),
α = 0.25 (blue), α = 0.5 (red), α = 0.75 (black) and ML-based
conversion (magenta).

the source signal aiming to match closely the real source infor-
mation and discard the risk of estimation errors that occurred dur-
ing the computation of the autoregressive model. The harmonic
analysis and the processing framework itself follow the wide-band
technique described in [9].

Besides the capability of the processing method to perform
efficient envelope modification, the conversion itself may result
in some unnatural or distorted quality on the transformed signals
since the characteristics of the converted spectra may not match
naturally the original signal (harmonicity, energy, f0). Also, con-
sider that some abrupt changes on the evolution of the source sig-
nal cannot be properly reflected by the mapping process.

Moreover, the stable and controlled characteristics of the singing
samples might impact positively the conversion quality if com-
pared to the case of spontaneous speech. However, the particu-
lar evolution of the source signal and the use of wide-band based
information may result in an important variation of the envelope
information at successive frames. Accordingly, we consider two
parameters to control independently the smoothness of the con-
version filter for both time and frequency axes. Although it is
not generally required, this strategy was found effective to avoid
degradations in some converted utterances and to smooth unde-
sired frame-to-frame variations on the conversion filter.

5. EVALUATION

5.1. Objective evaluation

We were interested on studying three aspects in our experimen-
tal evaluation: first, the impact of the covariance approximation
on the converted features, second, to compare the conversion per-
formance of the parallel and non-parallel strategies, and finally to
evaluate the effect of the heterogeneity of the target data.

We therefore started analyzing the converted LSFs for differ-
ent α values. Note the benefits of using this parameterization, seen
as temporal trajectories denoting spectral pole locations, to ob-
serve differences in terms of variance. This can be seen in Fig. 9.
The plot shows a comparison of three converted LSFs at a segment
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Figure 10: Resulting spectral envelopes from converted LSF pa-
rameters for different α values.

of the utterance example. The different cases correspond to con-
versions obtained by using increasing α values as well as a ML
result issued from a model with similar complexity. As expected,
an augmentation of this value was found to increase the temporal
variance related to the means position (α = 0). The corresponding
effect in the spectrum is found as an emphasis of the maxima and
minima of energy, as shown in Fig. 10, producing a positive effect,
within a reasonable limit, in the perceived naturalness.

Fig. 11 shows the average variance measured on about 5000
evaluation vectors (test set) of target and predicted LSF for the
different evaluation cases as described in section 4.2. Note that
the resulting variances of the parallel cases are just slightly higher
than those given by the gaussian means (α = 0), denoting the poor
impact of the transformation matrix when it is exclusively derived
from the data (whether or not the variance is obtained by ML). On
the other hand, note that by setting α we can force a variance on
the converted features close to the real one.

Finally, Fig. 12 depicts a conversion performance comparison.
The cases involving models trained on single-pitch data (labels
ending with “SP”) are considered as the references since the train-
ing data corresponds to similar corpora with stable characteristics.
The proposed non-parallel conversion using single-pitch data per-
forms close of ML and MGM-parallel cases. As expected, the
performance decreases as the target data is more heterogeneous.
Moreover, the conversion performance shows a maximum related
to α; however, slightly higher values ([0.5-0.7]) have been found
as providing increased naturalness (muffled quality reduction).

5.2. Subjective evaluation

A subjective evaluation was designed aiming to compare the con-
version effect and the quality of the converted signals. Looking for
a strict perceptual evaluation, ten sound technology professionals
participated as listeners. Five VOCALOID samples, representative
of the different phonetic groups, were selected as the evaluation
set.

First, a timbre similarity test was defined considering three
conversion strategies: GMM ML SP, MGM NP SP and MGM
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Figure 11: Average variance of target and converted LSFs for the
different method and data confirgurations.
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Figure 12: Spectral conversion error for the different method and
data confirgurations.

NP RP. We intended to compare the conversion effect when us-
ing both parallel and non-parallel methods and the effect of using
a homogenous or heterogenous target corpus on the proposed non-
parallel method. The procedure was as follows: the source, target,
and the three converted utterances (randomly selected) were pre-
sented to the listeners. Then, the timbre similarity between the
converted and the reference samples was measured according to
the continuous range [0 1] (0 = source, 1 = target). This process
was repeated immediately to allow confirmation or modification
of the first judgement.

Note that at each sample case, both reference and converted ut-
terances observe stable and similar acoustic characteristics (pitch,
energy, and dynamics). A comparison based on this data appears
to be an efficient way to exclusively focus on the timbre and vocal
quality differences. However, the conversion of vocal quality fea-
tures is out of the scope of this work. We claim that although an
increased perceptual discrimination capacity may result in lower
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Figure 13: Subjective evaluation. Timbre similarity results (top)
according to given reference levels. Signal quality evaluation
(MOS) of the non-parallel conversion for different α values.

conversion scores it might lead us to a more robust evaluation of
the effect achieved by the spectral envelope conversion process.

The results are shown in Fig. 13 (top). In the figure the five
levels in red tagged with a subjective description correspond to the
scale references given to the listeners. The scores achieved by both
parallel and non-parallel methods when using the same corpora
were found similar and denote, in general, a reasonable conversion
effect. However, the performance suffers some reduction when
real singing corpora is used as target training data.

Second, a MOS-like test was focused on exclusively evalu-
ating the signal quality of the non-parallel conversion for differ-
ent α values. The test was applied separately for both corpora
cases in order to observe exclusively the effect of α. The subjec-
tive description of the MOS levels was re-defined looking for an
exigent evaluation and an association of the measurement levels
with some quality phenomena (5=perfect, 4=slight degradations,
3=clean enough, 2=artifact(s), 1=annoying).

The test followed a similar procedure as the similarity test. For
each sample case three converted samples, corresponding to three
representative α values (small, α=0.2; proposed, α=0.6; large,
α=1), were randomly selected and evaluated in the same two-step
basis. The results are shown in Fig. 13 (bottom). As expected,
best results were found for α=0.6. Note however that a large value
achieved a comparable performance. This might be explained by
a reduced risk of producing undesired amplitude modulations on
the spectrum when aplying a high variance to the LSF trajectories
on stable signals.

Although the overall results does not allow us to claim full
natural-quality conversion the scores achieved when using similar

and stable corpora show a general perception of an adequate nat-
uralness. As for the similarity test, the drop in the performance
level is attribuited to the increased heterogeneity of the target cor-
pora, resulting in over-smoothed envelope patterns on the conver-
sion model. The estimation of precise envelope information from
singing performances might be studied further.

6. CONCLUSIONS AND FUTURE WORK

In this work we presented an approach to perform voice timbre-
conversion from non-parallel data. The proposed strategy is based
on phoneme-constrained modeling of the statistical space of the
timbre features and an approximation of the cross-covariance in-
formation and is described and compared with the conventional ap-
proach based on parallel data and ML. The results, obtained from
an experimental study on singing-voice let us claim the achieve-
ment of comparable conversion performance although some de-
pendency was observed according to the heterogeneity of the cor-
pora.

The experimentation done in this work suggest to extend the
study in some issues: the estimation of the α parameter individu-
ally for each feature dimension; an efficient selection of envelope
features from real singing performances; an efficient mapping of
non-stationary phonemes, among others. However, the proposi-
tion presented in this work was proved to be a step-forward the
interests of voice timbre conversion.
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