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Music Technology Group
Universitat Pompeu Fabra

Barcelona, Spain
saso.musevic@upf.edu

Jordi Bonada

Music Technology Group
Universitat Pompeu Fabra

Barcelona, Spain
jordi.bonada@upf.edu

ABSTRACT

This paper describes an improvement of thegeneralized reassign-
mentmethod for estimating the parameters of a modulated real
sinusoid. The main disadvantage of this method is decreasedac-
curacy for high log-amplitude and/or frequency changes. One of
the reasons for such accuracy deterioration stems from the use of
the Fourier transform. Fourier transform belongs to a more gen-
eral family ofintegral transformsand can be defined as an integral
transform using aFourier kernel function- a stationary complex
sinusoid. A correlation between the Fourier kernel function and
a non-stationary sinusoid decreases as the modulation of the si-
nusoid increases, ultimately causing the parameter estimation de-
terioration. In this paper, the generalized reassignment is refor-
mulated for use with an arbitrary kernel. Specifically, an adap-
tive polynomial-phase Fourier kernelis proposed. It is shown that
such an algorithm needs the parameter estimates from the original
generalized reassignment method and that it improves the Signal-
to-Residual ratio (SRR) in the non-noisy cases. The drawbacks
concerning the initial conditions and ways of avoiding a close-to-
singular system of linear equations are discussed.

1. INTRODUCTION

The extraction of sinusoidal parameters has been the focus of the
signal processing research community for a very long time. The
reasons for that are numerous: analysis for re-synthesis [1], voice
analysis [2][3][4], music transcription [5], audio coding[6] and
many more.
The classic model for modeling sinusoids implies a static ampli-
tude and frequency within the time of observation [1]. Many re-
finements of this stationary model were developed [7][8][9]yet the
fact that the bandwidth of a modulated sinusoid tends to raise pro-
portionally with the amount of modulation imposed [10][11][12]
rendered a need for estimation of the non-stationary parameters of
sinusoids crucial [13]. Numerous Fourier transform based meth-
ods have emerged [14][15][16][17][18][19]. It has been shown
in [19][20], that the generalized reassignment exhibits superior
accuracy in the linear log-amplitude/linear frequency modulation
context compared to QIFFT [15] and the generalized derivative
method [16] in the linear log-AM/FM case. An additional advan-
tage of the generalized reassignment is the ability to estimate the
modulation parameters of arbitrary order, whereas others (except
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method using distribution derivatives [18]) were designedto work
only in the linear log-AM/FM context.
The generalized reassignment [19] algorithm uses values ofthe
Short-Time-Fourier-Transform (STFT) of the signal and itstime
derivatives (up to M-th degree) in order to produce a linear system
of M complex equations. STFT is evaluated at 1 frequency only, a
natural choice for which is the maximum peak frequency. Solving
this system allows the estimation of M complex parameters that
uniquely define the parameters of the sinusoid. A similar algo-
rithm described in [18] only considers 1st degree time derivative
of the signal and acquires the rest of the equations by considering
the values of STFTs at the spectrum peak and the nearby frequency
bins. A comparison of the two in identical test conditions has not
yet been conducted.
In section 2, the general framework of this paper is outlined. Sec-
tion 3 states the generalized reassignment [19] method in the nota-
tion adopted by [18] and removes the restriction of the static ker-
nel, while section 4 introduces the polynomial-phase Fourier ker-
nel in the context of the generalized reassignment. In section 5 the
results of the tests identical to those in [19] are reported,while 6
rounds up the comparison of the method proposed with the gener-
alized reassignment and proposes further work on the topic.

2. GENERAL CONSIDERATIONS

For the purpose of this paper a complex non-stationary sinusoid is
defined identically as in [19]:

s(t) = eR(t), R(t) =

M−1
X

m=0

rmhm(t), (1)

whereR(t) is a complex function, a linear combination of M real
functionshm(t), weighted with complex parametersrm. The real
and imaginary parts ofrm are denoted bypm, qm respectively,
yielding: rm = pm + jqm. A natural choice for functionshm are
monomials:hm(t) = tm. In such setting,p0 corresponds to the
stationary log-amplitude andp1 to the linear log-amplitude mod-
ulation (or first order log-amplitude modulation), whilepi, i > 1
corresponds to thei-th order log-amplitude modulation. Analo-
gously,q0 corresponds to the stationary phase,q1 to the stationary
frequency and parametersqi, i > 1 to the(i − 1)-th degree fre-
quency modulation.
The Fourier transform at a particular frequency can be conveniently
represented as adot product of the signal under investigation with
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the functionejω:

Tejω0ts(t) = F{s(t), w0} =
Z ∞

−∞
s(t)e−jω0tdt =< s, ejω0t > (2)

Swapping the Fourier kernel function with an arbitrary kernel Ψ
yields:

TΨs =< s,Ψ > (3)

By choosing the kernel function to be completely arbitrary,the
orthogonality of 2 random kernels and unit energy properties are
lost. However, such properties are not required by the algorithm,
so its use is not restricted. An appropriate selection of theset of
the kernel functions is a very different matter and depends on the
family of the signals under study.

3. GENERALIZED REASSIGNMENT USING A GENERIC
KERNEL

The main concept of the generalized reassignment method is based
on the fact the n-th degree time derivative of the signal can be
represented in the following way:

s(n)(t) = (R′(t)s(t))(n−1) (4)

In practice a window functionw(t) is used in order to time limit
and smooth the frame under investigation.
Independently, using the integrationper partes, Leibniz integra-
tion rule and the restrictionw(−T

2
) = w(T

2
) = 0 (required by

the generalized reassignment), the following useful equality can
be produced (for complete derivation see [18][19][20]):

∂

∂t
< s, wΨ >= −(< s, wΨ′ > + < s, w′Ψ >) (5)

The complementing equality can be deduced from 4 by applyinga
dot product with the kernel on both sides of the first time deriva-
tive:

∂

∂t
< s, wΨ >=<

∂

∂t
s, wΨ >=

< R′s, wΨ >=

M
X

m=1

rm < h′
ms, wΨ >⇒

(6)

M
X

m=1

rm < h′
ms, wΨ >= −(< s, wΨ′ > + < s, w′Ψ >). (7)

To computeM − 1 non-stationary parameters, anotherM − 2
time derivatives are required. Its computation can efficiently be
performed by the followingpyramid-likescheme:

< sh, ΨGw >

ւ ց
− < sh, Ψ′

Gw > − < sh, ΨGw′ >

ւ ց ւ ց
< sh, Ψ′′

Gw > +2 < sh, Ψ′
Gw′ > + < sh, ΨGw′′ >,

...

(8)

whereh(t) stands either forh(t) = 1 to calculate right hand side
or h(t) = h′

m(t),m = 1 : M − 1 to calculate the left hand side
of the equation 7.

4. POLYNOMIAL-PHASE FOURIER KERNEL

In [18] it was demonstrated that the estimation accuracy is in-
versely proportional to the kernel-to-signal correlation. Therefor
maximising the correlation should improve the accuracy andsince
the signal is modeled as a non-stationary sinusoid, a natural choice
for kernel function would be the same as the model. The proposed
kernel function follows:

ΨG(t) = eG(t), (9)

whereG(t) is a purely imaginary polynomial of order M:G(t) =

j
PM

m=1 gmtm. Note thatg0 = 0, as any non-zero value would
introduce bias in the phase estimation. From scheme 8 it is clear
that an(M − 1)-th degree time derivative of the kernel function
is required. In the specific case of the polynomial-phase Fourier
kernel the following scheme similar to 8 can be used in order to
calculate the kernel function time derivatives:

Ψ′
G =G′ΨG

ւ ց
Ψ′′

G = G′′ΨG + G′Ψ′
G

ւ ցւ ց
Ψ′′′

G = G′′′ΨG + 2G′′Ψ′
G + G′Ψ′′

G,

...

(10)

The main advantage of such algorithm is less restricted kernel, thus
the selection ofhm(t) functions can therefore be matched with an
appropriate kernel functions to maximize correlation and avoid ac-
curacy deterioration in the case of extreme parameter values.
The algorithm should initially be invoked withG(t) = jω̂t, where
ω̂ is a frequency of the magnitude spectrum peak. This yields an
initial estimate of the polynomialR(t): R̂(t) =

PM
m=1 r̂mtm.

This initial run of the algorithm is identical to generalized reassign-
ment as described in [19]. In the second iteration the kernelfunc-
tion can be adapted to the signal by settingG(t) = jℑ(R̂(t)) =

j
PM

m=1 q̂mtm.
From 8 and 10 the following linear system of equations can be
directly deduced:

< s, ΨGw > < s, Ψ′
Gw > + < s, ΨGw′ > . . .

< st, ΨGw > < st, Ψ′
Gw > + < st,ΨGw′ > . . .

< st2, ΨGw > < st2, Ψ′
Gw > + < st2, ΨGw′ > . . .

...
...

. . .
(11)

Of a particular interest is the term written in bold,< st, ΨGw >.
When the kernelΨG(t) closely matches the target signals(t) then
the productΨ̄G(t)s(t) ≈ 1 and the following can be deduced:

< st, ΨGw >=

Z

ts(t)Ψ̄G(t)w(t)dt ≈
Z

tw(t)dt. (12)

For any symmetric window functionw(t) and t ∈ [−T
2
, T

2
] (T

being its essential time support) the above expression is very close
to 0. Such cases occur when the signal exhibits low or no am-
plitude modulation causing the linear system of equations close
to singular, rendering the algorithm essentially useless.Such a
drawback can simply be avoided by artificially inducing someam-
plitude modulation into the signal and then subtracting it from the
estimate obtained. A very small amount of the amplitude modula-
tion of magnitude around10−10 is sufficient to stabilize the system
and significantly improve the estimates.
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5. RESULTS

The tests conducted were identical to those in [19]. The metric
used was the signal to residual ratio (SRR):

SRR =

P

i his
2
i

P

i hi(si − ŝi)2
, (13)

wheresi, i = 1..N are samples of the original signals(t) (with-
out noise),̂si, i = 1..N are the samples of the estimated signal and
hi, i = 1..N are samples of the weighting function - Hanning win-
dow. A model degree of 3 was chosen and the Hanning2 function
of length 1024 was used as the window function. The test signals
analyzed were real sinusoids sampled at 44100Hz. The parameters
of the test sinusoids were varied in the following way: 10 phase
values in the [0,0.45]π interval, 10 linear log-amplitude modula-
tion values in the [0,0.0045] /frame interval (roughly corresponds
to the [0,200] /s interval), 10 frequency values in the [255,255.9]
bins interval (roughly corresponds to the [10.982, 11.021]Hz) and
10 linear frequency modulation values in the [0,27] bins/frame in-
terval (roughly corresponds to the [0,16.000] Hz/s). The tests were
conducted in 3 separate groups for the original reassignment (la-
beledGEN RM) and the one using the polynomial-phase kernel
(labeledGEN RM PPT). In group 1 (figure 1), the linear fre-
quency modulation was set to 0 while the log-amplitude modula-
tion was varied (x-axis) in the mentioned range. In group 2 (figure
2) the log-amplitude modulation was set to 0 while the linearfre-
quency modulation was varied (x-axis) in the mentioned range. In
group 3 (figure 3), both the FM and log-AM were jointly varied (x-
axis) indouble the range compared to the groups 1 and 2. In the
first part (labeledSNR: Inf dB in the plots) no noise was added to
the signal and in the second part (labeledSNR: 0dB in the plots) a
Gaussian white noise of the energy equal to that of the clean signal
was added. The range of the log-AM/FM for group 3 was doubled
intentionally to examine properties of both algorithms in highly
modulated cases. The frequency range was selected around half of
Nyquist frequency in order to avoid self-interference.
As predicted, in the noiseless case the proposed kernel greatly di-
minishes the effect of the frequency modulation on the parameter
estimation accuracy. For FM only case (figure 2), the kernel adap-
tation procedure leaves the accuracy completely unaffected even
for very high FM values. On the other hand, the presence of AM
does affect the accuracy slightly, as can be seen in the figures 1 and
3, yet the improvement over the original method is significant. In
the SNR: 0dB case, the performance is almost indistinguishable
to the one of the original generalized reassignment.

6. CONCLUSION AND FUTURE WORK

In this paper, an improvement of the generalized reassignment
method was described. The main idea of the improvement is the
use of an adaptive polynomial-phase Fourier kernel in conjunction
with the general reassignment algorithm. The algorithm exhibits
a significant improvement in accuracy compared to the original
method in the case of clean signal, as the effect of frequencymod-
ulation is minimized by the adaptive kernel. For a stationary sinu-
soid, the accuracy is comparable to the original method, however
an increase in accuracy is observed in the case of non-stationary
ones, reaching almost 50dB in the most modulated case (group3).
The method does not improve the analysis of the original algorithm
if 0 dB Gaussian white noise added. The reason for this is the ker-
nel adaptation works in the opposite way to which is desired.This
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Figure 1:Group 1 (AM only)
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Figure 2:Group 2 (FM only)

0 5 10 15 20 25 30 35 40 45 50
120

140

160

180

200

220

bins/frame

S
R
R
(
d
B
)

SNR: Inf dB

 

 
GEN RM
GEN RM PPT

0 5 10 15 20 25 30 35 40 45 50
−40

−20

0

20

40

bins/frame

S
R
R
(
d
B
)

SNR: 0 dB

 

 
GEN RM
GEN RM PPT

Figure 3:Group 3 (AM and FM )

is because it uses the estimate of the original method, whichis not
precise enough at such a high noise level, therefore the error in the
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input parameters corrupts the final estimate.
In group 3, the most modulated case corresponds to 32.000Hz/s
change. This may seem excessive for analyzing real world music
related signals. However, a higher order modulation polynomials
could exhibit even larger linear FM values, as its contribution can
be canceled or balanced out by the second or higher order terms.
So as the kernel is adapted to the sinusoid in question, the energy
concentration of its representation in the transform domain is in-
creased: the bandwidth of the non-stationary sinusoid is reduced.
This is a desirable property in the case of multicomponent signals,
where side-lobes of a sinusoid cause significant interference to the
neighboring partials.
All the measured tests were conducted with Hanning2 window,
which would substantially increase interference in a multicompo-
nent scenario, as its main lobe is wider than that of the Hanning
window. An attempt to construct anL2 window function with a
lower bandwidth should receive some attention, allowing anim-
provement of the method using a model degree of up to 4.
As already mentioned in the previous section, the frequencies un-
der study were varied around half of the Nyquist, therefore the sig-
nal self-interference was minimized. Since the nature of the inter-
partial interference does not resemble that of a Gaussian white
noise, the results presented here cannot be generalized to amulti-
component cases, thus an assessment of the method’s accuracy in
such cases should be conducted.
The algorithm was designed in such a way that it can be iteratively
ran as many times as desired, which raises a question of the conver-
gence in a noisy case. Preliminary tests suggest, that such iteration
converges and improves the result as long as the initial estimates
don’t deviate too much from the true values. Further experiments
are required to further define the region of convergence.
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