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ABSTRACT
This paper describes an improvement of ge@eralized reassign-

mentmethod for estimating the parameters of a modulated rea

sinusoid. The main disadvantage of this method is decreased
curacy for high log-amplitude and/or frequency changese 6
the reasons for such accuracy deterioration stems fromshefu
the Fourier transform. Fourier transform belongs to a mene- g
eral family ofintegral transformsand can be defined as an integral
transform using dourier kernel function a stationary complex
sinusoid. A correlation between the Fourier kernel functmd

a non-stationary sinusoid decreases as the modulationeadith
nusoid increases, ultimately causing the parameter etsbimae-
terioration. In this paper, the generalized reassignnmemnéfor-
mulated for use with an arbitrary kernel. Specifically, aamd
tive polynomial-phase Fourier kerné proposed. It is shown that
such an algorithm needs the parameter estimates from tieari
generalized reassignment method and that it improves theabi
to-Residual ratio (SRR) in the non-noisy cases. The drakgac
concerning the initial conditions and ways of avoiding asekto-
singular system of linear equations are discussed.

1. INTRODUCTION

The extraction of sinusoidal parameters has been the fddie o
signal processing research community for a very long timee T
reasons for that are numerous: analysis for re-synthelisdite
analysis [2][3][4], music transcription [5], audio codifi§] and
many more.

The classic model for modeling sinusoids implies a statiplam
tude and frequency within the time of observation [1]. Maay r
finements of this stationary model were developed [7][8}§]the
fact that the bandwidth of a modulated sinusoid tends te fatis-
portionally with the amount of modulation imposed [10][[1H]
rendered a need for estimation of the non-stationary pasmef
sinusoids crucial [13]. Numerous Fourier transform basethm
ods have emerged [14][15][16][17][18][19]. It has beenwho
in [19][20], that the generalized reassignment exhibitgesior
accuracy in the linear log-amplitude/linear frequency oiation
context compared to QIFFT [15] and the generalized devigati
method [16] in the linear log-AM/FM case. An additional adva
tage of the generalized reassignment is the ability to esérthe
modulation parameters of arbitrary order, whereas ottetsefpt
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method using distribution derivatives [18]) were desigtedork
only in the linear log-AM/FM context.

| The generalized reassignment [19] algorithm uses valuabeof

Short-Time-Fourier-Transform (STFT) of the signal andtitse
derivatives (up to M-th degree) in order to produce a lingatesn

of M complex equations. STFT is evaluated at 1 frequency, @nly
natural choice for which is the maximum peak frequency. Bglv
this system allows the estimation of M complex parameteas th
uniquely define the parameters of the sinusoid. A similao-alg
rithm described in [18] only considers*ldegree time derivative
of the signal and acquires the rest of the equations by cerisgl
the values of STFTs at the spectrum peak and the nearby fregue
bins. A comparison of the two in identical test conditions hat
yet been conducted.

In section 2, the general framework of this paper is outlirféelc-
tion 3 states the generalized reassignment [19] methoctindta-
tion adopted by [18] and removes the restriction of the ctati-
nel, while section 4 introduces the polynomial-phase Feiker-
nel in the context of the generalized reassignment. In@eétithe
results of the tests identical to those in [19] are repondtle 6
rounds up the comparison of the method proposed with thergene
alized reassignment and proposes further work on the topic.

2. GENERAL CONSIDERATIONS

For the purpose of this paper a complex non-stationary sidus
defined identically as in [19]:

M—-1

S(t) = 6R(t>vR(t) = Z Tmhm(t), (1)
m=0

whereR(t) is a complex function, a linear combination of M real
functionsh., (t), weighted with complex parameters,. The real
and imaginary parts of,, are denoted by, ¢.. respectively,
yielding: 7, = pm + jgm . A natural choice for functiona,,, are
monomials: i, (t) = t™. In such settingpo corresponds to the
stationary log-amplitude ang to the linear log-amplitude mod-
ulation (or first order log-amplitude modulation), while, ¢ > 1
corresponds to théth order log-amplitude modulation. Analo-
gously,qo corresponds to the stationary phageto the stationary
frequency and parametegs, i > 1 to the (i — 1)-th degree fre-
quency modulation.

The Fourier transform at a particular frequency can be auendly
represented asdot product of the signal under investigation with
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the functione’*:

T jwors(t) = F{s(t),wo} =

Swapping the Fourier kernel function with an arbitrary ledni
yields:

s(t)e 790t dt =< 5,70 >

@)

Tys =< s,V > (3
By choosing the kernel function to be completely arbitrahe
orthogonality of 2 random kernels and unit energy properéie
lost. However, such properties are not required by the algor
So its use is not restricted. An appropriate selection ofstteof
the kernel functions is a very different matter and dependthe
family of the signals under study.

3. GENERALIZED REASSIGNMENT USING A GENERIC
KERNEL

The main concept of the generalized reassignment methedésib
on the fact the n-th degree time derivative of the signal can b
represented in the following way:

s(8) = (R (0)s(0) "™ @

In practice a window functionw(¢) is used in order to time limit
and smooth the frame under investigation.

Independently, using the integratiger partes Leibniz integra-
tion rule and the restrictiom(—%) = w(%£) = 0 (required by
the generalized reassignment), the following useful eégyuain

be produced (for complete derivation see [18][19][20]):

e ®)
The complementing equality can be deduced from 4 by appling
dot product with the kernel on both sides of the first time\deri
tive:

< s, w¥ >= —(< s, wV’" >+ < 5,0 T >)

0 0
— < s,w¥ >=< —s,w¥ >=

ot ot

M (6)
< R's,w¥ >= Z T < hips, w¥ >=

m=1

M
Z Tm < hips,w¥ >= —(< s, wV" >+ < 5,0 ¥ >). (7)
m=1
To computeM — 1 non-stationary parameters, another — 2
time derivatives are required. Its computation can effityebe
performed by the followingpyramid-likescheme:

< sh,Ygw >
v N\
— < sh,Ugw > — < sh,¥guw' >
N N\ N N ®)

< sh, Ulw > +2 < sh, Vgw' > + < sh, ¥Vguw” >,

whereh(t) stands either foh(t) = 1 to calculate right hand side
or h(t) = hl,(t),m = 1 : M — 1 to calculate the left hand side
of the equation 7.

4. POLYNOMIAL-PHASE FOURIER KERNEL

In [18] it was demonstrated that the estimation accuracynds i
versely proportional to the kernel-to-signal correlatidrherefor
maximising the correlation should improve the accuracysinde
the signal is modeled as a non-stationary sinusoid, a natuwéae
for kernel function would be the same as the model. The prxbos
kernel function follows:

Wa(t) = e, ©9)

whereG(t) is a purely imaginary polynomial of order Mz (¢) =

j fof:l gmt™. Note thatgo = 0, as any non-zero value would
introduce bias in the phase estimation. From scheme 8 ie&r cl
that an(M — 1)-th degree time derivative of the kernel function
is required. In the specific case of the polynomial-phaseiEpu
kernel the following scheme similar to 8 can be used in order t
calculate the kernel function time derivatives:

Ve =G'Vq
YN
UG =G"ve + G
SN N (10)
UE =G"Ve 4+ 2G"Vg + GV,

The main advantage of such algorithm is less restrictedskethius

the selection of..,, (t) functions can therefore be matched with an
appropriate kernel functions to maximize correlation avalcac-
curacy deterioration in the case of extreme parameter salue

The algorithm should initially be invoked witi(t) = jwt, where

w is a frequency of the magnitude spectrum peak. This yields an
initial estimate of the polynomiaR(t): R(t) = M #,t™.

This initial run of the algorithm is identical to generalizeassign-
ment as described in [19]. In the second iteration the keftmed-

tion can be adapted to the signal by sett{ify) = jS(R(t)) =

j Z%:1 qutm.

From 8 and 10 the following linear system of equations can be
directly deduced:

<s,VYgw > <s5,Vgw >+ <s,¥guw >
<st,ow > <st,Vew >+ < st,Vgw >
<st?, Vaw > < st?, Vew >+ < st?, Vgw' >

(11)
Of a particular interest is the term written in bold, st, U cw >.
When the kernell ¢ () closely matches the target sign4t) then
the product¥ ¢ (¢t)s(¢) ~ 1 and the following can be deduced:

< st,Ugw >= /ts(t)\ilg(t)w(t)dtz /tw(t)dt. (12)

For any symmetric window functiow(t) andt € [-Z,Z] (T
being its essential time support) the above expressiorrysclese

to 0. Such cases occur when the signal exhibits low or no am-
plitude modulation causing the linear system of equatidosec

to singular, rendering the algorithm essentially useleSsch a
drawback can simply be avoided by artificially inducing scane
plitude modulation into the signal and then subtractingatrf the
estimate obtained. A very small amount of the amplitude rteedu
tion of magnitude aroundi0 ~'° is sufficient to stabilize the system
and significantly improve the estimates.
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5. RESULTS

The tests conducted were identical to those in [19]. Theimetr
used was the signal to residual ratio (SRR):

>, hist

SRR = S his =57 (13)
wheres;, i = 1..N are samples of the original sign#(t) (with-
out noise)3;,7 = 1..N are the samples of the estimated signal and
hi,i = 1..N are samples of the weighting function - Hanning win-
dow. A model degree of 3 was chosen and the Harmingction
of length 1024 was used as the window function. The test Egna
analyzed were real sinusoids sampled at 44100Hz. The ptene
of the test sinusoids were varied in the following way: 10ggha
values in the [0,0.45] interval, 10 linear log-amplitude modula-
tion values in the [0,0.0045] /frame interval (roughly @sponds
to the [0,200] /s interval), 10 frequency values in the [255,9]
bins interval (roughly corresponds to the [10.982, 11.B2) Jand
10 linear frequency modulation values in the [0,27] birastie in-
terval (roughly corresponds to the [0,16.000] Hz/s). Tls¢stevere
conducted in 3 separate groups for the original reassigh(fen
beledGEN RM) and the one using the polynomial-phase kernel
(labeledGEN RM PPT). In group 1 (figure 1), the linear fre-
guency modulation was set to 0 while the log-amplitude madul
tion was varied (x-axis) in the mentioned range. In groupduie
2) the log-amplitude modulation was set to 0 while the linfear
guency modulation was varied (x-axis) in the mentioned earg
group 3 (figure 3), both the FM and log-AM were jointly varied (
axis) indouble the range compared to the groups 1 and 2. In the
first part (labelecSNR: Inf dB in the plots) no noise was added to
the signal and in the second part (labeB8dR: 0dB in the plots) a
Gaussian white noise of the energy equal to that of the cligaals
was added. The range of the log-AM/FM for group 3 was doubled
intentionally to examine properties of both algorithms ighty
modulated cases. The frequency range was selected arolfiofl ha
Nyquist frequency in order to avoid self-interference.
As predicted, in the noiseless case the proposed kernelygdea
minishes the effect of the frequency modulation on the patam
estimation accuracy. For FM only case (figure 2), the kerdapa
tation procedure leaves the accuracy completely unatfeeten
for very high FM values. On the other hand, the presence of AM
does affect the accuracy slightly, as can be seen in the idurad
3, yet the improvement over the original method is significam
the SNR: 0dB case, the performance is almost indistinguishable
to the one of the original generalized reassignment.

6. CONCLUSION AND FUTURE WORK

In this paper, an improvement of the generalized reassighme
method was described. The main idea of the improvement is the
use of an adaptive polynomial-phase Fourier kernel in garijan
with the general reassignment algorithm. The algorithmiteth

a significant improvement in accuracy compared to the aaigin
method in the case of clean signal, as the effect of frequerazy
ulation is minimized by the adaptive kernel. For a statigrsnu-
soid, the accuracy is comparable to the original method elvew
an increase in accuracy is observed in the case of non+siayio
ones, reaching almost 50dB in the most modulated case (@oup
The method does not improve the analysis of the originalrélya

if 0 dB Gaussian white noise added. The reason for this isehe k
nel adaptation works in the opposite way to which is desifiéts
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Figure 1:Group 1 (AM only)
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Figure 3:Group 3 (AM and FM)

is because it uses the estimate of the original method, whicbt
precise enough at such a high noise level, therefore theiartioe
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input parameters corrupts the final estimate.

In group 3, the most modulated case corresponds to 32.080Hz/
change. This may seem excessive for analyzing real worldemus

related signals. However, a higher order modulation patyiats
could exhibit even larger linear FM values, as its contidoutan

be canceled or balanced out by the second or higher ordes.term
So as the kernel is adapted to the sinusoid in question, ggen

concentration of its representation in the transform donmin-
creased: the bandwidth of the non-stationary sinusoiddsaed.
This is a desirable property in the case of multicomponegrtas,

where side-lobes of a sinusoid cause significant interéerémthe

neighboring partials.
All the measured tests were conducted with Hanhingndow,
which would substantially increase interference in a maltipo-

nent scenario, as its main lobe is wider than that of the Hanni
window. An attempt to construct ah® window function with a

lower bandwidth should receive some attention, allowingran
provement of the method using a model degree of up to 4.

As already mentioned in the previous section, the freqesnaen-
der study were varied around half of the Nyquist, therefbessig-
nal self-interference was minimized. Since the nature efirtiter-

partial interference does not resemble that of a Gaussiate wh

noise, the results presented here cannot be generalizeahtdtia

component cases, thus an assessment of the method’s aciturac
such cases should be conducted.

The algorithm was designed in such a way that it can be itegti
ran as many times as desired, which raises a question of tirerco
gence in a noisy case. Preliminary tests suggest, that &reion
converges and improves the result as long as the initiahagtis
don'’t deviate too much from the true values. Further expenis
are required to further define the region of convergence.
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