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ABSTRACT

An efficient and perfectly invertible signal transform fadtg a
constant-Q frequency resolution is presented. The prapape
proach is based on the idea of the recently introduced niimsta
ary Gabor frames. Exploiting the properties of the operatore-
sponding to a family of analysis atoms, this approach ovess
the problems of the classical implementations of consfatrans-
forms, in particular, computational intensity and lackrofertibil-
ity. Perfect reconstruction is guaranteed by using an easgltu-
late dual system in the synthesis step and computation $itkegt
low by applying FFT-based processing. The proposed method i
applied to real-life signals and evaluated in comparisanrelated
approach, recently introduced specifically for audio signa

1. INTRODUCTION

Many traditional signal transforms impose a regular sgaoirire-
guency bins. In particular, Fourier transform based methsacth
as theshort-time Fourier transforn{(STFT) lead to a frequency
resolution that does not depend on frequency, but is conetan
the whole frequency range. In contrast, the constant-Csfioam
(CQT), originally introduced by J. Brown [1, 2], featuresre-f
guency resolution dependent on the center frequencie® ofiti
dows used for each bin and the center frequencies of thednegu
bins are not linearly, but geometrically spaced. In thissseithe
principal idea of CQT is reminiscent of wavelet transforicsm-
pare [3]: the Q-factor, i.e. the ratio of the center frequyetw
bandwidth is constant over all bins and thus the frequensgiue
tion is better for low frequencies whereas time resolutioprioves
with increasing frequency. However, the transform progdasehe
original paper [1] is not invertible and does not rely on aogaept
of (orthonormal) bases. In fact, the number of bins used piave
is much higher than most traditional wavelet techniqueslaval:
low for. Furthermore, the computational efficiency of thegioral
transform and its improved versions, [4], may be insuffitien

CQTs rely on perception-based considerations, which is one

of the reasons for their importance in the processing ofdpaad
music signals. In these fields, the lack of invertibility odsting
CQTs has become an important issue: for important appicsiti
such as masking of certain signal components or transposifi

This work was supported by the Vienna Science, Research ectd T
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Science Fund (FWF) projects LOCATIF(T384-N13) and SISBER-
N13).

an entire signal or, again, some isolated signal componémts
unbiased reconstruction from analysis coefficients isiafudn
interesting and promising approach to music processing @QT
was recently suggested in [5], also cf. references therein.

In the present contribution, we take a different point ofavie
and consider both the implementation and inversion of ateohs
Q transform in the context of theonstationary Gabor transform
(NSGT). Classical Gabor transform [6, 7] may be understaod a
a sampled STFT or sliding window transform. The generabpat
to NSGT was introduced in [8, 9] and allows for windows with
flexible, adaptive bandwidths. Figure 1 shows examples et-sp
trograms of the same signal obtained from the classical kaimp
STFT (Gabor transform) and the proposeshstant-Q nonstation-
ary Gabor transform(CQ-NSGT).

If the analysis windows are chosen appropriately, bothyanal
sis and reconstruction is realized efficiently with FFTdzhmeth-
ods. The original motivation for the introduction of NSGT sva
the desire to adapt both window size and sampling densitynie, t
in order to resolve transient signal components more atalyra
Here, we apply the same idea in frequency: we use windows with
adaptive, compact bandwidth and choose the time-shiftpeters
dependent on the bandwidth of each window. The construciion
the atoms, i.e. the shifted versions of the basic windowtfans
used in the transform, is done directly in the frequency doma
see Sections 2.2 and 3.1. This approach allows for efficnepls-
mentation using the FFT, as explained in Section 2.3. Tooéxpl
the efficiency of FFT, the signal of interest must be tramafent
into the frequency domain. For long real-life signals (esignals
longer thanl0 seconds at a sampling rate 4f100Hz), process-
ing is therefore done on consecutive time-slices, whichniataral
processing step in real-time signal analysi§he resolution of the
proposed CQ-NSGT is identical to that of the CQT and perfect r
construction is assured by relying on concepts from framerth
which will be discussed next.

2. NONSTATIONARY GABOR FRAMES

Frames were first mentioned in [10], also see [11, 12]. Fraanes
a generalization of (orthonormal) bases and allow for reiduay

and thus for much more flexibility in design of the signal espr
sentation. Thus, frames may be tailored to a specific agjgita

1if the time-slicing is done using smooth windows with a judlitsly
chosen amount of zero-padding, no undesired artifacts wautelification
of the analysis coefficients have to be expected. Mathealat&tails and
error estimates will be given elsewhere.
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Figure 1: Representations of a musical piece for violin aiati@
using the classical sampled STFT (Gabor transform) and @e C
NSGT, respectively. A Hann window of length 1024 samplesiwit
a hop-size of 512 samples was used for the Gabor transforite wh
a minimum frequency ofmin = 50 Hz at 48 bins per octave was
used for the CQ-NSGT.

or certain requirements such as a constant-Q frequenclutieso
Loosely speaking, we wish to expand, or represent, a givgn si
nal of interest as a linear combination of some building kdoor
atomsep,, i, with (n, k) € Z x Z, which are the members of our

frame:
f = Z Cn,kPn,k
n,k

for some coefficients,, ... The double indexe&, k) allude to the
fact that each atom has a certain location and concentriatiome

@

and frequency, compare Figure 2. Frame theory now allows us t

determine, under which conditions an expansion (1) is ptessi
and how coefficients leading to stable, perfect reconstuchay
be determined.

We introduce the concept of frames for a Hilbert spateln
a continuous setting, one may think &f = LQ(]R), whereas we

will chooseH = CT, L being the signal length, for describing
the implementation.

2.1. Frames

Consider a collection of atoms,, , € H with (n,k) € Z x Z.
Here,n may be thought of as a time index ahds an index related
to frequency. We then define the frame oper&dy

Sf =Y (fink)Pnk;

n,k

for all f € #H. Note that, if the set of function§p,, 1, (n, k) €
Z x Z} is an orthonormal basis, théhis the identity operator. If
S is invertible on?, then the collectioq{ vy 1}, (n, k) € Z X Z
is a frame. In this case, we may defindual frameby

Yn,k = Sil@n,lﬁ

Then, reconstruction from the coefficierts, = (f, ¢n,k) iS pOSs-
sible:

F=ST18F =) (f,eni)S Pnk = D CriVnike
n,k n,k

2.2. The Case of Painless Nonstationarity

In a general setting, the inversion of the operaiqroses a prob-
lem in numerical realization of frame analysis. Howevemv#s
shown in [13], that under certain conditions, usually fiéfil in
practical applicationsS is diagonal. This situation opainless
non-orthogonal expansionsan now be generalized to allowing
for adaptive resolution. Adaptive time-resolution wasalibed
in [8, 9], and here we turn tadaptivity in frequencyn the same
manner.

In the sequel, leT', denote a time-shift by, M., denote a
frequency shift (or modulation) by and Ff = f the Fourier
transform of f. Let px, k € Z, be band-limited windows, well-
localized in time, whose Fourier transformis = o5 are cen-
tered around possibly irregularly (or, e.g. geometrigafigaced
frequency pointsy.

Then, we choose frequency dependent time-shift parameters

(hop-sizes)y, as follows: if the support opy, is contained in an
interval of length|Z|, then we choose,, such that

ar < — forall k.

| Zs |

In other words, the time-sampling points have to be chosesale
enough to guarantee this condition. Finally, we obtain theng
members by setting

Pn,k = Tnak@k-

Under these conditions on the windows and the hop-sizes,
the frame operator is diagonal in the Fourier domain: sibgeini-
tarity of the Fourier transform [14] and the Walnut repreagon
of the frame operator [15], we have

(S =D 1f Toayer)* = D> 1, Moa, &)
n,k n,k

(X 2@EL ),

k
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the frame operator assumes the following form:

sf=r" (Z a—i@lgf).

k

&)

See [16, 13, 17] for detailed proofs of the diagonality offitsene
operator in the described setting. From (2), it follows inaiagely
that the frame operator is invertible whenever there egtmum-
bers numberst and B such that the inequalities
1 -
0<A<Y —|@P<B<o 3)
v Ok

hold almost everywhere. In this case, the dual frame is giyen
the elements

1~ 1,
Yn,k = r:[‘na,c |:-F ! ((pk/ Z a_l|§0[|2>:| .
!

2.3. Realization in the Frequency domain

Based on the implementation of nonstationary Gabor frarees p
forming adaptivity in the time domain [9], the above framekvo
permits a fast realization by considering the Fourier tiams of
the input signal. The transform coefficients;c= (f, vn,x) take
the form

Cn,k = <f7 Tnak¢k> = <f7 M—"ak@>7

and can be calculated, for ea¢h with an inverse FFT (IFFT)
of length determined by the support ¢f. = pg. Similarly,
reconstruction is realized by applying the dual windows =
o/ > ai,|@|2 in a simple overlap-add process:

F=> (F Mona, G0)M o %o

n,k

4)

3. THE CQ-NSGT PARAMETERS: WINDOWS AND
LATTICES

We will now describe in detail the parameters involved in diee
sign of a nonstationary Gabor transform with constant-Quency
resolution.

The CQT in [1] depends on the following parameters: the win-
dow functions, the number of frequency bins per octave, tim&-m

mum and maximum frequencies. These parameters deterngne th

Q-factor, which is, as mentioned before, the ratio of thetexen
frequency to the bandwidth. Here, the Q-factor is desiredeto
constant for all the relevant bins.

Let B and&min denote the number of frequency bins per oc-
tave and the desired minimum frequency, respectively. Fer t
proposed CQ-NSGT, we consider band-limited window fumgio
or € CY k= 1,..., K, with center frequencieg, (in Hz) sat-
isfying & = §min2%, as in the classical CQT. The maximum
frequencyémax is restricted to be less than the Nyquist frequency
&5 /2, whereé, denotes the sampling frequency. Further, we re-
quire the existence of an indéxX such thatmax < &x < &5/2.

We may setX’ = [Blog,(&max/Emin) + 1], with [2] denoting the
smallest integer greater than or equatto

is freedom to use additional center frequencies, at nésdgigiom-
putational cost, to guarantee perfect reconstruction.

In our current implementation, tailored to (real) audionsits,
we consider some symmetry in the frequency domain, and take t
following values for the frequency-centefs:

0, k=20
& = fminQ%, k=1,...,K

& —bokyok, K=K+2,...,2K+1.

The bandwidth;, (the support of the window in frequency)
of ¢y is set to beQdy, = k1 — &p—1, fOrk = 2,... . K — 1,
which leads to a constant Q-factQr = (2% — 2‘%). To obtain
the same Q-factor on the relevant frequency bisandQx are
therefore set to b&:/Q andéx/Q, respectively. Finally, we let
Qo = 261 = 26min @andQ k11 = & — 26k. In summary, we have
the following values fofy:

2&min, k=0

Qp — &:/Q, k=1,...,K

=
€ — 2%k, k=K+1
€2K+27k/Q7 k:K+2772K+1

3.1. Window Choice: Satisfying the Frame Conditions

We now give the details on the windows, to be used such that
(3) and hence the frame property is fulfilled.

We use a Hann windovi that is zero outsidé—1/2,1/2],
i.e. astandard Hann window centered atith support of length
1. We obtain the atoms;, by translation and dilation df: 7% [j] =
h((Gés/L — &) /%), k=1,...,K, K +2,...,2K +1,j =
0...,L—1.

For the windows corresponding to thend Nyquist frequen-
cies, we use a plateau-like functigne.g. a Tukey window. We
obtain o and prc41 by setting@ilj] = ((j€«/L — &)/),
k=0,K+1.

Now, for the collection of time-shifts of the constructedwi
dowsay, we requirea;, < &/ in order to satisfy (3). The,
are then given by their Fourier transforms as:

Fok =M o, @i n=0,...,[L] -1

Figure 2 illustrates the time-frequency sampling grid & slet-up
with the sampling points taken geometrically over freqyeacd
linearly over time. Given these parameters, the coeffisiehthe
CQ-NSGT are of the forme, . = (f, oni) = (f,@nk), f €
CE. We note that the time-shift parameters can also be fixed to
have the same value = min,{ax} and the coefficients obtained
from the CQ-NSGT can be put in a matrix of sizé] x 2(K +1).
From the given support condition, the systéiy }, has an

overlap factor of around/2. This implies that for the case where
ar = &/, the redundancy of the system is approximagely

By construction, the sund 2! L |Z5|% is finite and

m=0 ay

Note that in the CQT, since the frequency spacing in the CQT bounded away from 0. From Sections 2.2 and 2.3, the frama&eper

is geometric, no O-frequency is present and some high frexyue
content might not be represented. Inthe CQ-NSGT, howdveret

tor is invertible and perfect reconstruction of the sigsadibtained
from the coefficients, , by applying (4).
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Figure 2: Exemplary sampling grid of the time-frequencyngla
for a nonstationary Gabor system with resolution evolvingro
frequency.

signal length CQT mean time CQ-NSGT mean timg

L =+ variance (in seconds) = variance (in seconds
262144 2.41 £0.03 0.64 +0.00
280789 2.42 +0.06 0.68 + 0.06
579889 3.09 £ 0.06 1.28 £ 0.06
6005692 3.13£0.04 1.75 £ 0.04
805686 3.57 £0.09 1.51 £0.08

Table 1: Comparison of computation time between CQTs and CQ-
NSGTs for signals of various lengths over 50 iterations.aRes-
ters for all transforms wer8 = 48 and&min = 50 Hz.

4. SIMULATIONS

We now present some experiments comparing the original CQT
with the CQ-NSGT in terms of reconstruction error, compatat
time and (visual) representation of sound signals.

Technical framework: All simulations were done in MATLAB
R2009b on a 2 Gigahertz Intel Core 2 Duo machine with 2 Giga-
bytes of RAM running Kubuntu 9.04. The CQTs were computed
using the code published with [5], available for free doverlat
http://wwv. el ec. grmul . ac. uk/ peopl e/ anssi k/ cqt/.
The CQ-NSGT algorithms are availablefatt p: / / uni vi e.

ac. at/ nonstatgab/cqt/.

K-—1
B y

For all experimentsémax is taken to beSx = &min2
whereK is the largest integer such thzgx < &s.

4.1. Reconstruction Errors

The theoretical results, stating that the CQ-NSGT allowspfer-
fect reconstruction, are confirmed by our experiments. Fertést
signals and various transform parameters, the relativenstaic-

2Since the proposed method relies on an initial FFT of ledigth prime
valued signal length may give a longer computation time.

Bins per CQT mean time CQ-NSGT mean time
octaveB | = variance (in seconds) = variance (in seconds
12 0.95 £ 0.01 0.36 4+ 0.00
24 1.44 4+ 0.02 0.44 £ 0.00
48 2.42 £0.03 0.65 £ 0.00
96 4.50 +0.23 1.09 +0.15

Table 2: Comparison of computation time between CQTs and CQ-
NSGTs of the Glockenspiel signals, varying the number of pir
octave. Values were obtained over 50 iterations. The minimu
frequencyémin Was chosen &0 Hz.

S50 1] = fredi]l?

e J =L TUIP

was calculated. Witlgmin betweent0 Hz and130 Hz andB from

12 to 192, the largest reconstruction error of the CQ-NSGT algo-
rithm was slightly smaller thai.6 - 10~ ', perfect reconstruction

up to numerical precision. For comparison, it was shown in [5
that a CQT with reasonable amounts of redundancy and bins per
octave can be inverted with a relative errorl®f>. This might

not be enough for high-quality applications.

tion error

4.2. Computation Time and Computational Complexity

The required time for construction of the transform atomd an
computation of the corresponding coefficients was measiaed
audio signals of roughly 6 to 18 seconds length, at a sampditeg
of 44.1 kHz. Each experiment was repeated 50 times, the results
are listed in Table 1. We note that for all signals, the CQ-N$&
faster than the CQT implementation proposed in [5] by a abnsi
erable factor.

Our approach is still of complexit) (L log L), though, and
the advantage over the CQT decreases for longer signalsh Eac
frequency channel’s time samples are acquired by meansref sa
pled IFFT from the Fourier transform of the input signal, tiul
plied with the corresponding window. Therefore, a preliann
full length FFT is necessary.

More explicitly, we assumé;, to have support of lengtiv,
and we denote bw; the corresponding IFFT length. L& =
maxy { Ny}, i.e. the maximum IFFT-length, and we ha¥é, <
N < N, since we only consider the painless case. Consequently,
the number of operations is as follows:

1. FFT:O (L - log (L)).
2. Windowing: M, operations for thé-th window.
3. IFFT:O (N - log (Ni)) for the k-th window.

The number of frequency chann@& + 2 is independent of
L, since it is determined directly from the transform paramet
Thus, M}, and N, are L-dependent and the computational com-
plexity of the discrete CQ-NSGT i9(Llog L).

In applications, the dual windows are constructed direatly
the frequency side and the painless case constructiorvesahul-
tiplication of the window functions by the inverse of a diagb
matrix, resulting inO(2 2% M) = O(L) operations. Fi-
nally, the inverse CQ-NSGT has numerical complexity

DAFx-96



Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

O (L -log (L)), since it entails computing for the FFT of each co- Glockenspiel - dB-scaled CQ-NSGT
efficient vector, multiplying with the corresponding duahdows 22050 ‘ ‘ ‘ ‘ ‘
and, after evaluating the sum, computing a lengtiFFT. 12800} r ]
We note that linear computation time may be achieved by pro- T
cessing the signal in a suitable piecewise manner. Someiexpe I Sl S
ments on that matter have been conducted, but the detaitgsof t - T
procedure exceed the scope of this paper and are intendes to l:I 32000 — Fi |
part of a future contribution. N
In a second experiment, CQT and CQ-NSGT coefficients of 1
the shortest sample, a Glockenspiel signal, were compatesf-
eral numbers of bins per octave. We note that the complexity o
the algorithm for the CQ-NSGT is linear 8. The results, listed
in Table 2, illustrate that the advantage of the CQ-NSGTritlym
increases for large numbers of bins.

frequency (

8001 1

4.3. Visual Representation of Sound Signals 2000 1 2 3 21 5

time (seconds)

The spectral representation provided by CQT has severaabtks
properties, e.g. the logarithmic frequency scale resatwesical
intervals in a similar way, independent of absolute fregig 22050
These properties are still present in the CQ-NSGT, in fastyii

sual representation is practically identical to that ofslaal CQT 12800
as illustrated by Figure 3 for the exemplary case of the Glock
enspiel signal. Figure 4 shows the CQ-NSGT of two additional
music signals, further illustrating that even highly compsignals
are nicely resolved by the proposed transform, similar tdCQ

Glockenspiel — dB-scaled CQT

|
1

177

3200

5. EXPERIMENTSON APPLICATIONS

frequency (Hz)

Our experiments show applications of the CQ-NSGT in musical 8001 8
contexts, where the property of a logarithmic frequencyeseEn-
ders the method often superior to the traditional STFT. €orr
sponding sound examples can be founchat p: / / uni vi e.

ac. at/ nonst at gab/ cqt /. 200 ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5
time (seconds)

5.1. Transposition

A useful property of continuous constant-Q decompositierine Figure 3: Representations of the Glockenspiel signal utieg
fact that the transposition of a harmonic structure, likeogerin- CQ-NSGT and the original CQT. The transform parameters were
cluding overtones, corresponds to a simple translatioh@ldg- B = 48 and&min = 200 Hz.

arithmically scaled spectrum. Approximately, this is dlse case

for the finite, discrete CQ-NSGT. In this experiment, we $ran

posed a piano chord simply by shifting the inner frequenesbi  the Glockenspiel signal depicted in Figure 3. The mask was cr
accordingly. By inner frequency bins, we refer to all bindhwi  ated as a gray-scale bitmap using an ordinary image matiipula
constant Q-factor. This excludes thdrequency and Nyquist fre-  program and then resampled in order to conform to the ireggul
quency bins. The onset portion of the signal has been dampeditime-frequency grid of the CQ-NSGT. Figure 6 shows the mask
since inharmonic components, such as transients, produtel@ spectrogram, along with the spectrograms of the synthesire-
artifacts when handled in this way. In Figure 5, we show spect  cessed signal and remainder.

grams of the original and modified chords, shiftedbyins. This

corresponds to an upwards transpositiorb sgmitones.
6. SUMMARY AND PERSPECTIVES

52. Masking We presented a constant-Q transform, based on nonstatiGaar

In the masking experiment, we show that the perfect recactin bor frames, that is computationally efficient and allowsgderfect
property of CQ-NSGT can be used to cut out components from areconstruction. The described framework can easily betadap
signal by directly modifying the time-frequency coefficienThe to other perceptive frequency scales (e.g. mel or Bark ptgle
advantage of considerably higher spectral resolution atfte- choosing appropriate dictionaries.

guencies (with a chosen application-specific temporaluéso at The possibility of overcoming the difficulties that stemrfro
higher frequencies) compared to the STFT, makes the CQ-NSGT dependence of the proposed transform on the signal length, e
very powerful, novel tool for masking or isolating time-ugency by piecewise processing, is currently under investigafidns will
components of musical signals. Our example shows in Figure 6 further reduce computational effort and enable the use ofgles

a mask for extracting — or inversely, suppressing — a note fro family of frame elements for signals of arbitrary length.
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Fugue — dB-scaled CQ-NSGT

Piano chord — dB-scaled CQ-NSGT
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Figure 5: Piano chord signal and upwards transposition Bnti-s
tones, corresponding to a circular shift of the inner bin&yThe
transform parameters wefg = 48 and&min = 100 Hz.

Figure 4: Representations of a pipe organ and piano soladeco
ings, respectively, using the CQ-NSGT. The transform patars
were B = 48 andémin = 50 Hz.
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Figure 6: Note extraction from the Glockenspiel signal byskaa
ing. The CQ-NSGT coefficients of the Glockenspiel signalever
weighted with the mask shown on top. The remaining signal and
extracted component are depicted in the middle and bottepere
tively. The transform parameters weBe= 24 andémin = 50 Hz.
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