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ABSTRACT

An efficient and perfectly invertible signal transform featuring a
constant-Q frequency resolution is presented. The proposed ap-
proach is based on the idea of the recently introduced nonstation-
ary Gabor frames. Exploiting the properties of the operatorcorre-
sponding to a family of analysis atoms, this approach overcomes
the problems of the classical implementations of constant-Q trans-
forms, in particular, computational intensity and lack of invertibil-
ity. Perfect reconstruction is guaranteed by using an easy to calcu-
late dual system in the synthesis step and computation time is kept
low by applying FFT-based processing. The proposed method is
applied to real-life signals and evaluated in comparison toa related
approach, recently introduced specifically for audio signals.

1. INTRODUCTION

Many traditional signal transforms impose a regular spacing of fre-
quency bins. In particular, Fourier transform based methods such
as theshort-time Fourier transform(STFT) lead to a frequency
resolution that does not depend on frequency, but is constant over
the whole frequency range. In contrast, the constant-Q transform
(CQT), originally introduced by J. Brown [1, 2], features a fre-
quency resolution dependent on the center frequencies of the win-
dows used for each bin and the center frequencies of the frequency
bins are not linearly, but geometrically spaced. In this sense, the
principal idea of CQT is reminiscent of wavelet transforms,com-
pare [3]: the Q-factor, i.e. the ratio of the center frequency to
bandwidth is constant over all bins and thus the frequency resolu-
tion is better for low frequencies whereas time resolution improves
with increasing frequency. However, the transform proposed in the
original paper [1] is not invertible and does not rely on any concept
of (orthonormal) bases. In fact, the number of bins used per octave
is much higher than most traditional wavelet techniques would al-
low for. Furthermore, the computational efficiency of the original
transform and its improved versions, [4], may be insufficient.

CQTs rely on perception-based considerations, which is one
of the reasons for their importance in the processing of speech and
music signals. In these fields, the lack of invertibility of existing
CQTs has become an important issue: for important applications
such as masking of certain signal components or transposition of
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an entire signal or, again, some isolated signal components, the
unbiased reconstruction from analysis coefficients is crucial. An
interesting and promising approach to music processing with CQT
was recently suggested in [5], also cf. references therein.

In the present contribution, we take a different point of view
and consider both the implementation and inversion of a constant-
Q transform in the context of thenonstationary Gabor transform
(NSGT). Classical Gabor transform [6, 7] may be understood as
a sampled STFT or sliding window transform. The generalization
to NSGT was introduced in [8, 9] and allows for windows with
flexible, adaptive bandwidths. Figure 1 shows examples of spec-
trograms of the same signal obtained from the classical sampled
STFT (Gabor transform) and the proposedconstant-Q nonstation-
ary Gabor transform(CQ-NSGT).

If the analysis windows are chosen appropriately, both analy-
sis and reconstruction is realized efficiently with FFT-based meth-
ods. The original motivation for the introduction of NSGT was
the desire to adapt both window size and sampling density in time,
in order to resolve transient signal components more accurately.
Here, we apply the same idea in frequency: we use windows with
adaptive, compact bandwidth and choose the time-shift parameters
dependent on the bandwidth of each window. The constructionof
the atoms, i.e. the shifted versions of the basic window functions
used in the transform, is done directly in the frequency domain,
see Sections 2.2 and 3.1. This approach allows for efficient imple-
mentation using the FFT, as explained in Section 2.3. To exploit
the efficiency of FFT, the signal of interest must be transformed
into the frequency domain. For long real-life signals (e.g.signals
longer than10 seconds at a sampling rate of44100Hz), process-
ing is therefore done on consecutive time-slices, which is anatural
processing step in real-time signal analysis1. The resolution of the
proposed CQ-NSGT is identical to that of the CQT and perfect re-
construction is assured by relying on concepts from frame theory,
which will be discussed next.

2. NONSTATIONARY GABOR FRAMES

Frames were first mentioned in [10], also see [11, 12]. Framesare
a generalization of (orthonormal) bases and allow for redundancy
and thus for much more flexibility in design of the signal repre-
sentation. Thus, frames may be tailored to a specific application

1If the time-slicing is done using smooth windows with a judiciously
chosen amount of zero-padding, no undesired artifacts after modification
of the analysis coefficients have to be expected. Mathematical details and
error estimates will be given elsewhere.
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Figure 1: Representations of a musical piece for violin and piano
using the classical sampled STFT (Gabor transform) and the CQ-
NSGT, respectively. A Hann window of length 1024 samples with
a hop-size of 512 samples was used for the Gabor transform, while
a minimum frequency ofξmin = 50 Hz at 48 bins per octave was
used for the CQ-NSGT.

or certain requirements such as a constant-Q frequency resolution.
Loosely speaking, we wish to expand, or represent, a given sig-
nal of interest as a linear combination of some building blocks or
atomsϕn,k, with (n, k) ∈ Z × Z, which are the members of our
frame:

f =
∑

n,k

cn,kϕn,k (1)

for some coefficientscn,k. The double indexes(n, k) allude to the
fact that each atom has a certain location and concentrationin time
and frequency, compare Figure 2. Frame theory now allows us to
determine, under which conditions an expansion (1) is possible
and how coefficients leading to stable, perfect reconstruction may
be determined.

We introduce the concept of frames for a Hilbert spaceH. In
a continuous setting, one may think ofH = L2(R), whereas we

will chooseH = CL, L being the signal length, for describing
the implementation.

2.1. Frames

Consider a collection of atomsϕn,k ∈ H with (n, k) ∈ Z × Z.
Here,nmay be thought of as a time index andk as an index related
to frequency. We then define the frame operatorS by

Sf =
∑

n,k

〈f, ϕn,k〉ϕn,k,

for all f ∈ H. Note that, if the set of functions{ϕn,k, (n, k) ∈
Z × Z} is an orthonormal basis, thenS is the identity operator. If
S is invertible onH, then the collection{ϕn,k}, (n, k) ∈ Z × Z
is a frame. In this case, we may define adual frameby

γn,k = S−1ϕn,k.

Then, reconstruction from the coefficientscn,k = 〈f, ϕn,k〉 is pos-
sible:

f = S−1Sf =
∑

n,k

〈f, ϕn,k〉S−1ϕn,k =
∑

n,k

cn,kγn,k.

2.2. The Case of Painless Nonstationarity

In a general setting, the inversion of the operatorS poses a prob-
lem in numerical realization of frame analysis. However, itwas
shown in [13], that under certain conditions, usually fulfilled in
practical applications,S is diagonal. This situation ofpainless
non-orthogonal expansionscan now be generalized to allowing
for adaptive resolution. Adaptive time-resolution was described
in [8, 9], and here we turn toadaptivity in frequencyin the same
manner.

In the sequel, letTx denote a time-shift byx, Mω denote a
frequency shift (or modulation) byω and Ff = f̂ the Fourier
transform off . Let ϕk, k ∈ Z, be band-limited windows, well-
localized in time, whose Fourier transformsψk = ϕ̂k are cen-
tered around possibly irregularly (or, e.g. geometrically) spaced
frequency pointsξk.

Then, we choose frequency dependent time-shift parameters
(hop-sizes)ak as follows: if the support of̂ϕk is contained in an
interval of length|Ik|, then we chooseak such that

ak ≤ 1

|Ik| for all k.

In other words, the time-sampling points have to be chosen dense
enough to guarantee this condition. Finally, we obtain the frame
members by setting

ϕn,k = Tnakϕk.

Under these conditions on the windowsϕk and the hop-sizesak,
the frame operator is diagonal in the Fourier domain: since,by uni-
tarity of the Fourier transform [14] and the Walnut representation
of the frame operator [15], we have

〈Sf, f〉 =
∑

n,k

|〈f,Tnakϕk〉|2 =
∑

n,k

|〈f̂ ,M−nak ϕ̂k〉|2

=

〈 ∑

k

1

ak
|ϕ̂k|2f̂ , f̂

〉
,
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the frame operator assumes the following form:

Sf = F−1

( ∑

k

1

ak
|ϕ̂k|2f̂

)
. (2)

See [16, 13, 17] for detailed proofs of the diagonality of theframe
operator in the described setting. From (2), it follows immediately
that the frame operator is invertible whenever there exist real num-
bers numbersA andB such that the inequalities

0 < A ≤
∑

k

1

ak
|ϕ̂k|2 ≤ B < ∞ (3)

hold almost everywhere. In this case, the dual frame is givenby
the elements

γn,k = Tnak

[
F−1

(
ϕ̂k

/ ∑

l

1

al
|ϕ̂l|2

)]
.

2.3. Realization in the Frequency domain

Based on the implementation of nonstationary Gabor frames per-
forming adaptivity in the time domain [9], the above framework
permits a fast realization by considering the Fourier transform of
the input signal. The transform coefficients cn,k = 〈f, ϕn,k〉 take
the form

cn,k = 〈f,Tnakϕk〉 = 〈f̂ ,M−nak ϕ̂k〉,

and can be calculated, for eachk, with an inverse FFT (IFFT)
of length determined by the support ofψk = ϕ̂k. Similarly,
reconstruction is realized by applying the dual windowŝγk =
ϕ̂k

/ ∑
l

1
al

|ϕ̂l|2 in a simple overlap-add process:

f̂ =
∑

n,k

〈f̂ ,M−nak ϕ̂k〉M−nak γ̂k. (4)

3. THE CQ-NSGT PARAMETERS: WINDOWS AND
LATTICES

We will now describe in detail the parameters involved in thede-
sign of a nonstationary Gabor transform with constant-Q frequency
resolution.

The CQT in [1] depends on the following parameters: the win-
dow functions, the number of frequency bins per octave, the mini-
mum and maximum frequencies. These parameters determine the
Q-factor, which is, as mentioned before, the ratio of the center
frequency to the bandwidth. Here, the Q-factor is desired tobe
constant for all the relevant bins.

Let B andξmin denote the number of frequency bins per oc-
tave and the desired minimum frequency, respectively. For the
proposed CQ-NSGT, we consider band-limited window functions
ϕk ∈ CL, k = 1, . . . ,K, with center frequenciesξk (in Hz) sat-

isfying ξk = ξmin2
k−1

B , as in the classical CQT. The maximum
frequencyξmax is restricted to be less than the Nyquist frequency
ξs/2, whereξs denotes the sampling frequency. Further, we re-
quire the existence of an indexK such thatξmax ≤ ξK < ξs/2.
We may setK = ⌈B log2(ξmax/ξmin) + 1⌉, with ⌈z⌉ denoting the
smallest integer greater than or equal toz.

Note that in the CQT, since the frequency spacing in the CQT
is geometric, no 0-frequency is present and some high frequency
content might not be represented. In the CQ-NSGT, however, there

is freedom to use additional center frequencies, at negligible com-
putational cost, to guarantee perfect reconstruction.

In our current implementation, tailored to (real) audio signals,
we consider some symmetry in the frequency domain, and take the
following values for the frequency-centersξk:

ξk =





0, k = 0

ξmin2
k−1

B , k = 1, . . . ,K

ξs/2, k = K + 1

ξs − ξ2K+2−k, k = K + 2, . . . , 2K + 1.

The bandwidthΩk (the support of the window in frequency)
of ϕk is set to beΩk = ξk+1 − ξk−1, for k = 2, . . . ,K − 1,
which leads to a constant Q-factorQ = (2

1
B − 2− 1

B ). To obtain
the same Q-factor on the relevant frequency bins,Ω1 andΩK are
therefore set to beξ1/Q andξK/Q, respectively. Finally, we let
Ω0 = 2ξ1 = 2ξmin andΩK+1 = ξs − 2ξK . In summary, we have
the following values forΩk:

Ωk =





2ξmin, k = 0

ξk/Q, k = 1, . . . ,K

ξs − 2ξK , k = K + 1

ξ2K+2−k/Q, k = K + 2, . . . , 2K + 1.

3.1. Window Choice: Satisfying the Frame Conditions

We now give the details on the windowsϕk to be used such that
(3) and hence the frame property is fulfilled.

We use a Hann windoŵh that is zero outside[−1/2, 1/2],
i.e. a standard Hann window centered at0 with support of length
1. We obtain the atomsϕk by translation and dilation of̂h: ϕ̂k[j] =

ĥ((jξs/L − ξk)/Ωk), k = 1, . . . ,K, K + 2, . . . , 2K + 1, j =
0 . . . , L− 1.

For the windows corresponding to the0 and Nyquist frequen-
cies, we use a plateau-like function̂g, e.g. a Tukey window. We
obtainϕ0 andϕK+1 by settingϕ̂k[j] = ĝ((jξs/L − ξk)/Ωk),
k = 0, K + 1.

Now, for the collection of time-shifts of the constructed win-
dowsak, we requireak ≤ ξs/Ωk in order to satisfy (3). Theϕn,k

are then given by their Fourier transforms as:

ϕ̂n,k = M−nak ϕ̂k, n = 0, . . . , ⌈ L
ak

⌉ − 1.

Figure 2 illustrates the time-frequency sampling grid of the set-up
with the sampling points taken geometrically over frequency and
linearly over time. Given these parameters, the coefficients of the
CQ-NSGT are of the formcn,k = 〈f, ϕn,k〉 = 〈f̂ , ϕ̂n,k〉, f ∈
CL. We note that the time-shift parameters can also be fixed to
have the same valuea = mink{ak} and the coefficients obtained
from the CQ-NSGT can be put in a matrix of size⌈L

a
⌉×2(K+1).

From the given support condition, the system{ϕ̂k}k has an
overlap factor of around1/2. This implies that for the case where
ak = ξs/Ωk, the redundancy of the system is approximately2.

By construction, the sum
∑2K+1

m=0
L
ak

∣∣ϕ̂k

∣∣2 is finite and
bounded away from 0. From Sections 2.2 and 2.3, the frame opera-
tor is invertible and perfect reconstruction of the signal is obtained
from the coefficientscn,k by applying (4).
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Figure 2: Exemplary sampling grid of the time-frequency plane
for a nonstationary Gabor system with resolution evolving over
frequency.

signal length CQT mean time CQ-NSGT mean time
L ± variance (in seconds) ± variance (in seconds)

262144 2.41 ± 0.03 0.64 ± 0.00
280789 2.42 ± 0.06 0.68 ± 0.06
579889 3.09 ± 0.06 1.28 ± 0.06
6005692 3.13 ± 0.04 1.75 ± 0.04
805686 3.57 ± 0.09 1.51 ± 0.08

Table 1: Comparison of computation time between CQTs and CQ-
NSGTs for signals of various lengths over 50 iterations. Parame-
ters for all transforms wereB = 48 andξmin = 50 Hz.

4. SIMULATIONS

We now present some experiments comparing the original CQT
with the CQ-NSGT in terms of reconstruction error, computation
time and (visual) representation of sound signals.

Technical framework: All simulations were done in MATLAB
R2009b on a 2 Gigahertz Intel Core 2 Duo machine with 2 Giga-
bytes of RAM running Kubuntu 9.04. The CQTs were computed
using the code published with [5], available for free download at
http://www.elec.qmul.ac.uk/people/anssik/cqt/.
The CQ-NSGT algorithms are available athttp://univie.
ac.at/nonstatgab/cqt/.

For all experiments,ξmax is taken to beξK = ξmin2
K−1

B ,
whereK is the largest integer such that2ξK < ξs.

4.1. Reconstruction Errors

The theoretical results, stating that the CQ-NSGT allows for per-
fect reconstruction, are confirmed by our experiments. For five test
signals and various transform parameters, the relative reconstruc-

2Since the proposed method relies on an initial FFT of lengthL, a prime
valued signal length may give a longer computation time.

Bins per CQT mean time CQ-NSGT mean time
octaveB ± variance (in seconds) ± variance (in seconds)

12 0.95 ± 0.01 0.36 ± 0.00
24 1.44 ± 0.02 0.44 ± 0.00
48 2.42 ± 0.03 0.65 ± 0.00
96 4.50 ± 0.23 1.09 ± 0.15

Table 2: Comparison of computation time between CQTs and CQ-
NSGTs of the Glockenspiel signals, varying the number of bins per
octave. Values were obtained over 50 iterations. The minimum
frequencyξmin was chosen at50 Hz.

tion error

erec =

√√√√
∑L−1

j=0 |f [j] − frec[j]|2
∑L−1

j=0 |f [j]|2

was calculated. Withξmin between10 Hz and130 Hz andB from
12 to 192, the largest reconstruction error of the CQ-NSGT algo-
rithm was slightly smaller than1.6 · 10−15, perfect reconstruction
up to numerical precision. For comparison, it was shown in [5]
that a CQT with reasonable amounts of redundancy and bins per
octave can be inverted with a relative error of10−3. This might
not be enough for high-quality applications.

4.2. Computation Time and Computational Complexity

The required time for construction of the transform atoms and
computation of the corresponding coefficients was measuredfor
audio signals of roughly 6 to 18 seconds length, at a samplingrate
of 44.1 kHz. Each experiment was repeated 50 times, the results
are listed in Table 1. We note that for all signals, the CQ-NSGT is
faster than the CQT implementation proposed in [5] by a consid-
erable factor.

Our approach is still of complexityO(L logL), though, and
the advantage over the CQT decreases for longer signals. Each
frequency channel’s time samples are acquired by means of sam-
pled IFFT from the Fourier transform of the input signal, multi-
plied with the corresponding window. Therefore, a preliminary
full length FFT is necessary.

More explicitly, we assumêϕk to have support of lengthMk

and we denote byNk the corresponding IFFT length. LetN =
maxk {Nk}, i.e. the maximum IFFT-length, and we haveMk ≤
Nk ≤ N , since we only consider the painless case. Consequently,
the number of operations is as follows:

1. FFT:O (L · log (L)).

2. Windowing:Mk operations for thek-th window.

3. IFFT:O (Nk · log (Nk)) for thek-th window.

The number of frequency channels2K + 2 is independent of
L, since it is determined directly from the transform parameters.
Thus,Mk andNk areL-dependent and the computational com-
plexity of the discrete CQ-NSGT isO(L logL).

In applications, the dual windows are constructed directlyon
the frequency side and the painless case construction involves mul-
tiplication of the window functions by the inverse of a diagonal
matrix, resulting inO(2

∑2K+1
k=0 Mk) = O(L) operations. Fi-

nally, the inverse CQ-NSGT has numerical complexity
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O (L · log (L)), since it entails computing for the FFT of each co-
efficient vector, multiplying with the corresponding dual windows
and, after evaluating the sum, computing a lengthL IFFT.

We note that linear computation time may be achieved by pro-
cessing the signal in a suitable piecewise manner. Some experi-
ments on that matter have been conducted, but the details of this
procedure exceed the scope of this paper and are intended to be
part of a future contribution.

In a second experiment, CQT and CQ-NSGT coefficients of
the shortest sample, a Glockenspiel signal, were computed for sev-
eral numbers of bins per octave. We note that the complexity of
the algorithm for the CQ-NSGT is linear inB. The results, listed
in Table 2, illustrate that the advantage of the CQ-NSGT algorithm
increases for large numbers of bins.

4.3. Visual Representation of Sound Signals

The spectral representation provided by CQT has several desirable
properties, e.g. the logarithmic frequency scale resolvesmusical
intervals in a similar way, independent of absolute frequencies.
These properties are still present in the CQ-NSGT, in fact, its vi-
sual representation is practically identical to that of classical CQT
as illustrated by Figure 3 for the exemplary case of the Glock-
enspiel signal. Figure 4 shows the CQ-NSGT of two additional
music signals, further illustrating that even highly complex signals
are nicely resolved by the proposed transform, similar to CQT.

5. EXPERIMENTS ON APPLICATIONS

Our experiments show applications of the CQ-NSGT in musical
contexts, where the property of a logarithmic frequency scale ren-
ders the method often superior to the traditional STFT. Corre-
sponding sound examples can be found athttp://univie.
ac.at/nonstatgab/cqt/.

5.1. Transposition

A useful property of continuous constant-Q decompositionsis the
fact that the transposition of a harmonic structure, like a note in-
cluding overtones, corresponds to a simple translation of the log-
arithmically scaled spectrum. Approximately, this is alsothe case
for the finite, discrete CQ-NSGT. In this experiment, we trans-
posed a piano chord simply by shifting the inner frequency bins
accordingly. By inner frequency bins, we refer to all bins with
constant Q-factor. This excludes the0-frequency and Nyquist fre-
quency bins. The onset portion of the signal has been damped,
since inharmonic components, such as transients, produce audible
artifacts when handled in this way. In Figure 5, we show spectro-
grams of the original and modified chords, shifted by20 bins. This
corresponds to an upwards transposition by5 semitones.

5.2. Masking

In the masking experiment, we show that the perfect reconstruction
property of CQ-NSGT can be used to cut out components from a
signal by directly modifying the time-frequency coefficients. The
advantage of considerably higher spectral resolution at low fre-
quencies (with a chosen application-specific temporal resolution at
higher frequencies) compared to the STFT, makes the CQ-NSGTa
very powerful, novel tool for masking or isolating time-frequency
components of musical signals. Our example shows in Figure 6
a mask for extracting – or inversely, suppressing – a note from
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Figure 3: Representations of the Glockenspiel signal usingthe
CQ-NSGT and the original CQT. The transform parameters were
B = 48 andξmin = 200 Hz.

the Glockenspiel signal depicted in Figure 3. The mask was cre-
ated as a gray-scale bitmap using an ordinary image manipulation
program and then resampled in order to conform to the irregular
time-frequency grid of the CQ-NSGT. Figure 6 shows the mask
spectrogram, along with the spectrograms of the synthesized, pro-
cessed signal and remainder.

6. SUMMARY AND PERSPECTIVES

We presented a constant-Q transform, based on nonstationary Ga-
bor frames, that is computationally efficient and allows forperfect
reconstruction. The described framework can easily be adapted
to other perceptive frequency scales (e.g. mel or Bark scale) by
choosing appropriate dictionaries.

The possibility of overcoming the difficulties that stem from
dependence of the proposed transform on the signal length, e.g.
by piecewise processing, is currently under investigation. This will
further reduce computational effort and enable the use of a single
family of frame elements for signals of arbitrary length.
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Figure 4: Representations of a pipe organ and piano solo record-
ings, respectively, using the CQ-NSGT. The transform parameters
wereB = 48 andξmin = 50 Hz.
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Figure 5: Piano chord signal and upwards transposition by 5 semi-
tones, corresponding to a circular shift of the inner bins by20. The
transform parameters wereB = 48 andξmin = 100 Hz.
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Figure 6: Note extraction from the Glockenspiel signal by mask-
ing. The CQ-NSGT coefficients of the Glockenspiel signal were
weighted with the mask shown on top. The remaining signal and
extracted component are depicted in the middle and bottom respec-
tively. The transform parameters wereB = 24 andξmin = 50 Hz.
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[3] İ. Bayram and I. W. Selesnick, “Frequency-domain design
of overcomplete rational-dilation wavelet transforms,”IEEE
Trans. Signal Process., vol. 57, no. 8, pp. 2957–2972, 2009.

[4] J. C. Brown and M. S. Puckette, “An efficient algorithm for
the calculation of a constant Q transform,”J. Acoust. Soc.
Am., vol. 92, no. 5, pp. 2698–2701, 1992.

[5] C. Schörkhuber and A. Klapuri, “Constant-Q toolbox for
music processing,” inProceedings of SMC Conference 2010,
2010.

[6] H. G. Feichtinger and T. Strohmer,Gabor Analysis and Al-
gorithms. Theory and Applications., Birkhäuser, 1998.

[7] H. G. Feichtinger and T. Strohmer,Advances in Gabor Anal-
ysis, Birkhäuser, 2003.

[8] F. Jaillet, Représentation et traitement temps-fréquence des
signaux audionumériques pour des applications de design
sonore, Ph.D. thesis, Université de la Méditerranée Aix-
Marseille II, 2005.

[9] F. Jaillet, P. Balazs, M. Dörfler, and N. Engelputzeder, “Non-
stationary Gabor frames,” inSAMPTA’09, International
Conference on SAMPling Theory and Applications, 2009,
pp. 227–230.

[10] R. J. Duffin and A. C. Schaeffer, “A class of nonharmonic
Fourier series.,”Trans. Amer. Math. Soc., vol. 72, pp. 341–
366, 1952.

[11] A. Chebira and J. Kovǎcevíc, “Life beyond bases: The ad-
vent of frames (Part I and II),”IEEE Signal Processing Mag-
azine, vol. 24, no. 4 - 5, pp. 86–104, 115–125, 2007.

[12] O. Christensen,An Introduction To Frames And Riesz Bases,
Birkhäuser, 2003.

[13] I. Daubechies, A. Grossmann, and Y. Meyer, “Painless
nonorthogonal expansions,”J. Math. Phys., vol. 27, no. 5,
pp. 1271–1283, May 1986.

[14] W. Rudin, Real and Complex Analysis (Third ed.), Singa-
pore: McGraw Hill, 1987.

[15] D. F. Walnut, “Continuity properties of the Gabor frame
operator,”J. Math. Anal. Appl., vol. 165, no. 2, pp. 479–504,
1992.

[16] M. Dörfler, “Time-frequency analysis for music signals. A
mathematical approach,”Journal of New Music Research,
vol. 30, no. 1, pp. 3–12, 2001.

[17] P. Balazs, M. Dörfler, F. Jaillet, N. Holighaus, and G. A.
Velasco, “Theory, implementation and applications of non-
stationary Gabor Frames,”preprint, submitted, 2011.

DAFX-7

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-99


