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ABSTRACT

Finite difference time domain (FDTD) approaches to physical
modeling sound synthesis, though more computationally intensive
than other techniques (such as, e.g., digital waveguides),offer a
great deal of flexibility in approaching some of the more interest-
ing real-world features of musical instruments. One such case, that
of brass instruments, including a set of time-varying valvecompo-
nents, will be approached here using such methods. After a full
description of the model, including the resonator, and incorpo-
rating viscothermal loss, bell radiation, a simple lip model, and
time varying valves, FDTD methods are introduced. Simulations
of various characteristic features of valve instruments, including
half-valve impedances, note transitions, and characteristic multi-
phonic timbres are presented, as are illustrative sound examples.

1. INTRODUCTION

The brass family is probably the most studied, among all the musi-
cal instruments, from the perspective of pure musical acoustics,
and a full list of references would be quite long; for a general
overview of the state of the art in brass instrument physics,see
[1, 2].

Sound synthesis through physical modeling has developed along
various lines; some formulations are based around the now-standard
time-domain picture of the brass instrument as a nonlinear exci-
tation coupled to a linear resonator [3], where the tube itself is
characterized by its reflection function—among such methods are
digital waveguides [4]. If wave propagation is consolidated in de-
lay lines, and if loss and dispersion effects are modelled aslumped,
such methods can be extremely efficient. See [5] for recent work
on methods related to the waveguide formalism.

Finite difference time domain methods [6], based on direct
time/space discretization of the acoustic field, though notas ef-
ficient as such structures, allow a very general approach to bore
modelling, in particular when more realistic features typical of
such instruments are incorporated. One such feature, the action
of the brass instrument valve, will be described here; as will be
seen, though such effects, necessarily time varying, lead to compli-
cations in terms of algorithm design, the resulting computational
structure, and associated computational costs, are altered little.

A model of a brass instrument, including a linear model of the
bore, a simple excitation mechanism, and valve junctions ispre-
sented in Section 2, followed by a description of a simple FDTD
scheme in Section 3. Simulation results are presented in Section
4. Synthetic sound examples, created in the Matlab environment,
are available at

http://www2.ph.ed.ac.uk/~sbilbao/brasspage.htm

x

S(x)

Figure 1:An acoustic tube, of cross-sectionS(x).

2. BRASS INSTRUMENT MODELS

2.1. Lossless Tubes

Lossless wave propagation in an acoustic tube of variable cross
section is described by the following well-known pair of equations:

pt +
ρc2

S
(Sv)x = 0 (1a)

vt +
1

ρ
px = 0 (1b)

Here,p(x, t) andv(x, t) are the pressure deviation (from atmo-
spheric) and particle velocity, respectively, at coordinates x ∈
[0, L] and t ≥ 0 along a tube of lengthL m. Subscriptsx and
t indicate partial differentiation with respect to a spatialcoordi-
nate and time, respectively.S(x) is the surface area of the tube at
locationx, ρ is the density of air, in kg/m3 andc is the speed of
sound, in m/s.

When combined into a single second order equation inp, Web-
ster’s equation [7] results. In the interest of keeping the door open
to the simulation of distributed nonlinear wave propagation (see
[8]), the first order system above will be retained here. Webster’s
equation, and its variants, are the starting point for physical mod-
eling sound synthesis both in speech [9], including the well-known
Kelly-Lochbaum model [10] as well as in brass instruments [11].
The coordinatex will here be taken to be distance along the bore
axis—see Figure 1; in a more refined model, it could representa
coordinate normal to isophase surfaces of one-parameter waves,
for which there are many choices (see [12]), but the system above
remains of essentially the same form.

In this article, since the final structure will be composed ofa
number of interconnected tubes, system (1) above represents wave
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propagation in a single such tube, of lengthL.

2.2. Lip Model

It is not the purpose of this paper to investigate lip models,which
have seen a great deal of theoretical work—see, e.g., [2] foran
overview. A standard model is of the following form:

d2y

dt2
+ g

dy

dt
+ ω2(y − H) =

Sr∆p

µ
(2)

In this simple model, the lip displacementy(t), is modelled in
terms of a single mass/spring/damper system, driven by a pressure
difference∆p across the lips, defined as

∆p = pm − p(0, t) (3)

wherepm(t) is the blowing pressure, and wherep(0, t) is the pres-
sure at the entrance to a tube, the behaviour of which is defined by
(1). ω is the angular lip frequency (a control parameter) ,g is a loss
coefficient, andµ is the lip mass (which is sometimes modelled as
frequency dependent in the case of lip reed models [13, 14]).Sr

is the effective surface area of the lips, andH is an equilibrium
opening distance. Further closing relations are

um = wy

√
2|∆p|

ρ
sign(∆p) (4a)

ur = Sr
dy

dt
(4b)

S(0)v(0, t) = um + ur (4c)

whereum is volume flow at the mouth,ur is flow induced by the
motion of the lips, and wherew is the channel width.

The model above is sometimes simplified by assumingur = 0
[2], or extended through the incorporation of an inertia term [13];
other varieties, including more degrees of freedom for lip motion
are also available [14].

2.3. Bell Radiation

A simple model for radiation at the bell, relating particle velocity
v(x = L, t) andp(x = L, t) is of the following form:

Zcv = α1p + α2m p =
dm

dt
(5)

where the parametersα1 andα2, and the characteristic impedance
Zc are defined by

α1 =
1

4(0.61332)
α2 =

c

0.6133r
Zc = ρc (6)

wherer is the radius of the bell opening.m = m(t) is an extra
lumped variable, reflecting the reactive character of the boundary
condition. Such a condition corresponds to a rational (and pos-
itive real) approximation to the impedance of an unflanged tube.
Such rational approximations are used frequently in speechsyn-
thesis [9]; this particular crude approximation matches fairly well
with more refined approximations used in brass instrument mod-
els [15], and could be improved significantly using a higher order
rational approximation [16](with the important constraint that pos-
itive realness is preserved).

Figure 2: Representation of a junction between an input tube, a
default section of tube and a bypass section.

2.4. Valve Junctions

A valve in a brass instrument allows for changes in the effective
length of an instrument, through the introduction of an alternate
length of tubing. In the most general case of a partly open valve,
wave propagation is thus possible both through a short default sec-
tion of tubing, and a bypass section.

Consider a junction of three tubes, as illustrated in Figure2.
Assuming lossless flow, the pressures at the junction in all three
tubes are assumed equal, i.e.,

p(in) = p(d) = p(b) (7)

where the superscripts(in), (d) and(b) refer to the input, default
and bypass sections, resepctively. The volume velocities sum to
zero, i.e.,

S(in)v(in) = S(d)v(d) + S(b)v(b) (8)

whereS(in) is the surface area of the input tube at the junction,
and whereS(d) andS(b) are the overlapping surface areas of the
tubes at the junction. For consistency,v(in) is positive when flow
is in the direction of the junction, andv(d) andv(b) are negative.

S(d) andS(b) are dependent on the valve state. Because, in
either the fully open or closed state, there is not a sizeablediscon-
tinuity in the tube cross section, it is useful to parameterize these
areas as

S(d) = q(d)S(in) S(b) = q(b)S(in) (9)

for given valuesq(d)(t) andq(b)(t), which depend on the current
state of the valve at timet. When the tube valve is undepressed,
q(d) = 1 andq(b) = 0, and when depressed,q(d) = 0 andq(b) =
1.

For a multivalve instrument, then, a single valve is charac-
terised by its location along the bore, the lengths of the default and
bypass tubes and its valve state. It can be assumed that the region
of the instrument over which the valves are placed is cylindrical, as
is the bypass tube, but this is by no means necessary in the FDTD
framework.

2.5. Viscothermal Losses

Boundary layer effects in the horn lead to losses which may not
be neglected, as they dominate bell radiation losses over the range
of playing frequencies for a typical brass instrument—and have a
great effect on the impedance curve for the instrument, and thus
its playability. They are usually modelled in the frequencydomain
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through a transmission line formulation (see, e.g., [17, 15], for two
slightly different models), and, when converted to the time/space
domain, lead to a form similar to (1), but involving new terms:

pt +
ρc2

S
(Sv)x + fp

t
1
2

= 0 (10a)

vt +
1

ρ
px + gv

t
1
2

= 0 (10b)

Here, fractional derivative terms have appeared—the accompany-
ing spatially-varying coefficients are

f(x) = 2(α − 1)

√
ηπ

νρS(x)
g(x) = 2

√
ηπ

ρS(x)
(11)

Here,α is the ratio of specific heats for air,ν is the Prandtl number,
andη is the shear viscosity coefficient. See [17] for precise values
for these constants. Higher order terms (which play a role only for
very thin acoustic tubes) have been neglected here; under further
simplification, and after the reduction of the system above to a
single second order equation (inp), a form similar to the Webster-
Lokshin equation results [18]; the Webster-Lokshin formulation
has been used previously in a brass sound synthesis framework
[5].

3. FDTD SCHEMES

3.1. Simple Scheme for the Lossless System

System (1) is of the form of a pair of variable transmission line
equations (or telegrapher equations [19]), and as such, is analogous
to 1D electromagnetic wave propagation, the usual startingpoint
for FDTD methods [20, 21]). An interleaved scheme of the form

pn
l − pn−1

l +
λZc

S̄l

(
Sl+ 1

2
v

n− 1
2

l+ 1
2

− Sl− 1
2
v

n− 1
2

l− 1
2

)
= 0 (12a)

v
n+ 1

2

l+ 1
2

− v
n− 1

2

l+ 1
2

+
λ

Zc
(pn

l+1 − pn
l−1) = 0 (12b)

is appropriate.pn
l is an approximation top(x, t) at x = lh, and

t = nk, for integern andl, and for a grid spacingh and time step

k; fs = 1/k is the sample rate. Similarly,v
n+ 1

2

l+ 1
2

is an approxima-

tion tov(x, t) atx = (l+ 1
2
)h, andt = (n+ 1

2
)k, again for integer

n and l. The functionsSl+ 1
2

andS̄l are approximations toS(x)

andx = (l + 1
2
)h andx = lh, respectively. The characteristic

impedanceZc is as defined in (6), and the numerical parameterλ,
or the Courant number [6] is defined as

λ = ck/h (13)

It is possible to show, using either frequency domain or energy
techniques [22] that a necessary stability condition for the scheme,
if S̄l is chosen as̄Sl = (Sl+ 1

2
+ Sl− 1

2
)/2, is

λ ≤ 1 → h ≥ ck (14)

Generally, it is best to chooseh, givenk (fixed by the sample rate,
which is chosen a priori) as close to this bound as possible, to min-
imize numerical dispersion, and maximize output bandwidth. See
[8] for more on the subject of accuracy. In the special case that
λ = 1, the system above becomes equivalent, upon the introduc-
tion of wave variables, to the Kelly-Lochbaum model [10], and,
furthermore, whenS is constant, to a digital waveguide [4].

S̄ S S̄ S S̄ S S̄ S S̄ S S̄ S S̄

p p p p p p p

p p p p p p p

p p p p p p p

v v v v v v

v v v v v v

h

x

x
h

k
t

Figure 3:Top: acoustic tube, for which approximations to the sur-
face areaS andS̄ are made at alternating grid locations. Bottom:
interleaved time/space grid for pressurep and velocityv.

For a tube of lengthL, it is convenient (though by no means
necessary) to chooseh such thatN = L/h is an integer, while
satisfying (14). In this case,pn

l runs over integersl = 0, . . . , N ,

taking on values at the endpoints of the tube, andv
n− 1

2

l+ 1
2

at the in-

terleaved values, froml = 0, . . . , N − 1. One implication of such
a choice, in a network composed of many such tubes (such as a
brass instrument) is that one will have a different grid spacing, and
associated value of the Courant numberλ for each tube segment.

3.2. Termination Conditions

Discretization of the termination conditions is similar tothe case
of reed wind instruments, discussed in [22], and is reviewedonly
briefly here.

At the bell termination of the final tube segment, the update is

pn
N − pn−1

N +
λZc

S̄N

(
SN+ 1

2
v

n− 1
2

N+ 1
2

− SN− 1
2
v

n− 1
2

N− 1
2

)
=0 (15)

which requires access to the virtual valuev
n− 1

2

N+ 1
2

. An approxima-

tion to the radiation boundary condition (5), namely

v
n− 1

2

N+ 1
2

+ v
n− 1

2

N− 1
2

=
α1

Zc

(
pn

N + pn−1
N

)
+

α2

Zc

(
mn + mn−1)

pn
N + pn−1

N =
2

k

(
mn − mn−1

)

allows the closure of the system, where an extra update in a time
seriesm = mn is required. The above boundary condition may
be shown to be numerically passive [22], and thus there is no risk
of numerical instability.

For the lip model, the various dependent variables may be re-

placed by time series, i.e.,yn, ∆pn, u
n+ 1

2
m , u

n+ 1
2

r , approximating
the various functions at interleaved multiples ofk, the time step.
The only time-dependent equations are (2) and (4b), which may be
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approximated directly as

1

k2

(
yn+1 − 2yn + yn−1) +

g

2k

(
yn+1 − yn−1)

+
ω2

2

(
yn+1 + yn−1) − H =

Sr∆pn

µ
(16)

u
n+ 1

2
r =

Sr

k

(
yn+1 − yn

)
(17)

3.3. Tube Boundaries

Consider now a junction of three tubes, as described in Section 2.4.
In the FDTD setting, with each of the schemes for the three tubes
(impinging, default and bypass) is associated a distinct Courant
numberλ(in), λ(d) andλ(b), all of which should be chosen as close
to unity as possible. Furthermore, as pressure values calculated by
the three schemes at the junction are coincident, it is straightfor-
ward to translate condition (7) to the discrete setting (suppressing
time indeces), as

p
(in)
N = p

(d)
0 = p

(b)
0 = p(J) (18)

wherep(J),n is the common pressure at the junction, and where
p
(in),n
N is the pressure in the impinging tube at its right end, and

wherep
(d),n
0 andp

(b),n
0 are the pressure in the default and bypass

sections.
The updates (12a) require access to values of the velocity grid

functions at virtual locations not on the respective grids,i.e.,v(in)

N+ 1
2

,

v
(d)

− 1
2

andv
(b)

− 1
2

. These can be set according to the flow boundary

condition (8) as

S
(in)

N− 1
2

v
(in)

N− 1
2

+ S
(in)

N+ 1
2

v
(in)

N+ 1
2

= (19)

S
(in)

− 1
2

v
(d)

− 1
2

+ S
(d)
1
2

v
(d)
1
2

+ S
(b)

− 1
2

v
(b)

− 1
2

+ S
(b)
1
2

v
(b)
1
2

The conditions (18) and (19) may be combined to give a single
update for the junction pressurep(J),n as

p(J),n − p(J),n−1 = (20)

β(J)

(
S

(in)

N− 1
2

v
(in),n− 1

2

N− 1
2

− S
(d)
1
2

v
(d),n− 1

2
1
2

− S
(b)
1
2

v
(b),n− 1

2
1
2

)

whereβ(J) is given by

β(J) =
2Zc

S
(in)
N (1/λ(in) + q(b)/λ(b) + q(d)/λ(d))

(21)

whereq(b) andq(d) follow from the current valve state, as in (9).
The above explicit update for the junction pressure should sug-

gest the analogous update in a scattering framework (such aswave
digital filters [23] or digital waveguides [4]). Conversely, it may
also be seen that the explicit updating, often claimed to be abene-
fit of such approaches, is in fact characteristic of direct (i.e., non-
scattering) methods as well.

3.4. Filter Designs and Viscothermal Losses

The fractional derivative terms in (10), though standard infre-
quency domain analysis of acoustic tubes [15] pose some numeri-
cal challenges in the FDTD setting, as they do in scattering based
approaches. A simple approach (among many; see [24, 5] for other

examples) which has been described recently in [8], is to employ
an FIR filter design. To approximate the termp

t
1
2

in (10a), one
may employ, generally,

p
t
1
2
(x, t) ≅

M∑

m=0

ampn−m
l (22)

for some suitably chosen parametersam (perhaps through a fre-
quency domain optimization procedure), and for a chosen order
M . In order to get reasonable accuracy at low frequencies, theor-
derM must be chosen to be moderately high—between 20 and 40,
at a typical audio sample rate, such asfs = 44100 Hz. A similar
approximation may obviously be used for the termv

t
1
2

in (10b).
Scheme (12) may thus be generalized to

pn
l − pn−1

l +
λZc

S̄l

(
Sl+ 1

2
v

n− 1
2

l+ 1
2

− Sl− 1
2
v

n− 1
2

l− 1
2

)

+ kfl

M∑

m=0

ampn−m
l = 0 (23a)

v
n+ 1

2

l+ 1
2

− v
n− 1

2

l+ 1
2

+
λ

Zc
(pn

l+1 − pn
l−1)

+ kgl+ 1
2

M∑

m=0

amv
n+ 1

2
−m

l+ 1
2

= 0 (23b)

wherefl andgl+ 1
2

are approximations tof(x) andg(x) from (11)

at locationsx = lh andx = (l + 1
2
)h, respectively.

It is important to point out that the orderM of the approxima-
tion will determine the memory requirement for the algorithm as
a whole, and has a strong impact on computational complexity—
see Section 3.5. It would thus be advantageous to employ rational
filter designs of potentially much lower order.

3.5. Computational Costs

The computational cost of the scheme for the entire system isde-
termined by the total length of tube,Ltotal, which is made up of
contributions from the main bore, as well as the bypass tubes. For
a Courant number of 1 in all the sections (this is the worst case),
the total number of grid points will beN(fs) = Ltotalfs/c, and
thus the total memory requirement, to hold both pressure andve-
locity variables, will be

memory requirement = 2NM (24)

whereM is the order of the approximating filter for viscothermal
losses. The combined addition+multiplication count per second
will be

operation count/sec. = N(4M + 6)fs (25)

At fs = 44100, for a total tube length ofL = 1 m, and for
M = 20, the floating point operation rate is on the order of 500
Mflops. This is not cheap, compared with, e.g., a digital waveguide
implementation, but neither is it exorbitant, by the standards of to-
days microprocessors. On the other hand, using such a schemein
a time-varying setting (i.e., employing valve transitions) requires
only O(1) additional operations per time step, and is thus of neg-
ligible cost.
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4. SIMULATION RESULTS

In this section, simulation results are presented for a given bore
profile corresponding to a Smith-Watkins trumpet, with a Kelly
Screamer mouthpiece. The bore profile is shown in Figure 4.
Valves are located at67.3, 72 and75 cm along the bore from the
mouthpiece end, and the bypass tube lengths are 27 cm, 20 cm and
15 cm, respectively; the default tube lengths are all 2 cm.

4.1. Simulated Impedances

As a preliminary check of the validity of this method, a compari-
son between a measured input impedance curve for a trumpet, and
one computed using an FDTD method, running at 44.1 kHz, is
shown in Figure 4. The curves match well over most of the play-
ing range of the instrument, with some deviations apparent above
1 kHz—these are due to the particular simple choice of radiation
impedance made here, which underestimates loss at high frequen-
cies, and which could be easily rectified by using a higher order
rational approximation.
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Figure 4: Bore profile, top, for a trumpet, including the mouth-
piece, and input impedance magnitudes, bottom, from measure-
ment (black) and simulation (grey).

4.2. Half-valve Impedances

As an example of the behaviour of this numerical method, it isin-
teresting to examine simulated impedance curves, under different
half-valve configurations, as illustrated in Figure 5.

4.3. Valve Transitions

In its simplest use, the system described here should be capable of
effecting simple changes in pitch. See Figure 6 for a spectrogram
of sound output when a single valve is depressed in the model,
where the bore profile is that of a trumpet. In this case, the lip
parameters and blowing pressure are kept constant, but in a true
playing situation, however, one would expect that various param-
eters (and especially the blowing pressure and lip frequency) are
varied simultaneously. Depending on the precise trajectories of
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Figure 5: Input impedance magnitudes, for a trumpet, under par-
tially closed valve conditions. Successive plots show impedance
magnitudes at varying degrees of simultaneous closure of all three
valves (with 100% corresponding to a fully depressed state).

these control signals, one expects a wide variety of possible note
transitions, and also situations where the note transitiondoes not
occur, and there is rather a noise like timbre, warble, or multi-
phonic results—see Section 4.5.
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Figure 6:Spectrogram of sound output for a typical valve transi-
tion, for a trumpet bore, with a single valve (effecting a change in
pitch of a semitone).

Figure 7: Spectrogram of sound output under a constant linear
sweep of the lip frequency, for a trumpet, when all valves areun-
depressed (top), and half depressed (bottom).

4.4. Glissandi

From Figure 5, illustrating impedance curves under partially closed
valve conditions, one may note that when all valves are approxi-
mately half open, the resonances over the middle of the playing
range become more sparse, and are relatively wide. Under such
conditions, a player may more easily effect a glissando thanin
the case when valves are all in an either fully depressed or unde-
pressed state. See Figure 7, showing spectrograms illustrating a
typical gesture under both conditions.

4.5. Warbles and Multiphonics

The irregularity of the impedance curve for an instrument with
all valves partially depressed, leads to a wide variety of possible
behaviours.

See Figure 8, showing spectrograms of sound output, for a
trumpet with all valves half depressed, and for slightly different
lip frequencies. At 320 Hz, the instrument produces a pure tone,
at 350 Hz, a warble at a sub-audio rate, and at 400 Hz, a noise-like
timbre. As can also be observed, note onset times vary consider-
ably with frequency.

4.6. Sound Examples

Sound examples are available on the author’s website at

http://www2.ph.ed.ac.uk/~sbilbao/brasspage.htm

Figure 8: Spectrograms of sound output, for a trumpet, when all
valves are half depressed, under different lip frequencies. Top: 320
Hz, middle, 350 Hz and bottom, 400 Hz.

5. CONCLUSIONS AND FUTURE WORK

At the level of the model itself, numerous refinements are possi-
ble, which do not alter the basic computational structure described
here. Among these are a closer attention to the precise definition
of Webster’s equation (and an appropriate choice of spatialcoordi-
nate), as mentioned in Section 2.1, and an improved model of the
radiation impedance, as described in Section 2.3; such refinements
lead to relatively minor improvements, in terms of agreement be-
tween experiment and simulation (which is already quite good for
the model presented here), and may not lead to any disceribleben-
efits in synthesis.

The incorporation of nonlinear effects as described recently
in [8], on the other hand, is anticipated to be of major perceptual
significance, and requires a more involved treatment (perhaps re-
sorting to finite volume methods [25], and employing artificial vis-
cosity in order to prevent numerical oscillation near the formation
of a shock front); even in this case, however, the basic structure of
the scheme remains little changed.

As far as the scheme itself is concerned, though the lossless
scheme (12) performs very well indeed, the discrete-time approx-
imation to viscothermal losses is rather crude, and leads toa com-
putational bottleneck, both in terms of memory and the over-all op-
eration count. A better approach would perhaps be to use a rational
filter approximation; while not problematic in the linear case, such
IIR filters, when used to approximate viscothermal losses, will
generally exhibit large variations in the coefficient values them-
selves, and may be difficult to employ in conjunction with a fully
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nonlinear model of wave propagation.
Because the scheme is uniform over the entire length of the

bore (i.e., grid points are treated equally, and there is nota de-
composition into variable length components, or lumping ofloss
or dispersion effects), programming complexity is quite low for
such methods; indeed, in the Matlab code written by the author,
the update for the bore in the run time loop may be written in four
lines. It is also very well suited to parallelization in a multicore or
GPGPU environment.

One aspect of synthesis which has not been discussed here
in any detail is that of control. The determination of lip parame-
ters, such as frequency and mass, necessarily time varying,during
a playing gesture already presents a difficult experimentalchal-
lenge; when the extra layer of valve control is also present,the
challenges become formidable. Such difficulties are to be expected
in any complete physical modeling synthesis framework, andare,
in many ways, a measure of the maturity of physical modeling
synthesis—beyond building the instrument, one must also learn
how to play it. It is thus hoped that the synthesis algorithm pre-
sented here will also be useful in scientific studies of brassinstru-
ment playing, and such work is under way at the University of
Edinburgh.
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