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ABSTRACT

Finite difference time domain (FDTD) approaches to physica
modeling sound synthesis, though more computationalgnsitve
than other techniques (such as, e.g., digital waveguidé®y, a
great deal of flexibility in approaching some of the more ries¢-
ing real-world features of musical instruments. One suske cihat
of brass instruments, including a set of time-varying valempo-
nents, will be approached here using such methods. Afteli a fu
description of the model, including the resonator, and ripce
rating viscothermal loss, bell radiation, a simple lip moded
time varying valves, FDTD methods are introduced. Simateti
of various characteristic features of valve instrumenis|uding
half-valve impedances, note transitions, and charatitensulti-
phonic timbres are presented, as are illustrative sounchiebes.

1. INTRODUCTION

The brass family is probably the most studied, among all thsim
cal instruments, from the perspective of pure musical asjs
and a full list of references would be quite long; for a gehera
overview of the state of the art in brass instrument physeg,
[1, 2].

Sound synthesis through physical modeling has developad al
various lines; some formulations are based around the tamdard
time-domain picture of the brass instrument as a nonlingair e
tation coupled to a linear resonator [3], where the tubdfitise
characterized by its reflection function—among such mestave
digital waveguides [4]. If wave propagation is consolidaiie de-
lay lines, and if loss and dispersion effects are modellddraped,
such methods can be extremely efficient. See [5] for recenk wo
on methods related to the waveguide formalism.

Finite difference time domain methods [6], based on direct
time/space discretization of the acoustic field, though awef-
ficient as such structures, allow a very general approaclote b
modelling, in particular when more realistic features tgpbiof
such instruments are incorporated. One such feature, timac
of the brass instrument valve, will be described here; akheil
seen, though such effects, necessarily time varying, teedrmpli-
cations in terms of algorithm design, the resulting comiporal
structure, and associated computational costs, are @litte.

A model of a brass instrument, including a linear model of the
bore, a simple excitation mechanism, and valve junctiornmeas
sented in Section 2, followed by a description of a simple BEDT
scheme in Section 3. Simulation results are presented itio8ec
4. Synthetic sound examples, created in the Matlab envieothm
are available at

http://www2.ph.ed.ac.uk/~sbilbao/brasspage.htm

S(x)

Figure 1:An acoustic tube, of cross-sectisiix).

2. BRASSINSTRUMENT MODELS

2.1. Lossless Tubes

Lossless wave propagation in an acoustic tube of variatdsscr
section is described by the following well-known pair of atjans:

2

pit B (50), = 0 (12)
1
Uz—k;pz = 0 (1b)

Here, p(z,t) andv(z,t) are the pressure deviation (from atmo-
spheric) and particle velocity, respectively, at coortbsar <
[0,L] andt > 0 along a tube of lengtl. m. Subscriptse and

t indicate partial differentiation with respect to a spatiabrdi-
nate and time, respectivelg(x) is the surface area of the tube at
locationz, p is the density of air, in kg/fhandc is the speed of
sound, in m/s.

When combined into a single second order equation eb-
ster’s equation [7] results. In the interest of keeping therdpen
to the simulation of distributed nonlinear wave propagatjsee
[8]), the first order system above will be retained here. \Watss
equation, and its variants, are the starting point for ptatsnod-
eling sound synthesis both in speech [9], including theketwn
Kelly-Lochbaum model [10] as well as in brass instrumenty.[1
The coordinater will here be taken to be distance along the bore
axis—see Figure 1; in a more refined model, it could repreaent
coordinate normal to isophase surfaces of one-parametesywa
for which there are many choices (see [12]), but the systemaeab
remains of essentially the same form.

In this article, since the final structure will be composedof
number of interconnected tubes, system (1) above repsesene
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propagation in a single such tube, of lendth

2.2. Lip Model

It is not the purpose of this paper to investigate lip modelsich
have seen a great deal of theoretical work—see, e.g., [2arior
overview. A standard model is of the following form:

d?y

d SrA
di2 LWy — H) = 22E

+g$ 1

@
In this simple model, the lip displacementt), is modelled in
terms of a single mass/spring/damper system, driven bysspre
differenceAp across the lips, defined as

—p(O,t) (3)

wherep,, (t) is the blowing pressure, and wher@, ¢) is the pres-
sure at the entrance to a tube, the behaviour of which is dtfipe
(2). wis the angular lip frequency (a control parameters a loss
coefficient, and. is the lip mass (which is sometimes modelled as
frequency dependent in the case of lip reed models [13, 1%]).

is the effective surface area of the lips, aHdis an equilibrium
opening distance. Further closing relations are

Ap = pm

Um = WY Msign(Ap) (4a)
p
_ oY
ur = Sy I (4b)
SO0)v(0,t) = Um +ur (4c)

whereu,, is volume flow at the mouthy,. is flow induced by the
motion of the lips, and where is the channel width.

The model above is sometimes simplified by assunaing- 0
[2], or extended through the incorporation of an inertiaté¢i 3];
other varieties, including more degrees of freedom for ligtion
are also available [14].

2.3. Bell Radiation

A simple model for radiation at the bell, relating partickacity
v(z = L,t) andp(z = L, t) is of the following form:

dm

Zev = aa1p + aam p=r (5)
where the parametets; andas, and the characteristic impedance

Z. are defined by

1 c
1(0.61332) “* T 0.6133r

ap = Z. = pc (6)
wherer is the radius of the bell openingn = m(t) is an extra
lumped variable, reflecting the reactive character of thendary
condition. Such a condition corresponds to a rational (aost p
itive real) approximation to the impedance of an unflangdxb tu
Such rational approximations are used frequently in spsgoh
thesis [9]; this particular crude approximation matchegyfavell
with more refined approximations used in brass instrumerd-mo
els [15], and could be improved significantly using a higheteo
rational approximation [16](with the important constitaimat pos-
itive realness is preserved).

&)

bypass tube

input tube |

,smk -

default tube

Figure 2: Representation of a junction between an input tube, a
default section of tube and a bypass section.

2.4. Valve Junctions

A valve in a brass instrument allows for changes in the affect
length of an instrument, through the introduction of anrakge
length of tubing. In the most general case of a partly opeveval
wave propagation is thus possible both through a short Hefacr
tion of tubing, and a bypass section.

Consider a junction of three tubes, as illustrated in Figure
Assuming lossless flow, the pressures at the junction irhedlet
tubes are assumed equal, i.e.,

(in) _ p(d) _ p(b) %)
where the superscriptsn), (d) and(b) refer to the input, default
and bypass sections, resepctively. The volume velocities t®
zero, i.e.,

p

§im) (in) _ g(d) (@) 4 g(b), () ®)

where (™) is the surface area of the input tube at the junction,
and whereS® and S are the overlapping surface areas of the
tubes at the junction. For consistene{”) is positive when flow

is in the direction of the junction, and® andv") are negative.

S and S are dependent on the valve state. Because, in
either the fully open or closed state, there is not a sizedibton-
tinuity in the tube cross section, it is useful to parametethese
areas as

S — 4@ glim)

SO = q(b)S(m) ©)

for given values;¥ (t) and¢® (¢), which depend on the current
state of the valve at timé When the tube valve is undepressed,
¢'Y = 1andq® = 0, and when depressegi”) = 0 andq'® =

1

For a multivalve instrument, then, a single valve is charac-
terised by its location along the bore, the lengths of thawueand
bypass tubes and its valve state. It can be assumed thagiba re
of the instrument over which the valves are placed is cyioadras
is the bypass tube, but this is by no means necessary in th®FDT
framework.

2.5. Viscothermal L osses

Boundary layer effects in the horn lead to losses which may no
be neglected, as they dominate bell radiation losses ogertige

of playing frequencies for a typical brass instrument—aadeha
great effect on the impedance curve for the instrument, huosd t
its playability. They are usually modelled in the frequedoynain

DAFx-338



Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

through a transmission line formulation (see, e.g., [17, fbb two
slightly different models), and, when converted to the fspace
domain, lead to a form similar to (1), but involving new terms

2

pe _
Pt + e (SU)I + fpt% = 0 (10a)
vt + lpz +gv1i = 0 (10b)

p t2

Here, fractional derivative terms have appeared—the apaoy
ing spatially-varying coefficients are

f@) =200 =1 [T @) =2 /—gms @)

Here,« is the ratio of specific heats for air,is the Prandtl number,
andn is the shear viscosity coefficient. See [17] for preciseeslu
for these constants. Higher order terms (which play a rolg fon
very thin acoustic tubes) have been neglected here; undbefu
simplification, and after the reduction of the system abave t
single second order equation (i a form similar to the Webster-
Lokshin equation results [18]; the Webster-Lokshin foratialn

has been used previously in a brass sound synthesis frakewor

[5].

3. FDTD SCHEMES

3.1. Simple Schemefor the L ossless System

System (1) is of the form of a pair of variable transmissiore li
equations (or telegrapher equations [19]), and as suchalsgous
to 1D electromagnetic wave propagation, the usual stapaigt
for FDTD methods [20, 21]). An interleaved scheme of the form

n n—1 )\Zc n—3 n—2%
p—p + 3, SH’%’UH—; _Sl—%vl_; = 0(12a)
n+3 n—% A n n
* >+ — (pih1 —pi1) = 0(12b)

v — v
i Uy Tz

is appropriate.p;® is an approximation te(x,t) atz = [h, and
t = nk, for integern and!, and for a grid spacing and time step

n+%

k; fs = 1/k is the sample rate. SimilarIyH is an approxima-

1
2
tiontov(x,t) atz = (I+$)h, andt = (n+ 1)k, again for integer
n andl. The functionsS‘H% and S; are approximations t&'(x)

andz = (I + 3)h andz = lh, respectively. The characteristic
impedanceZ. is as defined in (6), and the numerical parameter
or the Courant number [6] is defined as

\=ck/h (13)

Itis possible to show, using either frequency domain orgner
techniques [22] that a necessary stability condition ferdtheme,
if S;is chosen a$); = (Sz+% +5,_1)/2,is

1
2

A<1 = h>ck (14)

Generally, itis best to chooge givenk (fixed by the sample rate,
which is chosen a priori) as close to this bound as possiblajr-
imize numerical dispersion, and maximize output bandwibe
[8] for more on the subject of accuracy. In the special caagé th

A = 1, the system above becomes equivalent, upon the introduc-placed by time series, i.ey", Ap", um

tion of wave variables, to the Kelly-Lochbaum model [10]dan
furthermore, wherf' is constant, to a digital waveguide [4].

Figure 3:Top: acoustic tube, for which approximations to the sur-
face areaS and S are made at alternating grid locations. Bottom:
interleaved time/space grid for pressyreand velocityv.

For a tube of lengtl, it is convenient (though by no means
necessary) to choodesuch thatN = L/h is an integer, while
satisfying (14). In this casey’ runs over integers = 0, ..., N,

nol .
taking on values at the endpoints of the tube, alr]rdf at the in-

terleaved values, froth=0,..., N — 1. One implicazltion of such

a choice, in a network composed of many such tubes (such as a
brass instrument) is that one will have a different grid spacand
associated value of the Courant numhédor each tube segment.

3.2. Termination Conditions

Discretization of the termination conditions is similartte case
of reed wind instruments, discussed in [22], and is revieomst
briefly here.

At the bell termination of the final tube segment, the updsite i

AZ, n—1
n n—1 c
PN —PN T Sn (SN+%UN+2% - SN—%

n—:

- ):0 (15)

4
polm Ol

n—1 )

which requires access to the virtual vahu]gﬁl. An approxima-
2

tion to the radiation boundary condition (5), namely

n—21 n—i [0 n n— (03 n n—
vN+2%+UN—2% = i( N+ PN 1)+Z_i(m +m 1)
Bt = (-

allows the closure of the system, where an extra update ime ti
seriesm = m" is required. The above boundary condition may
be shown to be numerically passive [22], and thus there issko r
of numerical instability.

For the lip model, the various dependent variables may be re-

FRN | N

wF2 w2 approximating
the various functions at interleaved multipleskofthe time step.
The only time-dependent equations are (2) and (4b), whichbaa
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approximated directly as

1 n n n— g n n—
=W =2yt o (T Y
2 _ TA n
12
n+i Sr n n
SE = T ey @

3.3. TubeBoundaries

Consider now a junction of three tubes, as described in@e2t4.

In the FDTD setting, with each of the schemes for the threeqdub
(impinging, default and bypass) is associated a distinair@u
numben\ (™, \( and\®) all of which should be chosen as close
to unity as possible. Furthermore, as pressure valueslatddiby
the three schemes at the junction are coincident, it isgbttfair-
ward to translate condition (7) to the discrete setting fsegsing
time indeces), as

(d)

in b
P Z ®)

_pf )

=p (18)
wherep(’)" is the common pressure at the junction, and where
pgf,”)’" is the pressure in the impinging tube at its right end, and
wherep¥"™ andp”™ are the pressure in the default and bypass
sections.

The updates (12a) require access to values of the velogity gr

functions at virtual locations not on the respective gn'i;td’s,vxfr)l ,
2
(d) (b)

. andv'; . These can be set according to the flow boundary

conzdition (8)2 as

v

+ glin) -, (in)

glin) _
N3N

(in)
N-1 vN_% (29)
(i

S + S0+ 50 + 5P
2 2 2 2 2 2 2 2

The conditions (18) and (19) may be combined to give a single
update for the junction pressupe’)"" as

p(J),n _p(J),nfl _ (20)
B (Sx?l xn);—g _ S(;)y(;),n—g B S(;)y(;),n_%)
where3”) is given by
5 — 27, o

S (1/AGn) 4 q®) JA®) 4 (@) /(@)

whereq® andq(® follow from the current valve state, as in (9).

The above explicit update for the junction pressure shaudd s
gest the analogous update in a scattering framework (such\as
digital filters [23] or digital waveguides [4]). Conversgly may
also be seen that the explicit updating, often claimed to lbena-
fit of such approaches, is in fact characteristic of direet (hon-
scattering) methods as well.

3.4. Filter Designs and Viscothermal L osses

The fractional derivative terms in (10), though standardra:
guency domain analysis of acoustic tubes [15] pose somenmume
cal challenges in the FDTD setting, as they do in scatterasgd
approaches. A simple approach (among many; see [24, 5]Her ot

examples) which has been described recently in [8], is tol@mp
an FIR filter design. To approximate the tepp% in (10a), one

may employ, generally,

M

n—m

(Iv t) = ampy

m=0

p (22)

1
t2

for some suitably chosen parameters (perhaps through a fre-
quency domain optimization procedure), and for a choseerord
M. In order to get reasonable accuracy at low frequencierthe
der M must be chosen to be moderately high—between 20 and 40,
at a typical audio sample rate, suchfas= 44100 Hz. A similar
approximation may obviously be used for the tewtrr% in (10b).

Scheme (12) may thus be generalized to

_ VA n—1 n_1
n n—1 c 2 2
P — P + Tl (SlJr%vH_% - Sl*%vl—% )
M
+ kfi amp;” " =0 (23a)
m=0
oTE 0 4 2 —pi)
L 1+l 7 1+1 1—1
M
T (23b)
+ k:g“r% Z()amvl+% = (

wheref; andg“r% are approximations t@(z) andg(z) from (11)
atlocationsy = (h andz = (I + $)h, respectively.

Itis important to point out that the ord@t of the approxima-
tion will determine the memory requirement for the algaritas
a whole, and has a strong impact on computational complexity
see Section 3.5. It would thus be advantageous to emplamnedti
filter designs of potentially much lower order.

3.5. Computational Costs

The computational cost of the scheme for the entire systete-is
termined by the total length of tubé,.:.;, Which is made up of
contributions from the main bore, as well as the bypass tubas
a Courant number of 1 in all the sections (this is the worsg)as
the total number of grid points will b&(fs) = Liotai fs/c, @and
thus the total memory requirement, to hold both pressurevand
locity variables, will be

memory requirement = 2N M (24)
whereM is the order of the approximating filter for viscothermal

losses. The combined addition+multiplication count perose
will be

operation count/sec. = N(4M + 6) fs (25)

At fs = 44100, for a total tube length of. = 1 m, and for

M = 20, the floating point operation rate is on the order of 500
Mflops. This is not cheap, compared with, e.g., a digital vganee
implementation, but neither is it exorbitant, by the staddaf to-
days microprocessors. On the other hand, using such a scheme
a time-varying setting (i.e., employing valve transitipnsquires
only O(1) additional operations per time step, and is thus of neg-
ligible cost.
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4. SIMULATION RESULTS

In this section, simulation results are presented for arghere
profile corresponding to a Smith-Watkins trumpet, with aliel
Screamer mouthpiece. The bore profile is shown in Figure 4.
Valves are located &t7.3, 72 and75 cm along the bore from the
mouthpiece end, and the bypass tube lengths are 27 cm, 20ccm an
15 cm, respectively; the default tube lengths are all 2 cm.

4.1. Simulated | mpedances

As a preliminary check of the validity of this method, a comipa
son between a measured input impedance curve for a trunmakt, a
one computed using an FDTD method, running at 44.1 kHz, is
shown in Figure 4. The curves match well over most of the play-
ing range of the instrument, with some deviations appareove

1 kHz—these are due to the particular simple choice of ramtiat
impedance made here, which underestimates loss at higlefneq
cies, and which could be easily rectified by using a higheeword
rational approximation.

Bore Profile
0.1 T T

0.05 [

o

radius (m)

-0.05

01 L L L L L L
0.2 0.4 0.6 0.8

X (m)

Input Impedance

1Z | MQ (dB)

in

~10 L L L L
0 200 400 600 800

L L L L L
1000 1200 1400 1600 1800

frequency (Hz)

2000

Figure 4: Bore profile, top, for a trumpet, including the mouth-
piece, and input impedance magnitudes, bottom, from measur
ment (black) and simulation (grey).

4.2. Half-valve Impedances

As an example of the behaviour of this numerical method,iit-is
teresting to examine simulated impedance curves, underelift
half-valve configurations, as illustrated in Figure 5.

4.3. Valve Transitions

In its simplest use, the system described here should béleapa
effecting simple changes in pitch. See Figure 6 for a spgrm

of sound output when a single valve is depressed in the model,
where the bore profile is that of a trumpet. In this case, the li
parameters and blowing pressure are kept constant, butrirea t
playing situation, however, one would expect that varioasam-
eters (and especially the blowing pressure and lip freqese
varied simultaneously. Depending on the precise trajmstasf

0% closed

z, MQ (dB)

800 1000 1200 1400 1600

frequency (Hz)

200 400 600 1800

5% closed

(dB)

in

Z MQ

200 400 600 800 1000

frequency (Hz)

1200 1400 1600 1800

20% closed

(dB)

in

Z MQ

800 1000 1200 1400 1600

frequency (Hz)

200 400 600 1800

50% closed

(dB)

in

Z MQ

200 400 600 800 1000

frequency (Hz)

1200 1400 1600 1800

80% closed

(dB)

in

Z MQ

800 1000 1200 1400 1600

frequency (Hz)

200 400 600 1800

95% closed

(dB)

in

Z MQ

200

400 600 800 1000

frequency (Hz)

1200 1400 1600 1800

100% closed

(dB)

in

Z MQ

200 400 600 800 1000

frequency (Hz)

1200 1400 1600 1800

Figure 5:Input impedance magnitudes, for a trumpet, under par-
tially closed valve conditions. Successive plots show dapee
magnitudes at varying degrees of simultaneous closurd tfrae
valves (with 100% corresponding to a fully depressed state)

these control signals, one expects a wide variety of passibte
transitions, and also situations where the note transidaes not
occur, and there is rather a noise like timbre, warble, ortimul
phonic results—see Section 4.5.
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frequency (Hz)

0 01 0.z 03 0.4 05 0.6 or 0.8 0.9
time (s)

Figure 6: Spectrogram of sound output for a typical valve transi-
tion, for a trumpet bore, with a single valve (effecting apa in
pitch of a semitone).

freguency (Hz)

a ns 1 b 2 25

3000

2000

frequency (HI)

1000

time (s)

Figure 7: Spectrogram of sound output under a constant linear

sweep of the lip frequency, for a trumpet, when all valvesuare
depressed (top), and half depressed (bottom).

4.4. Glissandi

From Figure 5, illustrating impedance curves under paytcbsed
valve conditions, one may note that when all valves are appro
mately half open, the resonances over the middle of the nayi

frequency (Hz)

frequency (Hz)

[ 0.1 02 03 0.4 05 06 07 0.8 09

%8
8 8

frequency (Hz)
N
S
8

0 0.1 02 03 04 05 06 07 08 09
time (s)

Figure 8: Spectrograms of sound output, for a trumpet, when all
valves are half depressed, under different lip frequenciep: 320
Hz, middle, 350 Hz and bottom, 400 Hz.

5. CONCLUSIONS AND FUTURE WORK

At the level of the model itself, numerous refinements aresipos
ble, which do not alter the basic computational structusedbed
here. Among these are a closer attention to the precise titgfini
of Webster’s equation (and an appropriate choice of spatiaidi-

range become more sparse, and are relatively wide. Undér suc nate), as mentioned in Section 2.1, and an improved modéikof t

conditions, a player may more easily effect a glissando than
the case when valves are all in an either fully depressed de-un
pressed state. See Figure 7, showing spectrograms itingtia
typical gesture under both conditions.

4.5. Warblesand Multiphonics

The irregularity of the impedance curve for an instrumenthwi
all valves partially depressed, leads to a wide variety afsgae
behaviours.

radiation impedance, as described in Section 2.3; sucteraéints
lead to relatively minor improvements, in terms of agreenteEn
tween experiment and simulation (which is already quitedgfoo
the model presented here), and may not lead to any discéeble
efits in synthesis.

The incorporation of nonlinear effects as described régent
in [8], on the other hand, is anticipated to be of major peteaip
significance, and requires a more involved treatment (jperie-
sorting to finite volume methods [25], and employing art#leiis-
cosity in order to prevent numerical oscillation near therfation

See Figure 8, showing spectrograms of sound output, for a of a shock front); even in this case, however, the basic streof

trumpet with all valves half depressed, and for slightlyfetiént
lip frequencies. At 320 Hz, the instrument produces a pune,to
at 350 Hz, a warble at a sub-audio rate, and at 400 Hz, a né&ese-|
timbre. As can also be observed, note onset times vary camsid
ably with frequency.

4.6. Sound Examples
Sound examples are available on the author’s website at

http://www2.ph.ed.ac.uk/~sbilbao/brasspage.htm

the scheme remains little changed.

As far as the scheme itself is concerned, though the lossless
scheme (12) performs very well indeed, the discrete-tinpeap
imation to viscothermal losses is rather crude, and leadsctim-
putational bottleneck, both in terms of memory and the @lsop-
eration count. A better approach would perhaps be to useaaht
filter approximation; while not problematic in the lineaseasuch
IIR filters, when used to approximate viscothermal lossedl, w
generally exhibit large variations in the coefficient vaubem-
selves, and may be difficult to employ in conjunction with Hyfu
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nonlinear model of wave propagation.

Because the scheme is uniform over the entire length of the

bore (i.e., grid points are treated equally, and there isandée-
composition into variable length components, or lumpindost
or dispersion effects), programming complexity is quites lfmr

such methods; indeed, in the Matlab code written by the autho
the update for the bore in the run time loop may be written ur fo

lines. Itis also very well suited to parallelization in a rictre or
GPGPU environment.

[11]

[12]

[13]

One aspect of synthesis which has not been discussed here

in any detail is that of control. The determination of lip @are-
ters, such as frequency and mass, necessarily time vadingg
a playing gesture already presents a difficult experimesttal-

lenge; when the extra layer of valve control is also prest,

challenges become formidable. Such difficulties are to peebed
in any complete physical modeling synthesis framework, aned

in many ways, a measure of the maturity of physical modeling

synthesis—beyond building the instrument, one must alamle
how to play it. It is thus hoped that the synthesis algoritimer p
sented here will also be useful in scientific studies of bilassu-
ment playing, and such work is under way at the University of
Edinburgh.
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