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ABSTRACT

This paper presents a robust, accurate sound source localization
method using a compact, near-coincident microphone array. We
derive features by combining the microphone signals and deter-
mine the direction of a single sound source by similarity matching.
Therefore, the observed features are compared with a set of previ-
ously measured reference features, which are stored in a look-up
table. By proper processing in the similarity domain, we are able to
deal with signal pauses and low SNR without the need of a separate
detection algorithm. For practical evaluation, we made recordings
of speech signals (both loudspeaker-playback and human speaker)
with a planar 4-channel prototype array in a medium-sized room.
The proposed approach clearly outperforms existing coincident lo-
calization methods. We achieve high accuracy (2◦ mean absolute
azimuth error at 0 dB SNR) for static sources, while being able to
quickly follow rapid source angle changes.

1. INTRODUCTION

The task of acoustic source localization (ASL) is to estimate the lo-
cation of one or several sound sources given acoustic information
only. Typically, a microphone array is used as a sensor front-end.
ASL can be used to determine the steering direction of a micro-
phone array beamformer and/or to direct a video camera towards
the estimated source direction [1]. Typical applications are hands-
free communication, conferencing systems and human-like robots.
Most of the established methods for ASL use spatially distributed
microphones to capture the direction-dependent time difference of
arrival (TDOA) [2, 3]. Since the magnitude of the TDOA is di-
rectly related to the microphone spacing, arrays well suited for
TDOA-based ASL require more space than so called near-coin-
cident microphone arrays (NCMAs).
NCMAs consist of two or more microphone capsules having their
acoustic center as close to each other as possible. Instead of evalu-
ating time differences, the key principle behind ASL with NCMAs
is to use level differences between the microphone signals. These
level differences can be caused either by dedicated directional cap-
sules [4, 5, 6] or by omni-directional transducers which are differ-
entially combined [7]. Established methods for coincident local-
ization [4, 5, 6, 7] share in common that the source direction is
determined by computing the active sound intensity vector.
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In this paper, we propose a new coincident ASL-method based on
supervised pattern recognition via a minimum distance classifier.
The principle of our approach is depicted in Fig. 1. We derive spe-
cific features Y from the captured microphone signals and com-
pare them to a set of pre-measured reference features, stored in a
look-up table. This table consists of a numberQ of feature vectors
Y(Θq), each relating to a specific source position Θq . Basically,
the source position is estimated as that position Θq where Y(Θq)
is most similar to Y .
To be able to track changing source locations, the processing is
performed frame-wise. For each frame l, we obtain a similarity
curve (SC) Cl(Θq) via the Euclidean distance between Y l and
Y(Θq). The SC is ought to peak at the position of the sound
source. If the shape of the SC is however flat, without a clear,
global maximum, it is likely that the current frame would produce
a more or less random source location estimate. This is for in-
stance typical for a speaking pause between two words. By using
the shape of the SC for weighting the influence of the observed
frame with respect to previous ones, we can however effectively
suppress the influence of signal pauses. With that, we obtain a sta-
ble source position estimate without jumping away from the source
in signal pauses which is important in many practical applications
such as camera- or beam-steering.
Instead of smoothing the sequence of location estimates with a
fixed time-constant, our approach is adaptive. This makes our
position estimator able to quickly follow a sudden change of the
source location and produce a very smooth result without outliers
in case of a static source position. In contrast to a separate voice
activity detector, our SC-shape based detection method is indepen-
dent of the signal type, e.g. speech, narrow-band, noise, transient
signals, and comes at virtually no additional computational cost.
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Figure 1: Supervised pattern classification principle.
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Figure 2: The microphone array used in this paper.

A good basis for localization of a single sound source is to track
strong frequencies and compute an average SC over those frequen-
cies. To extend our method to tracking of multiple sources, we
suggest to perform clustering in the frequency-dependent SC in-
stead of averaging. Multi-source tracking is however beyond the
scope of this paper.
A basic property inherent to coincident localization is that two
sources providing energy at the same frequency at the same time
cannot be separated. Instead, if the sources have equal level, the
mean direction is detected. However, multiple speakers are typi-
cally not always active at the exact same time and frequency and
hence histogram or time-averaging approaches make multi-speaker
localization possible [7].
In [7], it is suggested to use a measure of diffuseness as a relia-
bility measure, which is conceptually very similar to our approach
with rating the shape of the SC. As outlined above, we do how-
ever not use a threshold and do not use a fixed time constant for
averaging, which makes our position estimator able to react either
quick or smooth, depending on the situation. Another point rele-
vant in practice, is the effect of microphone mismatch. Here, the
coincident localization approach is likely to get less accurate, will
however not completely fail, because the the overall characteristic
of the level differences will not completely change due to manu-
facturing tolerances.

2. METHOD

2.1. Signal Model

Consider a single, acoustic point source s located at a position
Θs =

[
ϕs, ϑs, rs

]T . ϕ, ϑ, and r denote the spherical co-
ordinates azimuth, elevation and radius, respectively. The coordi-
nate system is centered at the center of a coincident microphone
array. This array consists of M microphone capsules indexed by
m = 0, . . . ,M − 1. Our goal is to estimate Θs from the micro-
phone array signals. In short time Fourier transform (STFT) do-
main, a linear, time invariant (LTI) model of the mth microphone
signal is given as

Xm(l, f) = S(l, f) ·Hm|Θs(l, f) + Vm(l, f) (1)

where Xm(l, f), S(l, f) and Vm(l, f) represent the mth micro-
phone, acoustic source and an additive disturbance (noise) signal,
respectively. l is the frame time index and f the frequency index.
Hm|Θs(l, f) represents the frequency response of the mth micro-
phone given a source position Θs.

Because the frequency response is dependent on the source posi-
tion, we refer to Hm|Θs(l, f) as the position dependent frequency
response (PDFR). It models frequency dependence as well as the
directivity and the proximity effect [8] of the microphone. The
PDFR of an ideal first order microphone including the proximity
effect, is given as [8]

Hm|Θs(f) = (1−βm)+βm cos(ϕ−ϕm) cos(ϑ−ϑm)
1 + j 2πf

c
r

j 2πf
c
r
(2)

where j =
√
−1, c is the speed of sound, (ϕm, ϑm) is the look-

direction of the microphone and βm specifies the directivity. For
high 2πf/c · r (far-field), βm = 0.5, βm = 0, βm = 1 yields the
well-known cardioid, omni-directional and figure-8 polar pattern,
respectively. To model a real microphone, the PDFR can be ob-
tained by means of impulse response measurements, e.g. using the
exponential sine sweep method [9].

2.2. Microphone array

For the following discussion and derivation of our ASL-algorithm
we restrict to the planar, 4-channel NCMA configuration depicted
in Fig. 2. This array consists of one omni-directional microphone
capsule and three directional, first order microphones (cardioid po-
lar pattern) respectively. The cardioids are oriented towards the
azimuth angles 0◦, 120◦ and 240◦, respectively, within the same
plane ϑ = 0. Instead of using a separate omni-directional cap-
sule, the omni-characteristic can also be achieved by summing the
cardioids [10]. In our experiments, the source localization per-
formance was the same in both cases. Using a separate micro-
phone can however produce a better low-end sound when coinci-
dent beamsteering is performed.
Due to the planar setup, robust estimation of the elevation angle
ϑs is hardly possible. With a 3D-array such as the SFM it should
however be possible to perform estimation of the elevation angle
equally well as azimuth-estimation. The proximity effect provides
a physical basis for estimation of the source distance rs. How-
ever, first experiments and theoretical considerations indicate, that
distance estimation is very sensitive to noise and limited to close
(nearfield) sources [10]. Therefore, this paper restricts to tracking
of the source azimuth angle. Hence, we use ϕ instead of Θ in (4)
and all following equations. Furthermore, only tracking of a single
sound source is considered. We do however suggest how to extend
the presented method to allow for tracking of multiple sources at
the same time.

2.3. Features

The basic idea behind our features is that there is a direction-
dependent triplet of cardioid microphone gains (cf. Fig. 2a and
Fig. 3, top). For our observed feature vector Y (l, f), we must try
to obtain to these gains from the microphone signals Xm(l, f).

Y (l, f) =
[
Y1(l, f), Y2(l, f), Y3(l, f)

]T (3)

Ym(l, f) =
|Xm(l, f)|
|X0(l, f)| =

|S(l, f) ·Hm|ϕs(l, f) + Vm(l, f)|
|S(l, f) ·H0|ϕs(l, f) + V0(l, f)|

(4)
The directional microphones are indexed by m = 1, 2, 3, and
m = 0 is the omni-directional channel. The normalization by
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Figure 3: Effect of different source configurations (single sources,
omni-directional noise, mix). Top: Reference features (solid lines)
and feature vectors (markers) on basis of measured data of the pro-
totype array (1 kHz, r = 1 m, ϑ = 0). Bottom: Corresponding
similarity curves (SCs). In case of a single sound source there is a
sharp peak in the SC. If several directions contribute energy at the
same frequency (extreme case: omni-directional noise, red curve)
the SC gets flatter.

|X0(l, f)| is useful to become less dependent on the source sig-
nal: If S(l, f) provides enough energy to suppress the influence of
the noise terms Vm(l, f), i.e. S(l, f) ·Hm|ϕs(l, f) >> Vm(l, f),
the source signal S(l, f) in (4) cancels and only the ratio of the
PDFRS remains. This ratio is known for a variety of source an-
gles, because the PDFRs can be measured for a number Q of an-
gles ϕq , q = 0, . . . , Q − 1. The basic reference feature vector
Y(l, f, ϕq) =

[
Y1(l, f, ϕq),Y2(l, f, ϕq),Y3(l, f, ϕq)

]T is hence
defined by

Ym(l, f, ϕq) =
|Hm(l, f, ϕq)|
|H0(l, f, ϕq)|

(5)

In case of multiple sources, reverberation or measurement noise
the disturbance terms Vm(l, f) in (4) cannot be neglected and the
reference features in (5) are not appropriate. The difference be-
tween the cardioid channels decreases and hence the feature curves
get compressed (cf. Fig. 3). With our planar array, the same thing
happens for elevated sources (cf. (2)). To model all these effects,
we extend our database with compressed versions of the clean fea-
tures in (5).

Ym(l, f, ϕq, i) =
|Hm(l, f, ϕq)|+Gi|H̄m(l, f)|
|H0(l, f, ϕq)|+Gi|H̄0(l, f)| (6)

where Gi, i = 0, . . . , I − 1 is a SNR-dependent weighting factor
and H̄m(l, f) is the mean of Hm(l, f, ϕ) over ϕ. Compared to
actually measuring features in noisy conditions, the advantage of
the noisy reference feature model in (6) is that the measurement
effort and memory requirements can be reduced significantly.
By focusing only on a number of Np strong, deterministic fre-
quency components fp, we can increase the performance in noisy
environments, while reducing the computational complexity in the
following processing steps. We obtain the peak-frequencies fp by
peak-picking in |X0(l, f)|.

Figure 4: SimilarityC(f, ϕq). The source is a speech vowel signal
located at ϕs = 0◦ mixed with omni-directional noise (6dB SNR).
The peak-frequencies fp are indicated on the ordinate.

2.4. Similarity Matching

We use a similarity measure based on the Euclidean norm:

Sim {Y ,Y} =
1

1 +
√∑M−1

m=1 |Ym − Ym|
2

(7)

Eq. (7) yields values bound between 0 (completely dissimilar) and
1 (vectors are the same). The similarity between the lth observed
feature vector and the reference is computed for every reference
position ϕq , peak frequency fp and SNR index i.

C(l, fp, ϕq, i) = Sim {Y (l, fp),Y(l, fp, ϕq, i)} (8)

Instead of simply searching for the global maximum, we propose
the following procedure: First, we compute an index imax(l, fp)
that helps us to select the best matching SNR-version.

imax(l, fp) = argmax
i

{
max
ϕq

{C(l, fp, ϕq, i)}
}

(9)

Then we average over frequency which yields a single SC:

C(l, ϕq) = mean
fp
{C(l, ϕq, fp, imax(l, fp))} (10)

To illustrate why we focus only on strong frequency components
fp, an example of the frequency-dependent SC is shown in Fig. 4.
At the peak-frequencies fp, the SC peaks close to the true source
angle. At other frequencies, where the source does not provide suf-
ficient energy, noise prevails and there is an increased likelihood
of having a flat SC without a clear peak or a peak at a wrong angle.

2.5. Reliability Filtering

The azimuth estimate could be computed directly from C(l, ϕq)
as follows:

ϕ̂s(l) = argmax{C(l, ϕq)} (11)

If the frame does however contain mainly background noise (e.g.
in a speaking pause), the estimate is likely to be different from the
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Figure 5: Effect of reliability filtering (RF) on a speech signal located at 0◦ with added omni-directional pink noise (SNR=0dB). By rating
the quality of each frame between 0 (unreliable) and 1 (reliable) a stable, correct localization result can be obtained. Because the SNR is
low, the frame estimate without RF (red) looks erratic and random. For the same reason, the frame quality measure bl is close to zero most
of the time. As can be seen from (12), the influence of such ‘bad frames’ is hence suppressed in the enhanced estimate (blue), i.e. we rely
mainly on the previous estimate. Please note that at times where bl (cyan) is significantly higher than 0, the frame-estimator (red) delivers
the true result. This is the basis for a correct enhanced estimate (blue).

actual source direction. Hence, we rate the “frame quality” and
smooth the run of C(l, ϕq) over time l. We use a 1-pole lowpass-
filter with a time-varying coefficient 0 ≤ bl ≤ 1:

C̃(l, ϕq) = bl · C(l, ϕq) + (1− bl) · C̃(l − 1, ϕq) (12)

If bl = 0 the SC is not updated, i.e. the previous SC is used. If bl =
1 we rely only on the current frame and neglect the history. We
compute bl by rating the shape of the SC with a sample variance
like metric:

b̃l =
1

Q− 1

Q−1∑

q=0

(
C(l, ϕq)−mean

ϕq

{C(l, ϕq)}
)2 (13)

A flat SC achieves a low value whereas a SC with a clear, single
peak achieves a high value of b̃l. To ensure that bl takes values
close or equal to 1 under good conditions, we normalize and sat-
urate b̃l, i.e. bl = max(b̃l/b̃max), where b̃max is obtained from a
recording under perfect conditions (single source, free-field, high
SNR). With C̃(l, ϕq) in (12), the enhanced position estimate is
given as

ϕ̂s(l) = argmax
ϕq

{C̃(l, ϕq)} (14)

Fig. 5 exemplifies the effect of reliability filtering (RF), i.e. the
basic frame-level estimate in (11) is compared with the enhanced
version in (14).
The azimuth estimate ϕ̂s(l) in (14) is tied to the reference azimuth
grid ϕq . To be able to produce results between the grid, interpo-
lation between the maximum of the SC and its neighbors can be
performed. We achieved good results with parabolic interpolation
[10].

3. PRACTICAL EVALUATION

Recordings were carried out at the Institute of Electronic Music
and Acoustics (IEM) in the “IEM-CUBE”, an approximately 10 x
12 x 4 m large room usually used as a lab, for lectures and electro-
acoustic music (reverberation time RT60 ≈ 0.7 s ). The CUBE is
equipped with an optical tracking system (OTS, a V624 data sta-
tion and 15 M2 cameras by Vicon, cf. http://www.vicon.com) and
a 24-channel hemispherical loudspeaker array (LSA).

As a sound source, we used 1) a loudspeaker and 2) a human
speaker moving freely around the array. Both were tracked by the
OTS for exact determination of the true source position (ground-
truth) ϕl. The LSA was used for generation of omni-directional
pink noise. To account for various SNRs, we added the appro-
priately weighted pink-noise recording to the clean target source
recordings, i.e. the source recordings were made in quiet condi-
tions (SNR between 25 and 45dB depending on the microphone,
off/on-axis).
The reference database was obtained from impulse response (IR)
measurements using a loudspeaker placed at different positions
relative to the microphone array. To get smooth frequency re-
sponses and exclude noise and room reflections, these IRs were
cut and windowed (to approx. 12ms) before transforming them to
frequency domain. This makes the reference database more or less
independent from the environment. We made experiments with a
database recorded in a different room and achieved similar perfor-
mance compared to a matched database.
The influence of diffuse reverberation is modeled via the noisy ref-
erence features in (6). It should however be noted that strong re-
flections from a dedicated direction may act as a competing source
and can therefore impair the accuracy.
The placement of the array is not very critical because due to the
normalization of the feature vector with the omni-directional chan-
nel, the characteristic pattern stays more or less the same. We com-
pared placing the array on a desk with placement on the floor [10].
For the results shown in this paper, our array was placed on a small
desk. We used a generic reference database (array placed on the
floor, free-field) of our microphone with 10◦ azimuth resolution.
If the azimuth resolution is coarser the accuracy may be impaired
due to imperfect interpolation.

We compared our similarity approach (SIM) with 1), a time- and
2), a frequency-domain intensity vector (IV) localization approach
(TDIV, and FDIV, respectively). We used 512 samples long, ham-
ming windowed frames with 50 % overlap at a samplerate of 11025
Hz. We consideredNp = 10 peak frequency components between
200 and 4000 Hz for the SIM.
For the TDIV, the energy of each channel is computed in time do-
main and transformed to IV components [4]. We used a smoothing
pole a = 0.9 to average the IV over time to achieve better results.
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Figure 6: Static source position: Performance of different methods
in terms of the mean (over ϕs) MAE. The errorbars indicate the
first and the third quartile.
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Figure 7: Source location jumps trough concatenation of differ-
ent loudspeaker recordings (male speech). The estimate follows
quickly.

The FDIV is based on a STFT and similar to the method described
in [6]. Details on our implementation can be found in [10].

The estimation error is given as

ϕ̃s(l) = princarg {ϕ̂s(l)− ϕs(l)} , (15)

where the principle argument function can be defined using the
modulo operator mod: princarg (ϕ) = mod {ϕ+ π,−2π}+ π.
As performance metrics, we used the mean absolute error MAE
the root mean square error RMSE and the accuracy ACC∆, where
δ∆(ϕ̃s) = 1, if |ϕ̃s| ≤ ∆ and 0 otherwise.

MAE = mean {|ϕ̃s(l)|} (16)

RMSE =
√

mean {ϕ̃s(l)2} (17)

ACC∆ =
1

L

L−1∑

l=0

δ∆(ϕ̃s(l)) (18)

ACC5 = 90% means for instance that 90% of all frames achieve
an estimation error |ϕ̃s(l)| ≤ 5◦.

A short sentence (1.8s) of clean, male speech was played back
from a loudspeaker positioned at 1m distance to the array. The el-
evation was 15◦ and the azimuth was varied between −180◦ and
0◦ in steps of 10◦. A separate estimation result was computed for
each angle. Fig. 6 shows the mean performance over all source an-
gles in dependence of the SNR for the SIM,TDIV and FDIV. Our
SIM-approach is very accurate and clearly superior to the TDIV
and FDIV method. The exact values regarding the performance of
our method are given in Table 1.
To assess the timing behavior of our algorithm, we concatenated
the recordings from different azimuth angles, without pauses. Fig.
7 shows the true azimuth (optically tracked) and the estimate both
for a recording with 0dB SNR and without added noise. Fig.
8 shows a similar plot, but for a male, human speaker walking
around the array. More results can be found in [10].

SNR -12 -6 -3 0 3 6 12 24
ACC5 13 60 84.2 95.9 98.2 99.3 99.7 100
ACC10 18.9 85.6 97.3 100 100 100 100 100
ACC15 25.4 97.9 100 100 100 100 100 100
MAE 68.5 5.3 3.0 1.6 1.4 1.2 1.0 0.8
RMSE 84.9 6.0 3.4 2.1 1.8 1.4 1.3 1.0

Table 1: Performance of our SIM-approach with regard to static
sources (Mean over ϕs = (−180,−170, . . . , 0)◦)).
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Figure 8: A male human speaks while walking around the array.
The elevation was approx. 30◦ < ϑs < 40◦, the radius rs ≈ 1m.

4. SUMMARY, CONCLUSION AND FUTURE WORK

We have presented a new method for tracking of a single sound
source with a compact near-coincident microphone array (NCMA)
that is cheap and handy. A reference feature database of the ar-
ray has to be recorded once (free-field conditions, array placed on
the floor). For source localization, a feature vector is computed
frame-wise and compared to the database which yields a similar-
ity curve (SC). We use a simple measure of the shape of the SC as
a weight for the reliability of the current frame with respect to pre-
vious ones. With that, stable (no problems in signal pauses) and
fast tracking can be achieved at the same time, without employ-
ing a separate detection algorithm. Conceptual advantages of our
method are that we model the influence of noise and reverberation
in our features and that we do not use fixed thresholds or time-
constants. Practical experiments in a real room demonstrate the
effectiveness of our approach, even in the presence of strong (−6
dB SNR) omni-directional noise.
The most obvious next working steps are a detailed study of the
influence of microphone mismatch and evaluation of the perfor-
mance in highly reverberant rooms. Our localization concept could
be adapted to multi-source tracking and different array configura-
tions, e.g. spherical arrays that also provide time-differences be-
tween the microphones. In contrast to our NCMA, such arrays al-
low for steering of higher order beam-patterns. Future work could
also use the basic ideas behind our features and apply advanced
pattern recognition approaches, e.g. a multi-class support vector
machine.
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