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ABSTRACT

Gabor Multipliers are signals operator which are diagonal in a
time-frequency representation of signals and can be viewed as time-
frequency transfer function. If we estimate a Gabor mask between
a note played by two instruments, then we have a time-frequency
representation of the difference of timbre between these two notes.
By averaging the energy contained in the Gabor mask, we obtain
a measure of this difference. In this context, our goal is to auto-
matically localize the time-frequency regions responsible for such
a timbre dissimilarity. This problem is addressed as a feature se-
lection problem over the time-frequency coefficients of a labelled
data set of sounds.

1. INTRODUCTION

Given a pair of sound signals, our approach yields an estimate of
a time-frequency transfer function to go from one sound to an-
other. Our goal, in the present paper, is to further analyze this
time-frequency transfer function. In particular we want to iden-
tify the regions in the time-frequency domain which carry most
discriminant information, in the context of sounds categorization.

The approach proposed in [1] for the analysis and catego-
rization of families of sound signals, exploits the transformation
between signals in the family. In this method, the signals are
supposed to be similar enough in the time-frequency domain so
that these transformations can be modeled as Gabor multipliers,
i.e. linear diagonal operator in a Gabor representation (subsam-
pled version of Short Time Fourier Transform). Gabor multipliers
are characterized by a time-frequency transfer function, hereafter
called Gabor mask. Gabor Multipliers estimation have been stud-
ied in [2], [3], in the context of sounds transformation. In [1],
Gabor masks were used to categorize sounds, by means of a cor-
responding complexity measure, on the basis of pairwise compar-
isons. Such estimated transfer functions can be viewed as a vector
of features characterizing the differences between two signals. We
have shown in [1] that a well chosen average the values of these
features could yield sensible classifications within controlled mu-
sical signal families.

The timbre [4] is a relative notion defined as the difference be-
tween two sounds with same pitch, duration and loudness. We
aim to automatically identify the time-frequency regions which
have been responsible for a given timbre difference and propose a
method for this task. In the context of harmonic sounds of musical
instruments, it is well known [5] that the timbre can be character-
ized by time and spectral descriptors (such as attack time, spectral
centroid, spectral flow,...). These sounds descriptors are implicitly

captured in the time-frequency representation of a signal and so
their differences are carried by the Gabor masks.

In the context of sounds synthesis, such a time-frequency sig-
nificance map can be useful, as it gives up the time-frequency rep-
resentation regions of interest for synthesizing a sound into an-
other, as the authors in [6] who explain the importance of the con-
trol of the signals descriptors in the context of sounds morphing.

In Section 2, we present the general setting and describe the
basic concepts of signal representation and time-frequency anal-
ysis we shall be working with. The feature selection problem is
investigated in Section 3. Some examples of transfer functions be-
tween notes and the estimated time-frequency regions are given in
Section 4 from three different instrument families.

2. GABOR FRAMES AND GABOR MULTIPLIERS

In the finite-dimensional situation CL, the Short Time Fourier Trans-
form of the signal can be seen as the analysis map of a Gabor
frame representation of the signal, as explained in [7]. A Gabor
frame is an overcomplete family of time-frequency atoms gener-
ated by translation and modulation on a discrete lattice of a mother
window, denoted by g ∈ CL. These atoms can be written as

πmng[l] = gmn[l] = e2iπmb(l−na)g[l − na] , (1)

where a and b are two positive integers, such that L is multiple of
both a and b and (a, b) generates a time-frequency lattice. πmn
is a time-frequency shift operator. Here, all operations have to be
understood modulo L. We set M = L/b and N = L/a.

The time-frequency representations of signal x is given by

X[m,n] = 〈x, gmn〉

In particular there are situations (called tight) where the in-
version takes a particularly simple form, the analysis and syn-
thesis windows are the same and the reconstruction is given by
x =

P
m,nX[m,n]gmn. Gabor transforms give a frame frame-

work to the time-frequency representations. In this context, a sig-
nal transformation can be constructed by pointwise multiplication
between the analysis coefficients and a transfer function, followed
by the reconstruction with the synthesis window. Such transforma-
tions are generically called multipliers. Denoting by m the trans-
fer function, we shall denote by Mm the corresponding multiplier
such that

Mmx =
X
m,n

m[m,n]X[m,n]gmn . (2)
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Let xi and xj denote the input and output signals, respectively.
We assume the following model

xj = Mmxi + ε ,

where ε represent perturbations, modeled as additive gaussian noises,
and m is an unknown Gabor mask, which we want to estimate. A
possible solution is obviously m = Xj/Xi, where X denote the
Gabor transform of x, but such a solution is not bounded in gen-
eral. We prefer to turn to a regularized least squares solution. More
precisely, we seek m ∈ CM×N which minimizes the expression

Φ[m] = ‖xj −Mmxi‖2 + µ r[m], (3)

where r[m] is a regularization term, whose influence on the solu-
tion is controlled by the parameter µ.

The formulation (3) involves a non diagonal matrix, where the
non diagonal terms arise from the correlations between the atoms
of the representation. A first approach is to formulate the problem
directly in the transform domain, or equivalently to a reduction of
the problem (3) to its diagonal.

Φ̃[m] = ‖Xj −Xim‖2 + µ r(m), (4)

Such an approximation has the advantage to admit a closed form
expression for its unique minimizer. For example, we can choose
r(m) = ‖m−mt‖2F , where mt is a given target time-frequency
function that will help to design the estimated Gabor mask m. The
time-frequency function mt can be useful in the context of sound
morphing, where we aim to “interpolate” between two sound sig-
nals. Given mt, we obviously obtain a regularized solution for m
which reads

m̃ =
XiXj + µmt

|Xi|2 + µ
,

3. TIME-FREQUENCY CHARACTERIZATION OF A
SOUNDS CATEGORIZATION

3.1. A divergence between two spectra

The Itakura Saito divergence is often used to compare two audio
spectra in the context of speech processing [8]. This measure is
expressed as

dIS(|Xj |, |Xi|) =
X
l

|Xj |[l]
|Xi|[l]

− log
|Xj |[l]
|Xi|[l]

− 1

where |Xi| and |Xj | are the magnitude of signals spectrum or sig-
nals time-frequency spectrum and l denotes a frequency or a time-
frequency bin. The Itakura Saito divergence is not symmetric and
a symmetrized version [9] can be derived as

dSIS(|Xj |, |Xi|) =
dIS(|Xj |, |Xi|) + dIS(|Xi|, |Xj |)

2
(5)

We first denote that Equation (5) is not bounded in general and a
way to avoid such a problem is to regularize it. If we denoted by
mij the Gabor mask obtained by a diagonal approximation regu-
larized with r(m) = ‖|m| − 1‖22 between signals xi and xj , then
dSIS(|m|, 1) is a natural choice two compare two spectra as the
masks are more stable than the quotient of two spectra.

The choice of the regularization term r was motivated by the
desire of maintain m = 1 as reference, corresponding to “no trans-
formation”. However, given that Gabor transforms of real valued

signals are complex valued, and that the phase of the Gabor trans-
form is generally difficult to handle precisely, the reference choice
may be |m| = 1 rather than m = 1. This suggests the use of a
regularization term of the form r(m) = ‖|m| − 1‖2. This leads
to an explicit expression for the Gabor mask given by

|mij | = |XiXj |+ µ

|Xi|2 + µ
.

Then, the phase of the Gabor mask is given by the phase difference
between Xj and Xi.

3.2. A time-frequency map of the information responsible for
the categorization

First, the Itakura Saito divergence is separable and if we define

dij [m,n] =
1

2
(|mij [m,n]| − log|mij [m,n]| − 1 (6)

+ |mji[m,n]| − log|mji[m,n]| − 1)(7)

then the symmetrized Itakura Saito divergence reads

dSIS(|mij |, 1) =
1

MN

X
m,n

dij [m,n] (8)

The dissimilarity matrix d[m,n] represents the ability of a time-
frequency bin to discriminate two given classes and gives us a dis-
similarity measure between two sounds for each time-frequency
bin. We see in Equation (8) that the information carried by dSIS(|m|, 1)
is drastically reduced, as we just consider the sum over all the time-
frequency coefficients. We also propose to use a weighted Itakura
Saito divergence as

dαSIS(|m|, 1) =
X
m,n

αmnd[m,n] (9)

where the α are the weights, which indicate the relevance of each
time-frequency bin and are are to be estimated from data. These
weights are supposed to emphasize one subset of time-frequency
bins over the others. Then, we impose the following properties :
αmn > 0 and

P
mn αmn = 1, so that the Equation (8) can be

viewed as an uniform version of the Equation (9).
We propose to model our problem in the spirit of the Relief

algorithm [10], a feature weighting algorithm that iteratively se-
lects feature over a training data set. We suppose that we have a
training data set of labelled signals {xi, i = 1..N} composed by
two different classes of signals, where the first class contains N1

signals, and the second contains N2 signals. We denote by Ci the
set of indices of the signals which are in the class of the signal
xi. We want to define a distance that discriminates the 2 classes
as clearly as possible. We can formally model this problem as the
maximization of a margin, where the margin is given by:

ρ(α) =
X
mn

αmn

0@X
i

X
j /∈Ci

dij [mn]−
X
i

X
j∈Ci

dij [mn]

1A
In other words, the margin is considered as measure of the ability
of a set of weights to discriminate two classes of signals.

For the sake of clarity, let us define

zmn =

0@X
i

X
j /∈Ci

dij [mn]−
X
i

X
j∈Ci

dij [mn]

1A
=

`
〈D−, d[m,n]〉 − 〈D+, d[m,n]〉

´
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The matrices D+ and D− are in {0, 1}N×N and are used to
represent the repartition of the data in two different classes. D+

ij =

1 if i and j are in the same class and 0 otherwise, whereasD−ij = 0
if i and j are in the same class and 1 otherwise. The maximization
of the margin emphasize the data which are in the same class. Now,
the problem takes the form of a minimization under constraints

maxα αT z s.t. ‖α‖22 = 1 and α > 0 (10)

The solution to this problem is given by : α = z+

‖z+‖2 , where
z+ = [max(zmn, 0)]mn

This problem implicitly contains sparsity constraints as it re-
duces the time-frequency information, by remonving the negative
values of z. The removed time-frequency bins can also be viewed
as irrelevant for the given classification task. The α values also
give us the importance of a given time-frequency coefficient in our
given task. Other algorithms performs such a feature selection and
we refer to [11] for a review.

4. EXPERIMENTS

The time-frequency maps given by the coefficients {αmn : m,n}
allows to identify the time-frequency information responsible for
a classification task. They provide an average map of the differ-
ences between each class, with less variability compared to the
gabor masks obtained between individual pairs of sounds. This is
also a generic way to automatically enlighten the time-frequency
differences of timbre between two classes of harmonic sounds, as
we suppose no signal model and no descriptors choices. Here,
we argue that these time-frequency maps generalize the informa-
tion contained in the Gabor Masks by pairwise comparison of two
classes of sounds, which can be more useful in the context of
sounds morphing, as they can be used to transform a sound from
one class to another. As we will see below, the time-frequency
differences will depend on the sounds classes we are comparing.

Some experiments are shown here. We used three classes of
musical instrument sounds playing the same note, with fundamen-
tal frequency f0 =196 Hz (G3) : 16 clarinets, 15 saxophones (8
alto and 10 tenors) and 13 trumpets. Prior to mask estimation, the
signals are adjusted so that their onset coincide, as the onset time is
not relevant in our task. Now, all the sounds are supposed to have
a good time-frequency alignment, so that the Gabor mask capture
a pertinent information. In each experiment, a data set contains
the sounds of two different classes. We considered three different
data sets : the clarinets and the saxophones, the clarinets and the
trumpets, the trumpets and the saxophones. The spectrograms of
one sound of each class are shown in Figure 1, obtained using a
Hanning mother window and parameter values M = 512, a = 64
and displayed in a logarithmic amplitude scale.

The time-frequency maps for the three data sets are computed
as explained in Section 3.2 and shown in Figure 2. As expected,
we can see that the three instruments classes present some time-
frequency differences at different locations and these differences
can be interpreted physically. All time-frequency maps exhibit a
harmonic structure supply by a formantic structure, which is coher-
ent with our understanding of the acoustic of these musical instru-
ments. Each map emphasize the differences between two classes
of sounds. For example, the even harmonics (which are known to
be a relevant clue for identifying the clarinets) appear strongly in
the clarinets/saxophones and clarinets/trumpets maps. However,
their importance in the classification process differs sightly when

the clarinets are compared to trumpets or saxophones. The maps
also reveal how the frequency content during the attack differs ac-
cording to the two classes we are observing. This information can
be particularly useful in practice to distinguish the trumpets from
the clarinets and saxophones classes.

5. CONCLUSIONS AND PERSPECTIVES

We have described in this paper a method for better exploiting
the information contained in time-frequency masks estimated from
families of sound. Namely, the proposed approach is able to re-
trieve the sub-domains in the time-frequency plane that permit
discrimination of two instrument sounds playing the same note,
in other words the time-frequency information carrying the timbre
differences. This goal is achieved by coupling mask estimation
with using a feature selection method on a labelled class of sounds.

Further developments of this work will involve the construc-
tion of smoother versions of the time-frequency map, and applica-
tions in a context of sounds morphing.
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Figure 1: Three spectrograms of our sounds data set
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Figure 2: The three time-frequency maps α obtained from our data
set by pairwise comparison of three classes
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