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ABSTRACT

This paper proposes novel audio effects based on manipulating an
audio signal in a representation domain provided by non-negative
matrix factorization (NMF). Critical-band magnitude spectrograms
Y of sounds are first factorized into a product of two lower-rank
matrices so that Y ~ BG. The parameter matrices B and G are
then processed in order to achieve the desired effect. Three classes
of effects were investigated: 1) dynamic range compression (or
expansion) of the component spectra or gains, 2) effects based on
rank-ordering the components (colums of B and the correspond-
ing rows of G) according to acoustic features extracted from them,
and then weighting each component according to its rank, and 3)
distortion effects based on controlling the amount of components
(and thus the reconstruction error) in the above linear approxima-
tion. The subjective quality of the effects was assessed in a listen-
ing test.

1. INTRODUCTION

Audio effects can be viewed as processing modules that take in an
audio signal and modify it according to certain control parameters
to produce the desired audio output [1]. Typical examples include
dynamic range compression, reverberation, and non-linear distor-
tion for the electric guitar. The widespread use of audio effects
in recorded music motivates the creation of new types of effects
that produce musically interesting results and can be controlled by
intuitive parameters.

During the last ten years, non-negative matrix factorization
(NMF) has been actively studied for the purposes of audio content
analysis [2, 3, 4, 5]. However, the potential of NMF for digital au-
dio effects has not been properly investigated. NMF decomposes
an input signal into a set of “components” that often correspond
to physically distinct sources or sound events, and thereby opens
a way towards applying effects on each source separately. For ex-
ample, dynamic range compression can be applied on each com-
ponent, instead of compressing the wideband signal or the signals
within fixed subbands. In this paper, we propose three different
strategies for manipulating an audio signal in the representation
domain provided by the NMF before resynthesizing it back to a
time-domain waveform. The results were evaluated in a listening
test where the subjects described the differences they heard be-
tween the affected samples and the original ones and gave their
opinions on whether the effect was interesting and useful. Over-
all, the results were positive and encourage further work in this
area. Audio examples of the proposed effects are available at
http://www.elec.qmul.ac.uk/people/anssik/NMFeffects/
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2. METHOD

2.1. Data Representation

The effects discussed in this paper are based on factorizing the
magnitude spectrograms of audio signals. The short-time Fourier
transform (STFT) of a time-domain signal z(n) is first calculated
as

N-1
Xo(k) =Y a(tH + n)w(n)e > /N, (1)
n=0

where t is frame index, k is frequency index, [V is the frame size,
H = N/2 is the frame hop, and w(n) is the hamming window.

The frequency resolution of STFT is linear, whereas the hu-
man auditory system carries out frequency analysis on a nonlin-
ear scale. The equivalent rectangular bandwidths b. of the critical
bands in human hearing are given by [6]

be = 0.108f. + 24.7 Hz, 2)

where f. and b. denote the center frequency and bandwidth of crit-
ical band (“channel”) ¢, and ¢ = 0,1, ...,C — 1. The bandwidth
b. can be viewed as the frequency resolution of the peripheral au-
ditory system at frequency fe.

The perceptual quality of the audio effects obtained using NMF
is greatly improved by warping the linear frequency resolution of
the STFT to a critical-band resolution. This is achieved by sim-
ulating a bank of critical-band bandpass filters in the frequency
domain. The center frequencies f. of the filters that we use are
distributed uniformly on the critical band scale (obtained by inte-
grating the inverse of (2)),

. =229 [1()(“1”“0)/21'4 - 1} , 3)

where ap = 1.5 determines the center frequency of the lowest
band (40 Hz) and a1 = 0.79 determines the band density in critical
bandwidth units. We use a total of C' = 50 subbands between
40 Hz and 20 kHz.

Warping from a linear frequency scale to the critical band scale
is achieved using triangular sub-band responses (basis functions)
that assign appropriately weighted STFT frequency bin values to
the corresponding critical-band spectrogram bins. The basis func-
tions are stored as rows in matrix W which maps the STFT mag-
nitude spectrogram |X| of size (K x T') to a critical-band spectro-
gram Y of size (C' x T') by

Y = WIX|. @

Figure 1 illustrates the structure of the basis matrix W.
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Figure 1: Illustration of the contents of the basis matrix W used to
warp from a linear frequency scale to a critical band scale.

2.2. Non-negative Matrix Factorization

The idea of NMF is to approximate a non-negative matrix Y &
REXT as a product of two lower-rank (that is, smaller) matrices

B € R{*Z and G € RZ*":
Y ~ BG. (&)

The columns of matrix B contain the spectra of individual com-
ponents z, z = 1,2, ..., Z, and the rows of matrix G contain the
corresponding time-varying gains. The number of columns in B
(and rows in G) is here denoted by Z and determines the num-
ber of components that Y is broken into. Since magnitude spec-
tra are inherently non-negative, a non-negativity restriction can be
placed on these matrices [4]. Since the power spectra of many nat-
ural sounds (such as drum hits or individual notes) remains quite
consistent across different occurrences, the factorization (5) often
results in the separation of meaningful sound sources [4].

The algorithm we used for learning B and G is based on min-
imizing the Kullback-Leiber divergence between Y and BG. The
algorithm works by initializing B and G with random positive val-
ues and updating them iteratively with multiplicative rules until
the algorithm converges [2]. The value of the cost function is de-
creased at each update until a local minimum is reached. The up-
date rules for B and G are given by

(Y./BG)GT
B”(Y./BG)
G G’XBiT/l (@)

where 1 is a K-by-T" matrix of ones, and . x and ./ denote element-
wise multiplication and division, respectively [2].

2.3. Resynthesis

The proposed audio effects are based on manipulating the matrices
B and G before resynthesis. Before discussing the actual effects,
however, let us consider the resynthesis of a time-domain signal
from the NMF representation.

2.3.1. Direct Resynthesis from the Linear Model

The most straightforward way of resynthesis is based on the linear
signal model of NMF directly:

Y =BG ®)

This is followed by a warping of the critical-band scale back to the
linear frequency scale, achieved using a transpose of the matrix of
basis functions W:

IX|=W'Y )
The resulting magnitude spectrogram is combined with the phase
spectrogram of the original mixture signal. Finally, inverse Fourier
transform of each frame and 50% overlap-add is performed to ob-
tain a time-domain signal.

2.3.2. Perfect Reconstruction Resynthesis

Synthesising a time-domain signal using (8) leads to inevitable dis-
tortion if the number of components Z is insufficient to represent
the input audio spectrogram accurately. A typical requirement for
audio effects is that the user can control the amount of effect ap-
plied on the input signal, and when this “effect depth” parameter is
set to zero, the output signal is identical to the input signal (perfect
reconstruction).

Perfect reconstruction resynthesis is achieved by reconstruct-
ing the complex-valued STFT spectrogram of component z by

X, = {WT (E’;ézﬂ xX (10)

where b; and g; denote the zth column of B and the zth row of G,
respectively, and X is the complex-valued STFT spectrogram of
the input signal. This is one form of the Wiener filter and leads to
perfect reconstruction of the complex-valued STFT spectrogram
of the input signal by

Inverse Fourier transform of X followed by overlap-add can then
be used to reconstruct the original input signal.

2.4. Audio Effects in the “NMF Domain”

The effects proposed in this paper are based on processing the pa-
rameter matrices B and G before resynthesizing the signal. For
convenience in the following, we use the term “NMF domain” to
refer to the parametric representation (5) of the input signal pro-
vided by the NMF.

2.4.1. Dynamic Range Compression and Expansion

Dynamic range compression and expansion involve multiplying
the input signal by a slowly-varying gain factor that depends on
the level of the input signal [7]. The operation of a dynamic range
controller is typically described using a piece-wise linear curve
that defines the desired output level (in decibels) as a function of
the input level (in decibels). If the slope of this curve is %, for
example, any change AL; in the input level is mapped to a three
times smaller change AL, in the output level and the correspond-
ing compression ratio R = AL;/AL, would be 3. The term
compression refers to R > 1 and expansion to R < 1.
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A straightforward implementation of compression in the NMF
domain can be achieved by raising the gains g.(t) = g. of com-
ponent z to power 1/R. If the same amount of compression or
expansion is to be applied on all components, then all elements of
the matrix G are raised to power 1/R. For example, compression
by factor 3 is achieved by raising all elements of G to power 1/3.
This can be viewed as compression/expansion without a threshold
(i.e., there is no threshold level below which the effect would be
switched off).

Intuitively, compressing the component gains brings the less
prominent sounds (at a given time) more to the foreground, since
individual components tend to capture physical sound events or
sound sources on the recording.

In the experiments to be described in Section 3, we investi-
gated dynamics processing of not only the gain matrix but also the
spectral basis matrix B. Compression of the spectral basis matrix
B results in spectra of the individual components that are either
compressed (flattened) or expanded.

2.4.2. Effects Based on Ordering the Components

The factorization achieved by NMF suffers from permutation am-
biguity: the order of the components (columns of B and the corre-
sponding rows in G) is arbitrary and depends on the random initial-
ization of the matrices B and G before applying the multiplicative
updates (6)-(7). In this sense, the individual components have no

“identity”.
The class of effects described in this subsection is based on
ordering the components z = 1,2,...,Z according to acoustic

features calculated from the component spectra and gains. The
components are then weighted differently before resynthesis, de-
pending on their position on the ordered list.

Two different ordering criteria were investigated: spectral cen-
troid and kurtosis. Spectral centroid is here defined as the first
moment of the spectrum of a given component and conveys in-
formation about the “brightness” of that component. The spectral
centroid S, of component z is given by:

Sz — ZC beZ(C) (12)

2. b=(0)

where f. is the center frequency of the critical band corresponding
to bin ¢ of matrix B and is given by (3).

The spectral centroids .S, were then utilized to produce an au-
dio effect by weighting component z by (r, — 1)/(Z — 1) before
resynthesis. Here r. denotes the rank of component z on a list
where components are sorted in either ascending or descending-
centroid order.

Another criterion that we used for ordering the components
was the kurtosis. The kurtosis of the gain function g.(t) of com-
ponent z is given by

% 23:1(% (t) - gz)4
(£ SLilo:(0) - 3.)?)

where g. denotes the empirical mean of g, (¢). Note that the term
—3 has no effect on the order and can be discarded.

We investigated ordering the components according to the kur-
tosis of their gains as well as the kurtosis of their spectra. Kurtosis
of the gains function characterizes the “transientness” of a com-
ponent (peakiness of its gains). Kurtosis of the spectrum, in turn,

K. = -3 13)

tends to be higher for harmonic spectra (components representing
musical notes) than for “noisy” spectra (components representing
drum sounds for example). Similarly to the ordering based on
spectral centroid, components were then scaled by a weight be-
tween 0 and 1 depending on their rank on the sorted list of compo-
nents formed according to the kurtosis value.

2.4.3. Distortion as an Effect

The third class of effects is based on a controlled use of the re-
construction error caused by a direct resynthesis from the NMF
model as described in Section 2.3.1. The distortion resulting from
the NMF decomposition sometimes produces interesting effects in
itself as will be discussed in the Results section. The effect was
presented by cross-fading from the clean input signal to a signal
reconstructed from an NMF model with eight components. This
was then further cross-faded to a signal obtained using four, two,
and finally just one component, and then back to the clean signal
in the opposite order. The number of components used controls
the amount of distortion introduced.

3. RESULTS

As the success of an audio effect cannot be assessed objectively,
we conducted a listening test where the subjects rated and de-
scribed the effects they heard. The current implementation of the
method is non-causal and requires off-line processing of the input
signals. Therefore the parameters of the effects in the listening test
had to be fixed and the test stimuli calculated in advance, as op-
posed to allowing the subjects to tune the parameters in real-time.
We chose parameters and music clips that were thought to be rep-
resentative and interesting examples of each class of effects. The
samples and the used parameter values are available on-line at
http://www.elec.qmul.ac.uk/people/anssik/NMFeffects/

3.1. Stimuli

Four clips of music were chosen that were thought to best exem-
plify the investigated effects. The clips were from Smells Like Teen
Spirit by Nirvana, Billie Jean by Michael Jackson, Come Together
by the Beatles, and I Turn My Camera On by Spoon. These span
music from hard rock to pop and years from the 60s (Come To-
gether) up to a few years ago (I Turn My Camera On). For each of
the four clips, four effects were presented: compression/expansion
of spectra and/or gain curves, scaling of NMF components based
on their spectral centroid, scaling the components based on the
kurtosis of their spectra or gains, and the proposed distortion ef-
fect. Therefore the stimuli consisted of a total of twenty clips in-
cluding the four original versions and all of the effects.

With the compression/expansion there was obviously a choice
between compression and expansion, but there was additional vari-
ability in that either could be done to the spectra, the gain curves,
or both. These different combinations resulted in drastically dif-
ferent effects. As it would be infeasible to have a sample for each
possible combination, suitable parameter combinations were cho-
sen subjectively to exemplify the possibilities of each effect type.

3.2. Subjects

There were ten subjects in total, eight male and two female, aged
between 22 and 41. Seven of the subjects were musicians and three
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Table 1: Overall results (%) of whether the subjects found the ef-
fects interesting and would use them if they were available.

Interesting | Would use
Distortion 80 64
Comp/Exp 80 59
Spec Cent 55 24
Kurtosis 73 39

Table 2: Overall results (%) of the subjects ranking the effects from
the most to the least interesting.

Most | 2" Most | 3 Most | Least
Distortion 45 22.5 12.5 20
Comp./Exp. | 22.5 32.5 27.5 17.5
Kurtosis 27.5 27.5 25 20
Spec Cent 10 12.5 35 42.5

were not. Seven out of the ten said they were familiar with the term
“audio effect” and how they are used, and six of them said they had
experience using them.

3.3. Experimental Setup

The listening test was conducted completely on-line. The order
of presentation was randomized for each clip. The first ques-
tion asked simply whether the listener found the effect “interest-
ing.” The next question asked the listeners to describe in their own
words the differences they heard between the original and the af-
fected clips. The third question asked the listener whether they
would be interested in using the effect were it available as a com-
mercial product. After all of the effects were evaluated for each
clip, the subject was asked to rank the four effects for that clip
from the most to the least interesting.

3.4. Results

Table 1 shows the percentages of subjects that a) found the effects
interesting and b) would consider purchasing or using the effect if
it were available to them. For the latter, responses were excluded
from subjects who reported “I don’t regularly use audio effects”.
In each case the majority of the subjects found the effect to pro-
duce interesting results, albeit a slight majority in the case of the
spectral centroid effect. A majority of the subjects who use audio
effects would be interested in using the distortion and compres-
sion/expansion effects. This was not the case, however, with the
spectral centroid and kurtosis effects.

Table 2 shows how people ranked the effects from the most to
the least interesting. Again the results have been averaged over all
the four clips. It is clear that the distortion effect leans towards be-
ing the one considered most interesting and the spectral centroid
effect the least, with the compression/expansion and kurtosis ef-
fects having a fairly even spread.

When describing the differences the subjects heard between
the original and affected versions it was common for the subjects
to describe the spectral centroid effect as sounding like a simple
filter was applied. This would explain the poor results, as listeners
familiar with audio effects might find it trivial. On the other hand,

the subjects generally seemed to be intrigued by the distortion ef-
fect, as if it were something they had never encountered before.

The responses for the compression/expansion and kurtosis ef-
fects were more mixed but still generally positive, and this was
also reflected in the written responses. These effects, similar to
the distortion effect, found the subjects coming up with more so-
phisticated descriptions of the things they heard, even in some
cases stating that they could not really describe what was going on.
For example with the compression/expansion effect for “Smells
Like Teen Spirit” two separate responses were received in which
the effect was described as making the clip sound more “indus-
trial”; other responses described the clip as sounding like it was
“recorded underwater” and “playing inside a can”.

4. CONCLUSIONS

Non-negative matrix factorization provides a musically meaning-
ful representation for audio signals that has not been fully utilized
for audio effects. Three different types of effects were investigated
in this paper: compression/expansion of component gains and/or
spectra, scaling components based on ordering them according to
extracted acoustic features, and distortion inherent to the NMF ap-
proximation. The distortion effect produced the best results, with
the subjects consistently ranking it as one of the more interest-
ing effects. The results concerning the compression/expansion and
kurtosis ordering effects were fairly mixed but generally positive.

Future work involves a real-time implementation of the pro-
posed effects. NMF is inherently a non-causal method since the
component spectra and gains are estimated jointly. However, a
causal (real-time) implementation can be achieved by keeping the
spectral bases B fixed and updating only the gains G for each in-
coming audio frame. The component spectra are then updated only
occasionally, for example every 5 seconds based on the preceding
10 second segment. A real-time implementation would be useful
for more efficient exploration of the parameter space of the effects.
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