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ABSTRACT

Recurrence plots (RPs) are two-dimensional binary matrices used
to represent patterns of recurrence in time series data, and are typ-
ically used to analyze the behavior of non-linear dynamical sys-
tems. In this paper, we propose a method for the generation of
time-variant delay effects in which the recurrences in an RP are
used to restructure an audio buffer. We describe offline and real-
time systems based on this method, and a realtime implementation
for the Max/MSP environment in which the user creates an RP
graphically. In addition, we discuss the use of gestural data to gen-
erate an RP, suggesting a potential extension to the system. The
graphical and gestural interfaces can provide an intuitive and con-
venient way to control a time varying delay.

1. INTRODUCTION

Recurrence plots (RP) are binary matrices representing patterns of
repetition in sequential data. They are used for analyzing and vi-
sualizing the behavior of non-linear dynamical systems, and have
been applied in fields as diverse as physics, genomics, chemistry,
and economics [1, 2]. More relevant, RPs have also been applied
to the analysis of music, e.g. for understanding rhythmic structure
[3], cover-song identification [4] and measuring structural similar-
ity [5].

In this paper, we propose a system that inverts this process:
instead of using RPs to analyze an audio sequence, our system
restructures music audio using the patterns of recurrence repre-
sented by a given RP. The approach works by combining blocks of
the input signal such that the repetitions characterized by the RP
are enforced on the output signal. The system thus acts as a time-
variant delay line, able to produce complex patterns of repetition.
Furthermore, we can use a graphical or gestural interface to mod-
ify the topology of the RP, hence providing a novel mechanism for
system control that is more intuitive than existing hardware and
software implementations of similar effects. Finally, note that our
approach operates on an audio buffer, either offline or in real time,
as a digital audio effect, and is thus unlike previous approaches
that synthesize audio directly from the output of non-linear sys-
tems [6].

The remainder of this paper is structured as follows. Section 2
discusses the basics of delay lines and related commercial and non-
commercial work. In section 3 we briefly define recurrence plots
and propose a method for adapting them to the task of restruc-
turing audio. Section 4 describes a Max/MSP implementation of
our system, while section 5 discusses a preliminary gestural con-
trol mechanism. Finally, Section 6 discusses our conclusions and
some directions for future work.

2. RELATED WORK

Delay lines are widely used audio effects [7]. In their simplest
form, the output signal y[n] consists solely of the input signal x[n]
delayed by an integer number of samples M , i.e.

y[n] = x[n−M ] (1)

In addition, the delay can feed the output signal y[n], scaled by a
gain factor g, back into the input:

y[n] = x[n] + g · y[n−M ] (2)

where 0 ≤ g ≤ 1 in order to ensure stability. While in equations 1
and 2, M is restricted to integer values, fractional delay techniques
allow for arbitrary delay times. This model serves as the basis for
most audio delays, both in hardware and software.

Using a fixed delay time (i.e., a constant value of M ) produces
a regular pattern of repetition, resulting in a time-invariant system.
Alternatively, some delay line implementations allow M to vary
over time, either manually or by a low-frequency oscillator, thus
creating irregular patterns of repetition. Techniques such as time
shuffling (brassage) and granular synthesis [7], in which an output
buffer consists of random combinations of segments of an input
buffer, can be regarded as time varying delay effects.

Such variations are common practice in commercial hardware
implementations, e.g. as pedals or rack-mounted units. A num-
ber of artists, for example guitarists David Torn and Bill Frisell,
use such devices in performance to achieve various glitching, stut-
tering, and similar effects in real time. Frequently, these artists
produce these effects by changing the delay time (and other pa-
rameters) via direct and active manipulation of various controls on
the delay device. In an effort to improve these interactions, novel
user interfaces have been proposed. For example, the MATRIX
interface [8] is a physical controller consisting of a 12x12 array of
vertical rods, each of which able to move up and down indepen-
dently. By varying the pressure applied to the rods and the orien-
tation of the hands, the user generates a continuous signal that can
be used to control effects and synthesis parameters. In one exam-
ple, the control data is used to continuously change the delay time
parameters of a multi-tap delay.

Other time-variant delays have been implemented in environ-
ments such as Pure Data, Max/MSP, and Supercollider. For ex-
ample, Jonny Greenwood, guitarist for the rock band Radiohead,
uses a Max/MSP patch that repeats segments of live audio in un-
predictable patterns [9]. Another example is the BBCut2 library
for SuperCollider [10] that allows users to splice and rearrange au-
dio in real time or offline. BBCut2 makes use of “cut procedures,”
which define how an audio buffer is subdivided, including tools
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Figure 1: System overview : Input signal x is filtered by F yielding
y. A given recurrence plot (RP) is a parameter set of F . As seen in
the bottom half of the figure, the resulting sound y has a structural
form that can be described by the given recurrence plot (RP).

to analyze the rhythmic structure of the audio. Users can create
their own cut procedures programmatically, or use predefined pro-
cedures included with the library. While BBCut2 is undoubtedly
a powerful tool capable of creating a wide variety of interesting
effects, it is a library and not a stand-alone application with a fully
developed user interface. Thus, use of BBCut2 entails a certain
amount of programming knowledge, not necessarily available to
most composers and performers. In addition, there are a num-
ber of freeware and commercially available plugins, such as iZo-
tope’s Stutter Edit plugin1, that allow users to create various types
of glitch and stutter edits.

3. APPROACH

While the systems and implementations discussed above can cre-
ate compelling musical results in the right hands, none offer an
intuitive interface that allows a user to quickly create and experi-
ment with different time varying delay patterns. In this paper we
argue that recurrence plots (RP) can be used to exercise (and visu-
alize) control of audio delays, and propose a method for doing so,
which can be seen in Figure 1. An input signal x is rearranged and
remixed by a function F in order to produce the output signal y. F
is fully defined by a given RP, such that the recurrences in the plot
should also appear in y. In the following sections we will discuss
how RPs are obtained, and describe a method for using the plots
to specify F , first offline, and then in real time.

3.1. Recurrence Plots

Let us assume the time series y to describe the output of a dynam-
ical system, such that if the state of the system at time i recurs at
time j, then yi is the same as yj within a margin of error, �. In

1http://www.izotope.com/products/audio/stutteredit
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Figure 2: An example of recurrence plot with N = 8.

this case, cell (i, j) of the RP matrix is set to 1 (black in the graph-
ical representation); otherwise, the cell is set to 0 (white). More
formally, the RP matrix R can be defined as follows:

Ri,j =

�
1, ||yi − yj || < �

0, ||yi − yj || ≥ �
, i, j = 1, . . . , N (3)

where N represents the length of the time series, and thus the num-
ber of rows and columns in the plot, and || · || denotes a norm (e.g.,
Euclidean norm). The resulting plot is a symmetric, binary matrix
such as the one shown in Figure 2.

3.2. Audio Restructuring using a Recurrence Plot

Next, we must develop a method for restructuring audio using
an existing RP. To simplify the reconstruction problem, assume
that the input signal x[n] is finite and divided into N segments,
n ∈ [1, N ]. The output sound y[n] can be obtained by a linear
combination of the input segments as:

y[n] =
N�

i=1

x[i] · ci,n (4)

where ci,n is a reconstruction coefficient satisfying the condition
that y[n] should have the temporal structure described in the RP.

A simple approach to find an appropriate coefficient set c is
by direct application of the information about the temporal recur-
rences described in the RP. That is, if a state at time n1 recurs
at time n2, the states at time n1 and n2 are assumed to be the
same, i.e. y[n1] = y[n2]. As an example, consider the simple RP
shown in Figure 2. In the first column of this RP, the rows at time
n = {1, 4, 5, 7} are activated, indicating that the output sounds
y[1], y[4], y[5], and y[7] should be identical. In the same manner,
from column 2, we can infer that y[2] = y[5] = y[8], from column
3 that y[3] = y[5] = y[6], etc. However, the fact that y[5] appears
in each of the first three columns implies that all the segments are
equal (i.e. that y[1] = y[2] = · · · = y[N ]). This result is in con-
flict with the given RP: if all the segments were identical, all the
cells of the RP matrix would be black.

The problem with this approach is the assumption that recur-
ring segments are identical. In fact, the margin of error � from
equation (3) implies that the RP represents only approximate rela-
tionships between segments. Therefore, in the previous example,
while the first column indicates that y[1] ≈ y[5], and the second
indicates that y[2] ≈ y[5], we cannot assume that y[1] ≈ y[2].
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Figure 3: Reconstruction using the RP in Figure 2 : (a) the input
signal x[n] (b) the resulting sound y[n].

Because information is lost when computing an RP (i.e., the
exact distance between y[i] and y[j]), precise reconstruction of y
is impossible. However, we can approximate y[n] by consider-
ing only column-wise recurrences, and ignoring any relations that
appear within a given column. By doing this, each row becomes
independent, indicating the recurrences of an individual compo-
nent, x[n]. With this in mind, the coefficients ci,n can be derived
from the nth column vector of RP as follows:

ci,n =
Ri,n�N

i=1 Ri,n

(5)

where the denominator is a normalization factor accounting for the
number of activated components in the column. Therefore, we can
derive the following reconstruction rule from equations (4) and (5):

y[n] =

�N
i=1 x[i] · Ri,n�N

i=1 Ri,n

, (6)

Figure 3 shows the input sound x[n] and the resulting sound
y[n] using the RP in Figure 2. Accordingly, y[1] ≈ y[4] ≈ y[7],
with each output segment a combination of the input components
x[1, 4, 7]. Likewise, y[1] ≈ y[5], with each output segment a com-
bination of x[1, 5].

3.3. Real-time Approach

There are two main restrictions to adapting the reconstruction ap-
proach discussed in Section 3.2 to real-time processing. First, un-
like the non-real-time situation, the length of the incoming signal
is unknown, and thus assumed to be infinite. Second, future audio
segments are not available. The following solutions and compro-
mises are necessary to cope with these restrictions.

First, for a given N × N plot, we use an N -length circular
buffer B[n̂], n̂ ∈ [1, N ]. The buffer stores the last N L-long
segments of the incoming signal x, such that the oldest segment is
always the one to be overwritten. For this to happen, we define the
buffer index n̂ as follows:

n̂ =
�
(n− 1) mod N

�
+ 1, n ∈ Z+ (7)

such that n̂ is reset to 1 after each group of N signal blocks has
been stored. The index n̂ is also used to index the rows and columns
of the RP, allowing us to rewrite equation (6) as:

y[n] =

�N
i=1 B[i] · Ri,n̂�N

i=1 Ri,n̂

, (8)
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Figure 4: A given RP (N = 8) for the real-time process: n̂ indi-
cates the corresponding row and column indexes at time n (bottom
of the figure).
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Figure 5: Real-time reconstruction example: the resulting sound
y[n] from the input x[n]. x[1, 2, 3] recur at y[4, 5, 6] (solid circles
and arrow), and both x[7] and x[9] recur at y[12] (dotted circles
and arrows). The magnitude differences are due to normalization.

Second, the causality of the system means that the current out-
put is necessarily a function of previous inputs. However, the use
of the circular buffer introduces boundary effects that are not im-
mediately apparent. Take for example the RP in Figure 4: x[1]
recurs at n = 4, x[2] recurs at n = 5, and x[3] at n = 6 (indicated
by solid arrows in the figure), thus seemingly defining a standard
delay with delay time 3. However, due to the modulo operation,
x[7] recurs at n = 12, a delay of 5 instead of 3. In fact, the fourth
column of the RP indicates that y[12] is a linear combination of
x[7, 9, 12] (dotted arrows and circles in the figure).

Figure 5 shows an example of real-time reconstruction using
the RP in Figure 4. As described above, x[1, 2, 3] recur at y[4, 5, 6]
(indicated by the solid arrow and circles in the figure), and both
x[7] and x[9] are mixed into y[12] (indicated by the dotted arrows
and circles in the figure).

In practice, due to the fact that the buffer B is initially empty,
the direct implementation of equation (8) yields an unwanted fade-
in effect at the beginning of y[n], for the length of one cycle of
buffering (i.e., for n ∈ [1, N ]). We thus modify the normalization
factor in equation (8) as follows:
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Figure 6: Max/MSP user interface.

y[n] =

�N
i=1 B[i] · Ri,n̂

K

where K =





�n
i=1 Ri,n n ≤ N

�N
i=1 Ri,n̂ n > N

(9)

4. IMPLEMENTATION

4.1. Technical details

The RP-based delay approach described above was implemented
using Max/MSP, a graphical programming language designed specif-
ically for use in realtime systems. It also provides a number of
useful user interface elements, making it an excellent prototyping
environment. The external object, rpprocessor~, was developed in
C using the Max 5 API, in order to compensate for the shortcom-
ings of the native audio buffers in Max/MSP. This object maintains
the audio buffer and an internal representation of the RP, and re-
constructs the output signal according to equation (9). In addition,
rpprocessor~ manages the creation, loading, saving and display of
the RP data.

4.2. User interface

The user interface for the Max patch is shown in Figure 6. The
user draws the desired recurrence pattern in the large grid area
marked 1� , by clicking/toggling cells between black and white.
Once again, note that black squares indicate a recurrence. To main-
tain the standard topology of RPs, a non-editable main diagonal is
added by default. Additionally, symmetry is enforced by automat-
ically toggling equivalent cells the other side of the diagonal. The
“clear” button above the RP deactivates all the cells in the block
except those in the main diagonal.

The sliders marked 2� allow the user to set N , the size of the
RP, and L, the duration of each cell in the RP. Both of these val-
ues can be set using the sliders or the associated number boxes.
Adjusting N changes the resolution of the RP grid, with higher

(a) (b)

Figure 7: Constructing an RP from gestural data: (a) captured hand
movements (the upper arrow and the lower arrow indicate the start
point and the end point respectively) (b) RP generated from the
gesture data shown in (a).

values corresponding to increased resolution. The segment dura-
tion is displayed both in milliseconds and samples.

The value of L is also displayed in beats per minute (bpm) in
the “bpm” number box. According to equation (7), the value of n̂
varies between 1 and N , and represents a particular column of the
RP. Because the duration of each cell in the RP is L, n̂ advances at
a rate determined by L. We can therefore assume n̂ to represent a
beat, and compute the value of L in bpm as follows: bpm = 60/L
(where L is measured in seconds).

The sliders in 3� are used to adjust the mix between the dry
and wet signals and the overall gain. To enable the system, the
user presses the large button in this region of the UI, thus turning
on the analog-to-digital and digital-to-analog converters. Once the
system has been enabled and is in play mode, the columns of the
RP are highlighted in sequence, with the cells corresponding to
the current n̂ in a given column colored red and the unactivated
cells colored yellow. The highlighting proceeds from left to right,
wrapping back to the first column once n̂ reaches N . As discussed
above, n̂ is incremented every L seconds. The highlighting thus
makes the value of L explicit, allowing the user to more easily
synchronize his or her playing with the system.

The user can save the current RP into a text file by using the
“write” button in 4�. Pressing this button brings up a file chooser
window, allowing the user to specify the desired name and location
of the file. Pressing the “read” button also brings up a file chooser,
allowing the user to load an RP from an existing text file. Once
loaded, the RP will be displayed in the editing region ( 1� in figure
6).

5. GENERATING AN RP FROM GESTURAL DATA

In the previous section, we have discussed how the user can draw
a recurrence plot to control a time-variant delay line. However,
because each RP is inherently associated with a time series, we
have the ability to use any time series to control the audio effect.
In this section, we provide a simple extension to our system in
which we generate RPs from hand gestures.

To capture hand movements, we use an infrared LED and an
Apple iSight web camera. The camera is fitted with a filter that
blocks all visible light letting only infrared light pass. To capture
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Figure 8: Real-time reconstruction example: (a) an input signal (b)
a resulting sound using the RP in Figure 7b.

a gesture, the user holds the infrared LED in his or her hand, and
moves it in view of the camera. The resulting X-Y positions of the
LED, which we will define as P (n) = (Xn, Yn), are recorded at
fixed time intervals.

Figure 7a shows a 400-point example time series of captured
hand gestures, showing four repetitions of a figure-8 pattern. Posi-
tions are represented with black dots, with the starting point marked
with a red arrow, and the end point marked with a blue one. The ex-
ample trajectory illustrates an important issue with this approach.
At the center of the figure-8 pattern the four upward and four
downward trajectories pass through a small region of the 2-D space.
According to equation (3), the proximity between these points
makes them recurrences of each other. However, it can be ar-
gued that the upward and downward sub-trajectories are differ-
ent enough that they should be regarded as different, and that the
closeness between their constituent points is circumstantial. This
implies measuring recurrences between sub-trajectories instead of
between individual points, in order to avoid such spurious detec-
tions (and the resulting noisy plots). This can be done using a
technique known as time-delay embedding [1, 2], where the nth

point of the embedded time-series is defined as:

P̂ (n) =
�
Xn, Xn−1, . . . , Xn−ω+1,

Yn, Yn−1, . . . , Yn−ω+1

� (10)

where ω ∈ N is known as the embedding dimension (note that we
assume the embedding delay to be 1). The RP can be obtained as:

Ri,j =

�
1, ||P̂ (i)− P̂ (j)|| < �

0, ||P̂ (i)− P̂ (j)|| ≥ � (11)

where, as before, � is the margin of error and || · || is the Euclidean
norm.

Figure 7b shows the RP computed from the gesture data using
� = 50 and ω = 3. It has three diagonal lines in the upper and
lower triangular parts of the plot, indicating that the main diagonal
recurs three times. The shorter diagonals in the RP correspond to
the crossing of the sub-trajectories discussed above. They can be
filtered out entirely with a larger ω value, however at the cost of
missing recurrences in the larger diagonals. Finding an optimal
parameterization for embedding is an active area of research [2].

Figure 8 shows the result of applying the RP from Figure 7b
to an input signal x, with L = 46.5ms (i.e., 2048 samples in
44.1 kHz sample rate). Sound examples, including stutter and time
shuffling effects, as well as the sounds described above, are avail-
able at http://marl.smusic.nyu.edu/rpprocess.

6. CONCLUSIONS AND FUTURE WORK

We have presented a method for transforming an input signal based
on the patterns of recurrence represented in an RP, and a realtime
implementation of this method in which the user creates the RP
using a graphical interface. The output signal from this system ex-
hibits the recurring structures described by the RP. Unlike existing
systems, however, the graphical interface in our system allows a
user to easily experiment with different delay patterns. The use
of gestural data to control the system suggests another intuitive
means of controlling the delay parameters.

While the realtime system achieved the goal of producing com-
plex delay effects, its time varying nature made it somewhat diffi-
cult to use in practice. In contrast to the case of a standard delay
line, in which a user can easily synchronize his or her playing with
the repeats, the time dependent behavior of our system made such
synchronization difficult. The highlighting of the current column
of the RP, while intended to ameliorate this problem, proved to be
of limited use. Although further practice with the system would
likely make synchronization easier, other remedies could include
the use of an onset detector to trigger the start of an RP cycle.

We are also interested in more fully exploring the generation
of the RP through gestural data. We feel that with these improve-
ments, our system could prove to be a useful tool for performers
and composers interested in producing complex delay effects.
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