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ABSTRACT

Research into sparse atomic models has recently intensified in the
image and audio processing communities. While other reviews
exist, we believe this paper provides a good starting point for the
uninitiated reader as it concisely summarizes the state-of-the-art,
and presents most of the major topics in an accessible manner. We
discuss several approaches to the sparse approximation problem
including various greedy algorithms, iteratively re-weighted least
squares, iterative shrinkage, and Bayesian methods. We provide
pseudo-code for several of the algorithms, and have released soft-
ware which includes fast dictionaries and reference implementa-
tions for many of the algorithms. We discuss the relevance of the
different approaches for audio applications, and include numeri-
cal comparisons. We also illustrate several audio applications of
sparse atomic modeling.

1. INTRODUCTION

Many natural signals can be sparsely represented (or sparsely ap-
proximated) if an appropriate basis can be found. For example,
a short block of samples from a quasi-periodic sound will have a
sparse Fourier transform if the block size is a multiple of the pitch
period. We often seek sparse representations, or sparse models,
because they lead to a clear interpretation. If we compare several
models that summarize a data set equally well, we usually prefer
the sparser models, since each variable tends to be more meaning-
ful1. This is especially true if we are interested in audio effects,
since we desire a meaningful mapping between the control param-
eters and the perceived outcome.

In this paper we limit ourselves to the following model:

y = Φx + ε (1)

where y ∈ RM is a sampled sound, Φ ∈ CM×N is a dictio-
nary of (possibly) complex atoms, and ε is additive noise. We call
supp(x) = {i|xi �= 0} the support of x, and define the sparsity of
x as �x�0 = |supp(x)|, which is the cardinality of the support. We
say that y is synthesis-sparse in the dictionary Φ if �x�0 �M . In
this paper we focus primarily on synthesis sparsity, however, it is
worth noting that several recent works consider signals which are
analysis-sparse: that is, signals for which �Ωx�0 � M (where Ω
is an analysis operator) [1, 2].

Although, real sound signals may not be truly sparse in any
basis, they are often compressible. We say that y is compressible
in Φ if the sorted magnitudes of x decay according to a power-law.
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1This principle is often referred to as Occam’s razor.

This means that we may discard many of the small coefficients in
x without a huge sacrifice in the perceived quality.

The formulation in (1) is quite common in audio processing
since we may consider the wavelet transform, the modified discrete
cosine transform (MDCT), and the short time Fourier transform
(STFT) as instances of this model (if we choose Φ appropriately
and set ε to 0).

In this paper we focus on the case where N > M , which
means that the dictionary contains a redundant set of waveforms.
This situation arises quite naturally in audio processing. For ex-
ample, the STFT is often oversampled so that i) smoother analysis
windows may be used, and ii) to make the transform more invari-
ant to shifts in the input signal. Both of these considerations lead
to a redundant dictionary. Furthermore, it is often useful to build
hybrid dictionaries from the union of several different dictionar-
ies. This allows us to match the dictionary waveforms to the type
of features we expect to encounter in the signal. As described in
§10.1 this fact can be used to build multilayer signal expansions.

In the first part of this paper we examine several state-of-the-
art approaches for estimating a sparse x given a redundant dic-
tionary Φ. We discuss most of the major approaches and their
variants. Along the way we point out which algorithms have the
potential to work with the large data sets common in audio applica-
tions. In the second part of this paper we perform some numerical
comparisons of these algorithms, and review some important audio
applications that can benefit from sparse atomic modeling.

2. THE METHOD OF FRAMES

We first consider the case without an explicit noise term, i.e., y =
Φx. There are many possible solutions that satisfy this equation
when N > M since Φ has a null space (and adding an element
from the null space does not change the solution). One possible
solution is:

x = ΦHS−1y (2)

where S = ΦΦH is called the frame operator, and ΦH denotes
the conjugate transpose. The frame operator is invertible if its min-
imum eigenvalue is greater than zero and its maximum eigenvalue
is finite. In the finite dimensional case (which is the only case we
consider in this paper), the latter condition is always satisfied, and
the former condition is satisfied whenever Φ has rank M (which
is to say the columns of Φ span M dimensional space). In the lit-
erature (2) is known as the method of frames (MOF) [3]. A very
comprehensive review on frames can be found in [4].

The MOF solution is unique in the sense that x is orthogonal
to the null space of Φ and hence has the minimum 2-norm out
of all possible solutions. As such the MOF can be viewed as the
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solution to the following problem:

arg min
x

1

2
�x�22 subject to y = Φx (3)

As noted by several authors the MOF solution is usually not sparse
due to the fact that the 2-norm places a very high penalty on large
coefficients (and thus there tend to be many small yet significant
coefficients) [5].

3. SPARSE APPROXIMATIONS

As noted in the introduction the �0 pseudo norm, �x�0, is a direct
measure of sparsity. In light of the MOF formulation in (3) this
leads us to question if we can solve the following problem:

arg min
x
�x�0 subject to �y −Φx�22 ≤ T (4)

where T is proportional to the noise variance (or 0 in the noise-
less case). Unfortunately, the solution to this problem involves the
enumeration of all possible subsets of columns from Φ, which is
a combinatorial problem [6]. This problem is also unstable in the
noiseless case, since a small perturbation of y can dramatically
effect �x�0.

There are two main strategies that have been explored in the
literature to recover sparse solutions. The first tactic is to use
greedy algorithms, which build up a solution by selecting one co-
efficient in x per iteration. By stopping a greedy algorithm early,
a sparse approximation is guaranteed. The second strategy is to
rephrase (4) using a cost function that can be tractably minimized.
We refer to this approach as relaxation. Although both of these tac-
tics often lead to suboptimal solutions, there are certain conditions
under which the optimal solution may be recovered [7, 8].

In the following sections we explore these two approaches and
discuss algorithms for their solutions. We then provide some nu-
merical results to compare the different algorithms, and discuss
their suitability for audio applications.

4. GREEDY APPROACHES

4.1. Matching Pursuit

The matching pursuit (MP) algorithm is one of the most well known
greedy algorithms for sparse approximation [9]. In MP we start
with an empty solution x(0) = 0, and adjust one coefficient in x
at each iteration. This coefficient is chosen so as to minimize the
residual error at each iteration. For example, on the nth iteration
we define x(n) = x(n−1) + αδ, where α is a scalar and δ is a
unit vector with one non-zero component that indicates which el-
ement of x should be updated. The residual can then be written
as r(n) = y − Φx(n) = r(n−1) − αφ, where the atom φ is the
column of Φ identified by δ. At each iteration we seek an atom φ
and scalar α that minimize the current residual:

arg min
α∈C,φ∈Φ

1

2
�r(n−1) − αφ�22 (5)

Solving for α we find

α =
φHr(n−1)

φHφ
(6)

where φHr(n−1) =
�

k φ∗[k]r(n−1)[k]. We often normalize the
dictionary atoms so that φHφ = 1 (we will assume this is the

case from here on out). Plugging this value of α back into (5) it is
straightforward to show that the atom which decreases the residual
error most is given by

arg max
φ∈Φ

|φHr(n−1)| (7)

Algorithm 1 summarizes the steps in MP.

Algorithm 1 Matching Pursuit

1: init: n = 0,x(n) = 0, r(n) = y
2: repeat
3: in = arg maxi |φH

i r(n)|
4: αn = φH

in
r(n)

5: x(n+1) = x(n) + αnδin

6: r(n+1) = r(n) − αnφin

7: n = n + 1
8: until stopping condition

The stopping condition is usually based on a combination of
the desired signal to residual ratio (SRR), and maximum number
of iterations allowed.

After k iterations the signal approximation is

ŷ =

k−1�

n=0

αnφin
(8)

We can avoid explicit computation of the residual in algorithm
1 if we multiply both sides of line 6 by φH

j . This gives

φH
j r(n+1) = φH

j r(n) − αnG[in, j] (9)

where G = ΦHΦ is the Gram matrix, and φH
j r(n) was already

calculated in the previous iteration. In practice the Gram matrix is
often too big to be stored, however, in many cases it will have a
sparse structure so an update of this form can still be useful. For
example, when local dictionaries are used the majority of entries
in the Gram matrix are zero, so many of the inner products do not
need to be updated [10].

Equation (9) reveals that the inner products at iteration n + 1
depend on the atom selected at iteration n (via the Gram matrix).
When the atoms are correlated (as they will be in a redundant dic-
tionary) this dependence can lead to the algorithm making subop-
timal choices. Nonetheless, the residual is guaranteed to converge
to zero in norm as the number of iterations tends to infinity [9].

4.2. Variants and Extensions

It should be noted that in MP we may select atoms at each itera-
tion based on criteria other than minimizing the residual energy.
For example, if we have some a priori knowledge about the signal
we can modify the selection criteria to include this information. To
illustrate, in [11] a psychoacoustic weighting was applied before
minimizing the residual, and in [12] an MP-variant was introduced
that avoids selecting atoms which might lead to pre-echo artifacts.
Likewise, we might also restrict the search region for atoms at each
iteration. For example, in [13] the search region was restricted so
that only overlapping chains of atoms (similar to partials) were ex-
tracted by the algorithm. This flexibility in the selection of atoms
is a great advantage of MP over some of the other algorithms in-
troduced later.
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With MP we can also refine the atom parameters at each itera-
tion using Newton’s method [9]. This allows one to find a contin-
uous estimate for the atom parameters even when using a discrete
dictionary. Also, in [14] a method known as cyclic matching pur-
suit was introduced that allows one to find a continuous estimate of
the amplitude and frequency parameters when using a dictionary
of complex sinusoids.

4.3. Orthogonalization

There are several variants of MP which use orthogonalization to
improve the performance (i.e., achieve a higher SRR with fewer
atoms). For example, we can update the coefficient vector x by
orthogonal projection every k iterations. This process is known as
backprojection. If we let ∆k � supp(x(k)), and denote x∆k �
{xi|i ∈ ∆k} and Φ∆k � ∪i∈∆kφi, then we can write backpro-
jection as:

x̂∆k = arg min
supp(x)=∆k

1

2
�y −Φ∆kx�22 (10)

The solution to this equation is given by x̂∆k = Φ+
∆k

y, where
Φ+

∆k
indicates the pseudo-inverse.

If we carry backprojection to its logical extreme, and update
the coefficients after every iteration we arrive at an MP-variant
known as orthogonal matching pursuit (OMP) [15]. OMP tends to
be very computationally expensive, since it requires computation
and inversion of the partial Gram matrix at every iteration. How-
ever, since the residual remains orthogonal to the selected atoms
at every iteration, OMP will never select the same atom twice (this
is not the case for MP), and is guaranteed to converge in M (or
fewer) iterations.

There are also several variants of OMP that have been dis-
cussed in the literature. For example, in optimized OMP (OOMP)
[16] the atom selection metric is adjusted in order to improve the
residual decay, and in stagewise OMP (StOMP) [17] several atoms
are selected and orthogonalized at each iteration.

In [18] several fast algorithms were introduced which approx-
imate OMP using gradient and conjugate gradient information.
Further, in [10] a fast approximate OMP algorithm was proposed
for use with local dictionaries. This algorithm exploits the fact that
many dictionaries of practical interest are local in the sense that
the majority of atoms are orthogonal to one another (since they
are supported on disjoints sets). This allows one to work with a
much smaller partial Gram matrix, and dramatically speeds up the
algorithm in practice. As such these algorithms hold considerable
promise for audio applications.

4.4. Conjugate Subspaces

In standard MP we select just one atom at each iteration. When
working with complex atoms and a real signal it can be useful to
select a conjugate subspace at each iteration. This can be done by
replacing α by [α α∗]T and φ by [φ φ∗] in (5) which leads to
the solution outlined in [5].

Using complex atoms with conjugate subspaces leads to two
important advantages when working with audio. Firstly, using
complex atoms allows one to estimate the phase without explic-
itly parameterizing this value. Second, when selecting low or high
frequency atoms the inner products can be biased by spectral leak-
age from the negative frequency spectrum. Since this approach

selects a subspace consisting of one positive and one negative fre-
quency atom, it is resilient to this possible bias (further details can
be found in [19]).

4.5. Weak Matching Pursuit

A modification to MP known as weak matching pursuit (WMP)
can be practically useful when dealing with very large dictionar-
ies, where the computation of inner products would ordinarily be
prohibitive [9, 20]. At each iteration of WMP we select an atom
from a subset of the full dictionary:

Φ
(n)
Λ =

�
φi

�����
���φH

i r(n)
��� ≥ βmax

j

���φH
j r(n)

���
�

(11)

where β ∈ (0, 1] is a relaxation factor. It has been shown that the
WMP will converge even if β changes from iteration to iteration
[21]. In [22] and [23] this strategy was used to prune the dictio-
nary around local maxima, leading to a significant computational
savings.

5. RELAXED APPROACHES

As mentioned in §3 the second major class of algorithms for sparse
approximation are based on relaxation. In essence, we relax the
hard �0 pseudo norm problem by replacing it with a cost function
that can be tractably minimized.

In order to proceed let us replace the �0 pseudo norm in (4) by
a function f(x) that measures the sparsity of x:

x̂ = arg min
x

f(x) subject to �y −Φx�22 ≤ T (12)

This equation can also be written in an equivalent unconstrained
form:

x̂ = arg min
x

1

2
�y −Φx�22 + λf(x) (13)

We refer to f(x) as a regularization term, and note that the
scalar λ controls the degree of regularization (i.e., trades off our
desire for a sparse solution with our wish for a low approximation
error).

There are many regularizers that promote sparsity. For exam-
ple, the �p-norms, 0 ≤ p ≤ 1 are well-known to promote sparsity:

f(x) = �x�pp =
�

i

|xi|p (14)

We can begin to see why the �p-norms, 0 ≤ p ≤ 1, promote spar-
sity by visualizing the shape of �p-balls in two dimensions. In fig.
1 the feasible set of solutions for a hypothetical problem is indi-
cated by a dashed line. The minimum �p-norm solution is found
by expanding the �p-ball until it intersects the solution space. As
can be seen for p ≤ 1 the �p-ball intersects the solution space
along one of the coordinate axes, leading to a solution with only
one non-zero component. Notice that when p > 1 the solution
contains two non-zero components. The solution for p = 2 corre-
sponds to the minimum energy solution (which is calculated using
the method of frames). Geometrically the �p-balls, 0 ≤ p ≤ 1, are
sharply pointed and aligned with the coordinate axes, which tends
to induce sparse solutions.
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Figure 1: Illustration of the shape of �p-balls in 2-dimensions. The dashed line represents the set of feasible solutions for a hypothetical problem. Note that
for p > 1 the minimum �p-norm solution contains 2 non-zero components, whereas for p ≤ 1, the solution contains only 1 non-zero component. Also note
that p = 2 is the minimum energy solution (it is the vector normal to the solution space).

Other sparsity measures are also possible, for example, the
Shannon and Rényi entropies are known to act as good sparsity
measures2 [24, 25].

5.1. Basis Pursuit

The fact that �1 minimization often leads to sparse solutions has
been known for sometime [26]. In the signal processing literature
minimization of (12) with an �1-norm regularization term is known
as basis pursuit (BP) when T = 0 and basis pursuit denoising
(BPDN) when T �= 0 [27]. In the statistics literature a very similar
formulation was presented under the name least absolute shrinkage
and selection operator (LASSO) [28].

Using the �1-norm is attractive since i) it promotes sparsity,
and ii) it is convex (and thus this problem can be tackled using the
large body of techniques developed for convex optimization [29]).

In [27] the BP problem was solved using linear programming
(LP), however, as pointed out in [30], LP cannot be used with
complex coefficients. In this case a second-order cone program
(SOCP) may be used instead.

In [30] it was noted that we can downsample a sparse signal
using random projections (using results from compressed sensing
(CS) theory [31]). This strategy was used in [30] to downsample
the input signal before applying a SOCP. This significantly reduces
the problem size and hence the computational cost (which is very
interesting to note for audio applications).

In the following sections we discuss algorithms for the solu-
tion to the unconstrained problem (13).

5.2. Iteratively Re-weighted Least Squares

Iteratively re-weighted least squares (IRLS) is an algorithm that
can be used to solve the sparse approximation problem with both
convex and non-convex regularization terms. The premise of IRLS
stems from the following fact: if we define a diagonal weight ma-
trix as:

Wp = diag(|xi|p−2) (15)

then we can write the �p-norm of x in quadratic form as follows:

�x�pp = xHWpx =
�

i

x2
i |xi|p−2 =

�

i

|xi|p (16)

This allows us to write (13) as:

x̂ = arg min
x

1

2
�y −Φx�22 + λxHWpx (17)

2In fact, the Rényi entropies can be interpreted as logarithmic versions
of the �p-norms.

The least squares solution to this equation is:

x̂ = (ΦHΦ + 2λWp)−1ΦHy (18)

However, since Wp = diag(|xi|p−2) is a function of x, we must
solve this equation in an iterative fashion. The pseudocode in algo-
rithm 2 demonstrates the basic IRLS algorithm. To avoid division
by zero, we initialize x with all ones. In practice many of the co-
efficients of x will shrink, but never reach zero. A variation on
this algorithm could include the identification of an active set of
coefficients from x. Small coefficients from x (and the associated
columns from Φ) could then be pruned from the active set.

Algorithm 2 IRLS

1: init: n = 0,x(n) = 1
2: repeat
3: W

(n)
p = diag(|x(n)

i |p−2)

4: x(n+1) = (ΦHΦ + 2λW
(n)
p )−1ΦHy

5: n = n + 1
6: until stopping condition

In [32] a slightly different procedure is described, whereby a
solution is sought in the noiseless case. This algorithm has the
same form as algorithm 2, except that at each iteration the updates
proceed according to

x(n+1) = (W (n))−1ΦH(Φ(W (n))−1ΦH)−1y (19)

This variant of IRLS is referred to as the focal underdetermined
system solver (FOCUSS) in the literature [33]. A detailed exami-
nation of IRLS and its convergence properties is provided in [34].

There are several points that should be noted regarding the
IRLS algorithm. Firstly, the algorithm is sensitive to the initial-
ization point when p < 1, which means a local minimum could
be returned. In many applications we may be able to find a suit-
able initialization point using other algorithms (e.g., we could use
the pseudo-inverse as an initialization point). Second, the algo-
rithm requires a matrix inversion. It can be practical to perform
the matrix inversion using Cholesky or QR factorization for small
dictionaries. However, when working with audio, these factoriza-
tions are usually not practical due to their computational complex-
ity, and because we often can’t explicitly store the dictionary in
memory. In this case we can perform the matrix inversion us-
ing conjugate gradient descent with appropriate preconditioning
as suggested in [35]. As noted in [36] when Φ is an orthonormal
basis the matrix inverse is trivial. Furthermore, if Φ is a union of
orthonormal bases, we can invert one basis at a time in an iterative
fashion using block coordinate relaxation (BCR) [37].
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Figure 2: The shrinkage curve xi = ψ(φH
i y) for the �1-norm function.

5.3. Iterative Shrinkage

In [38] a method known as shrinkage was introduced to solve (13)
for the case when Φ is an orthonormal basis. To understand shrink-
age, we start by re-writing the objective function from (13) as:

x̂ = arg min
x

1

2
�Φ(Φ−1y − x)�22 + λf(x) (20)

when Φ is an orthonormal basis, this simplifies to3:

x̂ = arg min
x

1

2
�ΦHy − x�22 + λf(x) (21)

= arg min
x

�

i

1

2
(φH

i y − xi)
2 + λf(xi) (22)

In this form the joint optimization problem has been factored into
a sum of scalar optimization problems which can be solved indi-
vidually.

The solution to the ith scalar optimization problem is given
by:

xi + λf �(xi) = φH
i y (23)

Solving for xi we get:

xi = ψ(φH
i y) (24)

where
ψ−1(u) = u + λf �(u) (25)

When f is the �1-norm we find that ψ−1(u) = u + λsign(u),
which leads to:

ψ(u) = sgn(u) max(0, |u|− λ) (26)

The curve of the �1 shrinkage function, ψ, is graphed in figure
2. Filtering the transform coefficients according to this graph is
known as shrinkage or soft thresholding. It was shown in [39]
that shrinkage can be performed with complex coefficients by sim-
ply shrinking the modulus of φH

i y and leaving the argument un-
changed. We also note that different regularization terms will lead
to different shrinkage curves4. For example, in the limit as p→ 0
we obtain a variant known as hard thresholding [40].

We now discuss how to perform shrinkage with an overcom-
plete dictionary. In this case an iterative shrinkage (IS) algorithm
is required, whereby a series of simple shrinkage operations are
performed until convergence [41, 42, 43, 44, 40]. Here we outline
the approach discussed in [43].

3by Parseval’s theorem ||Φz|| = ||z||, and the fact that Φ−1 = ΦH

4Not all shrinkage functions can be calculated analytically. In such a
case a look-up table can be used.

In this approach we again decouple the optimization problem
and solve a series of 1-D problems. Assume we are given the
transform coefficients at the nth iteration, x(n). Now assume all
entries in x(n) are fixed, except for the ith entry, which we wish to
refine. We can write the objective function as:

arg min
w

1

2
�y − (Φx(n) − φix

(n)
i + φiw)�22 + λf(w) (27)

In essence this removes the contribution of the ith atom from the
model, and allows us to replace it with a new estimate, w. Taking
the derivative with respect to w and setting the result to zero we
get (assuming unit norm atoms):

w + λf �(w) = x
(n)
i + φH

i (y −Φx(n)) (28)

which is in the same form as (23), and so can be solved using a
shrinkage operator. The pseudocode for iterative shrinkage (IS)
listed in algorithm 3:

Algorithm 3 Iterative Shrinkage (IS)

1: init: n = 0,x(n) = 0
2: repeat
3: x(n+1) = x(n)

4: for i = 0 to N − 1 do
5: x

(n+1)
i = ψ(x

(n)
i + φH

i (y −Φx(n+1)))
6: end for
7: n = n + 1
8: until stopping condition

In [43], empirical results are presented comparing IS to IRLS.
Although IRLS has much faster convergence, it also requires a
matrix inversion, which can be prohibitive for large dictionaries.
Iterative shrinkage on the other hand, converges more slowly, but
it is computationally much simpler (and does not require a matrix
inversion), so it can easily be used with large overcomplete dictio-
naries.

It is important to note that IS tends to underestimate the mag-
nitude of the synthesis coefficients. We can correct for this bias
after running IS by taking the orthogonal projection of y onto the
support identified by the algorithm. In practice there may be some
coefficients that are very small (but non-zero). These coefficients
can be eliminated by hard thresholding prior to the debiasing step.

The particular version of shrinkage in algorithm 3 is somewhat
slow because it requires each xi to be updated sequentially in the
inner loop. In [43] a simple modification of this algorithm was
introduced that allows all of the coefficients in x to be updated in
parallel. This leads to a significant speed up in the algorithm. We
note that the IS algorithm developed in [42] also uses a parallel
update.

There have also been several recent papers introducing fast IS
techniques [45, 46]. These algorithms use information from the
two previous iterates to update the current solution, and can be up
to an order of magnitude faster. These fast shrinkage algorithms
would likely be quite useful for audio applications.

5.4. Bayesian Methods

In a probabilistic setting we assume the signal is constructed ac-
cording to:

y = Φx + ε (29)
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where x and ε are random variables representing the signal and
noise, respectively5. We will assume that ε is white Gaussian noise
with covariance matrix Σ = σ2I in order to simplify calculations
(however more general noise models are certainly possible).

The negative log-likelihood of x is given by

L(x) = − log p(y|x) =
1

2σ2
�y −Φx�22 + C (30)

where C is a constant independent of x. As discussed in §2 when
Φ is overcomplete there are multiple values of x such that y =
Φx, which means the maximum likelihood solution is ill-defined.

In order to find sparse solutions we can instead find the max-
imum a priori (MAP) estimate which incorporates a prior on the
transform coefficients. The MAP estimate is found by application
of Baye’s rule:

x̂MAP = arg max
x

p(x|y) = arg max
x

p(y|x)p(x)

p(y)
(31)

It is usually mathematically simpler to minimize the negative log-
likelihood which is:

x̂MAP = arg min
x
− log p(y|x)− log p(x) + log p(y) (32)

Let us denote the negative log-probability of x as f(x) = − log p(x).
Then (32) becomes

x̂MAP = arg min
x

1

2σ2
�y −Φx�22 + f(x) + C (33)

where C is a constant independent of x. Notice that (33) is essen-
tially the same problem as (13). It is interesting to note that when
p(x) is an independent and identically distributed (i.i.d.) Lapla-
cian prior:

p(x) =
�

i

p(xi) =
�

i

λ

2
exp(−λ|xi|) (34)

then
f(x) = − log p(x) = λ�x�1 + C (35)

In other words, MAP estimation with a Laplacian prior is equiv-
alent to �1 regularization. The Laplacian distribution is sharply
peaked at zero with heavy tails as illustrated in fig. 3. This den-
sity thus encourages many small coefficients, yet does not place a
heavy penalty on large coefficients, which tends to promote sparse
solutions. This new viewpoint helps to illustrate why the �1-norm
acts as a good sparsity measure. It should be noted that this is
just one possible interpretation, and that other interpretations are
certainly possible as suggested in the recent paper [48].

Since we are free to investigate priors other than the Lapla-
cian, and also because we can use alternative noise models, the
Bayesian approach is quite flexible. For example, in [49], a piece-
wise continuous prior was used, which is even more peaked around
zero than the Laplacian prior. In [50], a design methodology is dis-
cussed outlining some of the necessary conditions for a prior to be
sparsity inducing.

It should be noted that in the above formulation the synthesis
coefficients were assumed to be i.i.d.. In reality this may not be a
good assumption, since we expect some structure in the synthesis
coefficients (for example chains of coefficients that form partials).
In fact, all of the algorithms discussed up to this point ignore this
important factor. We discuss methods for sparse and structured
decompositions in §6.

5In some cases Φ can also be considered a random matrix, for example,
if we wish to perform dictionary learning [47].
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Figure 3: Illustration of Gaussian densities (left) and Laplacian densities
(right).

5.4.1. Bayesian Variants and Extensions

There are several variations that can be applied within the Bayesian
framework. For example, in [51] [52] [53] each transform coeffi-
cient is modeled by a zero-mean Gaussian prior. A hyper-prior is
then placed on the variance, in order to express the belief that, for
the majority of coefficients, the variance should be near zero [53].
As illustrated in fig. 3, as the variance of a Gaussian tends to zero,
the distribution becomes infinitely peaked at zero. An expectation
maximization (EM) procedure can be used to find MAP solutions
for these models. A conceptually similar approach is discussed in
[54].

Another variant known as sparse linear regression was intro-
duced in [55] and [56]. In this formulation the atomic model is
augmented to include a binary indicator variable γi ∈ {0, 1}:

y =

N−1�

i=0

γixiφi + ε (36)

The vector γ = [γ0, . . . γN−1]
T indicates the presence or absence

of each coefficient in the model. If we could somehow determine
a sparse indicator vector, then we could find the optimal trans-
form coefficients via orthogonal projection. This problem setup is
known in the literature as Bayesian variable selection [57].

Using the indicator variables we can form a mixed prior for
each transform coefficient:

p(xi|γi,σi) = (1− γi)δ(xi) + γiN (xi|0,σ2
i ) (37)

where N (·|0,σ2) indicates a zero-mean Gaussian density with
variance σ2, and δ(·) is a dirac distribution. This spike + slab
distribution enforces sparsity conditionally on γ. We then seek a
MAP solution of the form

(x̂, γ̂) = arg max
x,γ

p(x,γ|y) (38)

where the density p(x,γ|y) can be found by marginalizing the
complete posterior. The type of prior we place on γ, strongly ef-
fects the type of solutions that will be found. For example, an
independent Bernoulli prior could be used if we don’t expect any
dependancies between coefficients. In [58] the indicator variables
are given time-frequency dependencies by modeling the joint dis-
tribution of γ as a Markov chain. In general the density p(x,γ|y)
cannot be found analytically. In this case, a solution can be found
using Monte Carlo inference (e.g., Gibbs sampling).

6. STRUCTURED APPROXIMATIONS

The majority of techniques discussed to this point simply aim at
recovering a sparse solution to (1). In addition to sparsity, we of-
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ten have other a priori information regarding the content of our
signals. In audio signals we expect strong time-frequency depen-
dencies between different transform coefficients. For example, we
expect some time-continuity between active coefficients in tonal
sounds, and some frequency-continuity in transient sounds. Fur-
thermore, we expect spatial dependencies in multichannel record-
ings [59].

There are several ways of structuring the information in a de-
composition. We can impose structure directly using the atoms
themselves (for example, by using harmonic atoms). Likewise,
we can impose structure by preferentially selecting coherent atoms
in the decomposition (for example, by only selecting overlapping
chains of atoms). Finally, we can impose structure as a post-
processing step, by clustering atoms according to their similarity.
All of these approaches have been used in the literature. We briefly
review the most prominent techniques.

Sparse linear regression, which was addressed in the previ-
ous section, uses binary indicator variables to indicate the absence
or presence of each transform coefficient in the model. The type
of joint prior placed on the set of indicator variables can be used
to model dependencies between the transform coefficients, as was
done in [55][58].

An algorithm known as molecular matching pursuit (MMP) is
described in [60]. MMP is an iterative greedy algorithm that esti-
mates and subtracts a tonal or transient molecule from the residual
at each stage. Tonal molecules are defined as overlapping chains
of MDCT atoms with the same frequency (± 1 bin). Transient
molecules are sets of wavelet coefficients forming a connected
tree. A similar algorithm is described in [13] which uses a multi-
scale Gabor dictionary. These algorithms segment the signal into
transient and tonal objects, which could be useful for selective pro-
cessing and filtering of audio signals. There are strong similarities
between MMP and partial tracking algorithms [61, 62], especially
when an overlap-add (OLA) synthesis model is used. However, the
advantage of MMP and its variants over traditional partial track-
ing techniques is that multi-scale features can be captured by the
algorithm, since larger, more general dictionaries can be used.

An algorithm known as harmonic matching pursuit (HMP)
was suggested in [23]. This algorithm uses a dictionary of har-
monic atoms6. At each stage in the pursuit the signal is projected
onto a harmonic subspace. In order to manage the complexity of
the algorithm the search for best harmonic atom is limited to a
subset of the dictionary using a weak approximate MP. The same
authors also developed stereo atoms for two channel recordings
[59].

The authors in [63] also discussed an approach inspired by
both harmonic matching pursuit and molecular matching pursuit.
Their mid-level representation was shown to be useful for several
tasks including solo and polyphonic instrument recognition.

In [64] a post-processing technique known as agglomerative
clustering (AC) was introduced to impose structure on the syn-
thesis coefficients. AC works by traversing an adjacency matrix,
which measures the similarity between atoms. If two atoms are
present in the decomposition, and significantly close in the adja-
cency matrix, then they are grouped together. This process is then
repeated to form large clusters of coherent atoms.

In [65] a technique using iterative shrinkage (see §5.3) was
developed to find sparse and structured decompositions when used

6a harmonic atom is defined as a weighted sum of Gabor atoms with
integer frequency ratios.

Package M
P

O
M

P
IR

L
S

IS B
P

Languages URL

SparseLab �� � �� Matlab [66]
Sparsify �� - - - Matlab [67]

MPTK � - - - - C++7 [68]
GabLab �� � � - Matlab [69]

Table 1: Software packages for sparse approximation.

with time-frequency dictionaries. This technique relies on a mixed-
norm regularization term which tends to induce structure in the
decomposition (for details see [65] and the references therein).

7. SOFTWARE TOOLS

Table 1 lists several software packages for sparse approximation
that are freely available. This list is by no means exhaustive, but it
does include some of the more well-known choices that are avail-
able.

In practice not all packages are well-suited for audio analysis.
For example, many of the solvers in SparseLab require explicit ac-
cess to the columns or rows of the dictionary. This is problematic
for audio analysis, since we often work with huge amounts of data
and dictionaries that aren’t explicitly stored.

In practice MPTK is very fast, and contains many optimiza-
tions that make it suitable for use with audio and very large shift-
invariant dictionaries.

The Gablab software [69] (which has been released in con-
junction with this paper) was written with audio analysis in mind.
GabLab comes bundled with functions for creating fast Gabor dic-
tionaries, and unions of Gabor frames8. The computation of inner
products in GabLab is performed using the fast Fourier transform.
Furthermore, all of the algorithms in GabLab work with complex
atoms.

In the following sections we compare the four main algorithms
discussed in this paper (MP, OMP, IS and IRLS) according to sev-
eral different criteria. We then discuss several audio applications
that could benefit from sparse atomic modeling. All of the numer-
ical experiments were performed using GabLab.

8. COMPUTATIONAL COMPLEXITY

A detailed analysis of the computational complexity of MP and
OMP for general and fast local dictionaries can be found in [10].
We note that MP and IS are each dominated by the calculation of
inner products, and thus have a similar computational complexity.
However, when local dictionaries are used the inner product update
can be performed faster in the MP algorithm (since fewer inner
products need to be calculated for each iteration).

OMP and IRLS are both dominated by the calculation and in-
version of the (partial) Gram matrix at each iteration. In GabLab
this matrix inversion is performed using conjugate gradient de-
scent.

7Matlab bindings are bundled with the MPTK distribution.
8A Gabor frame can be viewed as a generalization of an oversampled

STFT matrix.

DAFX-7

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-87



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

The difference in speed between these algorithms depends to a
large degree on the number of iterations required for convergence.
In the following section we provide empirical results which illus-
trate how many iterations of each algorithm are required in specific
test cases.

9. COMPARISON

In this section we compare the performance of MP, OMP, IS (p=1),
and the IRLS (p=1) algorithm using some simple synthetic test
signals. In the following tests we used a 3-scale complex Gabor
dictionary constructed from Hann windows of length 2048, 512,
and 64 samples with 50% overlap. The sampling rate used was
44.1kHz.

9.1. Example: a compressible signal

For the first test we used a quadratic chirp swept between 100 Hz
and 15 kHz. As can be seen from the spectrogram in fig. 4, this
signal is compressible in the Fourier domain, i.e., many of the co-
efficients are small. Furthermore, since the bandwidth of the chirp
evolves over time, a multi-scale dictionary (such as the one pro-
posed above), should posses the capability to model both the nar-
rowband and wideband parts of the chirp respectively.
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Figure 4: Spectrogram of quadratic chirp test signal. Spectrogram param-
eters: Hann window of length 512, with 50% overlap.
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Figure 5: SRR vs. Number of significant atoms for quadratic chirp decom-
position.

Figure 5 shows the signal to residual ratio (SRR) vs. the num-
ber of significant atoms in the decomposition for each algorithm.
An atom was deemed significant if its magnitude exceeded 10−4.
For IS and IRLS the data points were generated by running the
algorithms until convergence for different values of λ. It should
be noted that this process can be accelerated significantly using

SRR 10 dB 20 dB 30 dB
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MP 131 260 8.0 354 678 21.4 844 1521 51.1
IS 92 292 6.6 151 618 10.6 230 1127 16.5
OMP 122 242 116.0 282 560 381.2 484 960 1224.6
IRLS 73 315 89.0 69 733 127.2 67 1406 206.5

Table 2: Summary of quadratic chirp decomposition results.

‘warm starts’, i.e., initializing the next run of the algorithm using
the previous value at convergence. This works in practice because
a small change in λ usually causes a small change in the solution.
It should also be noted that after IS and IRLS converged the coef-
ficient vector was thresholded (with threshold 10−4) and debiased
as explained in section §5.3.

Examining the curves in fig. 5, we see that OMP provides the
best SRR vs. number of atoms. MP, IS, and IRLS perform sim-
ilarly, although beyond 800 atoms, IS and IRLS both maintain a
higher SRR than MP. Table 2 summarizes the data in this graph
and adds two new pieces of information: i) the number of itera-
tions required for convergence and, ii) the amount of CPU time
used by each of the algorithms (for reference, all of the algorithms
were run in MATLAB R�on the same 2.6 GHz dual core Mac Pro).
Of course, the speed of these algorithm is implementation depen-
dent. However, combined with the number of iterations required
for convergence these numbers do reveal interesting differences
between the various algorithms.

As described in §8, IS and MP have approximately the same
complexity per iteration, however, as seen in table 2, IS requires
fewer iterations to converge than MP, and hence uses less CPU
time. The difference is more dramatic for high SRRs and, although
not shown in table 2, for very low SRRs MP is indeed faster.

9.2. Example: a sparse signal plus noise

For this example, we generated a random sparse signal using the
3-scale Gabor dictionary introduced in the previous section. This
signal was generated by first drawing 500 indices from a uniform
distribution to make up the support vector. The real and imaginary
coefficients were then drawn from a normal distribution with unit
mean and variance 0.1. Conjugate atoms were also added to make
the signal real. The test signal was 0.5s in duration and contained
984 non-zero coefficients9. We then added white Gaussian noise to
the signal so that the SNR was 5dB and compared the performance
of MP, OMP, IS and IRLS at denoising the signal.

Figure 6 displays the output SNR vs. number of atoms for each
of the algorithms. Near the true sparsity level (984 atoms), OMP
offers the best reconstruction in terms of output SNR. MP has its
peak located in a similar location, although the SNR is lower10.
Both IS and IRLS require more atoms to reach their peak SNR,

9There are slightly less than 1000 non-zero coefficients because re-
peated coefficients were discarded, and some coefficients were DC atoms
(so no conjugate was added).

10Stopping the algorithm here and running backprojection would prob-
ably result in a better performance.
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Figure 6: Results for de-noising a random sparse signal corrupted by white
Gaussian noise (input SNR = 5dB).

although IS achieves its peak with fewer significant atoms than
IRLS.

In order to compare how well the true support was recovered
we also measure the Type I and II errors which are defined as fol-
lows. If we let ∆ represent the true support and ∆̂ represent the
estimated support:

Type I error � 1− |∆ ∩ ∆̂|
|∆| (39)

Type II error � 1− |∆ ∩ ∆̂|
|∆̂|

(40)

Figure 7 illustrates the Type I and Type II errors vs. the num-
ber of atoms for each of the algorithms. MP, OMP, and IS all have
very low errors near 984 atoms (the true sparsity level), which sug-
gests that these algorithms do a good job recovering the correct
support. IRLS on the other hand, has a harder time recovering the
true support. It is interesting to note the differences between IS
and IRLS since both algorithms attempt to minimize the same cost
function. We must remember however, that this cost function is
not strictly convex, which means there could be multiple solutions
with the same cost.
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Figure 7: Error in support estimation. Top: Type I error. Bottom: Type II
error.

10. AUDIO APPLICATIONS

In this section we highlight some audio applications that can ben-
efit from sparse atomic modeling.

10.1. Multilayer Expansions

Multilayer expansions are often very useful for audio processing
and effects. For example, the tonal + transient + noise expansion
segments the signal into important perceptual units.

To find a multilayered expansion we start by defining the dic-
tionary as Φ = ∪I

i=1Φi, where each Φi is a frame adapted to
a certain signal feature. For example, for I = 2, we might take
Φ1 to be a Gabor frame with a short duration window and Φ2

to be a Gabor frame with a long duration window. These frames
are well suited for the analysis of transient and tonal structures,
respectively.

Now, if we solve the system y = Φx = [Φ1Φ2][x1x2]
T with

a sparsity constraint, it follows that the transient components will
be encapsulated by x1 and tonal components will be encapsulated
by x2

11.
For example, fig. 8 shows the multilayer analysis of a 5s long

glockenspiel excerpt, which was chosen because it has rather dis-
tinct tonal and transient parts. The analysis was performed with
a 2-scale Gabor dictionary with Hann windows of length 2048
and 32 samples with 50% overlap. The sampling rate used was
44.1kHz. The particular analysis shown was performed using IS,
however, all of the algorithms discussed lead to fairly similar re-
sults. The interested reader can listen to the multilayer expansions
found using MP, IS, and IRLS on the companion website [69].

10.2. Denoising

As shown in the example presented in §9.2, prior knowledge of
sparsity or compressibility is often useful for signal denoising.
Further, as discussed in §5.4, regularization with a sparse prior
can be interpreted as a MAP estimate in certain situations. An
additional denoising example using the glockenspiel excerpt from
the previous section can be found on the companion website [69].

10.3. Time-Frequency Modification

In this paper we have primarily focused on the use of Gabor frames
and sparsity of the synthesis coefficients. This point-of-view is
useful for time-frequency modifications, since the synthesis coef-
ficients of a Gabor frame can be used to control the time-frequency
content of the signal. For example, on our companion website
[69] we include an example of a major-to-minor transposition of
an acoustic guitar chord. This effect was achieved using the fol-
lowing steps:

1. A tonal + transient expansion was performed as described
in §10.1.

2. The tonal atoms were then classified based on whether or
not they belonged to the major third note in the chord (this
requires an multiple f0 estimation).

3. The major third atoms were then synthesized and flattened
by 100 cents to produce a minor third note.

4. The original signal was then re-synthesized without the ma-
jor third atoms and added to the minor third signal to pro-
duce a minor chord.

11Provided Φ1 and Φ2 are incoherent with one another.
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Figure 8: Multilayered expansion of a glockenspiel excerpt. Top: original
spectrogram. Middle: tonal layer. Bottom: transient layer. In this example
the total SRR was 32 dB and 2% of the synthesis coefficients were non-
zero.

As can be heard on the website [69] the result is relatively con-
vincing despite the naïvety of this approach. We also provide a
similar example of time-stretching with transient preservation on
the website [69].

We can also selectively process atoms by type. For example
short duration atoms could be attenuated or amplified to smooth or
accentuate an attack.

10.4. Granular Synthesis

As discussed in [70] the sparse synthesis model can be used to
achieve many standard granular effects. For example, we can:

1. Apply time and frequency jitter to the atom parameters.
2. Change the atom envelopes.
3. Change the atom durations (bleed).
4. Change the density of atoms per unit time.

We provide several audio examples of these effects on the com-
panion website [69].

10.5. Inverse-problems

In some cases we may not be able to directly observe the true sig-
nal. For example, we may be forced to work with limited data due
to hardware requirements or assumptions regarding stationarity. In
other cases we may only have access to a noisy or reverberant sig-
nal. Likewise, the signal might be downsampled, have small gaps,

or be corrupted with clicks. We can often describe these types of
degradations as:

z = Ψy + ε (41)

where z is the observed signal, Ψ is a (known) linear degradation
operator, y is the true signal, and ε is additive noise. If y has a
sparse representation y = Φx then we can re-write (41) as

z = Dx + ε (42)

where D = ΨΦ. Armed with the knowledge that x is sparse,
we can attempt to estimate x̂ using the dictionary D and any of
the techniques discussed in this paper. We can then generate an
estimate of the true signal as ŷ = Φx̂. Under certain conditions
regarding D and the sparsity of x, it is possible to exactly recover
y [71]. This premise was recently applied in [72] for audio restora-
tion.

It has also been shown that when Ψ is a random matrix, y can
be recovered (with high probability) if the number of rows in Ψ is
large enough. This is the basis of compressed sensing (CS) [31].

11. CONCLUSION

In this paper we reviewed sparse atomic models for audio and dis-
cussed several algorithms that can be used to estimate the model
parameters. This included an exploration of greedy, relaxed, and
Bayesian approaches to the sparse approximation problem, as well
as a brief look at structured approximations. Further, we provided
a few numerical comparisons that serve to illustrate some of the
practical differences between the algorithms discussed. Lastly we
included a discussion of several interesting audio applications that
can benefit from sparse atomic modeling. We remind the reader
that many of the examples in this paper along with sound files and
MATLAB R�code can be found online [69].

We are currently working on MATLAB R�implementations of
local OMP [10], and fast IS [46], which will be added to a future
release of GabLab. We also plan to implement several structured
decomposition techniques and to expand upon the comparisons
performed in this paper.
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