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ABSTRACT

This paper investigates the passivity of the Moog LaddeeFand
its simulation. First, the linearized system is analyzecdsuitts
based on the energy stored in the capacitors lead to a sfalnh
main which is available for time-varying control paramsterean-
while it is sub-optimal for time-invariant ones. A secondrage
function is proposed, from which the largest stability damis
recovered for a time-invariant Q-parameter. Sufficientdibons
for stability are given. Second, the study is adapted to the n
linear case by introducing a third storage function. Thesinau-
lation based on the standard bilinear transform is derivetithe
dissipativity of this numerical version is examined. Siatidns
show that passivity is not unconditionally guaranteed, rhastly
fulfilled, and that typical behaviours of the Moog filter, inding
self-oscillations, are properly reproduced.

1. INTRODUCTION

The Moog Ladder Filter [1] is an analog audio device which is
appreciated by many musicians because of its intuitiverobrits
sound singularity and its typical self-oscillating belawi at high
feedback-loop gains. This nonlinear analog circuit has lleeply
studied and simulated using distinct methods [2, 3, 4, 5, 8].7

Approaches based on energy and passivity consideratioes ha
proved to be relevant for simulating nonlinear systemduifiog
applications to sound synthesis. This issue is of main itapce
for conservative systems whose simulation must neithezrges
nor introduce parasitic dampings. These consideratioms hiat
motivated works on e.g. nonlinear strings, plates and stiséle
e.g. [9, 10, 11]). This approach is also worthwhile for dissive
systems, especially when they are able to reach consesvaatig
self-oscillating behaviours. Thus, the filter of the EMS \8§/n-
thesizer has been simulated using a decomposition of thaitir
into modules which preserves passivity properties [12]rddoer,
these methods usually allow to derive simulations whichcare-
patible with real-time computations usable by musicians.

In this paper, a study on the Moog filter passivity is perfodme
from which a stability criterion is deduced according to g
called Lyapunov stability analysis [13]. Lyapunov functiobased
on (a) the natural energy stored in the capacitors, (b) ézeapn-
veyed by eigenvectors of the linearized system and (c) soote m
ified versions adapted to the nonlinear dynamics are coreside
They allow to characterize stability domains as well asipaed
quantities. These features are applied to the discrete-diynam-
ics analysis of the bilinearly-transformed version of tgstem.

circuit equations and provides a state-space represemtatithe
system. Section 3 refreshes the definition of passivityyaflLinov
functions as well as basic results on stability analysie Jtability
analysis is performed, first, on the linearized version efcthcuit
in section 4, and then, on the original nonlinear circuiteotson 5.
Finally, in section 6, a dissipativity indicator espegratlesigned
for the bilinear transform is deduced, which allows to cletedze
the passivity preservation in simulated results.

2. CIRCUIT AND EQUATIONS

2.1. Circuit description

The Moog ladder filter is a circuit composed of (see Fig. 1:aad)
driver, a cascade of four filters involving capacitorsdifferential
pairs of NPN-transistors and an additional feedback loepaited
in (e)). Following [1], transistors are LM3046 or BC109a&,lpo-

Filter 4

‘ Vi Vi R4
Ky
Filter 3 :
Vs R3
J3 K3
Filter 2 4
Filtern V2 R>
K J2 Ko
b
® Filter 1
Vi R
Ji K
Driver

rep]

Vin —~Vo Filters Vi
(4 stages)

O]

]
]

Figure 1: Circuits : (a) NPN transistor, (b) single-stageefil
(c) driver, (d) four-stages Moog ladder filter without loopda
(e) Complete filter including a feedback-loop gaidr.

The outline of this paper is as follows. Section 2 recalls the larization voltages ar&p; = 2.5V, Vpa = 4.4V, Vps = 6.3V,
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Vps=8.2V, V.. =15V corresponding taR; = 350 Ohms, Ry =
R3 = R4 = 150 0hms, Rs = 390 Ohms. Capacitances afé =
27 nF for the Moog Prodigy and' =68 nF for the MiniMoog syn-
thesizer. Moreover]. is a voltage-controlled current which tunes
a cut-off frequency and parametel(in Fig. 1e) is a the voltage-
controlled gain which monitors the resonance (no resonédnce

0, resonance with infinit€)-factor (self-oscillations) if =1[2]).

2.2. Circuit equations, energy and power balance

Denoteq,, I, andV,, the charge, the current and the voltage of
the capacitor in thei-th stage, respectively. The circuit equations
are (see e.g. [8, §ll] for a detailed derivation for transigiairs)

Capacitor law: ¢ = C' V4, 1)
Capacitor current:(%k = Iy, 2
. . I, Vi | I Vi1

Ti . I, = —— h— — h
ransistor pair k 5 tan 3V + 5 tan TR 3)
Loop: Vo = Vin — 4rVa. (4)

where the thermal voltage 1&r = k, T'/q ~ 25.85 mV at temper-
atureT =300 K (k, =1.38 10723 J/K is the Boltzmann constant,
g=1.610"1'° C s the electron charge).

The total energy which is stored in the capacitors is given by

®)

(6)
which can be formulated as a functiondf,... 4 using (3).

2.3. Dimensionless version
Consider the dimensionless quantities

Vi Iy Vi

_W :F’ u:F7 e—=

dr
= Uk

Tk q_*z

£
B

N =

with V* = 2Vr, ¢* = CV*, I* = L and B* = (222 Then, (1)
becomes trivial £, = x1) sincex;, characterizes both the voltage
and the charge of capacitors. Moreover, (2-6) become, cespe

tively, % % =ik, 1 =—tanh xp+tanh zr_1, xo =24 — 4ru,
4 5 4 4
T de dxg )
= ==, and — = — = , 7
TR MmO

which can be formulated as a functionwof ... » andu and where
w=I*/¢*=1./(4C V1) (ins™H).
2.4. State-space representation and parameters

The dimensionless versions of (2-4) fbr= 1,...,4 yield the
state-space representation with statnd inputu, given by

—tanh 21 +tanh(u—4r z4)

ldz . | —tanhzs+tanhay
;E—f(x,u) with f(z, u) = —tanh 23 +tanh x2 » (8)
— tanh x4 +tanh zs

where the cutoff angular frequency= 4@5—?@ has been extracted

from f for sake of simplicity in the following derivations.

Remark 1. In all the following equations (unless otherwise men-
tioned), the control parametetsandr can depend on time and lie
inw € R%, r € [0, 1] (the casev = 0 which yields no dynamics
42 — 0 so thatz(t) = z(0) is discarded here). Note also that the
signal which is usually used as the output of the filter cqroesls
to x4.

3. RECALLS ON PASSIVITY, STABILITY AND

LYAPUNOV ANALYSIS

This section recalls some basic results about passiviailgy
and Lyapunov analysis. The detailed theory can be found3n [1
chapter 6].

Definition. Consider a system with state-space represent%@o&
f(z,u), outputy = é(x,u), where f : RF x R? — RF is
sufficiently regular (locally Lipschitz)¢ : R* x R? — R? is
continuous, f(0,0) = 0 and¢(0,0) = 0. This system is said
to be passive if there exists a continuously differentigigesitive
semidefinite function/(x) called the storage function such that

4 (V(yc)) < yTu. Itis said to bestrictly passivef

< (V@) < —b(a) + v,

for some positive definite function.

Such a storage functio¥ is called aLyapunov function It
can be assimilated to an energy of the systematala dissipated
power. One interest of the following approach is that it calubed
for linear, nonlinear and possibly time-varying systems.

Links between passivity and stability. The passivity is a practical
tool to examine some system stability aspects. It leans @itvih
following key points:

e when the excitation of the system stops= 0), the posi-
tive storage functionV stops increasing (passive system) or
even decreases as longaas- 0 (strictly passive system).

e If V(z(t)) is bounded, them lives inside a closed bounded
set: it cannot diverge. Moreover, sintes continuous and
definite, if it decreases towards 0, themlso tends towards
0 (global asymptotic stability).

This very last case necessarily occurs for strictly passygtems
with w = 0 if V is radically bounded [13].

In short, this can be summarized as follovifsa system with
a suitable energy)) continuously dissipates some positive power,
the system dynamics is bounded. Moreover, if functide rad-
ically bounded, the dynamics eventually tends to a steaaty st
(zo = 0 for u = 0) which is stable.
Passivity of systems in practiceGiven a storage functiol, the
passivity can be examined by deriving

(0 V(@) w) (= SV(@)

which represents gower (9, 7y denotes the partial derivatives
w.r.t. the row vector:”). Indeed, if P(z,u) can be written as

9)

def.

P(z,u) = (10)

P, u) = —(z) + d(z,u) " u

the passivity is obtained (with equality in (9)) w.r.t to tbaetput

(11)
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4. LINEARIZED SYSTEM: STABILITY, ENERGY AND
LYAPUNQOV ANALYSIS

4.1. System equations, transfer matrix and pole analysis
4.1.1. Linear state-space equation

Foru = 0, the unique equilibrium point of system (8) is zero. The
linearized system arour(e:, u) = (0,0) € R* x R is given by

1dz

T Axz+Bu with A=0,f(0,0) andB=0,/(0,0), (12)
—1 0 0 —4r 1
. 1 -1 0 0 0
that is,A= 0 1 1 0 and B= 0
0 0 1 —1 0

4.1.2. Transfer matrix and pole analysis

For time-invariant parametets andr, the input-to-state transfer
matrix of (12) is

—1

H(s) = F(ﬁ) whereF (o) = (0 11 — A)™'B
w
wherel, denotes the x 4 identity matrix, s denotes the Laplace
variable andr = s/w is its dimensionless version.
The poles in ther-complex plane are the roots of the charac-
teristic polynomial

Pa(o) =detlo s — A) = o' + 40° + 60° + 40 + 1 + 4.
For positive gaing, they are given by

o1 =14+ r+i¥r, 71, 0o =—-1— Yr+iYr andos.

(13)
Their real parts are all strictly negative for gains< 1. This
condition characterizes the strict stability domain.

Remark 2. Ass = wo ando-poles do not depend an, changing
w modifies the cutoff frequency of the filter. But, it does nad-mo
ify the quality factor of the resonance which is exclusivalyed
by r. This is an appreciated particularity of the Moog filter sinc
it makes its control easier (see [2]).

4.1.3. Conclusion on stability

For time-invariant parameters, the pole analysis revdws the
linearized system is strictly stable (poles have all agyrizegative
real part) if the positive gaim satisfiesr < 1. The caser =

1 corresponds to the limit of stability. The linear filter betes
unstable forr > 1. The stability domain does not depend on
w. Finally, for constant parameters, the strict stabilityximaal
domain is

(w77‘) € Dmaz = R: X [O7 1[ (14)

4.2. Passivity analysis based on the natural circuit energy

This section tries to restore the result (14) with a Lyapuapv
proach, from the passivity analysis of the linearized syst®a-
rameters can be time-varying.

4.2.1. Passivity analysis

The energy of a physical system is a natural candidate Lyapun
function. For the (dimensionless) Moog filter, it corresgerto
the sum of the energies stored in the four capacitors, give(T)
which can be rewritten as=V(x) with

4
V(z) = V(). (15)
k=1
whereV is the energy of one capacitor
Vie) = 3o, (16)

(see §2.3 for the conversion into dimensional physical tties).

Using the matrix formulation/(z) = %xTyc, (10) leads to

P(z,u)=w (81V(£E))T<A$+Bu) =w(- QZ(m) + qZ(x,u)Tu) where

12(1’) =—2"Az and g(m,u) = Bx = wx1. 17)

The strict passivity is obtained w.r.t. the output= =z, if ¢
is positive definite. This is the case if and only if the symmicet
matrix@ = Q" = —% (A + A™) from which+(z) = 2" Qx can
also be defined is positive definite. This condition is edegto

Q1,1 Qk,l
Vk € [1,4]n, det| ; “I 4.(Q) > 0. (18)
Qk,l Qk,k
The matrix@ is given by
1 -3 0 2
t 1 T -1 1 -1 0
Q:Q:_—(A+A): 2 1 2 1
2 0o -2 1 -1
2r 0 -3 1
The sub-determinant, (Q) are given by
_ _3 _ ! LR R,
d1(Q)—1, d2—4, d3—2 and d4—16+27“ 3re.

They are all strictly positive iffly > 0, thatis,—1 < r < 2.

4.2.2. Conclusion

The Lyapunov analysis based on the natural energy does not re
store the maximal stability domaiR,,.... given in (14) but only
the subseD,, ... described by
* 5
(LU, T) S Dnatural = RJ,- X [05 E[C Dmaz- (19)
This result which can appear contradictory at first sightisa

ally a quite well-known feature of the Lyapunov stabilityadysis,
as stated below.

Remark 3. The Lyapunov stability analysis gives a sufficient con-
dition for stability. But, it does not allow to conclude treasystem

is unstable if the condition is not fulfilled. Moreover, itetonot
guide the user in choosing the Lyapunov function (whethemab

or not). These difficulties have motivated many works toveeai
candidate Lyapunov function for a given system, witnesged b
large recent bibliography on this topic. This is preciselgyaus-
ing the natural energy of physical systems as a Lyapunowitmc
is usually appreciated. Unfortunately, this function i nptimal
here.

DAFx-47



Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

At this step, it is useless to study the stability of the nosdir
system and its self-oscillating limit which is preciselydwn to
be reached at = 1: a Lyapunov function allowing to restore the
stability domainD,,.., must be investigated first.

4.3. Recovery of the maximal stability domain

As there is no general constructive method to design addpyted
punov functions, an inductive (but constructive) methothtso-
duced below, which consists in writing the power balance laa
sis of eigenvectors so that the dissipativity is straightgrdly re-
lated to the real part of eigenvalues, that is, the poleseofrémsfer
function.

First, the method which yields a parametrized family of éand
date Lyapunov functions to test is described. Second, thbaode
is applied to the Moog system: as for the pole analysis, the ob
tained result restores the upper bound for time-invariaimsy .

4.3.1. Description of the proposed method

In this section, parameter (but notw) is assumed to be time-

invariant. The method is described by the 4 following steps:

Step 1. Write the diagonal version of the system in a basis of
eigenvectors , 1, vz, U3 associated with eigenvalugs=
(01,01, 02,02) defined in (13), that is,

1 dz.
; dt :A*$*+B*u
with z, = P~ '2, A, =P 'AP=diagX), B,=P'B

and
(20)

Step 2. Build a power balance from this state equation as follows

P = [vl,v_l,vg,ﬁ].

7T W, (ldx*)

w dt
whereW, = diag(w,) with w, € (R%)* can be any posi-
tive definite “diagonal weight matrix’ = 77 denotes
the hermitian, i.e. the transposed conjugate version, pf

Step 3. The average of the latter equation and its hermitian ver-
sion yields (recalling that is real valued)

1 de* ~ ~ T
Sar = @) + oz,
wheree, = 1ziW.z,, ¢.(z.) = Re(Bf W, z.) and

Ui (24) = 28 Qy xy with Q. = —Re(W, A,), so that the
two following key points are fulfilled:

=7 (Wi A ze + =7 (W, By) u,

(21)

() e« is a positive definite function af, (sinceW, is
positive definite);

(i) Q« is positive definite if and only if all the eigenval-
ueso (the poles of the transfer matrix) have a strictly
negative real part.

Step 4. Write these results in the original state bgsis: (10) is+eco
vered withe, =V(z), £ P(z,u) = —(z)+¢(z)"u, and

V() :%thm with W =w* — p~Hyy, p=1 22)
V(@) =2'Qx  withQ=Q" = —P~"Re(W. A.)P™", (23)
$(z) =L with L=BT P~HWw, P~ = BT W,  (24)

for any W, = diag(w,) > 0 and whereP~ = (P~1)¥.

This method builds a family of “candidate” Lyapunov functs
parametrized by a definite positive diagonal weight malthix =
diag(w. ).

Remark 4 (Time-invariant parameter). The validity of (21) is
conditioned by the fact that, does not depend on time and that
of step 4 by the fact tha® does not depends on time. Actualiy,
(related to A) depends om (but notw) so that the method gives
“candidate” Lyapunov functions for time-invariamtand possibly
time-varyingw).

4.3.2. Application

In step 1, the computation of eigenvectors leads to

. . -
v1:|:\4/;37+12b\/_3 _5\4/_7_11_L:| ) fOrU:Ul,
L ; 1—iqT
UQZ[ng - _2|—L\/7_ﬂ7 +§%7+ 4L:| ) fOrO':UQ,

andP~" = [v1,71, vg,ﬁ]_l is given by
1 14+i ¢ -1+

prio| b Imi b ml=d <diag[4{7?3 4T, 297 2})71
1 =140 =t 1+ ’ ’ ’ '
1 —-1-0i @ 1—1

Then, Choosing an uniform weight, = 4\/?3 [1,1,1,1]7, the
results of step 4 leads to (22-24) with

W = diagw), withw=/[1,2v7,4r,8/r"]",
1 —r 0 2
T * 2\/F —2r 0
Q=Q - * * 4r —4\/7_“3 ’
* * * 8\/7_"3
L = [1,0,0,0].

The sub-determinants (18) are given by
Q) =1, d2(Q) = (2= VIVF,
d5(Q) = 8V (1 — ) and  da(Q) = 64r°(1 — \/r)°.

They are all strictly positive for €]0, 1[.

Hence, the maximal domain is restored, except the spedal ca
r = 0. Actually, in this case, the power balance based on eigenvec
tors is degenerated, since eigenvectors becomes all eatland,
eventually, do no take account of all capacitors anymore.

4.4, Results summary: Passivity and asymptotic stability o
the linearized Moog filter

The previous studies (§ 4.2-4.3) allow to state the foll@iesult.
The linearized version of the Moog Ladder Filter (84.1.1) is

strictly passive and its equilibrium poift, ) = (0, 0) is asymp-

totically stable under one of the following conditions:

case a: for all time-varying parametergo, r) lying in

5

Dnatural = R: X [0, E[

case b: for all time-varying parametew and time-invariant pa-
rameterr lying in

Dimaz = R} x [0,1].
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Moreover, the dynamics of the system fulfills strictly pasgower

balances w.r.t. the output = w%(a:,u), based on adapted Lya-
punov functions given by, for cas@s=a andn =2,

Vin(@) = wy Vi, (@) (25)
. T z3
with V,, (z) = [Wm(ajl),...,wm(m4)]  andViin(an) = 2,

and (10) with1 P, (z, u) = —n () + ;n(;r, u)Tu

In(@) = 2T Qur  with Q, = —% (W,,A n ATW,,)
én(z,u) = Lyz with L,, = B"W,,
and where), is positive definite choosing/,, = diag(w,,) with

wa=[1,1,1,1) wy=[1,2y/7, 4,87, (if r(t)=r(0)=").

Remark 5 (Local dissipativity) Although the case = b gives a
strong result only for a constant parameterthe study developed
in 84.3 allows to state a weaker result, including for tinayng
parameters lying iD;,q..

Letr € [0, 1] be a fixed value. Considée=a if r=0, £ € {a, b} if
0<r<5/12and{=1bif 5/12 <r < 1. Moreover, denotéw, 1)
the time-varying parameters which monitor the linearizdigrfi
lying in Dpqz. If 7(t) =r at a timet, then the power balance (10)
is fulfilled at timet.

5. NONLINEAR SYSTEM ANALYSIS

In this section, the passivity and the Lyapunov stability exam-

Figure 2: Functionzs — p.-(z4) for several positive values of
r. This function plays the same role (a feedback gainy asthe
linearized system, for the nonlinear system. For 1.3, the red
part exceeds the stability limit gain value

Note that in (28), the first factor is positive, finite and rigubut
not bounded), and thatis positive, finite, regular and lower than
(see Fig. 3 for an illustration), so that functigns well-posed.

ined for the nonlinear system. The study is based on a storage

function which allows to obtain a formulation similar to thaf
the linearized system and to take benefit from the resultedsta
section 4. The derivations are presented in three stepst, Rire-
markable identity on the feedback loop is exhibited. Sectmel
identity is used to reformulate the state-space equatipin g8way
similar to (12). Third, the storage function, the passiatyd the
Lyapunov analysis are presented.

5.1. Step 1: remarkable identity on the feedback loop
From tanh(a+b) = %, we gettanh(u—4rzy) =
((lftanh2(4'rz4)) tanh u

Tanh(dro;) tanhw which rewrites

— tanh(4rz4)+

tanh(u — 4rxs) = —4 px4) tanh(zs) + B(rza, u) u, (26)

where functiong,. andg are positive regular functions.
The functionp, : R — I, = p,(R) is defined by
tanh(4rzy4) .
= T A(0)=7r, (27

plza) = L #0, andp,(0) =,  (27)
wherely = {0}, I = [r, 2[if 0 <7 < 1, I = {3} andl. =
|4, 7] otherwise (see Fig. 2 for an illustration). Hence, a propert
is that, for allzs € R, if r € [0, 1] thenp,.(z4) € [0, 1] as well.

The functions : R x R — R is defined by

1 — tanh? z
1 — tanh u tanh z

with p(u) = tar;h“, if w0, andu(0)=1. (29)

B(z,u) p(w), (28)

Figure 3:Functionu — p(u) defined in (29).

5.2. Step 2: State-space formulation similar to (12)
Using identity (26) in (8) and introducing

O(z) = [tanh 1, tanhzs, tanhzs, tanhz, ", (30)
lead to the state-space equation

1 dx

- 1

T AO(z)+Bu (31)
where the matricesl and3 are functions of, respectively, (x4)

andS(rz4, u), which are given by

-1 0 0 —4pr(za) Bz, u)
1 -1 0 0 0
A= 0 1 -1 0 and B= 0 . (32)
0 0 1 —1 0

Remark 6 (Gains) p-(z4) can be interpreted as a feedback gain

and L(rz4, u) as the input gain.

5.3. Step 3: Storage function, passivity and Lyapunov anasis

Letw € (R%)*, W = diag(w) and consider the storage function
Ve defined as (25) wher€,;,, is replaced by (see Fig. 4)

Ver € R, Vpe(zk) = Incosh(zy). (33)
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Figure 4: Storage functionsVy;,, (--) defined by (16) is used for
the linearized system analysis ahtl, (-) (33) for the nonlinear
system analysis.

Remark 7 (FunctionV,,¢). The storage functio,,, defined by
(33) does not longer correspond to the energy stored in aciépa
except for small signals sinde cosh = ~ 127 (see also Fig. 4).

Then, following (31), and a8, ,(zx) = tanh y,

1 ang(a:) T
ST () W) f(z,u)
= O(x)"W A6 (z) + O(z)" WBu,
so that?et® — ), (z) + Gne(x, u) u where

Fntl) = O@) Quelpr)O(x) With Que = — (WA+AW),

Gn(2,1) = Lne(z,u)O(x) with L,, = BT W.

As ., is a quadratic form w.r.® (z), it is positive definite iff
Q¢ is a positive definite matrix as well. This property is acleiév
as in section 4 fow = w, since A is the same matrix ad in
whichr € [0,5/12[ has been replaced by.(z4) € [0,5/12].

As a consequence, the passivity wy.t= w&ﬂl and the Lya-
punov stability are proved for any time-varying parameyang in
Dhratural (84.4-case) = a). Nevertheless, the results of (8§4.4-

casen = b) cannot be used here, but only the remark 5, since

pr(x4) varies withz 4 (even for fixedr).

5.3.1. Conclusion

Loosing the result of section 4.4 (cage= b) for the nonlinear
system appears awkward. In practice, this is compensatédeby
fact that the feedback-loop gain (Vr > 0) becomes stabilizing
again for larger4 as soon as it falls under the critical valugor
5/12 for V,, with the weightw = [1,1,1,1]), as stated in the
remark below. Finding a constant weightestoringD, ... for the
linear case would solve also the problem for the nonlineaeca

Remark 8 (Stability limit). The stability limit is reached when the
gainp, equals tal, thatis, only atrs = 0inthe case where = 1.
But, the morer, deviates fron®, the morep, (x4) decreases (see
Fig 2) and reinforces the stabilization. In this case,= 0 is a

limit stable equilibrium point foru = 0. If » > 1, the system
is locally unstable oncy € {z4]|pr(za) > 1} = I. (see the
red part in Fig. 2), but locally stabilized oR \ I,- Sincex = 0

is the only equilibrium point for, = 0, the system can become
self-oscillating.

6. NUMERICAL SCHEME AND DISSIPATIVE
BEHAVIOUR

In signal processing, the bilinear transform is an extezxigiused
numerical scheme. One reason is that it preserves theistabil
domain for time-invariant linear filters and usually leagkpected
behaviours also for some time-varying and nonlinear ca3és
question addressed here is to estimate how this numericairsz,
used here as in [2, 3], is able to fulfill a power balance clasa t
discrete-time (DT) version of (9-11).

For sake of conciseness, the notations used in the following
part are% = f(x,u, o) wherea denote the (possibly time-varying)
parameters.= (w, ) andz(n) denotes the variable at tintie=nr
(rather thanz(n7)) for the sampling frequencys =1/7.

6.1. Bilinear transform

Applying the bilinear transform to (8) leads to
z(n+1l)—z(n) = % [f(m(n+l),u(n+1),a(n+1))
+f (w(n),u(n), an)) .

The simulation of the dynamics is processed by computing

(34)

z(n+1) =z(n) +d(n), (35)

where §(n) is governed by (34) in whick:(n + 1) is replaced
by (35). The computation af(n) is processed either by using a
Newton-Raphson algorithm [14] or by approximating the sotu
by that of the first order Taylor expansion (w.itn)) of its gov-
erning equation, that is,

T

2
X [f(x(n),u(n),a(n)) + f($(n),u(n+1),a(n+1))] (36)

o(n) [14 — %G(IT)f(x(n),u(n+l),a(n+1))}_1

In practice, the latter solution is accurate if the cutoffiduency is
sufficiently low (/(27) < Fs/2). In this case, the computation
cost can still be reduced without deteriorating the resyltdplac-

ing the last factor of (36) by (a:(n), ulntl)tuln) “(“+12)+“(“)).

6.2. Discrete-time power balance and dissipated contribign

The passivity is examined for the storage functi®fec®) —

wT Eat® with V() = [Vae(21), - . ., Vie(24)]7. Following

(34-35), a DT version ofYat&e) — v/ (1)) 92k g

Vae(@k(n+1)) = Vae(zi(n)) = AV (zr(n), 0 (n)) 6k(n),
AV (g,6) = LR Vl&) (v ) = tanne),

whered(n) is computed using (34-35).
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To characterize the dissipativity in the sense of this DT @ow
balance, the associated functiaﬁ must be identified. This can
be done remarking that, according to (10-11), functiofs, o) =
w'p(z) andé(z,u, o) = w’ ¢(x,u, o) are here formally com-
puted withy, (zx, @) = =V, (zk) f(z,0, @) andor (z, u, ) =
[V,{e(mk)fk(yck,u,a) + w(xk,oc)] /u. The looked-for DT ver-

sions are then given by replacifg, by §V and occurrences of
by their corresponding averages at samplendn+ 1. The DT
dissipated contributiogy® computed in this way is given by

¥ (2(n),8(m); a(n), a(n+1)) = —AV(a(n),6(n)" x

y f(z(n),0,a(n)) + f(x(n)+48(n),0,a(n+1))

diag(w) 3

. (37)

with AV (2,6) = [AV(21,681),...,AV (z4,64)]" and makes
sense. It yields a DT Lyapunov principle far= 0 if ¢¢ > 0:
Ve (21 (n41)) = Vie (wr(n)) = —7 wd(;p(n), 5(n); a(n), a(n+1)).
The positivity domain of), is not straightforward to exhibit even
for constant parametels, r'): in this caseg) can be written as
a quadratic form w.r.td(n) + 6(n+1) but with a weight matrix
which depends on the time, as stated in the following remark.

Remark 9. For constant parameters) is a quadratic function
w.rt. T(£,6) = (tanh(€+6) + tanh§) /2. This is obtained
rewriting AV(¢,6) = F(&,6) T(&, §) where the introduced func-
tion I’ can be interpreted as a correction factor due to the time-
discretization. This factor is proved to be larger tharmnd such
that £ (¢, 6) —> 1.

6.3. Simulations and results

Simulations presented below are performed using (36) With-
48kHz. The input is a linear sweep(t) = a sin ¢(t) with ¢(t) =
2 (f~ + £2-1712) starting with frequencyf~ = 50 Hz and
ending withf ™ =2kHz att* =0.1's. Three amplitudes are tested:
a=0.01 (very linear limit, except if the resonance is high)=1
(medium nonlinear dynamics) and = 5 (highly nonlinear dy-
namics). The cutoff frequency & =1 kHz.

Forr < 5/12 (low resonance and limit of the proved passiv-
ity for the linear approximation of the filter, see §4.2.2)etDT
passivity is unconditionally satisfiegh{ > 0) for the indicator)?
built with the weightw = w, (energy stored in capacitors).

For5/12 < r < 1, this is no longer the case but the DT
passivity is still mostly fulfilled for the indicatog® built with the
weight w, (). The dissipativity violation can be appreciated in
Fig. 5 forr=0.7 (high resonance) ang= 1.1 (non asymptotically
stable domain).

Note that, even in the latter case ¥ 1), x4 does not diverge.
For the very low amplituded = 0.01), a self-oscillation appeatrs,
as for the analog circuit. For larger amplitudes, the filsediiven
by the input so that no self-oscillation appear.

Hence, the bilinear transform has not proved to guarantee th
passivity. However, this numerical study shows its releeaand
its ability to capture some of the characteristic and exgrbdte-
haviours of the Moog filter.

7. CONCLUSIONS AND PERSPECTIVES

In this paper, the passivity analysis of the Moog LaddeeFitir-
cuit has been examined. Three families of candidate Lyapuno
functions have been proposed for the linearized and theimonl
ear versions of the system: in the linear case, the natusagn
stored in capacitors and an adapted weighted sum of theieserg
conveyed by eigenvectors and, in the nonlinear case, araittap
of elementary storage functions. The first one guarantex=pdk-
sivity for any time-varying parameters on a restricted doma&he
second one recovers the optimal stability domain for timexiiant
feedback-loop gains in the linear case. The third one génesa
these results to the nonlinear case in an exact way for thefies
but it only gives some clues for the characterization of thnoal
domain. Finally, these results have allowed to derive asiplis
tivity indicator for discrete-time simulations based o thilinear
transform.

The analysis of simulations reveals that the bilinear fians
does not guarantee the dissipativity of the nonlinear filtgainsr
are larger thais /12 (whether time-varying or not). However, even
in this case, the dissipativity condition stays mostly fldél and
simulations show that the bilinear transform generatestiosvn
characteristic behaviours of the Moog filter.

As a consequence, the main perspective of this study con-
sists in deriving refined storage functions and a specificerical
scheme that (both) guarantee a dicrete-time passivity.s€wva-
tive schemes (which preserve the energy of conservativiersygs
and Hamiltonian systems) based on variational approaches h
been developed [15] and are still an active field of resedrtiey
can reveal to be relevant also when they are applied to lossy v
sions of originally non-lossy problems (see e.g. [9, Apdk])A
Another perspective is concerned with the derivation ofliekp
schemes preserving the passivity. Finally, a deeper stadhe
time variation effects of parameter>5/12 should be carried on.
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