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ABSTRACT

The use of high quality sound effects is growing rapidly in mul-
timedia, interactive and virtual reality applications. The common
source of audio events in these applications is impact sounds. The
sound effects in such environments can be pre-recorded or synthe-
sized in real-time as a result of a physical event. However, one
of the biggest problems when using pre-recorded sound effects is
the monotonous repetition of these sounds which can be tedious to
the listener. In this paper, we present a new algorithm which gen-
erates non-repetitive impact sound effects using parameters from
the physical interaction. Our approach aims to use audio grains
to create finely-controlled synthesized sounds which are based on
recordings of impact sounds. The proposed algorithm can also be
used in a large set of audio data analysis, representation, and com-
pression applications. A subjective test was carried out to evaluate
the perceptual quality of the synthesized sounds.

1. INTRODUCTION

Our environment is full of diverse types of impact sounds such as
hitting, collision, bumping, dripping, etc. Such impact sounds are
generally produced when two or more objects interact with each
other. Pre-recorded versions of these sounds are used to generate
such sound effects in interactive and virtual reality applications,
in real time and offline productions. This method requires a large
set of recordings of impact sounds to cover all possible situations
which in turn necessitates a very large memory. One possible way
to reduce recordings’ size is by grouping them by size, material
type, etc., but even then many recordings need to be carried out.
For this reason, a small set of recordings of impact sounds is gener-
ally played back repetitively, and that can be tedious to the listener.
Methods have been proposed to improve the realism of sound ef-
fects in games, such as the work of Vachon [1]. However, the
repetition of sound effects in interactive applications, particularly
in game’s audio, remains a big challenge for the researcher and
audio designer.

Alternatively, impact sounds can be generated automatically
using either physics-based interaction of objects, known as phys-
ical models, or by imitating the properties of sound as perceived
by the listener, known as spectral models. In recent years a num-
ber of such synthesis algorithms have been developed and applied
to impact sounds synthesis [2, 3, 4, 5, 6, 7, 8, 9]. Physical mod-
els [2, 3, 4, 5] are very efficient and accurate in simulating a tar-
get sound but the refinement of such models is not always suc-
cessful because the physical mechanisms of many environmental
impact sounds are still not completely understood [10]. There-
fore, a limited class of impact sounds has been targeted by this

type of models. Furthermore, these models are computationally-
intensive and require significant parameter-tuning to achieve real-
istic results, making it more difficult to use in a game production
pipeline. In contrast, spectral models [6, 7, 8, 9] have a broader
scope and construct the spectrum as received by the ear. Therefore,
their refinement and repurposing is easier than physical models.

In recent years, combinations of sound synthesis models with
pre-recorded sound have been used to generate high quality impact
sound in interactive applications [11, 12]. Such approaches reduce
the effect of the monotonous repetition of recorded sounds, and
enhance the quality of synthesized sounds by linking the synthesis
parameters to the physics engine. Bonneel et al. [11] presented a
new frequency-domain method that used both pre-recorded sounds
and physical models to generate high quality sounds. In [12], Pi-
card et al. proposed a technique where non-repetitive sound events
can be synthesized for interactive animations by retargeting the
audio grains, extracted from the recorded sounds, based to the pa-
rameters received from the physics engine.

In this paper, we propose a similar approach where the pre-
recorded impact sounds are represented in the form of a dictio-
nary and synthesis patterns. During the generation phase, the syn-
thesis pattern and corresponding atoms from the dictionary are
selected according to the reported synthesis parameters from the
physical interaction. During the analysis process, a continuous
pre-recorded impact sounds are automatically segmented into in-
dividual events and all the events collected from different impact
sound sources are decomposed into sound grains, where each grain
has energy only at a particular frequency or scale. A dictionary
is trained from the extracted sound grains. The recorded impact
sound events are projected onto the dictionary which constitutes
the synthesis patterns. During synthesis process, these patterns are
tuned according to the target sound parameters.

2. SIGNAL REPRESENTATION TECHNIQUES

For many years, a large family of signal analysis techniques have
heavily relied on Fourier transform (FT) and short-time Fourier
transform (STFT) where the input signal is represented with the
superposition of fixed basis functions i.e. sinusoids. The FT and
STFT methods are most useful when considering stationary sig-
nals but most real-world sound signals are not stationary in time.
Therefore, these analysis techniques are inadequate for such sig-
nals. Over the last two decades there has been a lot of interest to
find alternative signal representation techniques which are adap-
tive and specialized to the signals under consideration. As a result,
a number of basis functions and representation techniques have
been developed to represent any input signal in a more compact,
efficient, and meaningful way.
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2.1. Dictionary-Based Methods

One of these techniques, which have attracted a lot of interest in re-
cent years, is dictionary-based representation as it offers a compact
form of the signal, and is highly adaptive. These methods have
been used in many signal processing applications including analy-
sis and representation of audio signals [13, 14] and music [15].

In dictionary-based methods, a signal is represented as a linear
combination of elementary waveforms (atoms) taken from a dic-
tionary. A dictionary is a collection of parameterized waveforms.
Let x be a discrete-time real signal of length N i.e. x ∈ <N , and
D = [δ1, δ2, . . . , δK ] be a dictionary, where each column δk rep-
resents an atom and its length is N i.e. D ∈ <N×K . The aim is to
represent x as a weighted sum of atoms δk which can be written
as,

x =

K∑

k=1

δk wk (1)

where w is a column vector in <K and represents the expansion
coefficients or weights. Generally, the dictionary D is overcom-
plete i.e. N < K, which means the matrix D is of rank N
and the linear system in Eq. (1) is undetermined. In that case,
the decomposition vector w in Eq. (1) is not unique and there
may even be an infinite number of possible expansions of the form
of Eq. (1). Therefore, one has to introduce some additional con-
straints to specify a unique or particular decomposition.

2.2. Sparse Representations

Given an overcomplete dictionary D and the signal x, finding a
solution to the underdetermined systems given in Eq. (1) is a non-
trivial task. In general, the representation in Eq. (1) is approxi-
mated by applying some additional constraints to specify a unique
or particular solution. An adequate approximation of the signal x
in Eq. (1) is obtained by selecting few atoms δk from dictionary
D corresponding to highest weights wk. That is, useful represen-
tations are the ones where most of the energy of the signal x is
concentrated into a small number of coefficients, hence x can be
approximated using only j atoms from the predefined dictionary
as

x =

j∑

k=1

δk wk + r (2)

or in matrix form
x = Dw + r (3)

where j < K and r ∈ <N is residual. The selection of atoms and
their numbers are controlled by limiting the value of approxima-
tion error. By applying such criterion, the approximation solution
given in Eq. (3) can be redefined as

x ≈ Dw such that ‖x−Dw‖2 ≤ ε (4)

where ε is a given small positive number. The solution with the
fewer number of atoms and corresponding weights is certainly an
appealing representation. Sparse or compact approximation of a
signal x is measured using the `0 criterion, which counts the num-
ber of non-zero entries of the weights vector w ∈ <K . The prob-
lem of finding the optimally sparse representation can be defined
as the solution to

min
w
‖w‖0 such that ‖x−Dw‖2 ≤ ε (5)

where ‖w‖0 is the `0-norm, which count the number of non-zero
coefficients in weight vector w. The problem of finding the opti-
mally sparse representation, i.e., with minimum ‖w‖0, is a com-
binatorial optimization problem in general. Constraining the solu-
tion w to have the minimum number of nonzero elements creates
an NP-hard problem [16] and cannot be solved easily. Therefore,
approximation algorithms, such as matching pursuit (MP) [17], or-
thogonal matching pursuit (OMP) [18], and basis pursuit (BP) [19],
are used to find an optimal approximation solution of Eq. (5).
The MP and OMP algorithms are classified as greedy methods
where a signal approximation is iteratively built up by selecting the
atom that maximally improves the representation at each iteration.
These algorithms converge rapidly, and exhibit good approxima-
tion properties for a given criterion [17, 20].

2.3. Selection of Dictionary

Dictionaries are often constructed from a combination of discreti-
zed, scaled, translated, and modulated lowpass functions. An over-
complete dictionary that leads to sparse representations can either
be chosen as a prespecified set of functions or designed by adapt-
ing its content to fit a given set of signal examples. Choosing a
prespecified transform matrix is appealing because it is simpler
but there is no guarantee that these bases will lead to a sparse rep-
resentation of signals under consideration.

The sparse approximation of the Eq. (5) can also be improved
by using an appropriate dictionary for the given class of signals.
Instead of using predetermined dictionaries, dictionary learning
methods [21, 15] can be used to refine them. Such methods adapt
an initial dictionary to a set of training samples. Therefore, the
aim is to learn a dictionary for which an input signal, taken from a
given class of signals, has a sparse approximation.

3. PROPOSED ANALYSIS-SYNTHESIS ALGORITHM

The proposed synthesis algorithm generates the target impact sou-
nds using parametric representation modeled from the recorded
impact sounds. This algorithm is divided into three stages i.e. anal-
ysis, parameterization, and synthesis, as depicted in Fig. 1. In the
analysis phase, the recorded continuous impact sounds are seg-
mented and split into sound grains. During the parameterization
phase, the impact sounds are represented by synthesis patterns,
and an adaptive dictionary trained from these sound grains. The
target sound is generated at the synthesis stage where a pattern is
selected and adjusted according to the parameters received from
the physical interaction.

4. ANALYSIS OF RECORDED SOUNDS

The aim of the analysis process is to extract the sound grains which
characterize the recorded impact sounds. The analysis stage in-
cludes the segmentation, peak alignment, and the extraction of
sound grains.

4.1. Automatic Segmentation

The first step during the off-line analysis of the impact sound is to
segment each recorded sound signal into individual sound events
or simply events. For example, if the input sound is a clapping
sound then each clap in the sound sequence is called an event,
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Figure 1: Overview of the proposed analysis-synthesis algorithm.

which is represented by x. Each event is isolated by detecting and
labeling its onset and offset points.

An impulsive event consists of an attack and a decay parts
which are concatenated together. The onset of events is labeled us-
ing the energy distribution method proposed by Masri et al. [22],
which detects the beginning of an impulsive event by observing
the suddenness and the increase in energy of the attack transient.
Detection is selected as an onset of an event when there is a sig-
nificant rise in energy along with an increased bias towards the
higher frequencies. Short-time energy of the signal is used to lo-
cate the offset of each event. Starting from the onset of each event,
the short-time energy is calculated with overlapped frames, and
compared against a constant threshold to determine the offset. On-
set detection methods have been applied to input sounds that are
monophonic i.e. only a single melodic line or tune is present, and
music notes or events do not overlap [23, 24]. In this paper, we
have also assumed that there is no overlapping of the sources in
the recorded impact sounds.

Equal or different number of events can be selected from each
sound source. Once the events are selected and segmented, they
are peak aligned by cross-correlation such that the highest peaks
occur at the same point in time. This increases the similarities
between the extracted sound grains and improves the dictionary
learning process. The set of collected sound events can be repre-
sented as a matrix X i.e.,

X = [x1,x2, . . . ,xm] (6)

where each column represents a sound event and length of each
event is n. Zero padding is used for any segmented sound event
whose length is less than n.

4.2. Extraction of Sound Grains

The recorded impact sounds from different sources need to be rep-
resented in a way that i) the similarities and differences between
various impact sounds can be observed and parameterized, ii) this
parametric representation can be manipulated in various ways to
generate sound effects at synthesis stage. Impact sound belongs to
the transient signal family that is non-stationary. Based on the fre-
quency resolution properties of the human auditory system, such

signals can be split into layers of grains where the energy of each
grain is presented at a particular frequency or scale. The infor-
mation in each grain and the overall structure of these grains are
analyzed based on human auditory system. Such parametric rep-
resentation can be used to compare the characteristics of different
sounds [25]. Furthermore, during the synthesis process, the pa-
rameters representing these grains can be manipulated in various
ways to control the generated sound.

In the proposed scheme, stationary wavelet transforms (SWT)
[26, 27] is used to extract the sound grains from the impact sound
events. The SWT is the real-valued extension to the standard dis-
crete wavelet transform (DWT). SWT is preferred over DWT be-
cause the latter lacks the property of shift-invariance. The SWT
has the ability to underline and represent time-varying spectral
properties of the transient signals and offers localization both in
time and frequency.

The SWT is applied to each event, xi, which decomposes it
into two sets of wavelet coefficient vectors: the approximation co-
efficients ca1 and the detail coefficients cd1, where the subscript
represents the level of decomposition. The approximation coef-
ficients vector ca1 is further split into two parts, ca2 and cd2,
using the scheme shown in Fig. 2(a). This decomposition pro-
cess continues up to Lth level which produces the following set
of coefficient vectors: [cd1, cd2, . . . , cdL, caL]. The approxima-
tion coefficients represent the low-frequency components, whereas
the detail coefficients represent the high-frequency components.
To construct the sound grains from coefficients vectors, the in-
verse SWT is applied to each coefficient vector individually by
setting all others to zero which produces the following bandlim-
ited sound grains: [g1,g2, . . . ,gL+1]. Each grain contains unique
information from the sound event, retains the size of the the sound
event. The block diagram of the process of extraction of sound
grains from a coefficient vector is shown in Fig. 2(c). The entire
sound event matrix X is split into sound grains which produce
the grain matrix G = [gi : i = 1, 2, . . . , p], where gi form the
columns of the grain matrix and the number of total grains are
p = m× (L+ 1).

Figure 2: (a) Decomposition tree of SWT, (b) SWT filters, (c) con-
struction of a sound grain.

The selection of wavelet type from the family of wavelets (i.e.
Haar, Daubechies, etc.) and their decomposition level depend on
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the input sound signal, application area, and the representation
model. This is an iterative process where the best wavelet type
and optimum decomposition level are obtained by evaluating the
perceived quality of the synthesized sounds generated from the dif-
ferent wavelet types and decomposition levels.

5. PARAMETERIZATION

The proper parameterization of the sound features extracted from
the analysis part is an essential element of the synthesis systems. In
this paper, a dictionary-based approach is used to create a paramet-
ric representation of the recorded sounds. The similarities and dif-
ferences of the sound grains, as well as their relationships to the in-
put sounds are preserved and reflected in the presented parametric
representation. One key advantage of dictionary-based signal rep-
resentation methods is the adaptivity of the composing atoms. This
gives the user the ability to make a decomposition suited to spe-
cific structures in a signal. Therefore, one can select a dictionary
either from a pre-specified set of bases functions, such as wavelets,
wavelet packets, Gabor, cosine packets, chirplets, warplets etc., or
design one by adapting its content to fit a given set of signals, such
as dictionary of instrument-specific harmonic atoms [15].

5.1. Dictionary Learning

Choosing a set of prespecified basis functions is appealing because
of its simplicity but there is no guarantee that these basis functions
will lead to a compact representation of given signals. The success
of such dictionaries in practice depends on how suitable they are to
sparsely describe the signals in question. However, there are many
potential application areas, such as transient and complex music
sound signals, where fixed basis expansions are not well suited
to model this type of sound signals. A compact decomposition
is best achieved when the elements of the dictionary have strong
similarities with the signal under consideration. In this case, a
fewer set of more specialized basis functions in the dictionary is
needed to describe the significant characteristics of the signal [15,
28, 29]. Ideally, the basis itself should be adapted to the specific
class of signals which are used to compose the original signal. As
we are dealing with a specific class of sound signals, we believe
that it is more appropriate to consider designing learning-based
dictionaries.

Given training impact sounds and using adaptive training pro-
cess, we seek a dictionary that yields compact representations of
the sound event matrix X. The K-SVD algorithm [21] is such a
technique for training a dictionary from given example signals. It
is a highly effective method, and has been successfully applied to
several image processing tasks [30, 31]. The K-SVD algorithm
consists of an iterative process of optimization to produce a sparse
representation of the given samples based on the current dictio-
nary, and an update of the atoms that best represent the samples.
The update of the dictionary columns is done along with an update
of the sparse representation coefficients related to it, resulting in
accelerated convergence.

In the proposed scheme, the K-SVD algorithm is used to train
an adaptive dictionary D which determines the best possible rep-
resentation of a given impact sounds. The K-SVD algorithm takes
the sound grains matrix G, as initial dictionary D0, a number of
iterations j, and a set of training signals, i.e sound event matrix X.
The algorithm aims to iteratively improve the dictionary to achieve
sparser representations of the sound events in X, by solving the

optimization problem

min
wi

‖xi −Dwi‖22 such that ∀i ‖wi‖0 ≤ T0 (7)

where T0 is the number of non-zero entries in wi. The iteration
of K-SVD algorithms is performed in two basic steps: i) given the
current dictionary, the sound events in X are sparse-coded which
produce the sparse representations matrix W, and ii) using this
current sparse representations, the dictionary atoms are updated.
The dictionary update is performed one atom at a time, optimizing
the target function for each atom individually while keeping the
other atoms fixed.

5.2. Synthesis Pattern

The OMP is used to find the synthesis patterns of the input impact
sound events over the dictionary. The OMP is a greedy step-wise
regression algorithm. The aim of OMP algorithm is to approxi-
mate the solution of the sparsity-constrained sparse coding prob-
lem given in Eq. (7), where the dictionary atoms have been nor-
malized. At each stage, this algorithm selects the dictionary atom
with the maximal projection onto the residual signal. Once the
atom is selected, the signal is orthogonally projected to the span
of the selected atoms, the residual is recomputed, and the process
is repeated. The algorithm stops after a predetermined number of
steps, selecting a fixed number of atoms T0 in every iteration. At
this stage, the impact sound matrix X can be fully represented as
a dictionary matrix D and synthesis patterns matrix W. The in-
formation about the impact sound sources is labeled onto synthesis
pattern W for future reference and for possible use during the syn-
thesis process.

6. GENERATION OF TARGET SOUND

To synthesize the target impact sound, the controlling variables are
employed to select the best sound parameters. During the synthe-
sis process, an impact sound event from the sound matrix X is
synthesized by selecting the decomposition pattern wi and then
adding the corresponding weighted dictionary atoms, which can
be written as,

x̂i
∼=
∑

j ∈ J

δj wi(j) (8)

where J contains the T0 number of indices of the non-zero entries
in wi. The perceptual quality of the synthesized impact sound
event x̂i is directly related to the number of non-zero entries in
wi. The quality of synthesized impact sound event x̂i improves
sharply for the first few atoms but become imperceptible after a
particular value of T0.

6.1. Expressive Synthesis Method

Two sound events generated consecutively by the same sound sou-
rce will be similar but not identical. For example, when a person
claps twice in the same way with the same applied force, the gen-
erated clapping sounds will be similar but not identical. The pro-
posed algorithm can synthesize example impact sounds approxi-
mately from the represented parameters, i.e. synthesis pattern W
and dictionary atoms D. A limited number of impact sound events
sequence can be generated from this representation as the num-
ber of synthesis pattern vectors is limited and fixed. Therefore,
the same set of impact sounds will be repeated during long impact
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sound sequences, which will make it perceptually artificial in the
ears of the listeners.

To generate more natural and customized sounds, the proposed
method modifies the synthesis process given in Eq. (8). This equa-
tion uses the represented parameters, W and D, to synthesize an
impact sound event. Every time Eq. (8) is executed to synthe-
size an impact sound event x̂i, a synthesis pattern wi is used to
combine the dictionary atoms. For expressive synthesis, when an
impact sound event x̂i is generated, a small random vector ψ is
added to the selected synthesis pattern wi such that the overall
time-varying spectrum of the impact sound is unchanged. The
value of ψ is generated randomly in a sphere of radius R with
the origin at the synthesis pattern of the generated impact sound.
A different vector ψ is generated for every event of impact sound
and the length of ψ is equal to T0 because only non-zero entries in
wi are changed. Hence, The synthesis equation given in Eq. (8) is
modified for the expressive synthesis process and can be rewritten
as,

x̂i
∼=
∑

j ∈ J

δj [wi + ψ](j). (9)

The impact sound sequence generated using Eq. (9) will be similar
but not identical, and they will also not be exact copies of the sound
events matrix X.

7. SUBJECTIVE EVALUATION OF SYNTHESIS SOUND
QUALITY

Subjective tests have been used to accurately assess the quality of
the sound events generated by the proposed algorithm.

7.1. Impact Sound Database

A sample of commonly heard everyday impact sounds were used
to evaluate the perceptual quality of sounds synthesized using the
proposed analysis-synthesis algorithm. The group contains six
impact sounds which include: bumping sounds of a tennis ball,
a football and a basketball on laminate floor; a finger knocking
sound on a wooden table; and male and female clapping sounds.
The recordings of these sounds were made in an acoustical booth
(T60 < 100 ms) at a sampling rate of 44.1 kHz.

To record the bumping sounds, each ball was dropped on lami-
nated floor from a fixed height of 80 cm with no applied force. Af-
ter each bump, the ball is lifted up to the same height and dropped
again. A microphone was placed vertically close to the floor level
and horizontally about 100 cm away from the potential point of
contact at the floor. The experimenter knocked the centre of the
wooden table1 top with his right hand index finger with a con-
stant force. To capture this sound, the microphone was placed at
the level of table top and about 100 cm away horizontally from
the centre of the table. The recording of the clapping sounds was
made with one male and one female subjects2, both between the
age of 25 and 35. Each subject was seated in the acoustical booth
alone and a microphone was placed about 100 cm away from their
hands. Subjects were asked to clap at their most comfortable or
natural rate using his or her conventional clapping style. A set
of sequences was recorded for each sound source where each se-
quence contains series of event.

1The size of the table was 20.5 cm width, 39.5 cm length, and 28.5 cm
height.

2The male clapper was the author and the female clapper was a research
fellow at I-Lab.

7.2. Synthesis Model and Stimuli

The purpose of this listening test is to compare the quality of the
synthesized impact sounds with the original recorded sounds. The
set of sequences of six impact sounds from the recorded database
were segmented into individual sound events. An equal number of
sound events, i.e. 30, were taken from each impact sound type.
The segmented sound events were peak aligned and put into a
matrix form i.e. S = [x1,x2, . . . ,xm], where m = 6 × 30 =
180 was the number of collected events and the length of each
event was n = 2048. To extract the sound grains from the col-
lected event matrix X, the SWT was applied to each event up
to the 5th level. That produced the sound grains matrix G =
[g1,g2, . . . , gp], where p = 180 × 6 = 1080 represented the
number of sound grains and the length of each grain was equal
to n = 2048. The parametric representation of the input impact
sounds was done by training an adaptive dictionary using the ex-
tracted sound grains. Given the sound grains matrix G as an initial
dictionary D0, and the impact sound events matrix X as training
signals, K-SVD algorithm was used to train a final adaptive dic-
tionary D = [δ1, δ2, . . . , δK ], with a number of atoms equal to
K = 108. To find the decomposition patterns W, OMP was used
to project recorded sound events over the dictionary D. Hence,
the decomposition patterns W and adaptive dictionary D fully de-
scribed the parametric representation of the input impact sounds.

Three groups of stimuli were synthesized from the represented
model of the recorded sounds W and D. The first group of stim-
uli was synthesized using seven atoms from the represented model,
while in the second and third groups, they were synthesized using
fourteen and twenty one atoms respectively from the represented
model. Furthermore, each group contains twelve stimuli, where
two stimuli are used from each sound source: male clapper, fe-
male clapper, tennis ball, football, basketball, and one finger and
table. During the synthesis process, one event of the target sound
was generated from the represented model using seven, fourteen,
and twenty one atoms. However, when this event was used as a
stimulus, the same event was repeated three times with 0.5 sec-
onds interval. Similarly, the corresponding reference sound (the
original recorded event) was also repeated three times with 0.5
seconds interval. During each experiment, one reference stimulus
and a corresponding synthesized stimulus from each group were
presented to the subjects simultaneously. The subjects listened to
the reference and synthesized stimuli and graded the quality of the
synthesized sounds. The subjects’ responses were collected using
the graphical user interface (GUI).

7.3. Subjects and Evaluation Setup

A group of 10 subjects (8 male and 2 female), between the age of
26 and 40, participated in the subjective evaluation. The subjects
included PhD students and staff from the I-Lab centre with no re-
ported hearing impairment. The subjects were trained before the
evaluation session and can be considered to be expert listeners.

For the evaluation experiment, the subjects were seated in an
isolated multimedia room. The experimental setup consisted of
one Dell Inspiron 630m laptop and one Sennheiser HD 500 head-
phone. Every subject was familiarized with the evaluation process
by undertaking a training session. A GUI was built in MATLAB
which was used for the training and sound quality evaluation pro-
cesses.

During each experiment, the subjects were presented with one
reference stimulus (the original recording) and three test stimuli

DAFX-5

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-413



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

(one for each group) from the same sound source. Since there
were twelve experiments, the total number of synthesized sounds
evaluated by each subject was equal to 36. The subjects’ task was
to listen to the reference and the three test sounds, and then rate
the quality of the test sounds in comparison to the reference stimu-
lus. The subjects can replay the reference and test sounds as many
times as they wished. To register a rating for each test, the subjects
were asked to move the slider on a scale ranging from 0 to 100.
The 0 to 100 scale is divided into five equal quality steps: Excel-
lent (81-100), Good (61-80 ), Fair (41-60), Poor (21-40), and Bad
(0-20). Once subjects completed all test sounds within a particular
experiment, they could move to the next one by clicking the “save
and proceed” button, which stored the rating and presented them
with the following set of tests. Each subject took about 15 minutes
to evaluate all the experiments.

7.4. Results

Fig. 3 shows the mean evaluation ratings from all the subjects as
well as the bars 95% confidence intervals of the mean ratings. It
can be observed that the higher the number of atoms used in the
synthesis process, the better the perceived quality. Furthermore,
the relationship between the perceived quality of the synthesised
sound and the number of atoms is linear. This result is due to the
fact that as the number of atoms increases in the synthesized pat-
tern, the synthesized sound event approximate more closely to the
original signal. The figure also shows that even with a small num-
ber of atoms, T0 = 7 out of the size of the dictionary K = 108,
the mean subjects’ rating of the quality was “Good”. This indicates
that our method achieved a perceptually acceptable level of sound
quality with only few number of atoms, hence a more compact
form. When increasing the number of atoms to T0 = 21, the mean
quality rating improved to “Excellent”. These results highlight the
efficiency of the parameterization technique used, and the advan-
tages of using an adaptive dictionary trained from sound grains
that are extracted from the input signal.
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Figure 3: Mean synthesis quality of the synthesized sounds aver-
aged across all subjects. The bars show 95% confidence intervals
of the mean ratings.

8. CONCLUSIONS

We presented a new algorithm, which can synthesize any impact
sound by analyzing and representing the recorded sound as a set
of atoms and synthesis patterns. The atoms of the dictionary were
first adaptively trained from the input sound using K-SVD algo-
rithm, and then the synthesis patterns were generated by project-
ing the sound events over the trained dictionary. The target sound
was synthesized by selecting and tuning the synthesis pattern and
their corresponding atoms from the dictionary. In addition, an ex-
pressive synthesis method was presented which can generate non-
repetitive and customized impact sounds. Subjective tests were
carried out to evaluate the perceptual quality of the synthesis mod-
el. The tests’ results showed that it is possible to achieve a satis-
factory level of perceived sound quality using the compact repre-
sentation of a given impact sound with a small number of atoms
(T0 = 7) from the trained dictionary. An approximation sound
with T0 = 21 was sufficient to yield an “Excellent” quality aver-
age rating.

As part of future work, we will further investigate the expres-
sive synthesis model and analyze the distribution of the synthesis
patterns of real life sound events and their possible statistical mod-
eling. The quality and realism of the synthesized impact sounds
generated from expressive synthesis model will be evaluated using
subjective tests.
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Kondoz, “Morphing of transient sounds based on shift-
invariant discrete wavelet transform and singular value de-
composition,” in Proc. of IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing (ICASSP-09), Taipei, Taiwan,
Apr 2009, pp. 297–300.

[10] Perry R. Cook, “Physically informed sonic modeling
(phism): Synthesis of percussive sounds,” Computer Music
Journal, vol. 21, no. 3, pp. pp. 38–49, Autumn 1997.

[11] Nicolas Bonneel, George Drettakis, Nicolas Tsingos, Is-
abelle Viaud-Delmon, and Doug James, “Fast modal sounds
with scalable frequency-domain synthesis,” ACM Transac-
tions on Graphics (SIGGRAPH Conference Proceedings),
vol. 27, no. 3, August 2008.

[12] Cécile Picard, Nicolas Tsingos, and Francois Faure, “Retar-
getting example sounds to interactive physics-driven anima-
tions,” in Proc. of Int. Audio Engineering Society Confer-
ence: Audio for Games, London, UK, Feb 2009.

[13] Remi Gribonval and Emmanuel Bacry, “Harmonic decompo-
sition of audio signals with matching pursuits,” IEEE Trans-
actions on Signal Processing, vol. 51, no. 1, pp. 101–111,
Jan 2003.

[14] Bob L. Sturm, Curtis Roads, Aaron McLeran, and John J.
Shynk, “Analysis, visualization, and transformation of au-
dio signals using dictionary-based methods,” in Proc. of Int.
Computer Music Conf. (ICMC-2008), Belfast, Northern Ire-
land, Aug 2008.

[15] P. Leveau, E. Vincent, G. Richard, and L. Daudet,
“Instrument-specific harmonic atoms for mid-level music
representation,” IEEE Transactions on Audio, Speech and
Language Processing, vol. 16, no. 1, pp. 116–128, Jan 2008.

[16] B. K. Natarajan, “Sparse approximate solutions to linear sys-
tems,” SIAM Journal on Computing, vol. 24, no. 2, pp. 227–
234, Apr 1995.

[17] Stephane G. Mallat, “Matching pursuits with time-frequency
dictionaries,” IEEE Transactions on Signal Processing, vol.
41, no. 12, pp. 3397–3415, Dec 1993.

[18] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogo-
nal matching pursuit: Recursive function approximation with
applications to wavelet decomposition,” in Proc. of Asilomar
Conf. on Signals, Systems and Computers, Nov 1993, vol. 1,
pp. 40–44.

[19] Scott Shaobing Chen, David L. Donoho, and Michael A.
Saunders, “Atomic decomposition by basis pursuit,” SIAM
Journal on Scientific Computing, vol. 20, no. 1, pp. 33–61,
Dec 1998.

[20] Laurent Daudet, “Audio sparse decompositions in parallel :
Let the greed be shared,” IEEE Signal Processing Magazine,
vol. 27, no. 2, pp. 90–96, Mar 2010.

[21] Michal Aharon, Michael Elad, and Alfred Bruckstein, “K-
SVD: An algorithm for designing overcomplete dictionaries
for sparse representation,” IEEE Transactions on Signal Pro-
cessing, vol. 54, no. 11, pp. 4311–4322, Nov 2006.

[22] Paul Masri and Andrew Bateman, “Improved modeling of
attack transients in music analysis-resynthesis,” in Proc. of
Int. Computer Music Conf. (ICMC-96), Hong Kong, China,
Aug 1996, pp. 100–103.

[23] Xavier Rodet and Florent JailletRodet:2001, “Detection and
modeling of fast attack transients,” in Proc. of Int. Computer
Music Conf. (ICMC-01), Havana, Cuba, 2001, pp. 1–4.

[24] Juan P. Bello and Mark Sandler, “Phase-based note onset
detection for music signals,” in Proc. of IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing (ICASSP-03), Apr
2003, vol. 5, pp. 441–444.

[25] Simon Tucker and Guy J. Brown, “Classification of transient
sonar sounds using perceptually motivated features,” IEEE
Journal of Oceanic Engineering, vol. 30, no. 3, pp. 588–600,
Jul 2005.

[26] M. Holschneider, R. Kronland-Martinet, J. Morlet, and
P. Tchamitchian, “A real-time algorithm for signal analy-
sis with the help of the wavelet transform,” in Wavelets:
Time-Frequency Methods and Phase Space, Jean-Michel
Combes, Alexander Grossmann, and Philippe Tchamitchian,
Eds. 1989, pp. 289–297, Springer-Verlag.

[27] G. P. Nason and B.W. Silverman, “The stationary wavelet
transform and some statistical applications,” in Lecture Notes
in Statistics, 103, pp. 281–299. 1995.

[28] M. D. Plumbley, T. Blumensath, L. Daudet, R. Gribonval,
and M. E. Davies, “Sparse representations in audio and mu-
sic: From coding to source separation,” Proceedings of the
IEEE, vol. 98, no. 6, pp. 995–1005, Jun 2010.

[29] Michael S. Lewicki, Terrence J. Sejnowski, and Howard
Hughes, “Learning overcomplete representations,” Neural
Computation, vol. 12, no. 2, pp. 337–365, Feb 2000.

[30] M. Elad and M. Aharon, “Image denoising via sparse and
redundant representations over learned dictionaries,” IEEE
Transactions on Image Processing, vol. 15, no. 12, pp. 3736
–3745, Dec 2006.

[31] J. Mairal, M. Elad, and G. Sapiro, “Sparse representation
for color image restoration,” IEEE Transactions on Image
Processing,, vol. 17, no. 1, pp. 53 –69, Jan 2008.

DAFX-7

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-415


