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ABSTRACT

This paper presents a framework for the estimation of the faders
gain of a mixing console, in the context of broadcast radio pro-
duction. The retrieval of the console state is generally only pos-
sible through a human-machine interface and does not permit the
automatic processing of such information. A simple algorithm is
provided to estimate the faders position from the different inputs
and the output signal of the console. This method also allows the
extraction of an additional unknown input, present in the mix out-
put. An exhaustive study on the optimal parameter setting is then
detailed, that shows good results on the estimation.

1. INTRODUCTION

The transition of the broadcast technical craft from analog to digi-
tal audio casting is an important imminent change for radio stations
in France. Indeed, the forthcoming revolution of the radio media is
the emission of associated interactive visual content that provides
a live complement to the audio content. The automatic production
of additional multimedia content implies an increased control on
the whole media production process. Such feature requires the up-
stream knowledge of the audio media produced and emitted, which
is not possible with the actual broadcast model state.

Interfacing with a mixing console is a typical example of this
lack. Typically, several inputs of the console are active and ded-
icated to various audio streams (i.e. jingles, advertisements, lin-
ers...) but only a small part of them is actually present in the mix
output emitted by the station. This type of material is highly pro-
prietary and an open machine interface is rarely provided to check
the state of the controls. However, knowing the exact content of
the output is essential to be able to generate data associated.

A typical example of this issue is the displaying of the album
covers of a musical playlist, on a multimedia stream coupled with
the audio stream. Succeeding musical tracks are assigned to differ-
ent channels of the console, and mix-faded. The track faders posi-
tion determine the song that is actually heard. The blind identifica-
tion of audio tracks is commonly proceeded through fingerprinting
techniques. The contributions in the field are numerous, both from
the industrial actors [1][2] the academic world [3]. However, most
audio fingerprinting methods are inefficient in the presence of sev-
eral mixed tracks, and these techniques could only detect the pres-
ence of the tracks, not their respective gains. This article shows
how a simple signal-based method answers this problem.

Our scope of interest is widened by considering the eventual
presence of an additional unknown input in the mix process. In-
deed, the estimation of known sources mix logically allows the
deduction of the unknown source contribution. We will see that
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the proposed system is able to extract this source from the output,
and give an extensive study on the integrity of the signal extracted.
This issue is indeed relevant in our use-case since the speakers
microphones are usually directly connected to the mixing console
with no possibility to retrieve the signal independently, while oth-
ers pre-recorded sources are directly accessible to a program.

The definition of the mix estimation problem and the proposed
algorithm are presented in Section 2, followed by the description
of the experimental protocol of our study in Section 3. An analysis
of the results and refining of the parameters will follow in section
4, and Section 5 concludes this work.

2. MIX ESTIMATION

2.1. Definition of the problem

The problem stated is the estimation of the fader gains of a mix-
ing console from the known inputs and output. The inputs of the
console are fed with pre-recorded sounds, e.g. jingles, liners or
musical tracks. The output is directly retrieved from the mixing
console. An important issue, is the effect of the track filters (mod-
elled as Finite Impulse Response filters) applied on each input of
the mixing console. The inputs considered in the estimation pro-
cess are thus previously filtered with the corresponding impulse
response, that is measured using Golay codes [4] on each input.
The two objectives are the estimation of the fader gains in a dy-
namic context, and the estimation of an unknown additional input,
that contains a signal that is not directly retrievable.

Figure 1: Architecture of the system.

The system architecture is summed up in figure 1. The following
notations are used in the remainder of this article:
Xi

n =
[
xi(n), . . . , xi(n−N + 1)

]T is the N sample column
vector for the ith input at instant n,
Xn =

[
X1

n, . . . , XI
n

]
is the input matrix a scenario involving I

known inputs, at instant n,
Yn = [y(n) . . . y(n−N + 1)]T is the output column vector.
Un is the additional unknown voice input vector, at instant n,
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An =
[
a1n, . . . , a

I
n

]T
models the fader gain values at instant n.

The mixing console effect is modeled by Yn = Xn An + Un.

2.2. Algorithm

The mix estimation is solved with least mean squares. An is con-
sidered as the projection of the output Yn on the space generated
by the input matrix Xn. Let Xn

† denote the pseudo-inverse of
Xn, then:

Ân = Xn
†Yn =

(
Xn

T Xn

)−1

Xn
T Yn (1)

The faders gain vector Ân is estimated on frames of N samples,
with a hop size of R samples between frames. The delay induced
by the mixing process in the output can be rendered by the RIF fil-
ters applied to each input, and is thus ignored in our formalization.

The fader gain for each track i is thus described by a sequence
Ai =

[
ai0 a

i
R . . . a

i
k·R
]
, sampled at 1/R. The upper Figure 2

shows an example of estimated gain sequences (Âi)i=1,...,I for
an added noise of 20 dB Signal to Noise Ratio, that models the
Un signal. To reduce the distortion induced by the added noise,
a post-process consisting of a median filter on F samples, is ap-
plied. Median filtering is a robust, fast, and very common way to
smoothen estimation curves [5]. The lower Figure 2 illustrates the
drastic effect in the estimates. The choice of the filter size, fixed
to F = 20 samples in the figure, must meet a compromise in the
reduction of distortions between static and transient parts.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Instant n

Fa
de

r g
ai

n 
va

lu
e

 

 

Track 1
Track 2
Track 3
Track 4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Instant n

Fa
de

r g
ai

n 
va

lu
e

Figure 2: Estimated Âi sequences with added noise 20 dB SNR,
with N = 2000 and R = 500. (up) no post-processing (down)
median filter, 20 sample window.

The unknown track is then estimated, with the estimated mix gain:

Ûn = Yn −Xn Ân (2)

The remainder of this article focuses on the influence of pa-
rametersN , R and F on the estimation, for different Mix to Noise
Ratios (MNR) or Mix to Added voice Ratio (MAR), where Mix
denotes the mix of the known inputs : Xn An.

3. EXPERIMENTS

3.1. Corpus

The evaluation corpus consists of excerpts of radio broadcast news
shows, and thus mainly filled with speech, with a possible back-
ground liner. The audio tracks are monophonic with 16 bits quan-
tization, sampled at 16 kHz. Each result is computed on a 20 min-
utes mix simulation.

Four tracks are used for the known inputs Xi (I = 4). The
additional signal U is either a Gaussian noise or another excerpt
of the broadcast news. Since different speech signals are more
correlated than music and speech signals, our experiment is more
constrained than the original requisites. We have also tested the
unknown track extraction with the musical known inputs from the
RWC music genre database [6], but this brings no significant im-
provement.

3.2. Fade simulation

As stated earlier, the mix estimation process behaves differently on
static and transient parts of the fader gain sequences (Ai). Indeed,
the correct estimation of the transient is only done through a linear
interpolation between successive frame values. The gain values
are thus prone to more distortions on fadings.
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Figure 3: Example of measured fade curves (solid) and modeling
by a sigmoid curve (dashed)

The way humans move faders is quite variable, as shown in the
solid curve examples of Figure 3, acquired from a mixing console.
However, the first two human fadings are quite similar to a sigmoid
curve, defined by S(t) = 1/(1 + e−αt). This model is used here
for the artificiel fading transitions. Because of the fast convergence
on the edges, it helps modelling a fast and continuous transition
between two values.

In this experiment, the four tracks gain are changed alterna-
tively at random intervals (around 15 s) and follow a sigmoid fade
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curve during a random interval around 0.5 s. The mean duration
of the total fade intervals on each 20 minute mix test is 1 minute.

3.3. Evaluation

For the evaluation of the mix estimation process, the criterion is
the mean gain distortion on all tracks (expressed in dB) :

Gdist = 10 log10
1

I

∑

i

‖Âi −Ai‖2
‖Ai‖2 (3)

Since this problem is also a source separation problem (with
high prior knowledge), the criteria presented in [7] for Blind Source
Separation scoring are also relevant in this context, especially for
the unknown track estimation. They give a more specific measure
for separation than the usual Signal to Noise Ratio.
Let M be the mixed signal without the unknown track U, the es-
timate Û can be projected on U and the mixed signal M, with
εartif the residual of the projection:

Û = 〈Û,U〉U + 〈Û,M〉M + εartif , (4)

where 〈·, ·〉 denotes the inner product. The Signal to Distortion
Ratio (SDR) is a global measure of the separation quality, while the
Signal to Interference (SIR) and Signal to Artifacts (SAR) ratios
respectively measure the amount of unknown track and artefacts
remaining in the separated mixed signal. They are defined as:

SDR = 10 log10
‖〈Û,U〉U‖2

‖〈Û,M〉M + εartif‖2
(5)

SIR = 10 log10
‖〈Û,U〉U‖2
‖〈Û,M〉M‖2

(6)

SAR = 10 log10
‖〈Û,U〉U + 〈Û,M〉M‖2

‖εartif‖2
(7)

The SIR helps particularly in measuring the proportion of mixed
signal kept in the estimation of the unknown track.

The same criteria are also defined on the restriction to the parts
containing fades (see section 3.2): GF

dist, SDRF, SIRF, SARF.

4. RESULTS

4.1. Mix without unknown input

Table 1 shows the gain distortion Gdist in the unnoised situation
(i.e. Un = 0 ∀n) for different median filter length (F ) and win-
dow size (N ) values. Not surprisingly, the mix estimation is more
accurate when the median filter is longer and the window more
narrow. A negligible gain distortion of -62 dB is measured for the
best case (F = 100 and N = 50). When restricted to fade inter-
vals, GF

dist is a few dB higher for all values of F and N but still
remains very low in the best case (GF

dist = -58 dB).

4.2. Robustness to distortions

Naturally, the gain distortion increases when noise is introduced in
the mixed signal, and the parameters effect is different. The upper
Figure 4 shows the gain distortion measured with F varying from
0 (no filtering) to 100, and N between 50 and 8000, for a SNR
of 10dB. The figure clearly shows the correlation between the two

filt / N 50 200 500 2000 8000
0 -39.5 -34.3 -28.8 -27.9 -15.3
5 -45.1 -41.8 -34.1 -29.8 -15.3
15 -51.8 -52.1 -44.0 -29.8 -14.4
50 -58.9 -54.0 -44.0 -29.2 0.4
100 -62.5 -54.0 -44.0 -7.9 7.3

Table 1: Gain distortion Gdist for different configurations of F
and N , without unknown input.

parameters optimal values: the minimal gain distortion Gdist re-
mains stable when the product F · N is constant. Indeed, Eq. 1
gets more over-determined when N increases, and F must conse-
quently be lowered to avoid over-smoothing of the gain curves. A
global minimum is observed around N = 2000 and F = 15, with
Gdist = −20.0 dB.
On the contrary, the gain distortion on the sole transitions (Figure
4) show a much more localized minimum. The minimum peak is
also reached for N = 2000 and F = 15 with GFdist = −15.9
dB, but decreases strongly outside these values, even when keep-
ing F ·N constant. This shows the higher sensitiveness of the gain
estimation on fadings.
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(b) on the sole fading intervals GFdist

Figure 4: Gain distortion for different F and N values, with an
added noise of 10dB SNR.

The same experiment is followed for 20 dB and 5 dB SNRs.
Figure 5 compares Gdist (solid) and GF

dist (dashed) for these three
SNR values, with different F and a window length of N = 2000
samples. Gdist is minimized in most cases for F = 15. For short
median filter lengths, the gain distortion is lower on fading inter-
vals than on the whole signal for SNR of 20dB and 10dB. This re-
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veals the distortion induced in the fading gain by over-smoothing.
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Figure 5: Evolution of Gdist (solid) and GFdist (dashed) with the
median filter length (N = 2000), for different SNR values.

4.3. Unknown input estimation

In this next experiment, the scope of evaluation is restricted to the
fading intervals. The previous experiment has provided some clues
to calibrate F and N . If this noise is replaced by a speech track,
the minimal gain distortion differs only by a few dB, and is still
observed in most cases for N = 2000, as shown in table 2(a),
where each column sums up the optimal configuration for a given
Mix to Additional track Radio (i.e. MAR = ‖M‖2 / ‖U‖2). The
gain estimation is evaluated for different values of MAR ranging
from 20 dB to -5 dB. For low MAR values (i.e. a stronger added
signal) the gain distortion is much higher, and reaches -7dB in
the best case for a -5dB MAR. The best configuration is clearly a
median filter length of 30 samples and a window of N = 2000.

MAR (dB) 20 10 5 0 -5
F 30 50 30 30 30
N 1000 500 2000 2000 2000
GF

dist (dB) -22.3 -16.0 -13.8 -10.0 -7.0
(a) Optimal N , F and gain distortion GFdist

F 5 5 10 5 5
N 500 2000 500 500 500
SIRF (dB) 48.9 51.8 51.4 50.1 56.0

(b) Optimal N , F and Signal to Interference Ratio SIRF

F 10 10 15 10 10
N 1000 1000 1000 1000 2000
SARF (dB) 18.2 22.9 24.3 25.1 26.8

(c) Optimal N , F and Signal to Artefacts Ratio SARF

Table 2: Optimal values on fading intervals for different MAR.

The Signal to Interference Ratio, presented above, evaluates
the separation of the unknown track U by quantifying the pro-
portion of the mixed signal M present in the estimation Û. N
varies from 500 to 4000, and the median filter length F between
5 and 50. The SIRF criterion on the sole fading intervals helps
judging the separation capability for the different configurations.
Table 2(b) shows, for each MAR value, the optimal N and F val-
ues, along with the maximum SIRF. The latter criterion increases
when the MAR gets higher, which shows that theGdist criterion is

not relevant in evaluating source separation since it has an opposite
behaviour. The SIRF is maximized to 56dB with -5dB MAR.

Nevertheless, the artefacts are a much important part of the in
noise induced in the source separation, than the interference. Table
2(c) shows the optimal Signal to Artifacts Ratio measured in the
same experiment. The latter increases as well when the unknown
track energy increases, and reaches 26.8 dB for a -5dB MAR, with
F = 10 and N = 2000. Since the SARF is 30 dB lower than the
SIRF, the latter is considered negligible, and the global distortion
measure SDRF is considered equal to SARF. The optimal N and
F are thus very close to the values estimated in Section 4.2 above.

A last study is done on the step lengthR. For each MAR value,
the SARF score is measured for R ∈

[
N
8
N
4
N
2

]
. A systematic

improvement is observed with R = N
8

and F ′ = 4F . Table 3
shows the gain measured on the SARF evaluation criterion, when
compared to R = N and F ′ = F .

MAR (dB) 20 10 5 0 -5
SARF (dB) 24.3 26.5 27.4 28.4 28.9
∆SARF (dB) 6.1 3.6 3.1 3.3 2.1

Table 3: Gain on the Signal to Interference Ratio on fadings SARF

with a window hop of R = N
8

and F ′ = 4F (where F is the
optimal value with R = N ) for different MAR values.

5. CONCLUSION

We have presented here an efficient and very simple algorithm for
the estimation of a mix with the prior knowledge of the input and
output signals. The optimal gain distortion is -20dB on the whole
signal and -16dB on the gain fading transitions. The extraction of
an added unknown track has shown very reliable since the global
signal to distortion measured on the estimation reaches 28.9dB,
this distortion is mostly due to artefacts induced by the algorithm.

The major weakness of our algorithm, though, lies in the need
of a prior knowledge of the filters applied on each track by the
mixing console. An interesting perspective would be the dynamic
estimation of the filters response coupled with the mix estimation.
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