Previous Contents Next

12   Statistics

ARTICLEbattiti94 [Bat94]
Author
Roberto Battiti
TitleUsing the mutual information for selecting features in supervised neural net learning
JournalIEEE Transactions on Neural Networks
Volume5
Number4
Pages537--550
Year1994
urlhttp://rtm.science.unitn.it/~battiti/battiti-publications.html


BOOKcart84 [BFOS84a]
Author
L. Breiman, J. Friedman, R. Olshen, C. Stone
TitleClassification and Regression Trees
PublisherWadsworth and Brooks
AddressMonterey, CA
Year1984
Notenew edition [B+84]?
Remarkscited in [MCW98, CM98, BT97b] for CART, clustering, and decision trees


BOOKcart84-2 [BFOS84b]
Author
Leo Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone
TitleClassification and Regression Trees
Year1984
PublisherWadsworth Publishing Company
AddressBelmont, California, U.S.A.
SeriesStatistics/Probability Series
Isbn-hard0534980546 (softcover)
Isbn-soft0534980538 (hardcover)


BOOKcart93 [B+84]
Author
Leo Breiman, others
TitleClassification and Regression Trees
PublisherChapman & Hall
AddressNew York
Year1984
Pages358
Notenew edition of [BFOS84a]?
Isbn0-412-04841-8
urlhttp://www.crcpress.com/catalog/C4841.htm
amazon-urlhttp://www.amazon.de/exec/obidos/ASIN/0412048418
Price$44.95, DM 83.26 EUR 42.57
RemarksTO BE FOUND


ARTICLEdubnov95 [DTC]
Author
Shlomo Dubnov, Naftali Tishby, Dalia Cohen
TitleHearing Beyond the Spectrum
JournalJournal of New Music Research
Volume24
Number4
pub-urlhttp://www.swets.nl/jnmr/vol24_4.html#dubnov24.4
Remarksfeatures: harmonicity, phase coherence, chorus. bispectral information. acoustic distortion (distance) measure (``concept of statistical divergence which is used for measuring the `similarity' between signals'', ``similarity classes with a good correspondence to the human acoustic perception'', ``generalization of acoustic distortion measure''). TO BE FOUND
AbstractIn this work we focus on the problem of acoustic signals modeling and analysis, with particular interest in models that can capture the timbre of musical sounds. Traditional methods usually relate to several ``dimensions'' which represent the spectral properties of the signal and their change in time. Here we confine ourselves to the stationary portion of the sound signal, the analysis of which is generalized by incorporating polyspectral techniques. We suggest that by looking at the higher order statistics of the signal we obtain additional information not present in the standard autocorrelation or its Fourier related power-spectra. It is shown that over the bispectral plane several acoustically meaningful measures could be devised, which are sensitive to properties such as harmonicity and phase coherence among the harmonics. Effects such as reverberation and chorusing are demonstrated to be clearly detected by the above measures. In the second part of the paper we perform an information theoretic analysis of the spectral and bispectral planes. We introduce the concept of statistical divergence which is used for measuring the ``similarity'' between signals. A comparative matrix is presented which shows the similarity measure between several instruments based on spectral and bispectral information. The instruments group into similarity classes with a good correspondence to the human acoustic perception. The last part of the paper is devoted to acoustical modelling of the above phenomena. We suggest a simple model which accounts for some of the polyspectral aspects of musical sound discussed above. One of the main results of our work is generalization of acoustic distortion measure based on our model and which takes into account higher order statistical properties of the signal.


INPROC.dubnov97 [DR97]
Author
Shlomo Dubnov, Xavier Rodet
TitleStatistical Modeling of Sound Aperiodicities
BooktitleProceedings of the International Computer Music Conference (ICMC)
MonthSeptember
Year1997
AddressTessaloniki, Greece
urlhttp://www.ircam.fr/equipes/analyse-synthese/listePublications/articlesDubnov


PHDTHESISrochebois97 [Roc97]
Author
Thierry Rochebois
TitleMéthodes d'analyse synthèse et représentations optimales des sons musicaux basées sur la réduction de données spectrales
MonthDecember
Year1997
SchoolUniversité Paris XI
urlhttp://www.ief.u-psud.fr/~thierry/these/
RemarksPrincipal components analysis of harmonic partials, gives sub-spaces as linear combinations of partials, i.e. timbral components.
AbstractprincipalL'analyse et la synthèse de sons et en particulier de sons musicaux a déjà fait l'objet de nombreuses recherches. Pour l'essentiel, ces recherches ont été menées dans deux objectifs : étudier et synthétiser les sons musicaux. Ces deux objectifs sont tout à fait conciliables et complémentaires. L'objet de cette thèse est une méthode d'analyse et de synthèse des sons musicaux basée sur une réduction de données. Une telle méthode permet d'obtenir une représentation optimale - au sens de la variance - des sons musicaux. Cette représentation est, à la fois un puissant outil pour l'étude du timbre musical, mais aussi, la base d'une forme de synthèse efficace.


BOOKfukunaga90 [Fuk90]
Author
K. Fukunaga
TitleIntroduction to Statistical Pattern Recognition
PublisherAcademic Press
Edition2
Year1990
Remarkscited in [CM98] for CART tree evaluation criterion. TO BE FOUND


INPROC.nock97 [NGY97]
Author
H. J. Nock, M. J. F. Gales, Steve Young
TitleA Comparative Study of Methods for Phonetic Decision-Tree State Clustering
BooktitleProc. Eurospeech '97
Volume1
AddressRhodes, Greece
MonthSeptember
Year1997
Pages111--114
Remarkscited in [MCW98] for decision trees for speech recognition, [CM98] for CART tree evaluation criterion. TO BE FOUND



Previous Contents Next