Canons rythmiques
mosaïques et conjecture de Fuglede
Samedi 2 février
2008
Ircam, Salle C. Shannon
1, place I. Stravinsky 75004 Paris
(Entrée libre dans la mesure des places disponibles)
Programme de la journée
:
- 15h00 - 15h30 - Moreno Andreatta
& Carlos Agon The Tiling Canon construction as a "mathemusical"
problem : from Minkowski/Hajos to Fuglede Conjecture (pdf)
- 15h30 16h15 - Emmanuel Amiot
- From Vuza canons and their mathematical models to the
Spectral Conjecture (pdf)
- 16h15 16h45 - Edouard Gilbert
- Polynomial congruence and tiling canons
---
- 17h00 17h30 - Franck Jedrzejewski
- Cyclotomic properties of aperiodic Vuza canons (pdf)
- 17h30 18h15 - Mihalis Kolountzakis
- Tiling by translation: Fourier analysis, number theory and
algorithms (pdf)
- Discussion
Résumés :
Moreno Andreatta & Carlos Agon - The Tiling Canon construction
as a "mathemusical" problem: from Minkowski/Hajos to
Fuglede Conjecture
We provide a survey of the Tiling Canon construction which
emphasizes its " mathemusical " character.
Rhythmic canons having the property to tile the time line are
in fact natural musical constructions which can be taken, on one
side, as an object study for purely mathematical research and
whose mathematical formalizations open, at the same time, new
interesting perspectives in the field of computer-aided composition.
Emmanuel Amiot From Vuza canons and their mathematical
models to the Spectral Conjecture (the return !)
In the study of rhythmic canons, after the seminal work of
DT Vuza, several mathematical models emerge naturally: direct
sum decompositions, DFT of characteristic functions and their
zeroes, polynomials and their cyclotomic factors, interval vectors
Looking for musically relevant features and transformations
of rhythmic canons enabled to gain some valuable insight on tough
'pure' mathematical problems, such as the Spectral Conjecture.
Edouard Gilbert - Polynomial congruence and tiling canons
Rhythms can be represented as polynomials with integer coefficients.
Considering a rhythm whose period is given, one can be interested
in studying the polynomials from Z[X]/(Xn -
1) or F2 [X]/(Xn + 1). Usual transformation
can easily be considered in those sets and most of them have some
nice properties on the roots of their polynomials. Decomposition
of such sets can also be used to start the search of tiles complements.
Franck Jedrzejewski - Cyclotomic properties of aperiodic Vuza
canons
The factorization of the finite abelian group Zn into a direct
sum of subsets (Zn=R+S) is a model for musical canons.
If Zn is a non-Hajos group, the decomposition uses only aperiodic
tiles. This question was solved by Sands after the works of de
Bruijn and Rédei.
More recently, Dan Vuza gave an algorithm to construct aperiodic
canons. But unfortunately, it is well-known now that some aperiodic
canons are not Vuza canons. In this talk, starting from a general
aperiodic canon, we use the characteristic polynomial of each
tile and their decomposition into cyclotomic polynomials to derive
the index of the cyclotomic polynomials for a large set of aperiodic
canons included Vuza canons.
Mihalis Kolountzakis - Tiling by translation: Fourier analysis,
number theory and algorithms
We are going to present problems and methods that arise in
the study of translational tiling by a single tile. We will show
the connection to Fourier Analysis, where a tiling is studied
in Fourier space by looking at the zeros of the Fourier Transform
of the tile and the support of the Fourier Transform of the translation
set. We will also see the specific case when the group (which
is being tiled by a subset of it) is the cyclic group. In this
case the cyclotomic polynomials play a major role, which we hope
to exhibit. A specific kind of tiling problem is that of spectrality,
and the so-called Fuglede conjecture will be explained in this
context. The emphasis of this talk will be mostly on the algorithmic
side of these questions, with the predominant question being to
decide if a given finite set of integers is a tile or not. This
question has not yet found a satisfying answer in terms of computational
complexity. We will also mention analogous problems in dimension
2, where the computational questions are much more basic, as not
even decidability has been proved yet.
Quelques repères bibliographiques
:
- H. Minkowski , Geometrie der Zahlen, Leipzig, 1896.
- H. Minkowski, Diophantische Approximationen. Eine Einführung
in die Zahlentheorie, Chelsea Publishing Company, New York,
1907.
- G. Hajos, " Über einfache und mehrfache Bedeckung
des n-dimensionalen Raumes mit einem Würfelgitter ",
Math. Zeit., 47, pp. 427467, 1942.
- G. Hajos, " Sur le probléme de factorisation
des groupes cycliques ", Acta. Math. Acad. Sci.
Hung., 1, pp. 189195, 1950.
- L. Redei, " Ein Beitrag zum Problem der Faktorisation
von endlichen Abelschen Gruppen ", Acta Math. Acad.
Sci. Hung., 1, 1950, p. 197-207.
- N. G. de Brujin, " On the factorization of finite
abelian groups ", Indag. Math. Kon. Ned. Akad. Wetensch.
Amsterdam, 15, pp. 258-264, 1953.
- A. Sands, " On the factorization of finite abelian
groupes ", Acta Math. Acad. Sci. Hung., 8, p.
65-86, 1957.
- A. Sands, " The Factorisation of Abelian Groups ",
Quart. J. Math. Oxford, vol. 2 n° 10, p. 81-91, 1959.
- S. K. Stein, " Algebraic Tiling ", Amer.
Math. Month., 81, pp. 445462, 1974.
- B. Fuglede, " Commuting self-adjoint partial differential
operators and a group-theoretical problem ", J.
Funct. Analysis, 16, 1974, 101-121
- D. J. Newman, " Tessellation of Integers ",
Journal of Number Theory, 9, 1977, p. 107-111.
- D.T. Vuza, " Sur le rythme périodique ",
Revue Roumaine de Linguistique-Cahiers de linguistique Théorique
et Appliquée 23, n°1, p. 73-103, 1985.
- D. T. Vuza, " Supplementary Sets and Regular Complementary
Unending Canons ", en quatre parties, dans Perspectives
of New Music, n. 29(2), p. 22-49 ; 30(1), p. 184-207 ; 30(2),
p. 102-125 ; 31(1), p 270-305, 1991-1992.
- S. Stein & S. Szabó, Algebra and Tiling,
The Carus Mathematical Monographs, n°25, 1994.
- R. Tijedeman, " Decomposition of the Integers as
a Direct Sum od two Subsets ", Séminaire
de théorie des nombres de Paris, 1995, 261-276
- M. Andreatta, Gruppi di Hajos, Canoni e Composizioni,
tesi di laurea, Dipartimento di matematica, Università
di Pavia.
- E. M. Coven and A. Meyerovitch, " Tiling the integers
with translates of one finite set ", Journal of
Algebra, 212(1), p. 161-174, février 1999.
- H. Fripertinger, " Enumeration of non-isomorphic
canons ", Tatra Mt. Math. Publ., 23, p. 47-57,
2001.
- T. Johnson, " Tiling the line (pavage de la ligne).
Self-Replicating Melodies, Rhythmic Canons, and an Open Problem ",
Les Actes des 8e Journées dInformatique Musicale,
Bourges, p. 147-152, 2001.
- A. Tangian, " The Sieve of Eratosthene for Diophantine
equations in integer polynomials and Johnsons problem ",
Discussion paper No. 309, FernUniversity of Hagen, 2001.
- T. Noll, M. Andreatta, C. Agon, G. Assayag et D. Vuza, " The
Geometrical Groove: rhythmic canons between Theory, Implementation
and Musical Experiments ", Actes des Journées
dInformatique Musicale, Bourges, 2001, p. 93-98.
- I. Laba, " The spectral set conjecture and multiplicative
properties of roots of polynomials ", Journal of
the London Mathematical Society, 65(3), p. 661671,
2002.
- M. N. Kolountzakis, " The study of translational
tiling with Fourier Analysis ", Lectures given at the
Workshop on Fourier Analysis and Convexity, Università
di Milano-Bicocca, June 11-22, 2001 (version March 2003)
- Andranik Tangian, " Constructing Rhythmic Canons ",
Perspectives of New Music, 41(2), 2003.
- M. Andreatta, " On group-theoretical methods applied
to music: some compositional and implementational aspects ",
Perspectives in Mathematical and Computational Music Theory,
ed. G. Mazzola, T. Noll and E. Lluis-Puebla. (Electronic Publishing
Osnabrück, Osnabrück), 2004, p. 169-193
- E. Amiot, " À propos des canons rythmiques ",
Gazette des mathématiques, 106, Octobre 2005.
- E. Amiot, " Rhythmic canons and galois theory ",
In H. Fripertinger and L. Reich (eds.), Proceedings of the
Colloquium on Mathematical Music Theory, Grazer Mathematische
Berichte, vol. 347, p. 1-25, Graz, Austria, 2005.
- H. Fripertinger, " Remarks on Rhythmical Canons ",
In H. Fripertinger and L. Reich (eds.), Proceedings of the
Colloquium on Mathematical Music Theory, Grazer Mathematische
Berichte, vol. 347, p. 1-25, Graz, Austria, 2005, p. 73-90.
- H. Zuber, Vers une arithmétique des rythmes ?, mémoire
de magistère, École normale supérieure de
Cachan, 2005
- F. Jedrzejewski, Mathematical Theory of Music, Collection
" Musique/Sciences ", Ircam-Delatour France, 2006.
- M. N. Kolountzakis and M. Matolsci, " Complex Hadamard
matrices and the spectral set conjecture ", Collectanea
Mathematica, Extra, p. 281291, 2006.
- O. Bodini & E. Rivals, " Tiling an Interval
of the Discrete Line ", LNCS, Springer, 2006, p. 117-128.
- M. Andreatta, " De la conjecture de Minkowski aux
canons rythmiques mosaïques ", LOuvert,
n° 114, Mars 2007, p. 51-61.
- E. Gilbert, Polynômes cyclotomiques, canons mosaïques
et rythmes k-asymétriques, mémoire de Master
ATIAM, mai 2007.
Pour plus d'information sur des problèmes de pavage
en musique et quelques conjectures ouvertes en mathématiques,
voir :
http://recherche.ircam.fr/equipes/repmus/mamux/IrcamTilingResearch.html
Planning du séminaire
:
- Samedi 6 octobre 2007 : Mathématiques/Musique et CAO
(avec la participation de Arturo Fuentes et Guilherme Carvalho,
compositeurs).
- Samedi 1er décembre 2007 : Ecole pour musiciens
et autres non-mathématiciens (séance animée
par Yves André)
- Samedi 15 décembre 2007 : Enjeux compositionnels et
philosophiques de la théorie des catégories (avec
la participation de G. Mazzola et R. Krömer)
- Vendredi 11 et samedi 12 janvier 2008 : Mathématiques/Musique
et Cognition (Symposium " Autour de la TGMT de F. Lerdahl
et R. Jackendoff ").
- Samedi 2 février 2008 : Canons rythmiques mosaïques
et conjecture de Fuglede
- Samedi 15 mars 2008 : Ecole pour musiciens et autres non-mathématiciens
(séance animée par Yves André)
- Samedi 5 et dimanche 6 avril 2008 : Workshop on Computational
Music Analysis (séance organisée par Chantal Buteau
et Christina Anagnostopoulou)
- Samedi 17 mai 2008: Ecole pour musiciens et autres non-mathématiciens
(séance animée par Yves André)
Contacts :
Le Séminaire est organisé par L'Equipe Représentations
Musicales de l'IRCAM-Centre G. Pompidou, en collaboration avec
Guerino Mazzola (MultiMediaLab de Université de Zürich
/ School of Music, University of Minnesota), Franck Jedrzejewski
(CEA Saclay - INSTN/UESMS), Thomas Noll (Escola Superior de Musica
de Catalunya) et avec le soutiens du CNRS (UMR 9912 Sciences et
technologies de la musique et du son).
Pour tout renseignement, contacts et propositions :
Moreno Andreatta (andreatta@ircam.fr)
Carlos Agon Amado (agonc@ircam.fr)